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In a sub-excitable light-sensitive Belousov-Zhabotinsky (BZ) chemical medium an asymmetric
disturbance causes the formation of localized traveling wave-fragments. Under the right con-
ditions these wave-fragment can conserve their shape and velocity vectors for extended time
periods. The size and life span of a fragment depend on the illumination level of the medium.
When two or more wave-fragments collide they annihilate or merge into a new wave-fragment.
In computer simulations based on the Oregonator model we demonstrate that the outcomes
of inter-fragment collisions can be controlled by varying the illumination level applied to the
medium. We interpret these wave-fragments as values of Boolean variables and design collision-
based polymorphic logical gates. The gate implements operation XNOR for low illumination, and
it acts as NOR gate for high illumination. As a NOR gate is a universal gate then we are able to
demonstrate that a simulated light sensitive BZ medium exhibits computational universality.
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1. Introduction

Designing of logical gates in chemical systems can be traced back to early 1990s. Hjemfelft and col-
leagues suggested a theoretical coupled mass flow system for implementing logic gates and finite-state
machines[Hjelmfelt et all [1991], [Hjelmfelt et al, 1992], [Hjelmfelt & Ross| [1993], [Hjelmfelt et al, 1993],
[Hjelmfelt & Ross, 1995] and Lebender and Schneider described approaches towards building logical gates
using a series of flow rate coupled continuous stirred tank reactors and a bistable chemical reaction|Lebender
& Schneider} 1994]. No experimental prototypes were implemented at that time.

In 1994 T6th, Showalter and Steinbock presented the first ever experimental implementation of logical
gates in the Belousov-Zhabotinsky system|Té6th et al, [1994], [T6th & Showalter, 1995]. Their constructs
of logical gates were based on the configuration of excitation wave propagation channels and the ratio
between channel diameter and the critical nucleation radii of the excitable media. Their findings aroused
great interest and resulted in several innovative designs of computational devices, including logical gates for
Boolean and multiple-valued logic[Sielewiesiuk & Gorecki, 2001], [Motoike & Yoshikawa, 2003|, [Gérecki et|
all 2009], [Yamaguchi et al, [2009], many-input logical gates|Gdrecki & Gdreckal, 2006], [Gérecki & Gérecki,
2006], counters|Gérecki et al, [2003], coincidence detector[Goérecka & Gdrecki, 2003], detectors of direction
and distance|Gorecki et al, [2005], [Yoshikawa et al, 2009] and inductive memory|Motoike & Yoshikawal
. All these chemical computing devices were realised in geometrically-constrained media, where exci-
tation waves propagated along defined channels loaded with catalyst or tubes filled with BZ reagents. The
waves perform computation by interacting at the junctions between the channels/tubes. Such an approach
is noble, however, it essentially just imitates conventional computing architectures (wires and valves) but
using novel materials (excitable chemical systems). Computing in unconstrained media would be a step
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forward towards the implementation of massively-parallel chemical processors.

To appreciate the massive-parallelism of a thin-layer chemical media we can adopt the paradigm of
collision-based computing [|Adamatzky, 2003]. This paradigm originates from the computational univer-
sality of the Game of Life [Berlekam et al, [1992], conservative logic and the billiard-ball model [Fredkin &
Toffoli, [1982] and their cellular-automaton implementations [Margolus| |1984]. A collision-based computer
employs mobile self-localized excitation to represent quanta of information in active non-linear media. In-
formation values, e.g. truth values of logical variables, are given by either the absence or presence of the
localizations or by other parameters such as direction or velocity. The localizations travel in space and
collide with each other. The results of the collisions are interpreted as computation. There are no prede-
termined stationary wires, a trajectory of the travelling localization is a momentary wire. Almost any part
of the reactor space can be used as a wire. Localizations can collide anywhere within this space. The local-
izations undergo transformations, form bound states, annihilate or fuse when they interact. Information
values of localizations are transformed as a result of these collisions|Adamatzky, 2003].

To implement a collision-based scheme in a spatially-extended chemical medium we must employ trav-
elling localisations. The self-localized excitation wave-fragments, traveling in a light-sensitive BZ medium
when it is in a sub-excitable state [Sendifia-Nadal et al, 2001] are ideal candidates. These excitation wave-
fragments behave like quasi-particles. They exhibit rich dynamics of collisions, including quasi-reflection,
fission, fusion, and annihilation|Adamatzky & De Lacy Costello, [2007], [Toth et al, 2009]. Using the wave-
fragments we have implemented collision-based computing schemes |Adamatzky, 2004]. We have produced
a range of basic collision-based computing schemes in computer simulations and chemical laboratory ex-
periments including logical gates|[Adamatzky, [2004], |Adamatzky & De Lacy Costello, 2007], [Toth et al,
2009], [De Lacy Costello et al, 2009], evolvable chemical logical circuits|Toth et al, 2009], and elements of
a one-bit adder[Adamatzky, 2010|, [Adamatzky et al, 2010].

