
42 

 

3 PROPOSED EVOLUTIONARY SEARCH 

Fundamental components of computational evolutionary search and exploration include 

the solution representation and its associated genetic operators (i.e. selection, 

recombination and mutation) that engage with the representation. However, formulating 

an appropriate and natural representation together with its associated genetic operators 

is perhaps one of the most difficult parts of designing an effective evolutionary 

algorithm.  In this chapter, a number of established and more recent representations are 

examined for their natural fit and hence potential application to early lifecycle software 

design. In addition, novel proposals are put forward and contrasted with other 

representations previously reported in the research literature.  

 

3.1 Representation 

In industrial early lifecycle software design practice, representation of object-oriented 

software design is provided by the Unified Modelling Language (UML). Since its 

arrival in 1999 (Booch, et al.), UML has become the standard representation of the 

object-oriented paradigm in industrial practice and is widely adopted.  According to 

Booch et al., “the UML is a graphical language for visualising, specifying, constructing 

and documenting the artefacts of a software-intensive system”. At time of writing, the 

specification for the UML is at version 2.3 (Object Management Group, 2010c) and 

contains, among other things, a meta-model to define all legal constructs, their 

semantics and their visual depiction.  With regard to early lifecycle software design, the 

principal constructs provided by the UML are use cases (originally Jacobson, et al., 

1992) for behavioural requirements capture in the design problem, and classes to denote 

the structural aspects of the design solution. Visually, a small class diagram showing 

UML notation of three classes is shown in figure 3.1. Each class, attribute and method 

is a discrete model element. As can be seen in figure 3.1, the three example classes act 

as placeholders for the six attributes (i.e. data) and the six methods (i.e. implementations 

of relevant responsibilities).  Each class denotes a concept or abstraction relevant to the 

design problem domain; couples between classes are denoted as solid arrows with an 

open arrow-head indicating the direction of couple. It is important to note that the 

constructs of the software design are discrete, and that there is no ordering among the 

elements of the notation.  
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Figure 3.1. Example Class Diagram in UML Representation 

 

For the purposes of this thesis, to be a basis of effective evolutionary search and 

exploration, any representation is required to: 

 provide an appropriate abstraction of the essential characteristics of the software 

design solution, 

 facilitate effective visualisation for the interactive human designer, 

 enable efficient genetic operators (i.e. selection, recombination and mutation), 

and 

 provide traceability from design problem to design solution. 

To address these requirements, a number of existing representations have been 

considered in turn as follows. For example, genetic algorithms e.g. Fraser, 1957 

(surveyed in Fogel, 2002), and Holland, 1975, adopt a binary scheme whereby solution 

information is encoded as „1‟ or „0‟ bits in a binary string, each bit coding for a portion 

of relevant solution information. However, it appears likely that a mapping from binary 

strings to early lifecycle software designs would be unnatural, complex and difficult to 

visualise. Thus it appears likely that the binary string approach is ill-suited to effectively 

represent software design solutions.  

As an alternative to binary strings, evolutionary strategies (e.g. Rechenberg, 

1973) employ real-valued representations to encode solution information. According to 

Eshelman and Shaffer (1993), the use of real numbers in a chromosome string enables 

good exploitation of gradual continuities of solution variables i.e. a small change in 

continuous representation maps results in a small change in solution search space. 

However, given the discrete, unordered nature of the software design solution, it would 
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appear that real-valued representations are also ill-suited to effectively represent 

software design solutions.  

Perhaps more relevant to software development are the tree-like representations 

used in genetic programming (e.g. Cramer, 1985, Forsyth, 1986, Koza, 1992). Initially 

used to evolve simple computer programs, the application of genetic programming has 

expanded to, for example, evolvable hardware circuitry. In genetic programming, the 

tree-like representation consists of functions and terminals, which are traversed 

recursively. Both crossover and mutation are used as diversity promoting operators 

which can result in offspring that are very different to the parent individuals, depending 

on which node in the tree is used for crossover or mutation. Because of this, it is 

possible for tree representations to grow quickly („code bloat‟) and so controlling the 

consequences of this can become complex. As genetic programming tree-like 

representations are intended for software programs, it might seem that such 

representations would be a good candidate to represent early lifecycle software designs. 

