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5 EXPERIMENT: LOCAL SEARCH 

5.1 Background 

Experiments in this chapter investigate two related research aims i.e. how to represent 

the design problem and early lifecycle design solution for effective computational 

search, and how to effectively explore and exploit the software design solution search 

space to arrive at useful and innovative UML class designs. Thus firstly, an initial set of 

experiments is conducted to trial the performance of the object-based representation 

using manual parameter „tuning‟. Building on the findings of initial experiments, a 

second set of experiments is then performed to investigate how dynamic parameter 

control might more effectively explore and exploit the local search space.   

With respect to terminology, „local search‟ is widely referred to as a 

metaheuristic for solving computationally hard optimisation problems. As such, local 

search can be applied to problems that can be formulated as finding a solution 

optimising a criterion among a number of candidate solutions. Starting at a candidate 

solution, the search typically moves iteratively to a neighbouring solution (e.g. „hill-

climbing‟), hence the name local search. However, when using a discrete, object-based 

representation, the notion of candidate solution neighbourhood with fitness gradients is 

perhaps less applicable. Thus while the term local search is used in this thesis, its use in 

essence refers to „localised’ single-objective search in order to contrast it with the multi-

objective global search described in the following chapter.  

With regard to the initial set of experiments, local search approaches inspired by 

genetic algorithms (e.g. De Jong, 1975, Goldberg, 1989) and evolutionary programming 

(e.g. Fogel et al., 1966) are trialled. Figure 5.1 shows flow charts of the genetic 

algorithm (GA) and evolutionary programming (EP) inspired evolutionary approaches 

used in experiments.   

The GA-inspired approach utilises the genetic operators described in chapter 4. 

To briefly recap, selection is performed by two techniques, namely tournament selection 

and fitness proportionate selection. Recombination is achieved by means of the trans-

positional crossover (TPX), in which two individuals are chosen at random from the 

population, and their attributes and methods swapped between the two based on their 

class position. However, a constraint of the search space is that each design class must 

contain at least one attribute and one method. Thus positional swapping can only occur 

where swapping an attribute or method to another class would not leave the class  
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Figure 5.1. Flowcharts of GA-inspired and EP-inspired Evolutionary Processes 

 

lacking attributes or methods. Mutation, on the other hand, is achieved by relocating an 

attribute and a method from one class to another within a single design individual. 

Recombination rates and mutation rates are held at the population level i.e. the 

population selects individuals for recombination and mutation at random according to 

those rates.  

The EP-inspired approach also draws upon the genetic operators described in 

chapter 4, but differs from the GA-inspired approach in algorithmic detail. For example, 
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potential offspring are first created by mutating all individual designs in the current 

population. Mutation is performed at two levels: class level mutation and element level 

mutation. At class level, all attributes or methods of a class in an individual are swapped 

as a group with another class selected at random. For element level mutation, on the 

other hand, elements (attributes and methods) in an individual are swapped at random 

from one class to another, except where this violates the „at least one attribute and one 

method‟ constraint of the representation. To determine which individuals survive in the 

next generation, the current population (of size N) and the mutated population are 

combined to make of population of 2N.  Each individual then takes part in a fitness 

tournament against q individuals selected at random from the combined populations. 

For each tournament, a „win‟ is assigned if the fitness of the individual is superior to its 

opponent. A score is awarded to each individual based on the number of tournaments 

won; each individual is then ranked in the population according to their score. Highest 

ranking individuals progress to the next generation. Drawing on the findings of Bäck 

(1996) and Eiben and Smith (2003), a value of q = 10 has been applied for the EP-

inspired selection.
1
  

 

5.2 Methodology 

Initial parameter values have been derived from Goldberg (1989), Back (1996) and De 

Jong (2006) and tuned by empirical trial and error.  Optimum settings for evolutionary 

algorithm parameters are thus as follows: 

i. selection – either tournament or proportionate for GA-inspired operators, or no 

selection for the EP-inspired variant; 

ii. crossover and mutation probabilities – (0.7, 0.03) for GA-inspired operators and 

(0.0, 1.0) for the EP-inspired variant; and 

iii. offspring creation and replacement strategy – (100, 100) for GA-inspired 

operators (i.e. 100 parents generate 100 offspring and only those offspring 

become parents of the next generation) and (200 TS) replacement for the EP-

inspired variant (i.e. 100 parents generate 100 offspring to produce a combined 

                                                 
1
 As both Bäck and Eiben and Smith note, this stochastic selection mechanism allows for 

individuals of inferior fitness to survive into the next generation. However, as the value of q is increased, 

this chance becomes more unlikely, until the mechanism becomes deterministic when q = 2N. 
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population of 200; tournament selection is then applied with q = 10 to select 100 

individuals for the next generation).  

In initial experiments, the performance of fitness functions (i.e. COM, external 

coupling) and selection mechanisms (tournament, fitness proportionate) are compared  

for the same example design problem, i.e. the Cinema Booking System.  