All these excitable chemical computing devices are light-sensitive, the wave-fragments grow in size
with a decrease in illumination, and the wave-fragments collapse with an increase in illumination. In a very
narrow illumination the wave-fragments remain localized and conserve their shape and velocity vectors
for a (relatively) significant amount of time. Thus the wave-fragments can be used to represent quanta of
information. What happens if the level of illumination is altered between the lower and upper limits of the
wave-fragments-stability range? In the present paper we demonstrate that a design can be implemented
where the outcomes of collisions between wave-fragments sensitively depend on the level of illumination.
A logical function is realised by the collision of wave fragments. By changing the illumination level we are
able to change the logical function. Thus we implement BZ collision-based polymorphic logical gates|Stoika
et al, 2002, i.e. gates which change their function depending on control signals.

The paper is structured as follows. In Sect. [2| we show how we simulate the light-sensitive Belousov-
Zhabotinsky system. Collisions between wave-fragments are studied in Sect. 3] We describe our implemen-
taton of collision-based polymorphic logical gates in Sect.

2. Methods

We use the two-variable Oregonator equation|Field & Noyes| [1974] adapted to a light-sensitive Belousov-
Zhabotinsky (BZ) reaction with applied illumination|Beato & Engel, 2003]:

ou 1, 2 u—gq 2
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The variables v and v represent the local concentrations of activator, or excitatory component, and
inhibitor, or refractory component. Parameter € sets up a ratio of time scale for the variables v and v, ¢ is
a scaling parameter dependent on the rates of activation/propagation and inhibition, f is a stoichiometric
factor. Constant ¢ is the rate of inhibitor production. In the light-sensitive BZ ¢ represents the rate of
inhibitor production which is proportional to the intensity of illumination. We integrate the system using
the Euler method with five-node Laplace operator, time step At = 0.005 and grid point spacing Az = 0.25,
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Fig. 1. Showing that the development of the initial excitation is sensitively dependent on the level of illumination ¢. Excitation
is initiated at the south-west edge of the vesicle.

e =0.022, f = 1.4, ¢ = 0.002. The equations effectively map the space-time dynamics of excitation in the
BZ medium and have proved to be an invaluable tool for studying the dynamics of collisions between
travelling localized excitations in our previous work [Adamatzky, 2004], [Adamatzky & De Lacy Costellol
2007], [Toth et al, [2009; De Lacy Costello et al, 2009].

The parameter ¢ characterizes the excitability of the simulated medium. The medium is excitable
and exhibits ‘classical’ target waves, e.g. when ¢ = 0.07 (Fig. |[lp) and the medium is sub-excitable with
propagating localizations, or wave-fragments, when ¢ is between 0.07873 and 0.07878 (Fig. fe). The
medium becomes non-excitable for ¢ > 0.79, and after this point wave-fragments collapse after relatively
short time scales (Fig. [Iff).

When the BZ reaction is in a sub-excitable mode asymmetric perturbations lead to the formation of
propagating localized excitation, or excitation wave-fragments. Wave-fragments of this type may travel
in a predetermined direction for a finite period of time. If wave-fragments kept their shape indefinitely,
we would be able to build a collision-based computing circuit of any size. In reality, the wave-fragments
are inherently unstable: after some period of conserved-shape/ distance travelled a wave-fragment either
collapses or expands.

Recently [NeuNeu, [2010], [Adamatzky et al, 2010] we found a way to overcome the problem of wave-
fragment instability via the subdivision of the computing substrate into interconnected compartments,
so called BZ-vesicles, and allowing waves to collide only inside the compartments. Each BZ-vesicle has a
membrane that is impassable for excitation |Géreckil 2010], [NeuNeu, 2010]. A pore, or a channel, between
two vesicles is formed when two vesicles come into direct contact. The pore is small such that when a wave
passes through the pore there is insufficient time for the wave to expand or collapse before interacting with
other waves entering through adjacent pores, or sites of contact.