However, there are some fundamental drawbacks. For example, while the tree-like 

structures map well to program source code functions, they map much less well to 

discrete, unordered constructs of early life cycle software designs. Secondly, there is a 

fundamental paradigm mismatch between the functional programs represented by tree 

structures, and object-oriented modelling such as the UML. In functional programs, the 

tree must have a „top‟ (assuming an inverted tree structure when compared to nature). 

The tree „top‟ is a necessary place for ordered recursion to commence for the computer 

function or hardware circuit to execute. In contrast, object-oriented software designs 

have no „top‟. Instead, they have a bounding scope comprised of many unordered 

objects. System behaviour may initiate in any object with the scope of the design. 

Because of this philosophical mismatch and the resulting construct incompatibility, it 

seems that tree-like structures are also ill-suited to representing early life cycle software 

designs.   

A further candidate representation for software design is a directed graph e.g. 

evolutionary programming graphs (Fogel, et al., 1966).  Parmee et al. (2000) report an 

example of a layered hierarchy representation in the engineering design domain, in 

essence a hybrid of string and tree structures, which contains a list of discrete design 

options at the top layer. From each discrete design option emanates a continuous 

variable set at a lower layer to code for various design properties. A similar layered 

hierarchy approach can also be seen in the software design representation of Seng et al. 
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(2005) in their attempts to refactor software subsystem decompositions. The top layer of 

the Seng at al. representation specifically codes for candidate software subsystems, 

while the lower level codes for classes which effectively results in a model of the 

software source code as a directed graph. Layered directed graphs are also used by 

Machwe and Parmee (2006a, 2006b, 2009) to represent design solutions for beam 

bridge design and urban furniture design. Machwe and Parmee describe their 

representation as „component based‟ as it is composed of components (top layer) which 

relate via a directed graph to component properties (lower layer).  For example, in the 

design of urban furniture (a park bench), discrete top layer components represent seat, 

leg and backrest. For each top layer component, at the lower layer there are associated 

continuous or discrete properties such as style, position or dimension.  

Layered hierarchical design representations enable rich abstraction of the design 

solution. However, it is possible for large layered hierarchies to become complex, 

resulting in complex genetic operators. For example, Parmee et al. (2000) report that for 

such representations, as is also the case for genetic programming, crossover can be 

disruptive even for simple hierarchies, preventing satisfactory exploration of the search 

space. In addition, unless controlled, crossover and mutation may produce infeasible 

design solutions. Furthermore, because of computational complexities in the crossover 

operator, Seng et al. report that for a case study of „JHotDraw‟ (a Java graphics library 

of some 207 classes), evolutionary runs can take in the order of days to execute. Thus 

although layered hierarchical representations offer rich abstraction through structures of 

discrete and continuous elements, they are perhaps too rich for early lifecycle software 

design, and so not a natural representation.   

A yet further candidate for early lifecycle software design is integer 

representation. For example, Grouping Genetic Algorithms (GGAs) (Falkenauer, 1999) 

are a class of genetic algorithms specifically aimed at problems of allocating discrete 

resource objects into groups, such as the bin packing problem or the line balancing 

problem. As described by Falkenauer, the GGA integer representation comprises two 

components: firstly a component to represent a vector of discrete resource objects to be 

allocated, and secondly, a component to encode groups. Ordering within the 

representation is significant as position in the vector denotes resource identity. 

Falkenauer (1999) provides the following two examples 

ADBFEB:BEFDA 

AAABBB:AB 
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Each discrete resource object to be allocated is denoted on the left hand side of the 

colon by its position in the vector. The first position denotes discrete resource object 

one, the second position denotes the second discrete object, etc. Thus in both examples 

above, there are six discrete objects to be allocated. Groups are denoted on the right 

hand side of the colon. Thus in the first example above there are five groups, while in 

the second example there are two. The value at each vector position before the colon 

simply denotes the group to which the discrete object belongs, which the values after 

the colon identifies each group. Falkenauer states that the „names‟ of the groups are 

merely „mute‟ labels to identify each group. As Falkenauer points out: “The important 

point is that the genetic operators will work with the group part of the chromosomes, 

the standard object part […] merely serving to identify which objects actually form 

