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Abstract 

The application of the concentration ratio (CR) to predict radionuclide activity concentrations 

in wildlife from those in soil or water has become the widely accepted approach for 

environmental assessments. Recently both the ICRP and IAEA have produced compilations 

of CR values for application in environmental assessment. However, the CR approach has 

many limitations most notably that transfer of most radionuclides is largely determined by 

site-specific factors (e.g. water or soil chemistry). Furthermore, there are few, if any, values 

for many radionuclide-organism combinations.  In this paper we propose an alternative 

approach and, as an example, demonstrate and test this for caesium and freshwater fish. 

Using a Residual Maximum Likelihood (REML) mixed-model regression we analysed a 

dataset comprising 597 entries for 53 freshwater fish species from 67 sites. The REML 

analysis generated a mean value for each species on a common scale after REML adjustment 

taking account of the effect of the inter-site variation. Using an independent dataset, we 

subsequently test the hypothesis that the REML model outputs can be used to predict 

radionuclide, in this case radiocaesium, activity concentrations in unknown species from the 

results of a species which has been sampled at a specific site.  The outputs of the REML 

analysis accurately predicted 
137

Cs activity concentrations in different species of fish from 27 

Finnish lakes; these data had not been used in our initial analyses.  We recommend that this 

alternative approach be further investigated for other radionuclides and ecosystems. 
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1. Introduction 

Over recent years a number of approaches and associated tools have been developed to assess 

the exposure of wildlife to ionising radiation (e.g. Copplestone et al., 2001; USDOE, 2002; 

Brown et al., 2008; ICRP, 2008; ICRP, 2009; Beresford et al., 2008a). These tools use 

models to predict radionuclide activity concentrations in wildlife to enable internal absorbed 

dose rates to be estimated. Most commonly this is achieved by using a simple concentration 

ratio (CRwo-media) which relates the whole organism activity concentration to the activity 

concentration in the appropriate medium for a given environment (e.g. soil or air for the 

terrestrial environment, water for aquatic environments) (Beresford et al., 2008a).  

Given the large number of organisms and radionuclides that may need to be considered to 

allow assessment of the many source terms and different environments, it is perhaps not 

surprising that there are many cases where empirical data to derive CRwo-media are lacking. 

Where this is the case a variety of extrapolation approaches have been used to enable the 

estimation of whole organism activity concentrations (Copplestone et al., 2003; Beresford et 

al., 2008b; Higley et al., 2003; ICRP, 2009). Although recent attempts to collate CR values 

for wildlife have led to improved databases, there are still many gaps in our knowledge 

(Howard et al., 2013; Copplestone et al., in-press; ICRP 2009). Consequently, there is still a 

need to develop robust extrapolation approaches most especially: (i) to enable initial 

screening tier assessments for which site-specific data are not available (Brown et al., in-

press); (ii) for protected species for which it may  be impossible to acquire sufficient data 

(e.g. Copplestone et al., 2003); and (iii) for the International Commission on Radiological 

Protection‟s Reference Animals and Plants (RAPs) which are defined specifically at the 

taxonomic family level but for which there are relatively few specific data  (ICRP, 2009; 

Copplestone et al., in-press).  

Soil-to-plant transfer of elements of radiological interest has been related to plant 

evolutionary history, or phylogeny, for Cs (Broadley et al., 1999; Willey et al., 2005), Sr 

(Willey and Fawcett, 2005a), Ru (Willey and Fawcett, 2006), Cl (Willey and Fawcett, 

2005b), Co (Willey and Wilkins, 2008) and U (Willey, 2010). Such phylogenetic 

relationships present a potential approach to enable predictions of transfer, with some 

scientific justification, for taxonomic groups for which there are no data either at the generic 

or site-specific level (Willey, 2010).  The potential to derive phylogenetic relationships for 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Page 3 of 17 
 

organisms other than plants has also been demonstrated by Jeffree et al. (2010; in-press) who 

suggested that the transfer of a number of radionuclides to marine teleost and chondrichthyan 

fishes and the amphioxus (fish like chordate) species Branchiostoma lanceolatumis is 

influenced by phylogeny. However, the work of Jeffree et al. was based upon the results of 

laboratory studies. Whilst this usefully removes the influences of many confounding factors it 

is not directly applicable to environmental conditions as foodchain transfer was excluded.  

The objective of the work described in this paper was to explore if phylogeny could be used 

to explain variation in the transfer of radiocaesium to freshwater fish species based on field 

observations analysed using Residual Maximum Likelihood (REML) mixed-model 

regression (Willey, 2010) (see section 2.2). 