The overall methodological strategy of the thesis is to focus on computational 

support for the design within an interactive context. Thus the speed of the evolutionary 

search is important and is measured. However, exploration is also important and so it is 

crucial to preserve a range of design solutions so that the final evaluative decision on 

individual design solutions can be made by the designer. Because of this, populations of 

designs are seeded at random and average population fitness with standard deviation is 

recorded as evolutionary search proceeds. With respect to the termination condition, in 

order to examine the full fitness performance characteristics, search is not halted until 

the performance of the search has reached a fitness „plateau‟. (Of course, in an 

interactive evolutionary search, halting of search is at the discretion of the designer). To 

examine repeatability, each search is run 50 times to provide average population fitness 

curves together with standard deviation. All software is implemented in the Java 

programming language and all runs are conducted on a standard desktop PC running the 

Microsoft Windows operating system. 

Because the tournament selection is not deterministic in the EP-inspired variant 

(where q = 10), it seems likely that the selection pressure for the EP-inspired variant is 

less than that of the GA-inspired variant. Therefore there is an expectation that the EP-

inspired variant is more explorative, while the GA-inspired variant is more exploitative. 

Results of average population fitness curves are shown in figures 5.2 and 5.3 in the 

following section.  

 

5.3 Results 

All results have been obtained using the Cinema Booking System example design 

problem domain. Figure 5.2 shows population average fitness curves and standard 

deviation achieved using the COM cohesion fitness function; figure 5.3 shows 

population average fitness curves and standard deviation using external coupling as the 

fitness function. It is evident from both figures that the GA-inspired approach achieves 

a fitness plateau inside 100 generations using both fitness functions. On the other hand, 

the EP-inspired approach achieves a fitness plateau inside 1000 generations using the 
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COM cohesion fitness function, and inside 200 generations using external coupling as 

the fitness function. It is also evident that for the GA-inspired approach, tournament 

selection arrives at the fitness plateau before proportionate selection for both fitness 

functions.  

 

 

Figure 5.2. Population Average COM Cohesion Fitness Curves 

 

 

Figure 5.3. Population Average External Coupling Fitness Curves 
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Table 5.1 reveals the average run time in seconds and standard deviations (in 

parenthesis) of GA- and EP-inspired approaches for both fitness functions. The number 

of generations in a run is also shown for comparison. Table 5.2 reveals average 

population fitness when search has arrived at the fitness plateau for the three approaches 

trialled. Standard deviation values are provided in parentheses. Manual design cohesion 

and coupling values taken from the previous chapter are also provided for comparison.  

 

Table 5.1. Search Average Run Times (seconds) 

 

 GA-inspired 

(Tournament) 

GA-inspired 

(Proportionate) 

 

EP-inspired 

Cohesion  0.854 (0.140) 0.912 (0.163) 3.918 (0.394) 

Generations  100  100  1000  

Coupling  0.820 (0.128) 0.964 (0.163) 1.943 (0.207) 

Generations 100  100  200  

 

 

Table 5.2. Search Average Population Fitness Search Results 

 

 Manual 

Design 

GA-inspired 

(Tournament) 

GA-inspired 

(Proportionate) 

 

EP-inspired 

Cohesion  0.629 0.744 (0.040) 0.732 (0.043) 0.618 (0.014) 

Coupling  0.154 0.163 (0.040) 0.264 (0.063) 0.157 (0.006) 

 

 

Examples of early lifecycle software design visualisations for the Cinema Booking 

System (CBS) example design problem after fitness plateaus have been arrived at are 

shown in figures 5.4, 5.5 and 5.6. 
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Figure 5.4. Example Software Design Visualisation with Three Classes 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Example Software Design Visualisation with Four Classes 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Example Software Design Visualisation with Five Classes 
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5.4 Analysis 

With regard to computational speed of execution of evolutionary search, table 5.1 

shows that the GA-inspired approach requires approximately one second to run to 

plateau fitness using average population fitness. The EP-inspired approach requires 

approximately three seconds using COM cohesion as a fitness measures and two 

seconds using eternal coupling. This suggests that with respect to computational speed 

at least, initial parameter tuning achieves sufficient performance with the object-based 

representation to provide a basis for interactive search.   

From table 5.2, it is observed that that the average population fitness values 

achieved by GA-inspired and EP-inspired evolutionary processes using both cohesion 

and coupling as fitness functions broadly correspond to the values obtained for the 

manual design. Figures 5.2 and 5.3 show that for both fitness functions, the population 

of the GA-inspired approach with tournament selection achieved a fitness plateau first, 

followed by the GA-inspired approach with fitness proportionate selection, followed by 

the EP-inspired approach. As was expected, this may be explained by the different 

balance between exploration and exploitation shown by the two approaches. In the GA-

inspired approach, the explorative performance of the TPX crossover operator is 

restricted by the “one attribute and one method” constraint of the underlying design 

representation – thus it may be more exploitative in nature. On the other hand, the EP-

inspired approach is highly explorative. In the EP approach, selection pressure is less 

and mutation is significantly more prominent than in GA approach due to the nature of 

the (200 TS) reproduction. Furthermore, because reproduction is mutation-based, using 

one parent for each offspring is less restricted by the “one attribute and one method” 

constraint. It seems likely that for the object-based representation, when compared to 

crossover, mutation more inherently respects the integrity of the sets of attributes and 

methods, and so is computationally more straightforward and efficient at preserving 

diversity in a population of software designs.   