which group”.  Thus recombination, for example, is potentially powerful as groups are 

subject to variation during evolution, depending on where in the chromosome splicing 

occurs. Nevertheless, as with layered hierarchies (described previously), crossover can 

also produce infeasible offspring. Indeed, Falkenauer therefore suggests a number of 

complex mechanisms for either preventing the creation of infeasible offspring, or the 

repair of infeasible offspring. To address this crossover complexity, Tucker et al. (2005) 

propose RGFGA (Restricted Growth Function Genetic Algorithm) to specifically 

provide an efficient representation and crossover for Grouping Genetic Algorithms. In 

the field of software design, Bowman et al. (2010) use a related but different integer 

representation for UML class models: class members (i.e. attributes and methods) are 

assigned an integer position in a vector, and the value of the integer represents a class to 

which that member is assigned. The classes thus also have „mute‟ identifiers, as in the 

GGA representation. In one sense this is useful and relevant because the representation 

specifically provides for classes as grouping constructs which is consistent with the 

UML semantic. However, the actual grouping element, as addressed in the Falkenauer 

GGA representation, is missing in the Bowman et al. representation. This is significant 

as it is not entirely clear from the Bowman paper how the classes are formulated. 

Furthermore, it is not clear how crossover might brings about changes in classes i.e. 

class introduction and removal.   

Overall, none of the representations discussed above appears a perfect and 

natural candidate for early lifecycle software design. Binary strings and continuous real-

valued representations do not naturally relate to software designs. Tree-based 

representations (e.g. Koza, 1992) relate to the software domain, but to functional 
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program source code rather than early lifecycle software designs. Hierarchical layered 

graphs (e.g. Seng et al. 2005, Machwe and Parmee, 2006a, 2006b) afford great richness 

of abstraction through a combination of discrete and continuous variables, but are too 

rich to naturally represent software designs. Integer representations (e.g. Falkenauer, 

1999, Bowman et al., 2010) support grouping of discrete items and show potential 

because the UML class semantic is a grouping of discrete methods and attributes. 

However, ordering is important in such integer representations whereas ordering is not a 

feature of software design solutions. In addition, it would be necessary to extend integer 

representation to simultaneously cater for grouping of both attributes and methods.   

Furthermore, none of the above representations provide direct and natural support for 

abstraction or support visualisation of early lifecycle software design. Indeed, none of 

the above representations address software design problem to solution traceability 

(although this may be not entirely surprising as none of the representations set out to 

achieve this goal).  

Therefore, a novel object-based representation for early lifecycle software 

design is proposed wherein discrete attributes and methods are grouped in classes. 

Indeed, as grouping of attributes and methods is crucial to the representation, grouping 

is explicitly represented by discrete classes. There is no ordering among the classes, and 

there is no ordering of attributes and methods within a class. Classes are not named and 

so are „mute‟ identifiers to distinguish between groupings. Because the representation is 

discrete and unordered, fitness gradients among solution individuals are unlikely. This 

suggests that categorical operators (e.g. random switching of methods and attributes 

among class groupings) are the most natural and appropriate operators for diversity 

preservation, rather than any continuous operators that might creep along fitness 

gradients. In addition, the proposed discrete representation provides a natural 

abstraction of the software design solution which explicitly facilitates effective 

visualisation for the interactive human designer. The proposed representation also 

enables a mechanism for traceability from design problem to design solution. An 

example of the representation, tracing from design problem to potential design 

solutions, is described as follows. 

Capturing software design problems as use cases (Jacobson, 1992, Cockburn, 

2001) has been widely applied in industrial software engineering. Indeed, use cases 

have been incorporated within the Unified Modelling Language (OMG, 2010c). A use 

case is essentially a narrative story that describes the interaction between an „actor‟ 
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(typically a human being) and the software system-to-be, by means of chronological 

sequence of steps. Such steps are recorded as text. Cockburn (2001) refers to a step in 

the chronological sequence as an „action step‟ and suggests that the textual grammar of 

an action step should be as follows: 

“Subject…verb…direct object…prepositional phrase. 

For example: 

The system…deducts...the amount…from the account balance.” 

