
1

1 INTRODUCTION

Design is a fundamental component of software development. Indeed, early lifecycle

software engineering design is crucial as concepts and information discovered from the

design problem domain are used as a basis for subsequent development activities.

Because of this, inferior designs can lead to deleterious and costly down-stream

consequences. Therefore any improvement in the traceability, structural integrity and

elegance of software design has significant potential for enhancing software

development productivity. However, there is a body of evidence to suggest that early

lifecycle software design is a demanding and non-trivial task for software engineers to

perform, while current computational tool support for early lifecycle software design is

limited. Thus to address this computational tool support limitation, this thesis

investigates the potential of interactive evolutionary search and complimentary

computational intelligence to enable the exploration and discovery of software designs

that are both useful and interesting to the designer and relevant to the design problem

domain.

1.1 Early Lifecycle Software Design

Early lifecycle software design is an intensely people-oriented activity wherein concepts

and information relating to a relevant design problem domain are identified and

evaluated. For many years, such software design concepts and information have been

widely modelled using the object-oriented paradigm by means of the „class‟ construct.

The Unified Modelling Language (Object Management Group, 2010a) is the standard

modelling language of the object-oriented paradigm and is extensively used by software

designers to visualise and record classes as well as other aspects of software design.

However, there is much evidence to suggest that the act of early lifecycle

software engineering design is non-trivial and demanding to perform. Brooks (1995)

believes “the hard part of building software to be the specification, design and testing

of this software construct, not the labour of representing it and the testing of the fidelity

of the representation”. Guindon (1990) reports software design as an ill-structured

problem in which the software design process is essentially opportunistic. As a result of

empirical observations of many software designers, Guindon suggests that activity of

software design is rarely sequential in reality, frequently iterating and relying heavily on

opportunistic thoughts of the designer. Zannier et al. (2007) have observed both

2

rational and opportunistic / naturalistic design decision making tactics in software

design. Based on empirical studies spanning more than twenty years and more than

twenty industrial companies, Petre (2009) suggests that software design problems “are

often „wicked‟: too big, too ill-defined, too complex for easy comprehension and

solution. Sometimes the problems are only fully understood after they are solved.

Solving such problems is rarely a matter of „brute force‟ or routine”. Because of this,

Glass (2003) goes further to suggest that the complexities of some software designs may

be beyond human comprehension. In an attempt to explain this, Glass asserts that there

are usually many potential solutions to a design problem, although there is seldom one

best design solution. Glass echoes Guindon‟s observation that software design is a

complex iterative process, and suggests that initial design solutions will likely be wrong

and certainly not optimal.

There is also evidence to suggest that individual software designers may be

blessed with varying degrees of design talent. Even for experienced designers, Glass

(2003) notes that designer performance may vary from 28:1 from the best engineers to

the worst. Petre (2009) cites Boehm‟s (1981) suggestion that individual developers

differ in productivity by 10 to 30 times to advocate that, as a result, software design

expertise is the crucial commodity in software development today. Curtis (1998) also

notes a range in design talent, and observes that only “super-designers” can reason

across the full breadth and depth of complex, ill-structured design problems in order to

fully consider the consequences and implications of design decisions. From the field of

education, there is evidence to suggest that software design is difficult to learn. In

teaching object-oriented early lifecycle software design to over 740 university

undergraduate students over 135 software design problems, Svetinovic et al. (2005)

observe that with respect to concept identification, “some students just don‟t get it”.

Blaha et al. (2005) report a software design study of 21 academic institutions across

four countries and observe that many students have difficulty resolving ambiguities

within ill-structured design problems. However, as the students gain design experience

over time, they are increasingly able to deal with design ambiguity.