With respect to selection mechanisms in the GA-inspired approach, the results 

would appear to be consistent with earlier findings of Deb (2001) and Eiben and Smith 

(2003) in that fitness plateaus are achieved faster with tournament selection than fitness 

proportionate selection.  

Regarding the performance of the two fitness functions, it is interesting to 

compare the results of the two approaches. Indeed, coupling appears to bring about a 

more consistent performance across the GA- and EP-inspired approaches. An 
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explanation for this may lie in the nature of the fitness functions. For instance, using the 

Cohesiveness of Methods (COM) metric, cohesion is expressed as an average of all 

individual class cohesion values. Thus it is possible for highly cohesive classes to be 

lost from the population if they co-exist in a software design with classes of inferior 

cohesion. On the other hand, the external coupling metric is a direct reflection of the 

design as a whole and does not address individual class fitness. This may explain why 

in the EP-approach, a fitness plateau is achieved in approximately 180 generations with 

coupling as opposed to 650 generations with COM. Thus it seems that coupling may be 

the more tractable and useful fitness function for single-objective local search. 

Figures 5.4, 5.5 and 5.6 show UML class designs visualised in a manner suitable 

for human comprehension. Although printed in this chapter in monochrome, the 

visualisations are colourful when presented to the designer. Therefore, analysing the 

results of the initial experiments with the object-based representation and manual 

parameter tuning, it is observed that: 

 speed of computational execution is satisfactory,  

 tournament selection out-performs fitness proportionate selection, 

 external coupling appears more tractable and useful than COM in local search, 

and 

 class design visualisation is human comprehensible.  

Taken in the round, this suggests that the object-based representation and its associated 

genetic operators can provide an effective basis for evolutionary search of early 

lifecycle software designs. Nevertheless, in order for the local search to be the basis of 

user-centred, interactive evolutionary search, it is crucial that search be capable of 

exploration and exploitation of different design problems and different scales of 

software design problems.  Furthermore, in the course of an interactive software design 

episode, it is unreasonable to expect the software designer to “tune” control parameters 

empirically. In short, a more robust and scalable approach is required. Therefore, to 

enable such robustness and scalability, it seems logical to build upon: 

 the superior performance of tournament selection, 

 the more explorative and computationally efficient mutation operator, and  

 the more tractable and useful external coupling metric.  
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Therefore, the following section describes further experimentation to evaluate such an 

approach with dynamic parameter control for all three example software design 

problems.  

 

5.5 Dynamic Parameter Control 

It has been observed that there are limitations to empirical parameter “tuning”. For 

example, over many years of applying evolutionary algorithms, De Jong (2006) has 

observed that as each parameter to be tuned has a wide range of possible values 

resulting in an explosion of parameter value combinations due to the range of all 

possible interactions. Eiben et al. (1999) go further to suggest that as evolutionary 

algorithms are inherently an intrinsically dynamic adaptive process, “static parameters 

go against this spirit and different values of parameters may be optimal for different 

stages of the evolutionary process”. Indeed, more recently, Eiben et al. (2007) reflect 

that over the past 20 years, the evolutionary computation community has “shifted from 

believing that evolutionary algorithm performance is to a large extent independent from 

the given problem instance to realizing that it is. In other words, it is acknowledged that 

EAs should be more or less fine-tuned to specific problems and problems instances. 

Ideally, it should be the algorithm that performs the necessary problem-specific 

adjustment”. Within early lifecycle software design, there exist many different and 

unique instances of software design problems. This reasoning thus suggests that each 

design problem instance requires its own individual fine-tuning of control parameters.  

A comprehensive review of dynamic parameter control in evolutionary 

algorithms is provided by Meyer-Neiberg and Beyer (2007). In their review, Meyer-

Neiberg and Beyer explain that dynamic parameter control is well understood in both 

evolutionary programming (EP) for graphs (Fogel et al. (1995)) and evolutionary 

strategies (ES) (e.g. Rechenberg (1965), Schwefel (1981)) where real-valued 

representations predominate. Dynamic parameter control has also been investigated in 

genetic algorithms that employ binary encoding. For example, Schaffer and Morishima 

(1987) and Spears and Anand (1991) report the use of self-adaptive crossover operators. 

