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Abstract— If robots are to cooperate with humans inan
increasingly human-like manner, then significant pogress
must be made in their abilities to observe and learto perform
novel goal directed actions in a flexible and adapte manner.
The current research addresses this challenge. InHRIS.I [1],

we developed a platform-independent perceptual syasin that
learns from observation to recognize human actionfn a way
which abstracted from the specifics of the roboticplatform,

learning actions including “put X on Y” and “take X". In the

current research, we extend this system from actioperception
to execution, consistent with current developmentalesearch in
human understanding of goal directed action and telological
reasoning. We demonstrate the platform independescwith
experiments on three different robots. In Experimats 1 and 2
we complete our previous study of perception of ains “put”

and “take” demonstrating how the system learns to »ecute
these same actions, along with new related actiotsover” and

“uncover” based on the composition of action primiives “grasp
X" and “release X at Y”. Significantly, these compmsitional
action execution specifications learned on one iCutbbot are
then executed on another, based on the abstractidayer of
motor primitives. Experiment 3 further validates the platform-

independence of the system, as a new action thatlé&arned on
the iCub in Lyon is then executed on the Jido robotin

Toulouse. In Experiment 4 we extended the definitn of action
perception to include the notion of agency, agaimspired by
developmental studies of agency attribution, expléhg the
Kinect motion capture system for tracking human moion.

Finally in Experiment 5 we demonstrate how the comined
representation of action in terms of perception andexecution
provides the basis for imitation. This provides tle basis for an
open ended cooperation capability where new actionsan be
learned and integrated into shared plans for coopetion. Part
of the novelty of this research is the robots’ usef spoken
language understanding and visual perception to gemate
action representations in a platform independent maner based
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on physical state changes. This provides a flexilcapability
for goal-directed action imitation.

|l. INTRODUCTION

For embodied agents that perceive and act in thédwo
there is a strong coupling or symmetry between guicn
and execution which is constructed around the naifogoal
directed action. Hommel et al [2] propose a plaifiis/ for
the cognitive mechanisms underlying perception actibn
— the Theory of Event Coding. According to thisdty, the
stimulus representations underlying action perosptand
the sensorimotor representations underlying acéian not
coded separately, but instead are encoded in a comm
representational format. In this context it hasvrilecome
clearly established that neurons in the parietad #me
premotor cortices encode simple actions both foe th
execution of these actions as well as for the ime of
these same actions when they performed by a sesgemt
[3]. This research corroborates the emphasis frenabioral
studies on the importance of the goal (rather thandetails
of the means) in action perception [4].

Within a sensorimotor architecture a number of fiene
derive from such a format, including the directatin
between action perception and execution that cawige
the basis for imitation. This is consistent witlr @revious
research in the domain of robot perception andradti the
context of cooperation ([5, 6]). The current reshaxtends
our previous work on the learning of composite @i by
exploiting this proposed relation between actioeogion
and perception. Part of the novelty of the curresearch is
that the action repertoire is open: the robot leamn new
actions in both dimensions of perception and execufhe
learned actions take arguments including ageneobtand
recipient. Maintaining this symmetry of action peption
and execution lays the framework for imitation ahd use
of imitation in cooperation [5, 6].

We look to human development to extract requirement
on how to implement such an action representationthis
context, two important skills for infants are thbiligy to
detect an action as being goal directed and torméte its



agency. Studies of infant action perception [4h&{e led to
the extraction of a core set of conditions whiclowas the
infant to identify goal-directed actions. In the rrent
research, we implement in our system the abilitaddress

B. Implementing those requirements

Our implementation of action, both in the context o
perception from CHRIS.I [1] and execution is bassd
actions as state changes. One of the strong intiplisaof

aspects of these human requirements both in terins tgjs is the equifinality of action. That is, theveaaction “put

perception (detect and represeatient actions effecksand
execution (ability to achieve a goal through anocactising

the box on the toy” may be realized in a varietyways
(with one hand, or the other) but with the equiaalénal

equifinal variationy. We demonstrate how those capabilitiegutcome, one of the key characteristics that atmtion to

can be used by the robot to imitate or mirror huraetions
(which involve both recognition and execution) ivay that
should match the human requirements for goal atioh.
Learning by imitation is a major area of researciobot
cognition today [8-12]. Our novel contribution tdig
domain is the encoding of action in terms of peteajpstate

changes and composed motor primitives that caneaehi

these state changes, in a manner that allows thet 1o
learn new actions as perception — execution paird, then
use this knowledge to perceive and imitate. Thag®ns
can take several arguments, efGENT put the

OBJECT on the RECIPIENT. This allows for the
generalization of learned actions to entirely nemtexts,
with new objects and agents. In our long-term aese
program, this provides the basis for learning tdgren joint

cooperative tasks purely through observation.