 To help overcome these difficulties, mature heuristics and manual strategies for

the discovery of potential design solution concepts from the problem domain are

available. For example, Wirfs-Brock and McKean (2003) advocate a responsibility-

driven design approach, in which the responsibilities of a design concept are captured in

3

the context of collaborations with other concepts. Such concepts map directly onto

Unified Modelling Language (UML) classes, and are recorded via paper „CRC cards‟

(where the first „C‟ denotes concept or class name, „R‟ denotes the concept‟s

responsibilities and the second „C‟ denotes the collaborations). Wirfs-Brock and

McKean advise software designers to identify candidate concepts “somewhat

systematically” and offer manual search strategies that “make educated guesses about

the kinds of inventions that you will need based on the nature of your application”. In a

different approach, early lifecycle software design patterns (e.g. Fowler, 1998, Arlow

and Neustadt, 2004) have been proposed, which have led to domain-driven design

approaches (e.g. Evans, 2004). Software design patterns and domain-specific

approaches have made a significant contribution to help mitigate the difficulties of early

lifecycle software design (particularly with respect to design reusability and

maintenance), but require design expertise to successfully match to a specific design

context. Furthermore, being well-established and historical, it would appear that

patterns and domain-driven design do little to enhance innovation and creativity in

software design.

In addition, object-oriented software development methodologies offer software

designers a variety of workflows by which they might conduct their early lifecycle

software design activities, the artefacts they might produce and the development roles

required. In a comprehensive survey review of object-oriented development

methodologies, Ramsin and Paige (2008) suggest three categories of methodology:

seminal, integrated and agile. Seminal methodologies (e.g. Booch, 1994) are early

incarnations, while integrated methodologies (e.g. Jacobson et al., 1999) combine and

integrate many early ideas to suggest a more comprehensive, standardised approach.

Agile methodologies (e.g. Beck, 2000) differ from the previous two categories by

placing emphasis on people and their interactions, customer collaboration and

responding to change. While methodologies in all three categories describe iterative and

evolutionary development to some extent, it is agile methodologies that place software

evolution in the face of inevitable change at the heart of development activities (Boehm

and Beck, 2010). Indeed, such is the interest in software evolution that the Institute of

Electric and Electronic Engineers (IEEE) have initiated a number of International

Workshops on the Principles of Software Evolution (e.g. IEEE, 2005). However, with

respect to guidance to software designers to overcome the difficulties of early lifecycle

4

software design, it would appear that development methodologies offer little support.

While object-oriented development methodologies specify in detail the development

workflows and artefacts produced, they pay less attention to guidance for designers, for

example, in terms of fitness evaluation of artefacts. In other words, while methodologies

thoroughly address the „who‟, „what‟ and „when‟ of software development, it would

appear that the „how‟ is less well addressed.

Early lifecycle software design is significant because although there may be

some debate concerning the sequential versus iterative and evolutionary nature of the

software development lifecycle (Boehm and Beck, 2010), consequences of early

lifecycle design decisions persist and may propagate as development progresses. It

seems likely that poor requirements capture and software design can have significant

deleterious downstream consequences for software development (Damien et al., 2005).

The impact of early lifecycle software designs of poor structural integrity and poor

traceability to the problem domain appears to be far reaching and detrimental to

subsequent development activity, because the economic cost of rectifying errors in

software can rise exponentially as development proceeds downstream over time

(Boehm, 1981). Thus, given the difficulties of early lifecycle software design, the

potential of computational tool support to assist the software designer is considerable. It

seems likely that even modest gains in the traceability and structural integrity of early

lifecycle software designs might be amplified as the development lifecycle progresses to

yield significant productivity gains. However, the extent of current computational tool

support for the early lifecycle software designer is mixed. Some UML-based modelling

tools (e.g. Object Management Group, 2010b) seem to do little to proactively support

the early design process. Rather, they appear to provide an opportunity for the designer

to formally record the output of their design decisions after the cognitive hard work of

following manual heuristics and tactics has been done. Other commercially available

UML modelling tools e.g. IBM Rational Software Architect (IBM, 2010), Enterprise

Architect (Sparx Systems, 2010) do provide considerable utility to the designer through,

for example, design visualisation, dependency analysis, verification of UML version 2.n

well-formedness rules, automated code generation, reverse engineering, version control

and refactoring suggestions. Nevertheless, such UML modelling tools rarely suggest

candidate solution classes derived from the problem domain to the designer, and then

follow up by evaluating them. Indeed, in the terms of Brooks (1995), this would appear

5

to be tool support for the labour of representing software designs and the testing of the

fidelity of the representation, rather than the specification and design of the software,

which Brooks suggests “is the hard part”.