In addition, examples of investigations into self-adaptive mutation in binary coded 

genetic algorithms include Back (1993), Smith and Fogarty (1996), Smith (2001), and 

Stone and Smith (2002). More recently, Serpell and Smith (2010) report the use self-

adaptive mutation for permutation representations using benchmark Travelling 

Salesman Problems (TSPs), while Kramer (2010) surveys operators and strategy 
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parameters in evolutionary self-adaptation. Indeed, the number of promising reports on 

the use of dynamic parameter control suggests that considerable efficiency and 

robustness may be gained from such approaches. However, the representation of the 

software design search space proposed in this thesis is neither real valued nor binary 

encoded but object based. It has been found that research findings of dynamic parameter 

control to evolutionary search using object-based representations are not readily 

available in the research literature.  

With regard to dynamic parameter control in the Interactive Evolutionary 

Computing (IEC) research literature, Caleb-Solly and Smith (2005) report promising 

findings on the incorporation of adaptive mutation based on subjective evaluation in an 

interactive evolutionary strategy within an automatic surface inspection system for 

classifying defects in sheet steel. In another report by Wenli (2008), adaptive interactive 

evolutionary computation has been applied to conceptual engineering design. Wenli 

implements a prototype plug-in for an existing computer-aided design (CAD) tool to 

assist the engineering designer in curve fitting for ship hull design, although 

experimentation is highly limited and further investigations would bolster the credibility 

of this approach. In a different field, Sannen et al. (2008) report a novel image 

classification framework for real-world images recorded during the CD imprint 

production process, wherein the image classification framework is able to automatically 

reconfigure and adapt its feature-driven classifiers and improve its performance based 

on user interaction during on-line processing mode.  

In the field of Search-Based Software Engineering (SBSE) however, there 

appears to be relative lack of work on IEC and reports of dynamic parameter control in 

evolutionary search also occur infrequently. Nevertheless, there is one report of 

dynamic optimization in evolutionary test case generation provided by Xie et al. (2005). 

Xie et al. use adaptive parameter control by monitoring the number of individuals in 

each generation, wherein the “proportion of repetitious individuals” (PRI) is obtained. If 

the PRI exceeds a threshold, the probability of mutation is increased, and vice versa. 

Thresholds are fixed for an evolutionary run. Using adaptive parameter control for three 

test problems, the authors claim that the performance of the algorithm can be greatly 

increased, although RPI thresholds require manual tuning.  

The evolutionary process used in investigations of dynamic parameter control 

with local search is shown in figure 5.7. As in the evolutionary processes of the 

previous section, after the population is initialised, the fitness of the population of  
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Figure 5.7. Flowchart of Evolutionary Process for Local Search 

 

individual software designs is evaluated. Building on the findings of the previous 

section, external coupling is used as the fitness function and tournament selection is 

applied prior to reproduction due to its superior performance. Because of its relative 

computational complexity and inefficiency, crossover is not used to promote diversity 

in offspring individuals. Rather, mutation is more computationally straightforward and 

explorative, and so mutation has been incorporated into the evolutionary local search 

process. However, certain enhancements have been made to the mutation operation 

described in the previous section, and are as follows. 

Mutation requires the relocation of attributes and/or methods among classes in 

individual software designs. However, unlike the previous GA and EP-inspired variants, 

attributes and/or methods are now swapped and moved in rotation. In other words, the 

mutation operator cycles through the following tactics on each operation: 

Gen = 0 

Create Initial Population 

Termination Condition Satisfied? 

Evaluate Fitness Stop 

Select and Reproduce 

Self-Mutate 

Gen = Gen + 1 

Yes No 
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 swap attribute: two classes are chosen at random in a software design 

individual. From each class, an attribute is chosen at random, and the resulting 

two attributes are the swapped between the classes.  

 swap_method: two classes chosen at random in a software design individual. 

From each class, a method is chosen at random, and the resulting two methods 

are swapped between the classes. 

 move_attribute: a single class with more than one attribute is chosen at random 

in a software design individual. An attribute from this class is removed, and then 

inserted into another class in the software design individual chosen at random.   

 move_method: a single class with more than one method is chosen at random in 

a software design individual. A method from this class is removed, and then 

inserted into another class in the software design individual chosen at random. 

Furthermore, each software design individual encodes its own mutation probability, 

rather than the probability being held at the population level as is the case with the 

initial approach reported in the previous section. When an individual acts as a parent 

and is cloned to produce an offspring, the offspring is mutated using one of the rotating 

tactics as described above.  If the offspring is of a superior fitness to the parent, it is 

inserted back into the population by means of a „Delete-Worst‟ strategy i.e. the 

individual of worst fitness in the population is replaced by the offspring. If, on the other 

hand, the mutated offspring is of inferior fitness, it is discarded and the process 

repeated. The mutation operation is allowed to repeat for up to 50 times. If mutation 

fails to produce a superior offspring after 50 attempts, mutation is abandoned. The 

mutation operation can be summarised as follows: 

 

WHILE ( attemptCount < MAX_ATTEMPTS ) 