Il. CONTEXT: GOAL DIRECTED ACTIONS

A. Goals attribution requirements

Studies of human infants [4, 13-15] indicate thairt
ability to determine the goal of an action begiagevelop

between 6 and 9 months, demonstrated by the alufity

infants to encode behaviors such as a hand gra$piran
object as being directed at the goal-object rattiem
encoding the hand’s specific movement. An importastie
that has been discussed within the field is théedihce
between actions that are familiar to the infant andre
unfamiliar actions which may not include human tees
(like a robotic gripper grasping a toy). Woodwarté4]
initially argued that only observed actions that thfant is
able to execute herself are represented as gaaitel.
However later studies [4, 7] demonstrated thatéddefants
are able to attribute goal directedness for nogtibas early
assuming two conditions: first the action has todpice a
salient effect on the world state (like the motfoom one
place to another). The second condition is thatatipent is
able to achieve the same state change in diffevaps (such
as avoiding an obstacle
trajectory), in other words the action is demornstato
possess equifinal variations.

instead of using a straig

be considered goal directed. If the robot is atde
demonstrate equifinal means of achieving his astidhen
humans may be more likely to attribute a goal &nthThis
assumption has been shown to be true in infant&dgand
would need to be tested on adults, however assuihiag
fact that all our teleological system seems to hit lon
those core capabilities it is likely that a ben&faceffect
could be found also on adults.

In our action recognition system [1] we exploited
Mandler’'s [17] suggestion that the infant begingdmstruct
meaning from the scene based on the extraction of
perceptual primitives. From simple representatisush as
contact, support and attachment [18] the infantIdou
construct progressively more elaborate representatiof
visuospatial meaning. In this context, the physieeent
“collision” can be derived from the perceptual piive
"contact". Kotovsky & Baillargeon [19] observedathat 6
months, infants demonstrate sensitivity to the paters of
objects involved in a collision, and the resultaféect on the
collision, suggesting indeed that infants can regné
contact as an event predicate with agent and patien
arguments.

In this paper we describe an evolution of the actio
recognition system described in [1]. This new gsysts still
based on sequences of perceptual event primitingiBifity,
motion, contact), however those primitives are now
represented in terms of the impact they have orwtbed
state. Primitives can be queued and their effedtsed so
that a sequence of them will be a way to reachrahstate
from an initial state. If a sequence produces rangk in the
world state, then it will not be taken into accounyt the
system, which mimics the ability of children to dmagis
actions that produce a salient effect on the wofibis
rejection of “useless” actions allow the systembto more
stable: for example an object which appears and the
disappears quickly may be only a false recognitibrthe
perceptual system.

These requirements are implemented on both the

erceptual and executive components of the systdm.

RIS.I [1] we presented a system architecture for
cooperation. Here we zoom in on the action related
components which handle the complete link from gption
to motor commands in term of actions.



lll. EXPERIMENTAL PLATFORMS

A crucial aspect of our research is that the aechitre
should allow knowledge acquired on one robot taiged on
physically distinct platforms. In the current sputhis is

IV. THE CHRISARCHITECTURE—FOCUS ON ACTION

In order to be platform-independent, action repnts@n is
abstracted from platform-specificities at the lotvésvel

possible.

demonstrated using two different version of the hiCucontext is presented in Figurel.

platform in Lyon France, and Genoa ltaly, respedyivand
the Jido robot in Toulouse, France.

The iCub [20] is an open-source robotic platforrapsd
as three and a half year-old child (about 104ci talth 53
degrees of freedom distributed on the head, ararslshand
legs. The head has 6 degrees of freedom (roll apartilt in
the neck, tilt and independent pan in the eyes)edh
degrees of freedom are allocated to the waist,Gatwleach
leg (three, one and two respectively for the hipe& and
ankle). The arms have 7 degrees of freedom, threthea
shoulder, one in the elbow and three in the wiiibe iCub
has been specifically designed to study manipuiatior
this reason the number of degrees of freedom oh#rels
has been maximized with respect to the constrdirthe
small size. The hands of the iCub have five fingerd 19
joints. All the code and documentation is providegen