Indeed, it is useful to capture the required behaviour and capabilities of the software 

system-to-be in terms of „action steps‟, because in manual software design, these 

„actions‟ typically go forward to the design solution as candidate „responsibilities‟ to be 

grouped within early life cycle UML design classes. A complete set of use cases defines 

all action steps for a system-to-be which accordingly provides the scope and definition 

of the software design problem. Thus from the textual narrative of the use case action 

steps, it is possible to identify the actions (or responsibilities) that the software is to 

perform, together with individual items of data which the software will use (i.e. 

manipulate) in order to perform its actions. Actions and data are uniquely identified by 

their textual names in the action step. If an action and a datum are co-located in the 

same step of the narrative, an action is considered to “use” the datum. Thus, overall, the 

software design problem can be specified by three sets extracted from the use cases of 

the design problem, namely: 

 a set of data, 

 a set of actions, and 

 a set of action-data uses. 

To promote traceability from the design problem to the design solution, it is 

proposed that design solutions be derived from the sets of data and actions in the design 

problem. This is achieved by constructing a set of design solution attributes directly 

from the design problem data, and constructing a set of design solution methods directly 

from the design problem actions. Attributes and methods are identified by textual names 

taken from the design problem data and actions. The design solution search space is 

thus scoped and defined by these sets of attributes and methods, which are grouped 

within classes. According to the object-oriented software design paradigm, it is widely 

considered poor practice for classes to lack either attributes or methods, or for attributes 

or methods to be duplicated.  Because of this, the proposed representation requires that 
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each class holds at least one attribute and one method, and that each attribute and each 

method be allocated once to a class.  Figure 3.2 provides a simple visual example of the 

proposed representation and derivation of attributes and methods from data and actions. 

Figures 3.3 shows the representation of a single example instance of a software design 

solution, while figure 3.4 shows a UML class diagram of the structure of the proposed 

solution representation.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Example of Design Problem and Design Solution Representation 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Example of a Design Solution Representation 
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Figure 3.4. UML Diagram of Design Solution Representation Structure 

 

The proposed object-based representation of the software design search space is 

straightforward in that is does not explicitly cater for coupling relations between classes. 

However, coupling relations between classes are arrived at by applying the set of 

action/datum uses from the design problem. For each action/datum use, the 

corresponding solution method and attribute are located. With respect to the class 

containing the method, the used attribute must either be located in the same class or a 

different class. If the used attribute is in the same class as the method, a design couple is 

considered to be „internal‟ to the class and is taken to be an indication of cohesion 

within the class. However, if the used attribute is located in a different class, a design 

couple is considered to be „external‟ to the class. Of course, the set of „uses‟ of the 

design problem is static. Given that attributes and methods can be allocated among 

classes in many ways, the degree of „external‟ coupling will vary among individual 

software design solutions. Therefore, application of the set of uses to a design solution 

thus reveals the extent of not only cohesion within classes („internal‟ coupling) but also 

the „external‟ coupling between classes. Object-oriented software design principles 

suggest that software designs should exhibit high cohesion and low coupling. Thus 

measures of cohesion and coupling can be used to assess the structural integrity of a 

software design, and therefore provide a quantitative measure of design fitness.   
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Formally, the solution space is defined by all possible allocations of the methods 

and attributes to a specific number of classes, and the classes are identified by these 

allocations. Let M and A denote the set of methods and attributes, respectively, and let c 

denote the number of classes. For the purposes of evaluating the cardinality of the 

search space S, for a given number of classes, every element of the search space can be 

considered to be a partition of M into c parts combined with a surjection from the set A 

to this partition. The partition of M into c parts determines the classes by determining 

the methods contained in the classes. The surjection then assigns each of the attributes 

in A to a class (a part of the partition). This function is a surjection since every class 

must have at least one attribute. For example, consider the sets M = {m1, m2, m3} and A 

= {a1, a2, a3, a4} with c = 2. An example of a partition of M into two parts is {{m2},{ m1, 

m3}} and this partition identifies the two classes. An example of a surjection, f, from A 

to this partition is as follows: 

f(a1) = {m2}, f(a2) = { m1, m3}, f(a3) = { m1, m3},  f(a4) = {m2}. 

The combination of the partition and the surjection results in two classes, these being 

 { m2, a1, a4 } and  { m1, m3, a2, a3 }. 