2. Materials and Methods 

2.1 Data sources  

The primary source of data for the analyses was the database on radionuclide transfer to 

freshwater organisms as described by Yankovich et al., (in-press) (see also Copplestone et al., 

in-press). This contains concentration ratios relating the fresh weight (FW) whole organism 

activity concentration to the activity concentration in water. Where: 

)l (Bq  water (filtered)in ion concentratActivity  

FW) kg (Bq organism in wholeion concentratActivity 
  CR

1-

-1

water-wo 

 

This database contains 535 CRwo-water  entries describing the transfer of caesium to freshwater 

fish; some entries are mean values and other single data points. The data set includes CRwo-

water   based on both radiocaesium and stable caesium values. The CRwo-water values are 

categorised by species, feeding strategy (benthic, predatory or forage) and freshwater 

ecosystems type („lake‟ or „flowing water‟).  Some of these data were excluded from this 

analysis as no species information was recorded (e.g. the source reference specified 

„freshwater fish‟ only).  For each study site, the REML analysis (see section 2.2) requires that 

data are available for more than one species and that at least one of these species must occur 

at other sites. Excluding data which did not meet these criteria left a total of 248 entries. As 

we were using the REML model it was possible to supplement the CRwo-water  values with data 

from studies reporting Cs concentrations in fish; these additional data had not been used by 

Yankovich et al. (in press) as corresponding water concentrations were not available and 

hence CRwo-water  values could not be calculated. Concentration data had to adhere to the same 

requirements as the CRwo-water   values to be included in this analysis. An additional 349 data 
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entries reporting activity concentrations which met these criteria were identified (Copeland 

and Ayers 1972; Copeland et al., 1973; Smith et al., 2003 Andersson pers. comm.
1
). In total 

597 entries were available for 53 freshwater fish species from 67 sites; note whilst in most 

instances sites were identified in the source references, in a few cases it was necessary to 

assume that all the data in a given reference came from one site (these represented <10 % of 

the total dataset).  Table 1 presents a summary of the available data; data were also available 

for one species in the order Cyprinodontiformes but could not be used as this species 

occurred at only one site within the database and data for other species were not available for 

this site.  

The taxonomy of each species for which data were available was determined with reference 

to Nelson (2006) and Froese and Pauly (2012). The 53 species for which there were data all 

belonged to the class Actinopterygii (ray-finned fishes) with 10 orders, 14 families and 33 

genera being represented in the dataset (Table 1).  Prior to analyses, orders, families and 

genera were numerically coded based on the phylogenetic tree presented by Nelson (2006) 

(Figure 1) with approximate timescales for the evolutionary divergence for each order being 

identified from http://www.timetree.net. The „oldest‟ order was defined as „1‟ and the most 

recent as „10‟ (data being available for a total of ten orders) (Figure 1). In some cases groups 

of orders diverged at the same time (e.g. Osmeriformes, Salmoniformes and Esociformes) in 

which case the order numbering was simply from left to right on Figure 1 and does not reflect 

differences in evolutionary age.  To put some context to the order numbers, the clade 

containing Lepisosteiformes and Amiiformes diverged from the other orders considered here 

>300 million years ago whereas the clade containing Perciformes diverged from that 

containing Cyprinodontiformes around 100 millon years ago (see Figure 1). Each species was 

given a „taxon number‟ starting with species in the oldest orders, so for the available dataset 

Lepisosteus osseus was defined as taxon 1 (see Table 1).  

2.2 Data analyses 

The Residual Maximum Likelihood (REML) fitting of a mixed-model regression as 

described by Willey (2010) and originally developed by Broadley et al. (1999;, 2001) was 

used to analyse the data for any phylogenetic influence on Cs transfer. This technique enables 

the collation of data from different sources and the prediction of values that might be gained 

                                                           
1
 Swedish Radiation Safety Authority see 

http://www.stralsakerhetsmyndigheten.se/Yrkesverksam/Miljoovervakning/Sokbara-miljodata/ for 
information on monitoring programme from which data obtained. 

http://www.timetree.net/
http://www.stralsakerhetsmyndigheten.se/Yrkesverksam/Miljoovervakning/Sokbara-miljodata/
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if they were all generated under an average set of conditions. The output consists of a mean 

value for each species on a common scale after REML adjustment (the fixed factor) taking 

account of the effect of the random factor (i.e. inter-site variation). This provides a method 

for statistically accounting for as much of the effect of site as possible within the collated 

data. The mean value output for each species provides a relative scaling value which can 

subsequently be used to infer CRwo-water values, or concentrations, from a known value for a 

given species or a group mean (Willey, 2010) (or indeed site specific activity concentrations 

if data are available for one species (see section 3.3 below)). 

