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Abstract 

 

This letter uses a modified form of the NK model introduced to explore aspects of distributed 

control. In particular, a previous result suggesting the use of dynamically formed subgroups 

within the overall system can be more effective than global control is further explored. The 

conditions under which the beneficial distributed control emerges are more clearly identified 

and the reason for the benefit over traditional global control is suggested as a generally 

applicable dropout mechanism to improve learning in such systems. 
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Introduction 

 

Kauffman and Levin (1987]) introduced the NK model to allow the systematic study of 

various aspects of organisms evolving on rugged fitness landscapes and, given its abstract 

nature, the model has also been used widely within complex artificial systems. Distributed 

control is becoming increasingly significant in many areas, including edge computing, 

collective robotics, power grids, ad hoc networks, etc. Typically, the underlying functional 

dependencies which exist between the constituent parts of a system are only partially known 

or understood and hence the utility of different distributed control structures can be unclear, 

potentially leading to sub-optimal overall performance. A version of the NK model through 

which to systematically explore the general properties of distributed control systems has 

been introduced – the NKD model (Bull, 2020). Initial results showed that equivalent 

performance to global control exists within a significant proportion of the attribute space of 

the model and, more significantly, that dynamically grouping elements within the control 

structures can prove beneficial. This letter seeks to further explore and explain this finding, 

drawing an analogy with dropout in neural networks. 

 

 

The NK Model 

 

In the standard NK model (Kauffman & Weinberger, 1989), the features of the fitness 

landscape are specified by two parameters: N, the length of the genome; and K, the number 

of genes that has an effect on the fitness contribution of each (binary) gene. Thus, 

increasing K with respect to N increases the epistatic linkage, increasing the ruggedness of 

the fitness/problem landscape. The increase in epistasis increases the number of optima, 

increases the steepness of their sides, and decreases their correlation. The model assumes 

all intragenome interactions are so complex that it is only appropriate to assign random 

values to their effects on fitness. Therefore, for each of the possible K interactions a table of 



2(K+1) fitnesses is created for each gene with all entries in the range 0.0 to 1.0, such that 

there is one fitness for each combination of traits (Figure 1). The fitness contribution of each 

gene is found from its table. These fitnesses are then summed and normalized by N to give 

the selective fitness of the total genome. 

 

Figure 1: An example NK model where N=3 and K=1. 

 

 

Kauffman (1993) used a mutation-based hill-climbing algorithm, where the single point in the 

fitness space is said to represent a converged species, to examine the properties and 

evolutionary dynamics of the NK model. That is, the population is of size one and a species 

evolves by making a random change to one randomly chosen gene per generation. The 

“population” is said to move to the genetic configuration of the mutated individual if its fitness 

is greater than the fitness of the current individual; the rate of supply of mutants is seen as 

slow compared to the actions of selection. Ties are broken at random.  

 



The NKD Model 

 

The NK model can be cast as an abstract distributed system containing N interacting 

agents/elements under global control: any effect upon fitness caused by a mutation/change 

considers all N genes/elements in the decision as to whether to accept that 

mutation/change. The NKD model was introduced as a generalisation to enable the 

exploration of distributed control structures within the space of NK models. Here each 

gene/element in the traditional NK model is extended to include D connections to other 

genes/elements (Figure 2). In the simple case these are assigned at random for each 

gene/element. When a mutation/change is made to a given gene/element, the decision as 

whether to accept that change is based upon the effect on fitness of the set of D+1 

genes/elements. Hence the traditional case exists when D=(N-1). The networks of decision 

making typically overlap here. All results reported in this paper are the average of 10 runs 

(random start points) on each of 10 NK functions, ie, 100 runs, for 5000 generations. Here 

0≤K≤15, for N=20 and N=100. 

 

 

Figure 2: Showing the centralised, global control of the traditional NK model (N=9, K=3) and the fully 

distributed control structure of the NKD model (N=9, K=3, D=1). Connections shown for one 

gene/element only for clarity. 

 



Figure 3 shows examples of how, with N=20, fitness is the same as D=(N-1) when D≥12 for 

0<K<10 (T-test, p<0.05). For K>6 this is true for D≥8 and when K=15, ie, as K→N, the 

highest fitness seen is at D=8 (T-test, p<0.05). Figure 3 also shows similar results for 

N=100, although relative fitness is much worse for D<60 when 2<K<10. For higher K, fitness 

remains lower than at D=N-1 when D<80 (T-test, p<0.05).  

 

 

  

  

 

Figure 3: Showing the fitness reached after 5000 generations/iterations on landscapes of varying 

ruggedness (K) and degrees of control (D). Error bars show min/max values. 

 

 

Hence whilst the best control structure varies with both N and K, it is never only at D=(N-1), 

ie, many distributed structures exist which give equivalent performance to the traditional 

centralised scheme. 