For a given M, A and c, the partition of M into c parts followed by a surjection from A to 

this partition uniquely identifies an element of the search space. Furthermore, all 

elements of the search space can be identified in this manner. Let the cardinalities of M 

and A be represented by m and a, respectively. The number of different partitions of set 

M into c parts is given by S(m,c) where S is the Stirling number of the second kind. The 

Stirling number of the second kind is defined recursively by: 

 S(n,1) = 1 

 S(n,n) = 1 

 S(n,r) = S(n-1,r-1) + r S(n-1,r) 

The number of different surjections from set A to a set of cardinality c (this being the 

partition of M into c parts) is given by c!S(a,c). Hence, by the product rule, the 

cardinality of the search space is given by: 

 |S| = c! S(a,c) S(m,c)       (1) 

Table 3.1 shows the cardinality of the search space, |S|, as a function of a, m and c 

where, for convenience, we have taken a = m. For a fixed number of classes, that is, for 

a fixed column in the table, the cardinality of the search space displays an exponential 

growth with respect to the values of a, m. It is interesting to note that quantifying the 

cardinality of the design solution search space suggests that the number of possible 
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designs for even small scale class designs is beyond human comprehension. For 

example, eight attributes and eight methods allocated into five classes results in a search 

space of cardinality 132300000. It is conjectured that this exponential growth in the 

cardinality of the search space might be one of the many causative factors behind the 

difficulties of early lifecycle software design. 

Table 3.1. 

S  as a function of the number of attributes, a , the number of methods, m ,  

and the number of classes, c . For a convenient illustration we have taken a m . 

 

a, m \ c 1 2 3 4 5 6 7 8 

1,1 1        

2,2 1 2       

3,3 1 18 6      

4,4 1 98 216 24     

5,5 1 450 3750 2400 120    

6,6 1 1922 48600 101400 27000 720   

7,7 1 7938 543606 2940000 2352000 317520 5040  

8,8 1 32238 559836 69441622 132300000 50944320 3931360 40320 

 

3.2 Quantitative Fitness Functions 

The software engineering community has widely applied quantitative metrics to 

software development artefacts in an attempt to quantify various properties of software, 

including structural integrity. Indeed, a number of structural design properties of 

software have been widely investigated and within the object-oriented design paradigm, 

it is generally accepted that good indicators of superior software design structural 

integrity are (1) high cohesion within classes and (2) low coupling among classes. Many 

cohesion and coupling metrics have been suggested and as a result, a number of surveys 

of the use of cohesion and coupling metrics have been conducted and frameworks 

proposed (e.g. Chidamber and Kemerer, 1994, Briand et al., 1999). For the purposes of 

early lifecycle software design search however, it is necessary to select metrics that 

enable evolutionary search. In selecting such metrics, it is important that the metric (1) 

can be applied to early lifecycle software design models rather than downstream 

programming language source code, and (2) is efficient to compute. Based on this, the 

Cohesiveness of Methods (COM) metric (Harrison et al., 1998) has thus been selected 
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as the basis of measuring cohesion, and Coupling Between Objects (CBO) (Briand, et 

al., 1999) has been selected as the basis of measuring coupling.  

Generally, within a class, the more uses of attributes in the class by methods in 

the class, the more cohesive the class. According to Harrison et al. (1998), 

Cohesiveness of Methods (COM) is: “for each attribute, the sum of all the methods 

using an attribute divided by the total number of methods, all divided by the number of 

attributes in the class”. Values of COM thus range from 1.0 (totally cohesive, i.e. all 

methods use all attributes) to 0.0 (not at all cohesive, i.e. no methods use any attributes).  

Harrison et al.‟s COM metric is defined as follows. For a class C, let Ac and Mc be the 

set of attributes and methods, respectively, that are contained in class C.  Then the COM 

fitness for the class C , denoted by ( )f C , is given by: 

 
,

1
( )

C C

ij

i A j MC C

f C
A M


 

        (2) 

where  
1 if method  uses attribute 

0 otherwise                          
ij

j i



 


 

For an early lifecycle software design, it is straightforward and convenient to compute 

the average value of COM from all classes in a design.  