1.2 Computational Intelligence

Given that manual iterative and evolutionary approaches to software design and

development are now predominant (IEEE, 2005; Boehm and Beck, 2010), could

computational intelligence (such as evolutionary computing and machine learning) offer

potential as the basis of computational tool support for a more automated early lifecycle

software design process?

Evolutionary computing draws inspiration from natural evolution. In nature,

populations of individual organisms exist within an environment which is typically

subject to constant change. To respond well to this change, a population of organisms

must adapt as generations live and die. This is achieved by a combination of (1)

environmental pressures which tend to select only the fittest to reproduce into the next

generation, and (2) mechanisms for sexual reproduction which generate a degree of

diversity in the offspring. In computer science, evolutionary computing draws upon

natural evolution and uses iterative processes to simulate evolutionary among a, such as

the growth or development of a population of individuals. As individuals of superior

fitness are selected, they breed offspring before dying and so after numerous

generations, the population as a whole is then guided in a stochastic search to achieve a

desired end. According to Eiben and Smith (2003), tThe notion of „genetical or

evolutionary search‟ was proposed by Turing in as early as 1948. Proposals for

evolutionary programming (e.g. Fogel et al., 1966) were reported in the USA while in

Germany, evolutionary strategies (e.g. Rechenberg, 1973) were suggested. Again in the

USA, a proposal for genetic algorithms by Holland (1975) was later popularised by

Goldberg in his 1989 book. After some years of separate development, the 1990s saw

much cross-fertilisation of research ideas and the above different streams came to be

known as „dialects‟ of evolutionary computing. Around that time, the ideas of genetic

programming also arose, as championed by Koza (1992). Since then, the field of

evolutionary computing has attracted wide research attention resulting in its application

to a plethora of single-objective and multi-objective automated search problems. Useful

surveys of the applications of multi-objective evolutionary algorithms have been

6

conducted by Coello Coello (2000), Deb (2001) and Coello Coello et al. (2007). In

evolutionary computing generally, Goldberg (1989) highlights the need to balance

exploration of the search (through the preservation of diversity) versus exploitation

(through selection of the fittest solutions). Indeed, Goldberg points out that achievement

of such balance gives genetic algorithms robustness in the face a wide array of search

problem domains.

Evolutionary computing has shown much potential in a variety of fields of

design. For example, Bentley (1999) surveys the use of evolutionary design by

computers in the fields of engineering design, computer art and artificial life. Parmee

(2001a) reports the successful interactive evolutionary search and exploration in a range

of engineering design projects. Jain et al. (2007) report the use of evolutionary

computing across a wide range of complex systems design, while a more recent survey

of the utility of evolutionary computing for the design of biological artefacts, art,

computational embryogeny and engineering is provided by Hingston et al. (2008).

Indeed, the potential of evolutionary computing in conceptual design has been

researched by Parmee et al. (2007) who surveyed the diversity of early lifecycle

(conceptual) design across a wide range of design fields with respect to computational

design environments that engender design discovery. Nevertheless, despite the potential

and wide application of evolutionary computing in design generally, for any

computational design support tool to be effective, it must support and enable the

designer and the design process. Consistent with previous research by Parmee (2001a),

it is conjectured that it is currently impossible to exclude the designer to fully automate

early lifecycle software design, given the richness and complexities of design. Rather, it

is necessary to include the designer during design and for this to be effective, the human

designer and the computational support tool must collaborate interactively (Parmee et

al., 2002a). In reality, effective two-way interaction constitutes an open system, in the

sense of a collection of collaborating software, hardware and human components,

working together cooperatively towards a common goal. This incorporation of people-

centred interaction in evolutionary algorithms has been described by Tagaki (2001) as

Interactive Evolutionary Computation (IEC). Tagaki explains IEC as a fusion of

evolutionary computation and human fitness evaluation and reports the application of

IEC to a wide variety of areas, e.g. arts and animation, music, virtual reality, image

processing, data mining, robotics and various fields of design.

