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a b s t r a c t 

Background and Objective: Diabetes mellitus is a metabolic disorder characterized by hyperglycemia, 

which results from the inadequacy of the body to secrete and respond to insulin. If not properly man- 

aged or diagnosed on time, diabetes can pose a risk to vital body organs such as the eyes, kidneys, nerves, 

heart, and blood vessels and so can be life-threatening. The many years of research in computational di- 

agnosis of diabetes have pointed to machine learning to as a viable solution for the prediction of diabetes. 

However, the accuracy rate to date suggests that there is still much room for improvement. In this paper, 

we are proposing a machine learning framework for diabetes prediction and diagnosis using the PIMA 

Indian dataset and the laboratory of the Medical City Hospital (LMCH) diabetes dataset. We hypothesize 

that adopting feature selection and missing value imputation methods can scale up the performance of 

classification models in diabetes prediction and diagnosis. 

Methods: In this paper, a robust framework for building a diabetes prediction model to aid in the clini- 

cal diagnosis of diabetes is proposed. The framework includes the adoption of Spearman correlation and 

polynomial regression for feature selection and missing value imputation, respectively, from a perspective 

that strengthens their performances. Further, different supervised machine learning models, the random 

forest (RF) model, support vector machine (SVM) model, and our designed twice-growth deep neural 

network (2GDNN) model are proposed for classification. The models are optimized by tuning the hyper- 

parameters of the models using grid search and repeated stratified k-fold cross-validation and evaluated 

for their ability to scale to the prediction problem. 

Results: Through experiments on the PIMA Indian and LMCH diabetes datasets, precision, sensitivity, F1- 

score, train-accuracy, and test-accuracy scores of 97.34%, 97.24%, 97.26%, 99.01%, 97.25 and 97.28%, 97.33%, 

97.27%, 99.57%, 97.33, are achieved with the proposed 2GDNN model, respectively. 

Conclusion: The data preprocessing approaches and the classifiers with hyperparameter optimization pro- 

posed within the machine learning framework yield a robust machine learning model that outperforms 

state-of-the-art results in diabetes mellitus prediction and diagnosis. The source code for the models of 

the proposed machine learning framework has been made publicly available. 

Crown Copyright © 2022 Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Diabetes mellitus is a metabolic disorder characterized by hy- 

erglycemia which results from the inadequacy of the body to se- 

ret and respond to insulin [1] . Usually, it presents itself in differ- 

nt ways: prediabetes - a higher than normal glycemia, overt di- 

betes: type I and type II, or gestational diabetes, resulting from 

regnancy. Diabetes has been medically proven to be linked with 

ong-term impairment of vital organs, including the eyes, kidneys, 

erves, heart, and blood vessels. More alarming is its effect on 
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regnancies – about 7% of pregnancies are affected by diabetes an- 

ually [2] , which is a dual life-threatening risk to both mother and 

er unborn child. The number of people suffering from diabetes 

as been on the rise and it has been estimated that about 48% of 

he world population will be diabetic by the year 2045 [3] . 

The clinical detection of diabetes involves a fasting plasma glu- 

ose level greater than 126 mg/dl (7.0 mmol/l) or a 2h/3h oral 

lucose tolerance test resulting in plasma glucose greater than 

00 mg/dl (11.1 mmol/l) [1] . However, the glycemic threshold lev- 

ls for detecting diabetes may vary with race. This is because dif- 

erent ethnic groups differ by their glycemic risk levels. As a re- 

ult, clinicians are posed with the a controversial issue of deter- 

ining a glycemic threshold for diagnosing diabetes irrespective 
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f the ethnic group of individuals and with an impending ques- 

ion of whether there exists a threshold that can be precise with- 

ut a series of backup tests to confirm the diagnosis [2] . To reach

 meaningful decision in a one-time clinical diagnosis is humanly 

xacting because several blood sugar test must be carried out both 

efore and after a meal. However, the diagnostic process can be 

omputationally simplified. 