Coupling between classes is calculated based on the Coupling Between Objects 

(CBO) metric taken from Briand et al.‟s framework of coupling measurement (1999). 

Briand et al. define the CBO metric as follows: 

CBO(c) = |{d Є C – {c}| uses(c,d)  uses(d,c)}|    (3) 

where C is the set of all classes in the design, c and d represent two classes in the set C, 

and uses(x,y) is a predicate that holds true if a method in class x uses an attribute in class 

y. However, as an objective fitness function, there is a drawback with this definition. 

While the existence of a couple is defined by means of a predicate, the strength of the 

couple (in terms of the number of methods in class x using attributes in class y) is not. 

The approach in this thesis has been to take the strength of coupling between individual 

classes into account. Furthermore, the total number of uses is known from the problem 

domain. This fact can be exploited to calculate a value of coupling for a class design 

within the range 0.0 to 1.0 by dividing the sum of all couples existing between classes 

by the total number of uses in the problem domain. Formally:  

 let M represent the set of all methods and A represent the set of all attributes. 
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 let U represent the set of all uses, expressed as a subset of M A . 

 let C represent the set of all classes, each class having been allocated methods 

and attributes.  

Each individual class is expressed as a subset of M A , and C can be considered to be 

a partition of M A . The set E, i.e. the set of all uses „external‟ in a class design, is 

defined by: 

 

             (4) 

 

Indeed, it is a constraint of the representation that an external use cannot exist when a 

method „uses‟ an attribute within the same class. Therefore, the coupling value of a 

class design then becomes: 

 

                                       (5) 

 

Thus a totally coupled class design has a value of 1.0 while a class design with no 

couples has a value of zero. This expression of coupling ensures that class designs are 

comparable for values of coupling, regardless of the number of classes within a class 

design. 

  

3.3 Selection 

Selection has been performed by two techniques, namely tournament selection and 

fitness proportionate selection, to determine the appropriateness of each for interactive 

evolutionary search and exploration. Both are described in turn as follows.  

According to Bäck (1996), the tournament selection method selects a single 

individual by choosing some number q of individuals randomly from the population and 

selecting the best individual from the group to survive to the next generation. The 

process is repeated as often as is required to fill the new population size. Back reports 

that a common tournament size is q = 2, i.e. binary tournaments. Deb (2001) describes 

binary tournament selection in a broadly similar fashion, but differs slightly in the 

choice of individuals for tournament. Deb suggests that firstly, two individuals are 

chosen at random from the population, and the better individual is placed in the mating 

pool. Thereafter, however, two further different solutions are then picked repeatedly 
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from the population and so further slots in the mating pool are filled, such that each 

solution in the population participates in exactly two tournaments. Because tournament 

selection relies on the relative fitness of individuals (rather than absolute), it lends itself 

to computationally effective selection. Indeed, Deb cites Goldberg and Deb (1991) who 

report that such a binary tournament selection “has better or equivalent convergence 

and computational time complexity properties when compared to any other 

reproduction operator that exists in the literature”. Perhaps because of this, Eiben and 

Smith (2003) report that “tournament selection is perhaps the most widely used 

selection operator in modern applications of genetic algorithms”. Based on these 

positive reports, the tournament selection approach implemented in this thesis is 

inspired by the Deb (2001) proposal.  

To compare with tournament selection, a fitness proportionate selection 

mechanism has been also implemented. In fitness proportionate selection, individuals 

are assigned copies to the mating pool in proportion to their fitness values. Thus if the 

average fitness of all population members is favg, an individual of fitness fi might expect 

to achieve  fi / favg number of copies in the mating pool. In other words, an individual‟s 

selection probability depends on its absolute probability value compared to the absolute 

fitness values of the rest of the population.   According to Deb (2001), a straightforward 

implementation of this selection operator can be thought of as a roulette-wheel selection 

(RWS) mechanism in which the roulette-wheel is divided into N (population size) 

divisions, where the size of each is marked in proportion to the fitness of each 

population member. To perform selection, the wheel is spun N times. After each spin, 

the solution pointed to by the proportion mark is placed in the mating pool. Thus for the 

purposes of comparison with tournament selection in evolutionary search, roulette-

wheel selection (RWS) has also been implemented.
1
 

 