7

Despite considerable advances over a wide range of design fields, challenges

posed by the effective use of evolutionary computation as the basis of computationally

intelligent support for design remain. For example, whenever open, interactive, user-

centred support for design is required, autonomous software agents and machine

learning techniques have shown considerable potential to stimulate designer

engagement and so help reduce interaction fatigue. However, research into the use of

proactive user-interface software agents to shield the user, filter repetitive and fatiguing

tasks and so promote an engaging interactive experience, is on-going (Wooldridge,

2009). In addition, research has also been conducted into autonomous agents that

employ machine learning techniques such as clustering and case-based reasoning to

learn, for example, qualitative design aspects such as design aesthetics (Machwe and

Parmee, 2009), or fuzzy-rule extraction of qualitative design evaluations (Brintrup,

2008). It is also interesting to also note that although reports of machine learning

techniques across the software engineering lifecycle have been recently emerging (e.g.

Zhang and Tsai, 2005, Zhang, 2010), reports specific to early lifecycle software design

are less readily available.

Given that the utility of these approaches is proving beneficial across several

different fields of early lifecycle design, could interactive evolutionary computing be a

basis for computational tool support in software design? Certainly, interactive

evolutionary search, when combined with other machine learning techniques, affords

opportunities for not only synthesizing a space of early lifecycle UML class design

solutions, but also their evaluation by a combination of quantitative objective fitness

functions and qualitative subjective evaluation. As an open system, opportunities for

both human and machine to learn and jointly steer the direction of search and

exploration present themselves. Furthermore, a computationally intelligent search-based

approach is consistent with the manual search strategies of Wirfs-Brock and McKean

(2003) for the discovery of potential UML class design solutions.

1.3 Research Contributions

The thesis is based upon the hypothesis that computationally intelligent tool support can

greatly assist the designer with the complexities of identifying and specifying concepts

and information from the design problem domain in early lifecycle software design.

Specifically, it is hypothesised that interactive evolutionary computing affords

8

significant opportunities for combined quantitative and qualitative multi-objective

search and exploration of the early lifecycle software design solution space. It is also

hypothesised that task-focussed (single function) and autonomous software agents offer

great potential for the facilitation of not only collaborative two-way interaction, but also

machine learning techniques which may reveal new knowledge relating to the nature of

software design elegance, whilst enhancing designer interaction by reducing user

fatigue. Finally it is expected that such computational tool support for the software

designer may afford opportunities for the discovery of useful, innovative and elegant

early lifecycle UML class designs, thus helping to produce gains in the traceability and

structural integrity of such designs, which, in turn, may yield significant development

productivity gains.

The presented work focuses on the development of an early lifecycle software

design interactive evolutionary environment, and investigations into its subsequent

evaluation. It covers the following research areas:

 How to represent the design problem and early lifecycle design solution such

that they are sufficiently abstract for human comprehension but also effective for

computational evolutionary search.

A novel object-based representation of the design solution is presented in

chapter 4, and is directly traceable to the design problem. The novel object-

based representation underpins all subsequent investigations.

 How to effectively explore and exploit the software design solution search space

using evolutionary computing to produce useful and innovative UML class

software designs.

Novel genetic operators underpinning single and multi-objective evolutionary

search are introduced in chapter 6, and developed significantly in chapter 9 to

incorporate qualitative elegance intentions.

 Within early lifecycle software design, how to facilitate collaborative designer /

computer interaction using autonomous software agents.

The use of global and local search agents, and a design episode controller agent

that together promote effective interaction, are presented in chapter 7 and

investigated empirically in chapter 8. An elegance agent, that captures and learns

designer elegance intentions, is introduced in chapter 9.

9

 What measures can be formulated to capture software design elegance

intentions.

Four novel measures of software design elegance based on design symmetry and

distribution are presented and investigated in chapter 9.

 How machine-based quantitative fitness metrics can be effectively integrated

with qualitative designer evaluations in multi-objective evolutionary search.

A dynamic multi-objective search mechanism is introduced and investigated in

chapter 9.

 The manner in which interaction fatigue can be reduced by machine learning

techniques such as dynamic interaction and reward-based learning.

A dynamic, adaptive interactive interval approach is introduced in chapter 9.

Also, a reward-based learning mechanism is introduced in chapter 9 which both

reflects designer elegance intentions and drives dynamic multi-objective search.

Both research aspects are investigated and reported using an autonomous

elegance agent in chapter 9.