Scene Perception

~

An overview of the CHRIS architecturetlis

Spatial Platform specific
. { Primitiv
Reasoning Re?::t Il:::'::on Detecttio?\ Egosphere | NERCEER
(SPARK) &
J
MatorCommand Generie motor
commands

Robot
Motor
Command

Egosphere
Motor
Bridge

J/

Supervison &
Planning
Supervisor )
(RAD)

Shared

Knowledge Base

exccuted on
=2 specific platform

© Human Interaction

Plan Open Object Action &
Manager Robots Properties Shared
Ontology [l Database Plan
| — ORO OPDB Definitions J

source by the RobotCub Consortium, together with thFigure 1: CHRIS Architecture. Arrows represent floev of information
hardware documentation and CAD drawings. The rob@tata, commands), which are transported over gteark via YARP.

hardware is based on high-performance electric raoto

controlled by a DSP-based custom electronics. Ftben
sensory point of view the robot is equipped wittmeaas,
microphones, gyroscopes, position sensors in alitgp
force/torque sensors in each limb.

Perceptual information enters Scene Perceptioneddbpositions from
Egosphere are processed by Primitive RecognizerAatidn Recognizer
for learning and recognition, and enter SPARK iftference of spatial
relations which are stored in ORO. Shared Planddanlinks perceputal
and exectutive action representations and planser8isor manages HRI,
the learning of new action execution, and verificia from ORO that
execution preconditions hold.

While both iCubs are instances of the iCub, theg ar

distinct in the implementation of motor control #se
iCubGenoa01 is equipped with force sensors thawdibrce
control; the iCubLyon01 is only controlled in veitycand
position modes.
primitive pool as the common abstraction layer asnmbots
is maintained. Jido, on the other hand is an@mtulifferent

robot, which allows us to truly explore the platfor
independence of our system.

Jido is a fully-equipped mobile manipulator thas leen
constructed in the framework of Cogniron (IST FEDject:
www.cogniron.ory. Jido, a MP-L655 platform from
Neobotix, is a mobile robot designed to interadhviiuman
beings. It is presented on figure 3. Jido is ecrdpwith: (i)
a 6-DOF arm, (ii) a pantilt unit system at the tafpa mast
(dedicated to human-robot interaction mechanisiiig),a

A. Abstraction of Action Perception and Execution
Two layers of abstractions are required in ordehave a

Thus, the essential role of thetomo platform independent architecture: perceptual anstom

Both of them rely on the Egosphere module.

1) Scene Perception

The first layer of abstraction between the sensory
perception systems and the higher level cognitive
architecture and motor control elements is formedha
level of the Egosphere which serves as a fast, rdima
asynchronous storage of object positions and @iiemts.
The object positions are stored in spherical comtais
(radius, azimuth and elevation) and the objectntaigon is
stored as rotations of the object reference frabwmutathe

3D swissranger camera and (iv) a stereo camerdy baehree axes (x,y,z) of a right-handed Cartesian aviseme

embedded on the pan tilt unit, (v) a second vidgsiesn
fixed on the arm wrist for object grasping, (vi) twaser

system. The origin of the world frame can be chosen
arbitrarily and, for our experimental work, we lted it at

scanners, (vii) one panel PC with tactile screem fahe centre of the robot's base-frame. Other starbp:ct

interaction purpose, and (vii) one screen to pevi

properties are a visibility flag and the objectiDhe

feedback to the robot user. Jido has been endowt#d wobjectID is a unique identifier of an object whiahts as a

functions enabling to act as robot companion ampeaally
to exchange objects with human beings. So, it esba&loust

shared key across several databases (see [1]thils)leThe
robot-specific 3D perception system adds objectsthi®

and dficient basic navigation and object recognitiorEgosphere when they are first perceived, and namta

abilities.

position, orientation or visibility of these objsabver time.
Modules requiring spatial information about objeittsthe

scene can query the Egosphere. The Egosphere is



implemented in C++ as a client-server system ushey
YARP infrastructure. Software modules requiring essto
the Egosphere include a client class which providethods
like addObiject(), setObject(), getObject()
getNumberOfObijects(), etc.
convenient abstraction layer. With increasing camipy of
human-robot interaction tasks during the courseoof
research, we will add further complexity (humanu®of
attention, confidence, timeliness etc.) whilst presg
modularity. This is exemplified by the spatial seaing
(e.g. visibility by line of sight) provided by Sgar Within
the Jido platform-independent component, the fonetity
of the EgoSphere is preserved within Spark.