3.4 Crossover 

The crossover operator used with the object-based software design representation has 

been inspired by the simple binary string genetic algorithm (GA) example presented in 

Goldberg (1989) and reiterated in Deb (2001). As crossover employs sexual 

reproduction, two parent individuals breed to produce a single offspring. However, it is 

                                                 
1
 Other possibly more efficient implementations of proportionate selection are also available. For 

example, Stochastic Universal Sampling (SUS) (Baker, 1985) requires the generation of only one random 

number for the whole selection process.  
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important to recall that there are two important constraints of the representation: (1) 

each class must contain at least one attribute and one method, and (2) each attribute can 

only be grouped to one class. Any crossover operator must respect these constraints. To 

achieve this, it is therefore not always possible to splice each parent individual into two 

portions and recombine to produce two feasible offspring. Rather, to respect the 

constraints of the representation, recombination is achieved by means of a trans-

positional crossover (TPX). In TPX, two parent individuals are firstly chosen at random 

from the parent population to breed. Then, secondly, attributes and methods are chosen 

at random and swapped between the two based on their class position in the individuals. 

For example, if an attribute was found to be in the first class of the first individual and 

the last class of the second, the attribute was relocated to the last class for the first 

individual, and the first class for the second. An example of TPX is shown in figure  

3.5. However, to further ensure that the constraints of the search space are not violated, 

attributes and methods are only selected for positional swap where swapping an 

attribute or method to another class would not leave the class lacking attributes or 

methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Example of Trans-Positional Crossover (TPX) 
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3.5 Mutation 

The mutation operator used with the object-based software design representation has 

been inspired by the original Evolutionary Programming approach put forward by L.J. 

Fogel et al. (1966). Fogel et al. describe a mutation-based evolutionary algorithm 

applied to a discrete search space in which finite state machines (FSMs) are thought of 

as “organisms” as the basis of artificial intelligence. Such organisms have the ability to 

predict their environment coupled “with a translation of each prediction into a suitable 

response in the light of a given goal”. The FSM is defined in terms of finite alphabets 

of discrete input signals, output signals, and a number of possible different internal 

states. To specify such a machine, each of these states must be described in terms of 

symbols that would emerge from the machine when the machine is in that state and 

receiving each of the possible input symbols. It also requires an initial state to be 

specified. Fogel et al. state their goal as: “to devise an algorithm which will operate on 

the sequence of symbols far observed, in order to produce an output symbol that is 

likely to agree with the next symbol to emerge from the sensed environment.” In 

essence, the better the FSM can evolve to reflect the sequence of the environment, the 

better it will be able to predict the next output symbol. It is interesting to note that Fogel 

et al. use only mutation for diversity preservation, possibly because mutation was found 

to be more natural and computationally efficient for an FSM represented by sets of 

discrete input signals, output signals and internal states.  

As mutation is a means of asexual reproduction, one parent individual produces 

a single offspring by moving or swapping attributes or methods at random between 

classes. As a single software design individual acts as parent, moving or swapping 

attributes or methods between classes in a single design more inherently respects the 

integrity of the sets of attributes and methods, unlike crossover. Swapping an attribute 

or method from one class in a design to another does not violate the attribute and 

method sets; swapping also leaves the number of attributes and methods in the classes 

unchanged. Although moving also does not violate the attribute and method sets, the 

operation may be constrained when a class contains only one attribute or method. 

Examples of mutation by swapping and moving an attribute or method are shown in 

figure 3.6.  
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Figure 3.6. Examples of Mutation 

 

3.6 Conclusions 

This chapter describes the proposed object-based representation and genetic operators 

for evolutionary search and exploration of an early lifecycle software design search 

space. The representation is natural and appropriate for discrete and unordered early 

lifecycle UML class designs. The representation also facilitates effective visualisation 

for human designer interaction, and provides a mechanism for traceability from the 

design problem to the design solution. Using the representation to quantify the design 

solution search space, an exponential growth in cardinality is observed. It is conjectured 

that this exponential growth in cardinality of the search space may be one of the many 

causative factors behind the difficulties of early lifecycle software design.  

Having proposed an object-based representation, the following chapter describes 

the necessary methodology to evaluate the effectiveness of the representation with 

respect to the research aims of the thesis.  
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