A spherical compartment — BZ-vesicle — is the best natural choice as it allows for effortless arrange-
ment of the vesicles into a regular lattice, has an almost unlimited number of input/output states and also
loosely conforms to a structure likely to be achieved in experiments involving the encapsulation of excitable
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chemical media in a lipid membrane [Goreckil [2010], [NeuNeu, 2010]. We simulate a vesicle filled with BZ
solution as a disc with radius R centered in (xq,yo). Sites inside the disc are excitable, sites outside the
disc are not excitable. We imitate wave-fragment entering the vesicle by exciting (assigning values u = 1.)
grid nodes inside the small disc with radius r, centered in (z¢ + (R — s)cos(0),yo + (R — s)sin(f)). The
following parameters are used in the illustrations: R = 100, r =5, s = 5, 6 € [0, 2x]. Time lapse snapshots
provided in the paper were recorded at every 150 time steps, and grid sites with excitation level v > 0.04
were displayed.

3. Binary collisions

If two wave-fragments x and y are initiated at the disc’s edge at the same time they collide with each
other, while approaching the centre of the disc. The outcome of the collision depends on the angle «
between the velocity vectors & and y (Fig. . When the angle is less than some critical value § the
colliding wave-fragments merge into a new wave-fragment z (Fig. fg) whose velocity vector is positioned
exactly between the velocity vectors of wave-fragments = and y: Z = (& + ¢)/2 (Fig. [2h). When the angle
between the vectors of colliding wave-fragments exceeds some critical value 3, the colliding wave fragments
annihilate (Fig. 2h-s).

Let 8 be a critical value such that wave-fragments colliding at angle o« < 8 merge into a wave-fragment,
which propagates over an indefinitely long distance, and wave-fragments colliding at angle a > g annihilate.

Proposition 1. Critical value B is inversely proportional to illumination level ¢.

Dependence of 3 on ¢ calculated in computational experiments is shown in Fig. [Bp. The dependence
is essentially linear, the deviations shown are due to digitization of the space in numerical experiments.
Each critical value 2 has its own illumination level ¢, see examples in Fig. Bb—f. Therefore, by varying the
illumination of the disc we can alter the outcomes of collisions between wave fragments.

4. Polymorphic gates

We consider two types of gates implemented in BZ-vesicles via the collision of wave-fragments (Fig. [4).

Proposition 2. Let Boolean values of x and y be represented by wave-fragments then a BZ-vesicle imple-
ments a two-input three-output switchable logical gate (x,y, ) — (x7, x(¢)zy, Ty) where x(¢) =1 (TRUE)
if ® = Giow, and 0 (FALSE) otherwise.

Let there be a maximum of two wave-fragments entering a BZ-vesicle. The wave-fragments enter the
vesicle along trajectories  and y (Fig. ) We assume that presence of a wave-fragment at entry point
x represents a logical value TRUE, absence — logical value FALSE. Similarly, if there is a wave-fragment
entering BZ-vesicle along trajectory y we assume y=TRUE, otherwise y=FALSE. When just one of the input
values is TRUE then the solitary wave-fragment passes through the vesicle without significant modification
and exits the vesicle at the site opposite its entry point (Fig. fd, x=1y=0and z =0,y = 1). If
two wave-fragments enter the vesicle they interact and do not follow their original trajectories. Thus the
output trajectories along which the undisturbed wave-fragments  and y move represent functions x7 and
Ty, respectively (Fig. [dh).

Interaction of wave-fragments is determined by level of illumination. When illumination is low enough,
say @low, the colliding wave-fragments merge in a new, i.e. travelling along new trajectory, wave-fragment
(Fig. and ¢, x = 1,y = 1). The new wave-fragment exiting the BZ-vesicle represents operation xy
(Fig. , left). For higher level of illumination, say ¢nign, the colliding wave-fragments annihilate each
other (Fig. and d, x = 1,y = 1), no additional operation is realised.

This is true for wave-fragments colliding at almost any angle over 7/6. However for any particular
angle we must select unique values of @1, and @pigh.
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Fig. 2. Outcomes of collisions between two wave-fragments = and y approaching each other at angle «, illumination level is
¢ = 0.07873; z shows orientation of velocity vector of the resultant wave-fragment, produced in the collision.

Proposition 3. Let Boolean values of x, y and z be represented by wave-fragments then a BZ-vesicle imple-
ments a three-input three-output switchable logical gate (x,z,y,¢) — (x7Z, x(d)z(x D y) + x(P)T Yz, Tyz)
where x(¢) =1 (TRUE) if ¢ = Pion, and 0 (FALSE) otherwise.