In the past years, there have been numerous computational ef- 

orts, mainly around the adoption of machine learning algorithms 

n diabetes research geared towards helping clinicians make a 

uick and meaningful diagnostic decision. These are the neural 

etwork (NN) based algorithms such as the multilayered percep- 

ron (MLP), deep neural networks (DNN) [4–10] , and conventional 

achine learning models (CML) [ 6,7,11–17 ]. Also, with the growing 

evelopment of tools for diabetes testing [18] and [19] , individuals 

an engage in personalized diabetes status assessment for better 

ifestyle adjustments. 

Despite the body of research efforts in the prediction of the on- 

et of diabetes, the accuracy rate to date suggests that there is still 

uch room for improvement. This is necessitated by the fact that 

iabetes poses serious health challenges if not properly managed 

r diagnosed on time. In this paper, we propose a robust machine 

earning framework for building a diabetes prediction model to aid 

he clinical diagnosis of diabetes. The contributions of this paper 

re summarized as follows: 

1. Considering that most real-world data do not satisfy normality 

assumptions: the Spearman correlation (SC) is used for feature 

selection while polynomial regression (PR) is used for missing 

value imputation. Both methods are approached in a way that 

their functionality is best utilized for any given data. 

2. We propose a CML-based classifier and design a DNN-based 

classifier that scales to the diabetes prediction problem. We in 

turn explore their hyperparameter optimization. Then, we com- 

pare with state-of-the-art classification algorithms. 

3. We relabel the PIMA Indian dataset to accommodate predia- 

betes prediction for a comprehensive clinical diagnosis of di- 

abetes. 

The remainder of the paper is organized as follows. Section 2 

resents the literature on the state-of-the-art in diabetes predic- 

ion research and Section 3 introduces the proposed framework. 

ection 4 reports on the experiments, results, and discussion. This 

aper’s limitations and future work are presented in Section 5, and 

nally, Section 6 concludes the paper. 

. Related work 

The discussions on existing literature will be made from the 

oints of view of data preprocessing, and classification in a way 

hat highlights the contributions of this paper. However, we will 

imit our review to recently published articles because only re- 

ently has performance accuracy in diabetes research begun to im- 

rove. For a summary of the historic and current performance of 

lgorithms in diabetes research, readers should refer to [20] and 

21] , respectively. 

The family of NN-based methods has continued to show im- 

rovements in accuracy in diabetes research. In [4] , they apply 

in-max normalization and a variational autoencoder sparse au- 

oencoder to address data normalization, imbalance, and feature 

ugmentation, respectively. MLP was subsequently used for clas- 

ification to achieve a 92.31% accuracy. A further improvement in 

ccuracy can be seen in [5] , where their artificial backpropaga- 

ion scaled conjugate gradient neural network (ABP-SCGNN) was 

eported to achieve 93% accuracy without data preprocessing. An- 

ther good performance recorded with NN-based models is appar- 

nt in the work of [6] . In their work, the median value impu-
2 
ation, k-nearest neighbor (K-NN), and an iterative imputer were 

ompared for missing value imputation. Then, MLP was used for 

lassification to achieve an F1-score of 98%. Khanam and Foo 2021 

7] applied Pearson correlation, and median value imputation for 

eature selection, and missing values imputation. They further nor- 

alized the data and removed outliers using interquartile ranges. 

heir DNN based classification model with different hidden lay- 

rs achieved 88.6% accuracy. In [8] , a deep neural network (DNN) 

odel achieved an accuracy of 98.07%. Though the authors claim 

ata cleaning was applied, the method used was not mentioned in 

he work. In [9] the principal component analysis (PCA) and the 

edian value were used for feature selection and missing value 

mputation, respectively. MLP was then adopted for classification to 

chieve an accuracy of 75.7%. Also, in [10] PCA and minimum re- 

undancy, maximum relevance (mRMR) was employed for feature 

election and missing value imputation, respectively. Then, with an 

LP, they achieved a classification accuracy of 73.90% accuracy. 