The REML procedure fits the model such that values for each species are made as nearly 

identical as possible across the studies. Consequently, we were able to include both CRwo-water 

values from Yankovich et al. (in-press) and concentration data where the crietia specified 

within section 2.1 were met. Here we are making the assumption that  the relative difference 

between Cs concentrations between species at a site will be the same as the relative 

difference between Cs CRwo-water values at a site. The REML procedure minimises, as far as 

possible, variation due to factors such as water chemistry or study methodology (e.g. CRwo-

water values may in some references be related to unfiltered water) by treating the „site‟ as a 

random factor.  

The REML analysis and associated analysis of variance was conducted on log-transformed 

data by adapting the Genstat (http://www.vsni.co.uk) code as presented in Willey (2010) (see 

Appendix 1 which presents the Genstat code for the overall REML analysis and hierarchical 

ANOVA). In addition to outputting REML-adjusted means by species (i.e. using the Genstat 

routine as presented in Appendix 1), REML-adjusted means were also estimated at the level 

of order, family and genus.  To determine significant differences between specific taxonomic 

groupings the standard error of difference was estimated in a pair wise manner for all REML-

adjusted means. The t-statistic was then calculated as the ratio of the difference between 

mean pairs and the associated standard error of difference. All other analyses were conducted 

using the General Linear Model option from the Minitab statistical package 

(http://www.minitab.com) or linear regression from Microsoft Excel.  

 

3. Results and discussion 

3.1 REML analysis  

http://www.vsni.co.uk/
http://www.minitab.com/
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When all data were considered at the species level, the REML variance component analysis 

gave a significant (p<0.001) Wald statistic of 116 with significant variation in REML 

estimated mean values being explained by hierarchical ANOVA at the order level (ANOVA; 

p<0.001) but little additional variation explained by the effects of family within order or 

genus within family.  

The Wald statistic for the analysis at the levels of order, family and genus were 51 (p<0.001), 

54 (p<0.001) and 107 (p<0.001) respectively, also indicating significant data fits (Thompson 

and Welham 2001.  Significant variation in REML estimated mean values was, however, 

explained by hierarchical ANOVA at the order level (ANOVA; p<0.001) with little 

additional variation explained by the effects of family within order or genus within family. 

REML-adjusted mean values are presented in Table 2 for the four different taxonomic levels 

considered. For each taxonomic level these values should be regarded as relative numbers 

and not actual estimates of CRwo-water  (see 3.3 for examples of application).  

From the estimated t-statistics Perciformes had a significantly higher REML-adjusted mean 

value than Anguilliformes, Clupeiformes, Osmeriformes, Salmoniformes and Cypriniformes 

(p<0.05). Esociformes also had a significantly higher adjusted mean value than 

Anguilliformes, Clupeiformes, Salmoniformes and Cypriniformes (p<0.05). Anguilliformes 

had a significantly lower (p<0.05) adjusted mean than all other orders for which comparisons 

were justified. Lepisosteiformes, Arniiformes and Siluriformes were not considered in 

statistical tests as they were present at three or fewer sites only. Significant differences, when 

tested at more refined taxonomic levels, were generally in agreement with those observed at 

the order level. For instance at the level of family Anguillidae had a significantly lower 

REML-adjusted mean than Osmeridae, Salmonidae, Esocidae, Centrarchidae, Moronidae, 

Clupeidae, Cypinidae and Percidae (p<0.05). Similarly, both Escocidae and Percidae had a 

significantly higher REML-adjusted means than Salmonidae, Clupeidae and Cypinidae 

(p<0.05). Comparatively few of the potential comparison at genus and species level could be 

shown to be significant due to low data availability for some species. Where significant 

differences were observed (p<0.05), these generally involved comparisons which included 

Anguilla, Esox, Perca or Sander species. 

The results of these analyses, therefore, demonstrate differences in Cs transfer to freshwater 

fish based upon phylogenetically derived taxonomic groupings. Does this then mean that we 

have demonstrated an evolutionary, or phylogenetic, relationship for the Cs transfer to 

different freshwater species? On the basis of the data included in our analyses presented here 
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we cannot establish this. For instance, evolutionarily Lepisosteiformes are most closely 

related to Amiiformes yet the REML-adjusted means for the two orders differ by a factor of 

>2 which is more than the difference between Lepisosteiformes and Perciformes, the most 

distantly related orders (REML-adjusted means being within c. 20% of each other). Similarly, 

whilst the REML-adjusted means for Salmoniformes (560) and Osmeriformes (550) are 

similar they are considerably lower than that for the order Esociformes (810) which is in the 

same clade. Our inability to conclude a „phylogenetic effect‟ on Cs transfer to freshwater fish 

is likely due, in part, to the relatively few species and taxonomic groups for which we had 

data. Whilst we had a relatively large dataset to consider, data were only available for 53 of 

the total 11952 freshwater species (Nelson, 2006), representing only 10 orders and one class.  