2) Perceptual Primitives, Events and State Changes

or
The Egosphere is thus a

Grasp (object)
Release (location)
Touch (object)

» Look-At (object)

We do not claim the completeness of this pool for a
possible interactions, but these primitives werffigant in

the context of robot and human interaction through
manipulation of objects on a table. The argumentgtese
primitives are objects whose Cartesian coordinaes
recovered from the Egosphere.

B. Action Representation
The concept of Action and its representation ithatcenter

The action recognition capability is based on thef our architecture. Inspired by the perceptioneexien

extraction of meaningful primitive events from tfiew of

object positions and visibilities represented ia Egosphere structure shall

symmetry [2] we impose the requirement that theesdata
accommodate both the perceptual and

and Spark. Again we based our system findings fromxecutive components of action. It also includésolegical

developmental psychology.
primitives similar to those described in [21-25].eWave
previously used this primitives based approach2®, [27]
and we identified a core set of primitive eventattlare
simple and provide a solid basis for action corcsion.
There are six primitive event divided in three gatges:
Visibility (object appears or disappears)

Motion (object starts or stops moving)

We implemented percéptumformation, that is, the state changes that adeidad by

that action.

1) Action Representation for Perception

Our representation of action started with a purely
perceptual definition [1, 6, 37]. Specifically th&ction
Recognizer module is constantly monitoring the flof
perceptual primitives sent by the Primitive Recagni

« Contact (contact made or broken between 2 objectsynOdme. We make the assumption that two actionk lweil

Each of these primitive event is coded in termthefstate
change it effects on the world (e.g: if an objeppears,

separated by a temporal delay, so we can use ¢éy do
segment meaningful sequences of primitives. Wheh sin

visibility(object) will be added to the world state). Theindependent sequence is detected, it is taggedems ka

Primitive Recognizer extracts those 6 primitives
constantly monitoring the Egosphere. It then beoaats the
detected events to the Action Recognizer.

3) Motor Primitives

The current research extends this notion
compositionality for action perception from CHRI$1] to
action execution. As for the perceptual system, abgon
execution system requires a suitable abstractioat
provides a platform independent interface to tHetanotor
capabilities. Motor primitives rely on the iddhat
complex motor tasks may be achieved by the combimatf
simple parameterized controllers we call primitiv8sis
framework is consistent with studies of biologicabtion
[28], which demonstrate that motion of biologic&lifys is
achieved by high level motor commands triggering
sequence of motor primitives leading finally to effective
motion of the muscles. Using hierarchies of priveii for
control in robotics is becoming a widely used metHi@9-
36]. In our approach, what we call a Motor Prinatiis
already a symbolic action. The implementation obsth
actions is robot specific, what is important isttht robots

share the same motor interface, as a pool of Motdrat

Primitives. In the current system the primitivesattrare
implemented on the robot are:

byotential action which is then evaluated by theogadtion
process. The action data structure is similar &b fibr events
since actions are composed of primitive events, laoith
produce a salient change (or changes) in the vateligt. The
Action Recognizer stores a list of all the knowti@ts and

gtompares them with the incoming potential actiokisthe
primitives contained in the received sequence dde@ so
that the global world state change of this sequeisce

trobtained, then if a known action creates the samaage in
the environment it is recognized as being the oleskr
action. We have to stress the fact that this “wetdnge” is
argument independent: if the system has learnt ctiora
cover(object A, object B)then it will recognize a
cover(toy,boxns well as @over(bowl, plate).

Actions possess characteristics in addition to ¢ho$
gvent primitives. The state change produced by \ante
primitive is called post-condition, because it ppled after
the primitive occurred. In addition to post-commlits an
action has pre-conditions which can either allowpmavent
it to occur (for example covering the bowl needs lowl to
be visible and uncover the bowl needs the bowl éo b
covered). Those pre/post conditions are a usefahar@sm

allows forward/backward chaining and finally
teleological reasoning (see [37] for more detablsu this
aspect). Actions also contain a field describing dlecuting



agent. Agency detection is based on motion prim#iv environment. Our system is thus state based, \withuser
associated with human hands that are detected ubing indicating the nature of the current task (inclgdimhether
Kinect device which provides information about humahe wants interact in the context of action recagnijt