Clone an offspring individual from a parent 

Mutate offspring by rotating mutation tactic 

Evaluate mutated offspring 

IF ( offspring is superior to parent ) 

Replace individual in population with offspring 

using ‘Delete-Worst’ 

Exit 

ELSE 

attemptCount = attemptCount + 1 
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In one sense, the mutation operation is not dissimilar to a hill-climbing approach, 

insofar as offspring are always of superior fitness when compared to their parents. The 

elite-preserving mutation, when combined with the „Delete-Worst‟ replacement 

strategy, results in an elitist, steady-state local evolutionary algorithm. Such a steady-

state approach has been previously reported to be effective (Smith and Fogarty, 1996) 

and is appropriate for the requirement of an interactive evolutionary search algorithm 

wherein a robust algorithm must arrive at useful and interesting design solution 

individuals quickly and efficiently. 

 

5.6 Methodology 

Two adaptive and one self-adaptive parameter control mechanisms are compared 

against a baseline to assess performance within the evolutionary hybrid local search. 

The adaptive and self adaptive approaches evaluated include 

 Annealing, 

 1/5 Success Rule, and 

 Self-Adaptive Parameter Control. 

For baseline performance, in initial „tuning‟ trials of the rotating tactic mutation 

operation, fixed mutation probabilities of 0.01, 0.02, 0.03, 0.05, 0.10, 0.20 and 0.25 

have been trialled, but it has been found that mutation probabilities of over 0.10 do not 

necessarily produce greater exploration and so greater average population fitness. Thus 

to provide a valid baseline for comparison with adaptive and self-adaptive approaches, 

each design solution in the population is assigned a mutation probability between 0.01 

and 0.10 at random not only in the initial generation, but also in all subsequent 

generations.  

In the annealing approach to adaptive parameter control, a typical annealing 

approach inspired by Davis (1987) has been trialled. In this approach, the number of 

generations drives mutation probability. Mutation probabilities typically start high, and 

decrease as the number of generations evolves. Thus, each software design solution 

individual in the population is assigned a mutation probability of 0.10 at the start of 

each evolutionary run, decreasing in a linear manner to 0.01 at 500 generations.  

In the “1/5 Success Rule” proposed by Rechenberg (1973), the success of 

mutation achieved during evolution is used to drive adjustments of a solution 

individual‟s mutation probability. In the context of this experiment, mutation is taken to 
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be successful where the mutated offspring is of superior fitness when compared to the 

parent. Rechenberg‟s heuristic suggests that the ratio of successful mutations to all 

mutations should be 1/5. Thus if the ratio is less than 1/5, the mutation probability 

should be increased by a step size to increase local search exploration. On the other 

hand, if the ratio is greater than 1/5, then the mutation probability should be decreased 

to focus the local search around the region of the current individual. The rule is applied 

at periodic intervals, where the mutation probability is adjusted by: 

 

 

{ 
 pm   . c   if  ps > 1/5, 

pm' =  pm  / c   if  ps < 1/5,                                                             (4.1) 

  pm        if  ps = 1/5. 

 

where pm is the probability of mutation, ps is the frequency of successful mutations, and 

c is a parameter in the range 0.817 ≤ c ≤ 1.0 (Rechenberg, 1973). In this investigation, 

the success of mutation is examined in every generation in order to enable maximum 

sensitivity in the face of the three differing example design problems. A mid-range 

value of 0.9 has been chosen for the constant c. The average population number of 

attempts to mutate is used to reflect the success or failure of the mutation. 

In self-adapting mutation, mutation probability is encoded within the individual 

and modified prior to evaluation of the solution design individual; effectively the 

mutation probability is co-evolving with the solution individual. Building loosely on 

Evolutionary Strategy mutation (e.g. Schwefel, 1995), mutation probability values are 

mutated thus: 

 

pm' = pm . ( N( 0, 0.1 ) + 1)              (4.2) 

 

where N( 0, 0.1 ) denotes a random number from a Gaussian distribution with a mean 

value of 0.0 and a standard deviation of 0.1. This effectively results in a mutation 

probability multiplicative factor within a range of approximately 0.8 to 1.2 (drawn from 

a Gaussian distribution around a mean of 1.0). Thus the mutation mechanism is 

straightforward computationally with a fixed step size.  

All local searches use a population size of 100 individuals, and run for 500 

generations. Local searches are replicated over 50 runs, after which, average population 

external coupling fitness, average number of mutation attempts and average population 
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mutation probability are recorded. All local searches have been implemented in the Java 

programming language and run on a standard Microsoft Windows office desktop PC. 

Results obtained are reported in the following section. 