Fish within a given taxa are likely to share many characteristics such as feeding strategy.  The 

CRwo-water data presented by Yankovich et al. (in-press) are categorised by feeding type: 

piscivorous (feeding primarily on smaller fish but also amphibians, mammals and birds), 

forage (feeding on primary producers and invertebrates and zooplankton) feeding, or benthic 

(feeding on benthic-dwelling organisms) feeding. When analysed by feeding group the Cs 

CRwo-water value for piscivorous fish is significantly higher (p<0.05) than those for both 

benthic and forage feeding fish (Figure 2). This is in agreement with the findings of a number 

of previous authors who have reported higher  Cs concentrations in piscivorous, or predatory, 

fish compared to fish feeding on benthos, invertebrates and primary producers (e.g. Kryshev 

1995, Kryshev et al., 1993; Rowan et al., 1998; Rowan and Rasmussen, 1994; Saxén and Ilus, 

2008; Smith et al., 2000). We should acknowledge that the data from some of these papers 

were included within our analyses, although they comprise a relatively small proportion of 

the total data available to us via the database described by Yankovich et al. (in-press).  

 

3.2 Effect of other variables on CRwo-water  

This paper represents the first analysis, for any radionuclide, of the CRwo-water dataset 

presented by Yankovich et al. (in-press). In addition to categorising data by species and 

feeding group, data in the underlying database are also categorised as coming from either 

„flowing‟ (i.e. rivers and streams) or „lake‟ (i.e. lakes, reservoirs and ponds) freshwater 

ecosystems. There is a significant difference between the mean CRwo-water values estimated 

for the two ecosystem types with values from lakes being higher than those for flowing 

waters (see Figure 2). Figure 2 also presents a comparison of CRwo-water values for freshwater 
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fish derived from measurements of 
137

Cs (n=506) compared to those derived from stable Cs 

measurements (n=214). The mean stable Cs CRwo-water value is significantly higher than that 

derived from 
137

Cs data (p<0.05). Although this may initially be interpreted as a need to 

question the increasing usage of stable element data to provide CR values for radiological 

assessments (Beresford 2010, Howard et al., 2013, Copplestone et al., in-press, ICRP, 2009) 

further consideration of the underlying database is required. All of the stable Cs data are 

derived from North America (Yankovich, 2010; Rowan and Rasmussen, 1994; Vanderploeg 

et al., 1975), with the majority being from Canada (n=197). Whereas the majority of 
137

Cs 

data originated from studies in Europe with observations from Russian language publications 

(see Fesenko et al., 2010) contributing c. 45% of the 
137

Cs CRwo-water values. Furthermore, and 

likely of more importance than data source, piscivorous species (171 of 214 values) 

dominated the stable Cs data, which tend to have comparatively high CRwo-water values 

(Figure 2); c. 50% of the CRwo-water values for 
137

Cs were for forage and benthic feeding 

species. Rowan (2013), observed that 
137

Cs CRwo-water values in piscivorous fish exposed to 

repeated short releases into a river were higher than those for 
133

Cs determined in the same 

fish. Further consideration of the application of stable element data to predict radioisotope 

transfer in wildlife assessment models can be found in Wood et al. (submitted). 

We should also acknowledge that although CRwo-water  is defined on the basis of filtered water 

activity concentrations, in some instances, source references are unclear as to if water has 

been filtered or not. This could contribute to the observed uncertainty in CRwo-water  values, 

however, as noted above the effect of methodological differences on CRwo-water  should be 

minimised by the application of REML analyses.  

Typically CRwo-water values for freshwater fish and other aquatic organisms vary over orders 

of magnitude, as do CRwo-media values for organisms in other ecosystem types. This is 

demonstrated for freshwater fish in Table 3 which presents a summary of Cs CRwo-water values 

from the compilation of Yankovich et al. (in-press) as will be used in a forthcoming IAEA 

handbook of transfer parameters for wildlife (see Howard et al., 2013). In large part this 

variability is due to site specific factors which influence radionuclide transfer. In the case of 

Cs and freshwater fish a key site specific factor is the K concentration in water (e.g. Smith et 

al. (2000) demonstrate approximately two-orders of magnitude variation in CRwo-water 

explained by water K
 
concentration) with water pH and Ca concentration also being 

suggested to influence Cs transfer (Smith et al., 2002). Consequently, there is often large 

variation between the outputs of models using CRwo values to predict activity concentrations 
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in wildlife (Beresford et al., 2008c; Yankovich et al., 2010; Johansen et al., 2012) and the 

approach is open to criticism as being too simplistic (ICRP 2009). However, pragmatically 

the CRwo approach is easy to apply and has the most comprehensive datasets available, and 

hence it continues to be recommended in international compilations (Howard et al., 2013; 