hands to the Egosphere (see below). execution or imitation tasks). In each of theskdsumains,
the user can then indicate that he is ready to shewobot a
2) Action Representation for Execution new example and the robot will attempt to recognize
In order to bridge the gap between perception arukerform or learn what is shown.
execution, the Shared Plan Manager module comipiodsr A principal function of the Supervisor is to verifhat

representations with perceptual representationsabion. preconditions for action execution are met befohe t
While we currently address the learning of singléoms as execution is initiated. This primarily concerng ttonstraint
the simplest motor plans, the system is designethtorally that objects to be manipulated should be visibl&his
extend to more complex shared plans, based onanliere information is computed by the SPARK (Spatial Redrsg
work [6]. and Knowledge) module and made available to theesy
When the user asks the robot to perform an actien tORO (the Open Robot Ontology) which provides céntra
Shared Plan Manager searches for a plan with tiaen If component of the Knowledge base of the system. See
no such plan is found, then the Shared Plan Managies CHRIS.I [1] for detalls.
the user to enumerate the motor primitives (desdrdtbove)
that constitute that action.
The system can thus learn to perform complex agtion V. EXPERIMENTS
such as putthe box on the toy as a composite A. Experiment 1- Completing Perception with Execution
sequence ofjrasp box, release box on toy. »
We implement a form of argument binding so thas thiln CHRIS.I we demonstrated a capability to learn to

newly learned action can generalize across allabjeThat "€cognize actions includingake andput . Here we first
is the robot can then perform the actiat t he toy on demonstrate how these action definitions can bepteted

the tabl e with the execution component.

H: Put the toy on the left
R: | don’t know how to put.
H: Grasp the toy.

R: Grasping the toy.

H: Release left

R: Releasing left

H: Finish learning.

Based on this learning we then demonstrated that th
acquired execution knowledge could generalize tev ne
instances of the action. We demonstrated thatrohet
correctly performed the command to put the boxhe t
middle.  This is illustrated in Fig 2A. In ordeo t
demonstrate that this knowledge could be exploitada
different robot, the learned definitions were sdavéa the
SVN repository. Figure 2B illustrates the iCubGadb

S | =
Figure 2: Experiments on iCubLyon01 and iCubGenoa®1Experiments ~ USing action definitions acquired in Lyon in ordemperform
1 and 2 where human teaches robot new actionse iNeight foreground the take and put actions.
the representation of the spatial environment iAFSR B. Replication of
actions learned in Lyon with iCubLyon01 transfertedCubGenoa01l in
Genoa. C. Human demonstrates the “cover the tyte box” action, B. Experiment 2- Learning New Actions
and the iCubGenoa01l recognizes and imitates thiahac

This experiment tests the ability of the systemlearn

o new actions, both in terms of perception and execut
C. Supervision Here we focus on two actions which arever X with
Action perception and execution are coordinatedheyHRI Y, anduncover X with Y. We chose these actions as
Supervisor. The Supervisor manages spoken languagey will provide the basis for future work in shdr
interaction with the CSLU Toolkit [38] Rapid Appéiion  planning for cooperation.
Development (RAD) state-based dialog system which
combines state-of-the-art speech synthesis (Féstavad H: Cover the toy with the box.
recognition (Sphinx-Il recognizer) in a GUI prognang R: | do not know how to cover.



H: Grasp the box. C. Experiment 3 — Cross platform generalization

R: Grasping the box. The Shared Plan Manager creates permanent defigitio
H: Release the box on the toy. of these new actions, which can then be transferizdhe
R: Releasing the box on the toy. SVN system for use on other robots at other si#e. could
H: Finish learning. thus test the definition o€over X with Y that was

- . learned on the iCub in Lyon on the Jido robot inlbase.
This dialog fragment illustrates how the system can yis the RAD Supervisor, the human asked Jido ctiver
acquire new sequences of action primitives in otddearn o4 table-mat with the box (see Figure 3). TheeBuipor
new composite actions. Here, “cover X with Y” &ined qyieved the composite action definition, commatgd the

33 the (Eor:cgtetr;lgtlon of grasp Xt anc:' relelase X av:/f:r tcorresponding motor primitives correspondingtaasp X
emonstrate IS same concatenative learning andrel ease X on Y to Jido. Jido was thus able to

actions, put, take, cover and uncover. Note thatznd produce thecover X wi th Y action, based on learning

gcr)gs:ngig, s&rgrlrl]egnc:rf;r:ilggnfﬁ eWIFIZ;i?)\iII(iEt;/Seci ci:]deg r;'f;hnet that had oc_curred ona m_orpholpgically distinctatobThus,
binding capability. despite 'th|s morphological difference, pecause 'bé t

abstraction at both perceptual and execution lewaton
knowledge acquired on one platform can be explodad
another.