Interestingly, CML-based methods show comparable perfor- 

ance accuracies to NN-based methods. In [6] after preprocess- 

ng the data, the team evaluate the performance of different clas- 

ifiers: RF, light gradient boosting machine (LGBM), linear regres- 

ion (LR), and support vector machines (SVM), for their classifi- 

ation performances. The LGBM emerged as the best model with 

6% accuracy. In [7] a classification performances of decision tree 

DT), RF, naïve Bayesian (NB), K-NN, Adaptive boosting (AB) were 

ompared, with AB achieving the best accuracy of 79.42%. In [11] , 

hey applied what they termed a step forward and backward fea- 

ure selection strategy with PCA and mean values for feature se- 

ection and missing values imputation methods, respectively. They 

hen compared the classification performances of RF and SVM, of 

hich the RF model emerged as the best with an accuracy of 

3%. Gnanadass Iswaria [12] applied the mean of each column of 

he data for addressing missing values and then trained on differ- 

nt classification models: NB, linear regression (LR), RF, AB, gradi- 

nt boosting machine (GBM), and extreme gradient boosting (XG- 

oost). The XGBoost emerged as the best model with an accu- 

acy of 77.54%. In [13] , they compared the performance of different 

lassification models: SVM, K-NN, NB, Gradient boosting (GB), and 

F. The RF ranked the highest with an accuracy of 98.48%. Hasan 

t al. [14] applied Pearson correlation and mean value imputation 

or feature selection and missing value imputation, respectively. 

ith the grid search method for hyperparameter tuning under the 

-fold cross-validation setting, they experimented on the perfor- 

ance of different classification models: extreme boosting (XB), 

B, RF, DT, and K-NN. The XB ranked the best with a 94.6% accu- 

acy. Singh and Singh [15] employed a stacked ensemble of Linear 

VM, Radial Basis function SVM, DT, and K-NN for classification and 

chieved an accuracy of 83.8%. In [16] , they achieved an accuracy 

f 87.1% with a combination of methods: NB for missing value im- 

utation, and RF classifier. Maniruzzaman et al. [17] employed the 

roup median and median imputation method for addressing miss- 

ng values and outliers and applied RF for feature selection. Then 

hey compared the performance of SVM, NB, linear discriminant 

nalysis (LDA), linear regression (LR), DT, RF, AB, gaussian process 

lassification (GPC), quadratic discriminant analysis (QDA) of which 

he RF ranked the best with a 92.26% accuracy. In [10] after pre- 

rocessing the data, the performances of DT and RF classifiers were 

ompared, of which RF ranked the best with an accuracy of 76.04%. 

hese reviews are summarized in Table 1 . 

In all, feature selection and missing value imputation data pre- 

rocessing approaches have proven to substantially to be relevant 

o classification performance in diabetes prediction. However, most 

f the methods adopted for data preprocessing have been shown 

o perform best when the distribution of the data is normal. In 

 case where the data violates normality assumptions, nonlinear 

ethods will be better suited to the problem and are expected to 
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Table 1 

Summary of literature review. 

Authors Year 

Feature Selection (FS) & 

Missing Value Imputation 

(MVI) Classification Comments 

Neural network-based methods 

Garcia-Ordas et al. [4] 2021 FS: none specified; MVI: 

removed missing values; 

MLP MLP achieved the best 

accuracy, 92.31% 

Bukhari et al. [5] 2021 FS: none specified; MVI: none 

specified 

ANN trained with ABS 

conjugate gradient 

neural network 

(ABP-CGNN) 

Achieved 93% accuracy 

Roy et al. [6] 2021 Median value, K-NN, and 

iterative imputer were used 

for missing value imputation. 

ANN ANN achieved 98% 

accuracy 

Khanam et al. [7] 2021 FS: Pearson correlation 

MVI: Median value for missing 

values imputation. 

DNN run with 

different hidden layers 

Achieved 86.26% accuracy 

with 2 hidden layers. 

Naz and Ahuja [8] 2020 Method not stated MLP and DL with 2 

hidden layers 

DL achieved best accuracy 

of 98.07% 

Alam et al. [9] 2019 FS: PCA; MVI: Median value MLP Achieved 75.7% accuracy 

Zou et al. [10] 2018 FS: PCA; MVI: redundancy and 

minimum relevance 

MLP Achieved 73.90% accuracy 

Conventional machine learning-based methods 

Roy et al. [6] 2021 Median value, K-NN, and 

iterative imputer were used 

for missing value imputation. 