ICRP, 2009). The REML-adjusted means presented in Table 2 potentially provide a more 

refined approach. By taking into account inter-site variation, they in effect provide a 

mechanism of accounting for site specific variables such as, the K concentrations in water in 

the case of Cs transfer to fish being considered here. Comparison of Tables 2 and 3 suggests 

that the variation in the transfer of Cs to fishes between studies/sites (two to three orders of 

magnitude) is considerably greater than the likely variation between taxonomic groups at a 

given site (circa one order of magnitude or less). This further demonstrates the crude nature 

of generic CR values if trying to make site specific predictions. 

 

3.3Testing the REML outputs 

We propose the hypothesis that the REML model outputs can be used to predict the 

radionuclide, in this case radiocaesium, activity concentrations in unknown species from the 

results of a species which has been sampled at a specific site. To test this hypothesis we 

require data which had not been included in the already comprehensive compilation needed 

to conduct the analysis described above. A large monitoring programme of fish from 590 

Finnish lakes has been conducted since deposition from the 1986 Chernobyl accident and 

data from this programme have recently been made available on request via the EURATOM 

network of excellence in radioecology (www.star-radioecology.org). These data were not 

used within the analysis we have conducted above and so provide an opportunity to 

independently test our hypothesis. The monitoring programme is in part described by Saxén 

and Koskelainen (2005), Saxén (2007), Saxén and Ilus (2008), Vetikko and Saxén (2010), 

with a meta data record available on-line (STUK, 2012). 

We have selected data from 1988, which were collected from 27 Finnish lakes for which 

137
Cs activity concentrations were available for four or more fish species. In total data were 

available for 11 fish species: A. brama, E. lucius, P. fluviatilis, R. rutilus, S. trutta, S. 

lucioperca, Coregonus albula, Coregonus lavaretus, Blicca bjoerkna, Leuciscus idus, 

Abramis ballerus and Lota lota. As P. fluviatilis was present at all 27 sites and was also well 

represented within the dataset used for the REML analysis, we selected this as the species 

http://www.star-radioecology.org/
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from which to calculate activity concentrations for the other species which were treated as 

unknowns. To calculate the 
137

Cs activity concentrations, the ratios of the REML-adjusted 

mean (Table 2) for each unknown species to that of P. fluviatilis was estimated (e.g. for R. 

rutilus the ratio was 0.48). For each lake the 
137

Cs activity concentration in different species 

were then estimated as the product of this ratio and the geometric mean 
137

Cs activity 

concentration in P. fluviatilis at that site.  This approach was possible for A. brama, E. lucius, 

R. rutilus, S. trutta and S. lucioperca all of which were in the dataset used for the REML 

analysis. Although other Coregonus spp. were present within our initial dataset, the two 

species sampled in Finnish lakes were not. Therefore, the ratio of the REML-adjusted mean 

for the genus Coregonus to that for Perca was used to estimate 
137

Cs activity concentrations 

in both species; a similar genus based approach was used for A. ballerus. No data for the 

genus Blicca or Leuciscus were available for our REML analysis. Therefore, as both species 

are Cypinidae the ratio of the REML-adjusted mean for this family to that of  Percidae was 

estimated and used to predict 
137

Cs activity concentrations in both  B. bjoerkna and L. idus.  

No predictions could be made for L. lota as it is a Gadiforme and no representatives of this 

order were present in the database used to populate the REML analysis (values for L. lota are 

within the CRwo-water dataset described by Yankovich et al. (in-press) but they did not meet the 

selection criteria required for the REML analysis). In total this allowed predictions in 100 

fish samples across the 27 lakes.  

A comparison of predicted 
137

Cs activity concentrations with measured values is presented in 

Figure 3. There was relatively good agreement between predicted and measured values with a 

linear regression fit to all 100 data points yielding an R
2
 of 0.83 (p<0.001) and a slope 

(±standard error) of 0.98±0.04 (p<0.001).  The intercept was not significantly different to 

zero for this or any of the subsequent regressions discussed and hence a zero intercept was 

used. Linear regressions were also fitted individually for A. brama, E. lucius, and R. rutilus, 

with these three Salmonidae being considered together given there were few observations for 

them. All regressions yielded R
2
 values close to 0.8 (0.76 – 0.84) (p<0.001). Slopes 

(±standard error) were: A. brama (0.96±0.12), E. lucius (0.81±0.06), R. rutilus (1.32±0.12), S. 

lucioperca (0.69±0.07) and Salmonidae species (0.87±0.08) thus suggesting a tendency to 

under-predict for some species (notably E. lucius and S. lucioperca) and over-predict for R. 

rutilus. 