Outputs presented by trajectories of undisturbed signals x (y) — 27z (Tyz) — are determined as
follows. Wave-fragment x (y) continues traveling along its original trajectory only if neither wave-fragment
y (z) nor wave-fragment z enter the vesicle (Fig. |4 and Fig. |§|a and b,z =1,y=0,2=0and z =0,
y=1,2=0).
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Fig. 3. Level of illumination determines critical angle of wave-fragments collision:(a) dependence of critical collision angle 5 on
illumination parameters ¢, time lapse snapshots of wave-fragments colliding at angles g for their critical values of illumination
¢: (b) a=7F,¢=0.0791 (c) a = 3%, ¢ = 0.07883, (d) a = T, ¢ = 0.07867, (e) a = LT, ¢ = 0.07850, (f) & = 5T, ¢ = 0.078.

The following scenarios take place for both low ¢4, and high ¢p;g, levels of illumination. If only
wave-fragment z is present, it travels through the vesicle undisturbed (Fig. @ x=0,y=0,z=1). When
wave-fragment z is present and also either wave-fragment x or y the wave-fragments collide and form a
wave-fragment whose velocity vector is an average of the velocity vectors of the colliding wave-fragments.
The newly formed wave-fragment collides with the wvesicle’s wall just between the output channels and
misses both of the potential exit points. Thus no output is generated (Fig. |§|, =1y =0,z =1 and
r=0,y=1,z=1).

For two combinations of inputs —z =1,y =1,z=0and z =1,y = 1,z = 1 — the outcomes depend
on the level of illumination. If only wave-fragments = and y or all three wave-fragments enter the vesicle
they collide and annihilate when the level of illumination is high ¢nig, (Fig. @a) The fragments merge
and form a new wave-fragment, which hits the output channel thus generating output value TRUE, when
the level of illumination is low ¢y;g, (Fig. @b) Thus the output channel opposite to the input channel z
generates z(x @ y) when the level of illumination is low, and it generates T 5z when the level of illumination
is high.

By assigning constant TRUE to input z, we realize a two-input one-output gate (z,y,¢) —
(x(¢)z(x @ y) + x(¢)Tyz). Thus we arrive at the main finding of the current paper:

Proposition 4. Fragments travelling and colliding within a BZ-vesicle implement a polymorphic logical
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low ¢ high ¢

low ¢ high ¢

Fig. 4. Two types of logical gates controllable by illumination level ¢.

gate switchable between functional states XNOR and NOR by changing the degree of illumination.

5. Conclusion

In a numerical model of the light-sensitive Belousov-Zhabotinsky (BZ) medium in a sub-excitable mode
localized traveling excitation waves are formed. We interpreted these localizations as quanta of informa-
tion, values of logical variables. When two or more localizations collide they annihilate or form a new
localization. We interpreted post-collision trajectories of the localizations as the results of a computation.
We demonstrated that by colliding wave-fragments in an encapsulated excitable chemical medium we can
realise a number of logical gates. We showed that by changing the illumination of the chemical medium we
could switch between different outcomes of the computation. Thus we were able to realise a polymophic
logical gate which could execute either function XNOR or NOR depending on the level of illumination. Gate
NOR is a universal gate, thus, as a byproduct, we demonstrated the computational universality of the BZ
medium when in a subexcitable state.

We would like to outline two main directions of further studies. In the theoretical part, we aim to
focus on cascading BZ-based polymorphic gates into larger logical circuits and arithmetic schemes. In
experimental part, we aspire to implement theoretical constructs in chemical laboratory experiments.
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Fig. 5. Implementation of polymorphic gate (z,y,¢) — (2%, x(¢)zy, Ty). Scheme of the gate is shown in Fig. [fh. Time
lapse snapshots of the sub-excitable media are shown for various illumination levels ¢ and collision angles ov. Wave-fragments
represent logical values of inputs = and y. Inputs (entry points, pores) are marked by thin lines, outputs (exit points, pores)

are marked by thick lines.
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Fig. 6. Implementation of polymorphic gate (z, z,y, ¢) — (27 Z, x(¢)z(z D y) + x(¢)T Yz, TyZ). Scheme of the gate is shown

in Fig. @3 Time lapse snapshots of sub-excitable medium are shown for various illumination levels ¢ and collision angles a.

Waves represent logical values of inputs & and y. Wave-fragments x and z, and z and y collide at angle §; wave-fragments

and y collide at angle %. Inputs (entry points, pores) are marked by thin lines, outputs (exit points, pores) are marked by

thick lines.
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