 

5.7 Results 

External coupling is used as the fitness function for all dynamic parameter control 

experiments. For the baseline experiments specifically, each design solution in the 

population is assigned a mutation probability between 0.01 and 0.10 at random not only 

in the initial generation, but also in all subsequent generations. The results of baseline 

average population external coupling fitness (+/- one standard deviation) for the Cinema 

Booking System (CBS), Graduate Development Program (GDP) and Select Cruises 

(SC) example design problems are shown in figure 5.8. Figure 5.9 shows the baseline 

average population number of mutation attempts, while figure 5.10 shows the average 

mutation probability for the population as the local search evolves.  Average population 

mutation probabilities vary from one generation to another due to noise – but broadly 

remain at an average of 0.5 as expected. Taking figures 5.9 and 5.10 together, the results 

reflect the scale of the example design problems. In terms of attributes, methods and 

uses, CBS is the smallest, GDP is larger and SC is larger still. Because of this, the 

amount of inherent coupling in each example design problem increases, which is 

reflected in the average coupling population fitness when the fitness plateau is reached - 

– 0.175, 0.330 and 0.455 for CBS, GDP and SC respectively. Of the three example 

design problems, CBS is the quickest to reach a fitness plateau followed by GDP and 

then SC, again reflecting the scale of the example design problems. The average 
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Figure 5.8. Baseline Average Population Fitness 

 

 

 

Figure 5.9. Baseline Population Average Number of Mutation Attempts 
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Figure 5.10. Baseline Average Population Mutation Probabilities 

 

execution time for a single run of 500 generations of the baseline local search is 3.917, 

14.159 and 12.033 seconds for CBS, GDP and SC respectively.  

For experiments with adaptive parameter control using simulated annealing, the 

number of generations drives mutation probability; mutation probabilities start high and 

decrease as the number of generations evolve. Thus each software design solution 

individual is assigned a mutation probability of 0.10 at the start of each evolutionary 

run, decreasing in a linear manner to 0.01 at 500 generations. Figure 5.11 shows 

average population coupling results while figure 5.12 shows the population average 

number of mutation attempts for annealing. Figures 5.11 and 5.12 reveal that results 

obtained for local search using annealing are similar to those obtained for baseline local 

searches. Average population fitness values at fitness plateau for CBS, GDP and SC are  
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Figure 5.11. Annealing Average Population Fitness 

 

 

 

 

Figure 5.12. Annealing Average Number of Mutation Attempts 
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Figure 5.13. Annealing Average Population Mutation Probabilities 

 

0.211, 0.349 and 0.487 respectively. Figure 5.13 shows how average population 

mutation probabilities decrease from 0.10 at the start of search to 0.01 after 500 

generations. Variation in average population mutation probability from one generation 

to the next is observed, because only solution individuals that have undergone mutation 

are inserted back into the population.  

Results of experiments with adaptive parameter control using Rechenberg‟s “1 

in 5 Success Rule” are shown in figures 5.14, 5.15 and 5.16.  Figure 5.14 shows that the 

local search population using the Rechenberg approach achieves a fitness plateau with 

average fitness coupling values of 0.184, 0.345 and 0.430 for CBS, GDP and SC 

respectively. However, the Rechenberg approach achieves fitness plateau in fewer 

generations than both the baseline and the annealing approach. Using the Rechenberg 

approach, local search achieves fitness plateau after approximately 60 generations for 

both CBS and GDP, and 300 generations for SC. With respect to population average 

number of attempts to mutate for Rechenberg, figure 5.15 reveals similar results to 

those obtained for the baseline and annealing approaches. However, there are marked 

differences between mutation probabilities for baseline and annealing, and the 

Rechenberg approach. Figure 5.16 reveals that for the CBS example, mutation 

probability climbs steeply to 0.43 after 40 generations, then dropping to 0.10 after 

approximately 100 generations. By 500 generations, the average population mutation 
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Figure 5.14. Rechenberg Average Population Fitness 

 

 

 

Figure 5.15 Rechenberg Average Number of Mutation Attempts 
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Figure 5.16. Rechenberg Average Population Mutation Probabilities 

 

probability drops to 0.04. This finding is interesting as earlier investigations into 

empirical parameter tuning appeared to reveal that increasing mutation probability 

above 0.10 produced no discernable improvement in search performance. However, 

using the Rechenberg approach to adaptive mutation probability control indicates that 

dynamic control, peaking at a mutation probability of 0.40 before subsiding, is more 

effective in achieving population convergence in local search. However, average 

population mutation probabilities for GDP and SC show dissimilar behaviour. Mutation 

probabilities for the GDP design example rise quickly to 0.80 after 30 generations, but 

subside to 0.70 after 60 generations, and stay at that level for the remainder of the local 

search. Mutation probabilities for the SC design example also rise to 0.80, but less 

quickly i.e. after 165 generations. There is also no decrease in mutation probability for 

the remainder of the local search. The high values of mutation probabilities for the three 

design examples were somewhat unexpected in the light of the baseline and annealing 

approaches. However, it is conjectured that these findings provide an example of where 

dynamic parameter control achieves local search efficiencies that were not immediately 

apparent during manual parameter tuning. The average execution time for a single run 

of 500 generations of the Rechenberg approach local search is 8.861, 102.602 and 

104.636 seconds for CBS, GDP and SC respectively.  