The results of this comparison therefore look promising. There is obviously some scope for 

the results obtained to be influenced by the selection of P. fluviatilis as our „known‟ species. 
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For instance, E. lucius was present in the sample from 26 of the lakes if we select this as our 

known species for comparison with the results using P. fluviatilis then we can make 

predictions for 96 fish samples. Whilst all predicted values were within a factor of c. 5 of the 

measured data there was a tendency towards over prediction (Figure 4).   

For comparison with our results, if the appropriate feeding group geometric mean CRwo-water 

values from Yankovich et al. (in-press) are used to predict the 
137

Cs activity concentrations in 

fish from the Finnish lakes there is a general under-prediction with a regression of predicted 

to measured activity concentrations yielding a slope of only 0.31. 

The approach tested here should account for site specific factors, and as demonstrated 

appears to work relatively well. However, we should acknowledge some limitations in the 

available data which may influence the resultant REML adjusted means. As noted above, 

there is geographical bias in available data and, therefore, site-specific variability may not be 

adequately compensated for in some species. For instance, whilst A. anguilla data are 

available from 5 sites (Table 1) these were all within Sweden and hence the sites may be 

relatively similar. Similarly, limitations in sample size for the Finnish lakes dataset, which 

ranged from 1 to >400 fish, may have impacted upon some comparisons of predicted and 

observed activity concentrations.  

Given the variation in biological half-lives across different organisms, the REML approach is 

unlikely to be applicable in situations where activity concentrations in the environment are 

rapidly changing. By 1988 water activity concentrations in Finnish lakes as a consequence of 

deposition from the Chernobyl accident were not changing rapidly; Saxén (2007) reports 

ecological half-lives for 
137

Cs in Finnish lake waters of circa 1 to 5 years at this time. 

However, we acknowledge that a lack of equilibrium may have influenced the comparison of 

our predicted activity concentrations in fish with measured values. For example, increases in 

137
Cs activity concentrations have been observed with increasing body mass for some species 

of predatory fish, potentially as a consequence of changing diets as fish age (Smith and 

Beresford, 2005).  

4. Conclusions 

Whilst we have demonstrated differences between the Cs transfer to different taxa of 

freshwater fish, based upon the data available to us (all species originating from just 10 

orders in one class) we cannot describe detailed phylogenetic relationships. Earlier analyses 

which have suggested phylogentic relationships for the transfer of radionuclides to plants (see 
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Willey, 2010) and marine fish (Jeffree et al., 2010; in-press) have included species 

encompassing much wider evolutionary time scales (e.g. >500 million years in the case of 

marine fish (Jeffree et al., 2010; in-press)).  

The commonly used CR approach to estimating the radionuclide activity concentrations in 

wildlife is open to criticism, as CR values can be highly variable, largely due to site-specific 

factors. The analyses of available data using the REML analysis, as demonstrated here, 

should compensate for inter-site variation, assuming sufficient data are available for the 

analysis. For freshwater fish the outputs of the REML analysis predicted 
137

Cs activity 

concentrations in an independent dataset well. Caesium was selected for this paper as an 

example and because there was a relatively large amount of data available. We recommend 

that this approach of producing relative values be further investigated and developed for other 

radionuclides and across a wider range of organisms. A disadvantage of the approach is that it 

requires relatively large datasets which much meet specific criteria. However, recent data 

compilations (Howard et al., 2013; Yankovich et al., in-press; Copplestone et al., in-press) 

should enable similar analysis to be conducted for a number of elements for terrestrial, 

marine and freshwater species. The ICRP (2009) suggested identifying a series of terrestrial, 

freshwater and marine sites from which samples of their Reference Animals and Plants 

(RAPs) could be sampled and analysed to serve as „points of reference‟. Such studies have 

been initiated and results are starting to be published (Barnett et al., 2013). However, such 

data are highly site specific, potentially limiting their wider value.  However, applying the 

approach as conducted in this paper to data such as that presented by Barnett et al. (2013) to 

derive relative values for different organisms should provide a more generic set of „reference 

data‟.  In taking the REML approach forward if will be beneficial to target studies to provide 

data that will fill gaps in the input data reducing uncertainties and biases in the REML 

outputs. 
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Table 1. Summary of data available for REML analysis to investigate any phylogentic 

influence on the transfer of Cs to freshwater fish. 