D. Experiment 4 - Agency assignment with Kinect

In behavior that involves object manipulation, theman
hand has a special status as an agent. Indeexs ibden
shown that infants may prefer to assign agency &l w
known agents however they also rely on naive pbyaid
assign agency to objects that are moving on their and in
specific ways [4, 39]. In order to achieve accurhtnd
tracking we demonstrate here how the Kinect matiacker
can provide this capability. A module has been tbped
using the Kinect device in combination with OpenNI
drivers in order to track the user hands and add therheto t
Egosphere as standard objects. Since this modua the
platform specific side of the Egosphere, then nange is
required to use its information. We achieved thaeaesult
using our standard vision system and visual mar&arghe
human hand; however the approach with the Kinentush
more natural and robust. In the experiment the wess
teaching system how to recognizeveranduncoverand the
system recognized these actions, and which harfdrpesd
them so it could describe it in the following wdldetected
that thehuman handovered théoy with theboX.

E. Experiment 5 — Goal Directed Action Imitation

This experiment, illustrated in detail in FigureBfings all
of the functionality together. To arrive at thisimt, the
robot should be able to both recognize and exeziget of
actions. Here we demonstrate this with t@ver the
toy with the box action. This is illustrated briefly in
Figure 2C and 2D. Figure 2C illustrates the humagr

Figure 3: Above - Experimental platform Jido. Taation of taking the box showmg the aCtlon to the rObOt'. Flgure. 2D il . the
and putting it on the red-mat (cover X with Y) theds learned on robot now performing the recognized action. Fueltadl of

iCubLyon01 was successfully executed in the Jidorenment in
Toulouse. A - B. Jido reaching for box and graspg D. Jido puts box
on red table mat.

* Kinect is a hardware product by Microsdiittp://www.xbox.com/en-
US/kinec). OpenNl.org release open source drivers for tiredt device

(http://openni.orgl.




the experiment is provided in Figure 4. A videamotor primitives that can achieve these state obsnm a
demonstrating this experiment is attached withpiduger. manner that allows the robot to learn new actioss a
perception — execution pairs, and then use thisvigdge to
perceive and imitate. (2) These actions can takeral
arguments, e.gAGENT put the OBJECT on the
RECI PI ENT, which allows for the generalization of
learned actions to entirely new contexts, with rajects
and agents. This yields the equifinal componenaaifon
where the same goal can be achieved by differeanmd3)
We use spoken language interaction and visual pgoteto
provide learning input to the system. In our lom@gm
research program, this provides that basis fornlegrto
perform cooperative shared tasks purely through
observation.

In our system actions are encoded using the effext
produce on the state of the world, the latter baibgtracted
in terms of unspecific quantities like relative pion and
orientation of objects and their visibility. Therpeular type
of encoding we adopt for actions is therefore catghy
independent of the robot platforms, and can theeefoe
transferred between robots with different emboditsieor
perceptual systems. In previous work we showed immbor
skills could be transferred between robots; thijsgpaxtends
Figure 4: Experiment 5. Imitation. A. Calibratiohhand recognition with this work to action recognition and mirr?””g- L.
Kinect. B-D. Human covers toy with box. E. Humapasitions objects. F. Our approach to action representation is consisetht
Robot grasps box. G-1. Robot covers toy with bampleting the imitation. and inspired by the 'teleological framework' [431,] 4hat

represents actions by relating three relevant aspdéceality
(action, goal-state, and situational constraintspugh the
inferential ‘principle of rational action’, whiclssumes that:
VI. DISCUSSION (a) the basic function of actions is to bring abfuttire goal

Many of the mirroring skills demonstrated in theStates; and that (b) agents will always perform minest
literature [40, 41] use the perceived motor stdtthe agent €fficient means action available to them within the
(Le. its kinematic evolution over the action) tootty COnstraints of the given situation. This approash
recognize and execute actions. This has been cechibiith  COMplimentary to existing approaches that take'theans”
goal-based representations [10]. Our system iechas the (€-9; aspects of demonstrated trajectories) intwurt [29,
fact that each action can be recognized by itsgpeual 36, 45]. Future research should consider how tobioe
consequences in changes in the world state (objatés) these approaches.
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