Results of experiments with self-adaptive parameter control are shown in figures 

5.17, 5.18 and 5.19.  Figure 5.17 reveals that the local search population using the self-  
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Figure 5.17. Self-adaptive Average Population Fitness 

 

 

 

Figure 5.18. Self-adaptive Average Number of Mutation Attempts 
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Figure 5.19. Self-adaptive Average Population Mutation Probabilities 

 

adaptive approach converged upon average coupling fitness values of 0.162, 0.309 and 

0.431 for CBS, GDP and SC respectively. While the rate of population convergence for 

example design problems CBS and GDP is similar to that achieved with the Rechenberg 

approach, the rate of convergence for the self-adaptive approach for the SC example 

design problem appears to be superior to all previous approaches. Figure 4.18 shows the 

average population number of attempts to mutate achieved by self-adaption which are 

similar to the results obtained by Rechenberg, except the number of attempts to mutate 

for self-adaptation are higher for SC.  

Interestingly, figure 5.19 reveals average population mutation probability curves 

unlike those found for previous dynamic parameter control approaches. Mutation 

probabilities for CBS rise quickly and peak at 0.35 at 45 generations, thereafter 

dropping to 0.10 or less by 100 generations. Mutation probabilities for GDP follow a 

similar pattern, peaking at 0.50 at 50 generations before dropping away to 0.10 or less. 

This falling mutation probability is dissimilar to Rechenberg, where mutation 

probability remained high at 0.70. Mutation probabilities for SC also followed the same 

pattern, although peaking at 0.65 at approximately 75 generations before dropping to 

0.10. Again, this is unlike result obtained Rechenberg, where mutation probabilities 

remain high at 0.80. The results for self-adapting mutation probabilities suggest that 

self-adaptation performs well in the face of increasing example design problem scale, 

and this efficient local search is reflected in favourable computational execution times. 
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The average execution time for a single run of 500 generations of the self-adapting local 

search is 5.314, 37.791 and 45.351 seconds for CBS, GDP and SC respectively.  

 

5.8 Analysis 

When comparing the performance of the dynamic mutation probability approaches, it is 

important to bear in mind the interactive context of the software design local search. 

Ideally, dynamic parameter control approach should be robust in the face of a range of 

example design problems and their differing scale, and be computationally efficient. 

Thus firstly, mean population coupling fitness for the three example design problems at 

fitness plateau is compared; values and standard deviations (in parenthesis) are given in 

Table 5.3 together with coupling values of manual designs for comparison. Tables 5.4, 

5.5 and 5.6 show T-test actual confidence levels for comparison of mean values to 

determine if they are significantly different from each other. Actual confidence levels 

above 95% are shown in bold. 

  

Table 5.3. Plateau Mean Population Coupling Fitness 

 

 CBS  GDP  SC  

Manual Design 0.154  0.297  0.452  

Baseline 0.175 (0.014) 0.330 (0.018) 0.455 (0.014) 

Annealing 0.211 (0.023) 0.349 (0.015) 0.487 (0.013) 

Rechenberg 0.184 (0.014) 0.345 (0.009) 0.430 (0.008) 

Self Adaptive 0.162 (0.018) 0.309 (0.015) 0.431 (0.010) 

 

 

Table 5.4. Cinema Booking System T-Test Actual Confidence Levels for Means 

 

 Annealing Rechenberg Self-Adaptation 

Baseline 99.99% 99.82% 99.99% 

Annealing  99.99% 99.99% 

Rechenberg   99.99% 

 

 



99 

 

Table 5.5. Graduate Development Program T-Test Actual Confidence Levels for Means 

 

 Annealing Rechenberg Self-Adaptation 

Baseline 99.99% 99.99% 99.99% 

Annealing  89.09% 99.99% 

Rechenberg   99.99% 

 

 

Table 5.6. Select Cruises T-Test Actual Confidence Levels for Means 

 

 Annealing Rechenberg Self-Adaptation 

Baseline 99.99% 99.99% 99.99% 

Annealing  99.99% 99.99% 

Rechenberg   41.79% 

 

 

The T-Test actual confidence levels shown in tables 5.4, 5.5 and 5.6 reveal that the 

mean values for plateau population coupling fitness are significantly different from each 

other for all three design problems, with two exceptions. The only mean values that are 

not significantly different from each other are Annealing and Rechenberg for Graduate 

Development Program, and Rechenberg and Self-Adaptation for Select Cruises. 

Therefore, table 5.3 shows that with respect to plateau mean values of population 

coupling: 

 The performance of Annealing is inferior to other dynamic parameter control 

approaches. Annealing mean coupling values are inferior to other baseline mean 

values for all design problems, although the annealing mean coupling value is 

not significantly different from the mean value for Rechenberg for Graduate 

Development Program.  