Order Family Genus Species 

Sites 

species 

present 

Taxon 

number 

Lepisosteiforme

s 

Lepisosteida

e 

Lepisosteus osseus 1 1 

Amiiformes Amiidae Amia calva 1 2 

Anguilliformes Anguillidae Anguilla  anguilla 5 3 

Clupeiformes Clupeidae Dorosoma cepedianum 1 4 

Clupeiformes Clupeidae Alosa pseudoharengus 10 5 

Osmeriformes Osmeridae Osmerus mordax 10 6 

Salmoniformes Salmonidae Coregonus clupeaformis 2 7 

Salmoniformes Salmonidae Coregonus hoyi 2 8 

Salmoniformes Salmonidae Coregonus artedi 2 9 

Salmoniformes Salmonidae Coregonus spp. 6 10 

Salmoniformes Salmonidae Oncorhynchus kisutch 5 11 

Salmoniformes Salmonidae Oncorhynchus mykiss 4 12 

Salmoniformes Salmonidae Oncorhynchus tschawytscha 3 13 

Salmoniformes Salmonidae Salmo trutta 11 14 

Salmoniformes Salmonidae Salvelinus alpinus 1 15 

Salmoniformes Salmonidae Salvelinus fontinalis x namaycush 1 16 

Salmoniformes Salmonidae Salvelinus namaycush 8 17 

Salmoniformes Salmonidae Salvelinus siscowet 1 18 

Salmoniformes Salmonidae Stenodus leucichthys 1 19 

Esociformes Esocidae Esox lucius 38 20 

Esociformes Esocidae Esox niger 1 21 

Cypriniformes Catostomida

e 

Catostomus catostomus 2 22 

Cypriniformes Catostomida

e 

Catostomus commersoni 1 23 

Cypriniformes Catostomida

e 

Moxostoma aureolum 1 24 

Cypriniformes Cyprinidae Abramis brama 7 25 

Cypriniformes Cyprinidae Carassius auratus 3 26 

Cypriniformes Cyprinidae Carassius carassius 2 27 

Cypriniformes Cyprinidae Cyprinus carpio 3 28 

Cypriniformes Cyprinidae Notemigonus crysoleucas 1 29 

Cypriniformes Cyprinidae Rutilus rutilus 5 30 

Cypriniformes Cyprinidae Scardinius erythrophthalmus 3 31 

Cypriniformes Cyprinidae Notropis hudsonius 7 32 

Cypriniformes Cyprinidae Gobio gobio 1 33 

Cypriniformes Cyprinidae Tinca tinca 7 34 

Siluriformes Ictaluridae Ictalurus punctatus 2 35 

Siluriformes Ictaluridae Ictalurus spp. 1 36 
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Perciformes Centrarchida

e 

Ambloplites rupestris 2 37 

Perciformes Centrarchida

e 

Lepomis gulosus 1 38 

Perciformes Centrarchida

e 

Lepomis macrochirus 3 39 

Perciformes Centrarchida

e 

Lepomis gibbosus 1 40 

Perciformes Centrarchida

e 

Lepomis microlophus 1 41 

Perciformes Centrarchida

e 

Micropterus dolomieu 6 42 

Perciformes Centrarchida

e 

Micropterus salmoides 5 43 

Perciformes Centrarchida

e 

Pomoxis annularis 1 44 

Perciformes Centrarchida

e 

Pomoxis nigromaculatus 1 45 

Perciformes Moronidae Morone chrysops 4 46 

Perciformes Percidae Perca flavescens 8 47 

Perciformes Percidae Perca fluviatilis 28 48 

Perciformes Percidae Sander lucioperca 3 49 

Perciformes Percidae Sander canadensis 1 50 

Perciformes Percidae Sander vitreus 9 51 

Perciformes Percidae Gymnocephalus  cernuus 1 52 

Perciformes Sciaenidae Aplodintus grunniens 1 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. REML-adjusted means for different taxonomic groups. Note these are relative 

values and not absolute values of CRwo-water. 