  

  

  

 

Figure 4: Showing the fitness reached after 5000 generations on landscapes of varying ruggedness 

(K), degree of control (D), and length (N) when the control structure is assigned at random per 

generation/iteration. Fitness of equivalent static grouping shown as a dashed line. 

 

 

In some distributed system scenarios the topology of the control structure can vary 

temporally, eg, due to changes in geographic location in systems containing mobile 

elements. From a distributed control strategy view, this can result in the dynamic formation 



of the subgroup of elements involved in each system update decision. Figure 4 shows 

examples when the topology of the D connections of each gene/element is randomly 

(re)created on each generation/iteration. For small N, and K>0, there is a significant drop in 

fitness for low D compared to the use of statically allocated control subgroups. Regardless of 

K, optimal performance is typically seen when D ≈ 0.9N, independent of N (T-test, p<0.05). 

Perhaps somewhat counterintuitively, such temporarily dynamic distributed control structures 

appear to be beneficial over the static case roughly when 0.8N < D < N. 

 

That is, better than global control performance can be achieved when less than 100% of the 

system is being considered in an update/change iteration/generation. How can such partial 

information be beneficial? Dropout was introduced to neural networks with the aim of 

reducing overfitting (Hinton et al., 2012) and has been widely adopted thereafter. In the basic 

scheme, a node(s) in the hidden layer(s) is probabilistically removed/ignored from the 

forward and backward pass of a training cycle. The motivation being to stop unhelpful co-

adaptation between nodes in the identification of robust features. Other variants include the 

removal of a small or large number of individual connections (dilution). Thus, when training 

under dropout, the global network is not experienced by the learning mechanism: a subset of 

the weight/error space is experienced and updated per cycle, with an overall averaging 

process happening.  

 

This appears to directly correlate with the dynamic grouping scheme in the distributed 

control system presented here: some elements of the global system are not involved in a 

given learning step. The global control case above becomes trapped in local optima on the 

more rugged fitness landscapes, with the increase in performance from dynamic subgroups 

showing a tendency to increase with increasing K (Figure 4). Doing the learning step – here 

accepting or refusing a mutation - in a subset of the global problem space clearly helps to 

avoid local optima in the global space. That is, a less fit solution in the global problem space 

can be accepted by making the decision within a subset of that space (Figure 5). With the 



caveat the subset is varied appropriately. This finding is also loosely related to the NKP 

model (Barnett, 1998) wherein neutral regions are added to traditional NK fitness landscapes 

thereby reducing the number of local optima.   

 

 

 

Figure 5: Example contrasting the selection processes within the NK and NKD models. 

 

 

With dropout viewed as a mechanism by which to escape local optima, the frequency with 

which it is applied to aid the search process potentially becomes significant. Figure 6 shows 

examples of how the benefit is seen even when the frequency of change in the control 

structure is very low in comparison to Figure 4.   

 

 



  

 

Figure 6: Showing the fitness reached after 5000 generations on landscapes of varying length (N) 

when the control structure is changed at random with different frequencies. Fitness of equivalent 

static grouping shown as a dashed line (prob change = 0) and with change per generation shown as 

dotted line (prob change = 1.0). 

 

 

 

In the above, a single node/gene was chosen for changing/mutating and there is no reason 

to assume that is the optimal rate for the global search space, particularly for the more 

rugged landscapes. Indeed, the setting of such parameters is a major challenge in complex 

systems.  

 

Figure 7 shows results from when two nodes are chosen at random to be updated per 

generation/iteration for the static grouping scenario. Here both changes must prove 

beneficial within each subset D to be accepted, with ties broken at random as before. As can 

be seen, performance is typically the same or significantly improved, particularly for higher 

D. Comparison with the dynamic grouping scheme results in Figure 4 finds the benefit of the 

mechanism is lost for all cases considered with N=20, and for N=100 except when K>6. That 

is, the dropout remains beneficial on the larger, more rugged landscapes. Performance with 

two mutations with dynamic grouping is not improved for high D (not shown). More mutations 

have not been explored here.  



  

 
 

 
 

 

Figure 7: Showing the fitness reached after 5000 generations on landscapes of varying ruggedness 

(K), degree of control (D), and length (N) when the control structure is static but two nodes update per 

generation. Fitness of equivalent single node updating shown as a dashed line (Figure 3). 

 

 

 

 

 



Conclusion 

 

This letter has explored a recently presented result in which dynamic grouping improved 

performance across a range of distributed control conditions. It has been suggested that 

undertaking learning steps in a reduced set of dimensions of the problem improves the 

avoidance of local optima in the global space – so long as the set of reduced dimensions is 

varied to enable an averaging effect within the global space. The simple mechanism appears 

applicable to any system capable of functioning with components temporarily removed. 

Dropout as used in neural networks is a well-known example, although significantly it has not 

previously been described as working in this way.  
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