 Self-Adaptation out-performs other dynamic parameter control approaches. Self-

adaptation mean coupling values are superior to other mean values for Cinema 

Booking System and Graduate Development Program. However, for Select 

Cruises, the mean value for self-adaptation is not significantly different to the 
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mean value for Rechenberg, although both self-adaptation and Rechenberg are 

superior to annealing and baseline.  

However, in an interactive local search situation, the time taken to achieve population 

convergence is crucial too, and so secondly, initial population fitness curves for the 

three example design problems are compared in further detail. 

 

 

Figure 5.20. Average Population Fitness for CBS 

 

 

 

Figure 5.21. Average Population Fitness for GDP 
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Figure 5.22. Average Population Fitness for SC 

 

Figures 5.20, 5.21 and 5.22 show that for all example design problems, Rechenberg and 

Self-Adaptation out-perform baseline and Annealing with respect to the rate of 

achieving fitness plateau. It seems likely that the higher mutation probabilities achieved 

in Rechenberg and Self-Adaptation promote better exploration in local search, resulting 

in faster achievement of fitness plateau. However, the effect of design problem scale is 

also apparent. For the small scale design problem (CBS), Rechenberg and self-

adaptation searches achieve fitness plateau at similar rates. In the medium scale design 

problem (GDP), Rechenberg achieves fitness plateau more quickly, due to steadily high 

mutation probabilities. However, in the large scale design problem (SC), self-adaptation 

brings about faster fitness plateau without persistently high mutation probabilities, 

indicating that self-adaptation copes best with increasing scale of software design 

problems. Thus overall, self-adaptation provides the fastest fitness plateau and 

robustness with respect to differing design problems for the object-based representation 

used in this thesis. 

In terms of computational execution times of local search, average execution 

time for evolutionary runs of 500 generations is shown in Table 5.7. Table 5.7 shows 

that baseline and annealing mechanisms are fastest to execute, while Rechenberg is 

clearly the slowest. For the Rechenberg mechanism, it seems likely that high mutations 

probabilities contribute to longer search execution times. However, in interactive local 

search, it is not always necessary to allow local search to evolve to plateau fitness; 
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Table 5.7. Average Execution Time for Run of 500 Generations 

 

 CBS 

(secs) 

GDP 

(secs) 

SC 

(secs) 

Baseline 3.971 14.159 12.033 

Annealing 3.049 13.633 16.081 

Rechenberg 8.861 102.602 104.636 

Self  Adapt 5.314 37.791 45.351 

 

 

indeed, useful and interesting solution individuals may be found in an optimum area of 

the local search space rather than a single point. Thus the superior early-generation 

performance of the Rechenberg and Self-Adaptation mechanisms is beneficial. For 

example, using Self-Adaptation, only 50 generations are required for fitness plateau in 

the small and medium scale design problems, and 100 generations in the large scale 

design problem. The execution time required to achieve this is thus estimated to be 

0.531, 3.779 and 9.070 seconds for CBS, GDP and SC respectively. While this is slower 

than the Baseline and Annealing mechanism, the benefits of fast convergence and 

robustness in the face of differing design problems and their scale suggests that overall, 

self-adaptation is the superior mutation probability control mechanism for local search 

of early lifecycle software designs. 

 

5.9 Conclusions 

Results of initial empirical parameter tuning indicate that evolutionary local search 

arrives at design cohesion and coupling values that broadly correspond to values for the 

manually produced example designs. In terms of fitness functions, external coupling 

appears more tractable and useful than COM cohesion, while tournament selection out-

performs fitness proportionate selection. It is also found that colourful class design 

visualisation is human comprehensible. Of the two approaches trialled in the initial 

parameter tuning experiments, the genetic algorithm inspired approach appears more 

exploitative while the evolutionary programming inspired approach appears to be more 

explorative.  
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Building on these findings, results of subsequent experiments reveal that 

incorporation of dynamic parameter control evolutionary within the local search 

algorithm is robust and scalable across the three example design problems, with self-

adaptation producing the most robust and favourable results overall. Execution speed 

also appears satisfactory. However, it is interesting to note that the range of mutation 

probabilities obtained by dynamic parameter control is much wider than that first 

obtained by empirical parameter tuning. This is consistent with the known limitations of 

parameter tuning (e.g. Eiben et al., 1999, De Jong, 2006).   

 Overall, the findings suggest that the object-based representation and its 

associated genetic operators, with self-adapting mutation probabilities incorporated, can 

provide an effective and robust basis for evolutionary search of early lifecycle software 

designs. Nevertheless, when considering interactive evolutionary search as a whole, it is 

necessary to investigate ways to facilitate collaborative designer / computer interaction. 

Thus the following chapter describes experiments into multi-objective search of the 

global search space as a starting point for designer / computer interaction, and also how 

such multi-objective search might be used to narrow and focus the search to local zones 

of interest to the designer for later local search.  