Order  Family  Genus  Species  

Lepisosteiformes 6.8 Lepisosteidae 6.9 Lepisosteus 7.6 osseus 7.4 

Amiiformes 3.2 Amiidae 2.9 Amia 3.6 calva 3.0 

Anguilliformes 1.8 Anguillidae 1.9 Anguilla 1.9 anguilla 2.1 

Clupeiformes 5.0 Clupeidae 4.9 
Dorosoma 4.7 cepedianum 4.3 

Alosa 4.0 pseudoharengus 3.7 

Osmeriformes 5.6 Osmeridae 5.5 Osmerus 4.5 mordax 4.2 

Salmoniformes 5.5 Salmonidae* 5.5 

Coregonus 3.8 

clupeaformis 3.9 

hoyi 5.0 

artedi 3.5 

spp. 3.2 

Oncorhynchus 8.1 

kisutch 9.3 

mykiss 6.5 

tschawytscha 8.9 

Salmo 6.0 trutta 5.8 

Salvelinus 7.8 

alpinus 7.9 

fontinalis x 

namaycush 
5.6 

namaycush 8.0 

siscowet 10.8 

Stenodus 5.4 leucichthys 5.6 

Esociformes 8.1 Esocidae 8.3 Esox 8.5 
lucius 8.8 

niger 3.0 

Cypriniformes 4.6 

Catostomidae 5.3 
Catostomus 5.0 

catostomus 4.5 

commersoni 4.4 

Moxostoma 4.7 aureolum 4.2 

Cyprinidae 
4.5 

Abramis 4.5 brama 4.8 

Carassius 4.4 
auratus 4.3 

carassius 4.9 

Cyprinus 
1.2 carpio 1.2 

6.2 crysoleucas 5.7 

Rutilus 4.8 rutilus 5.0 

Scardinius 4.4 erythrophthaimus 4.7 

Notropis 3.9 hudsonius 3.6 

Gobio 6.2 gobio 6.5 

 Tinca  3.1  tinca 3.2 

Siluriformes 7.6 Ictaluridae 7.6 Ictalurus 6.2 
punctatus 5.7 

spp. 5.1 

Perciformes 8.6 Centrarchidae 7.0 
Ambloplites 14.2 rupestris 13.8 

Lepomis 4.1 gulosus 5.3 



Order  Family  Genus  Species  

macrochirus 3.7 

gibbosus 3.7 

microlophus 2.9 

Micropterus 9.6 
dolomieui 8.7 

salmoides 8.5 

Pomoxis 8.3 
annularis 7.3 

nigromaculatus 9.3 

Moronidae 7.5 Morone 9.1 chrysops 8.8 

Percidae 9.0 

Perca 9.4 
flavescens 7.3 

fluviatilis 10.5 

Sander 10.0 

lucioperca 7.8 

canadensis 12.3 

vitreus 11.8 

Gymnocephalus  1.9 cernuus 2.0 

Sciaenidae 15.9 Aplodinotus 11.2 grunniens 10.3 

*The ICRP Reference Trout (the freshwaster fish RAP) is defined as the Salmonidae family. 

 

 

  



Table 3. Summary of Cs CRwo-water values for fish from Yankovich et al. (in-press). 

Feeding 

group 

Arithmetic mean 

±SD 

Geometric 

mean(GSD) 

Minimum Maximum N 

Benthic 

feeding 

(1.0±2.0)E+3 4.6E+2(3.5) 1.8E+1 2.0E+4 156 

Forage 

feeding 

(9.2±16)E+2 4.7E+2(3.2) 1.7E+1 8.6E+3 125 

Piscivorous (4.5±6)E+3 2.7E+3(2.8) 1.3E+1 8.2E+4 439 

 

 



 

 

 

Figure 1. Sequence of orders within the class Actinopterygii (ray-finned fishes) adapted from Nelson (2006). Orders for which data are available 

are identified in bold; the number in parenthesis denotes that given to the order based upon evolutionary time for statistical analyses.   
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Figure 2.  Comparisons of caesium CRwo-water values for freshwater fish summarised by 

feeding strategy (top), Cs isotope (middle) and broad habitat type (bottom). Values are 

geometric mean CRwo-water values; on each chart mean values with different letters are 

significantly different (p<0.05); statistical tests were performed on log-transformed data. 

Note: (i) these figues summarise CRwo-water values from Yanovich et al., in-press and not 

REML-adjusted means; (ii) to enable analyses of these data which include multiple entries of 

summarised data we have used the approach developed by Wood et al. (submitted) this 

results in some differences to the values of Yankovich et al. (in press) as presented in Table 

3. 



 

 

 

 

 



 

 

 

 

   

Figure 3. Comparison of measured 
137

Cs activity concentrations in fish collected from 26 

Finnish lakes in 1988 with predicted activity concentrations using the outputs of the REML 

analyses and data for Perca fluviatilis (line is 1:1 relationship). ‘Other Cyprinidae’ represents 

single values for Blicca bjoerkna, Leuciscus idus and Abramis ballerus. 

 

 

 

 

  



 

 

 

Figure 4.  Comparison of measured 
137

Cs activity concentrations in fish collected from 26 

Finnish lakes in 1988 with predicted activity concentrations using the outputs of the REML 

analyses and data for Esox lucius (line is 1:1 relationship). ‘Other Cyprinidae’ represents 

single values for Blicca bjoerkna, Leuciscus idus and Abramis ballerus. 
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