LR, SVM, RF, LGBM LGBM achieved 86% 

Khanam et al. [7] 2021 FS: Pearson correlation; MVI: 

Median value for missing 

values imputation; 

DT, RF, NB, K-NN, AB Adaboost achieved 79.42% 

Sivaranjani et al. [11] 2021 FS: Step-forward + Backward 

FS + PCA; MVI: mean value 

RF, SVM RF achieved best accuracy 

of 83% 

Gnanadass [12] 2020 MVI: mean value NB, LR, RF, AB, GBM, 

XGBoost 

XGBoost achieved best 

accuracy of 77.54% 

Reddy et al. [13] 2020 FS: none specified; MVI: none 

specified 

SVM, K-NN, NB, GB, RF, 

LR 

RF achieved best accuracy 

of 98.48% 

Hasan et al. [14] 2020 FS: correlation; MVI: mean 

value 

XB, AB, RF, DT, K-NN XB achieved best accuracy 

of 94.6% 

Singh et al. [15] 2020 FS: none specified; MVI: none 

specified 

Ensemble models 

Radial basis SVM, DT, 

linear SVM, K-NN 

Achieved 83.8% accuracy 

Wang et al. [16] 2019 FS: none specified; MVI: NB 

for predictive imputation 

RF Achieved 87.1% accuracy 

Maniruzzaman et al. 

[17] 

2018 FS: RF for predictive feature 

selection; MVI: median value 

SVM, NB, LDA, LR, DT, 

RF, Adaboost, GPC, 

QDA, j48 

RF achieved best accuracy 

of 92.26% 

Zou et al. [10] 2018 FS: PCA; MVI: redundancy and 

minimum relevance 

DT, and RF RF achieved best accuracy 

of 76.04% 
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ontribute highly to the performance gains of a classifier. Hence, 

onlinear preprocessing methods and classifiers will be explored 

n this paper for data preprocessing. 

. Methodology 

Our proposed framework comprises two stages: data prepro- 

essing and classification. This is designed to address what we pre- 

ume to affect accuracy in the early diagnosis of diabetes mellitus. 

hey are: (1) not all the attributes are important features for pre- 

iction, (2) there are numerous missing values, (3) is there a clas- 

ifier that better fits the data? In Fig. 1 , the proposed framework 

s diagrammatically illustrated. In what follows, each stage will be 

iscussed in detail. Our discussions will begin with the algorithms 

hat make up each component of the framework. 

.1. Spearman correlation 

The Spearman correlation (SC) is a nonparametric estimate of 

he strength and direction of monotonic associations between two 

ariables calculated based on ranks. The SC coefficient can be cal- 
3 
ulated from the following relation [22] : 

 = 1 −
( 

6 

∑ 

d i 
2 

n 

(
n 

2 − 1 

)
) 

(1) 

here r is the sample correlation coefficient, d is the difference 

etween ranks, �d i 
2 is the sum of d squared values and n is the 

umber of samples. 

Since the SC coefficient focuses on differences in rank orders of 

ata rather than differences in means, it is appropriate for non- 

ormally distributed continuous data and for data with outliers. 

sually, the coefficients are scaled in the range [ −1, + 1] where 

 p = + 1, − 1) describes a perfect monotonic association and r = 0

escribes a lack of association. 

To evaluate the significance of the statistical test, the hypoth- 

sis test is widely used [23] to estimate the strength of the re- 

ationship in the population from which the data were sampled. 

here are two ways to approach the significance of the test: us- 

ng the correlation coefficient, or the p-value. If the value of r is 

ot between the positive and negative critical values, then the sta- 

istical test is significant, otherwise, it is not significant. For the 

-value, the decision to reject or accept the null hypothesis lies in 

he strength of the evidence of the p-value compared against the 
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Fig. 1. The proposed robust machine learning framework for diabetes prediction. 
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ignificance value. Usually, the significance value can be set to 0.05 

r 0.01 which are: statistically significant and highly statistically 

ignificant, respectively. Similarly, if p-value < = 0.05, or p-value 

 = 0.01, there is strong, or very strong evidence, respectively, to 

eject the null hypothesis in favor of the alternative. 

.2. Polynomial regression 

Polynomial regression (PR) is a special case of linear regression 

hat models a curvilinear relationship between the predictor vari- 

ble and the outcome variable. The PR suffices with a goal to fit the 

egression line to a curved set of points, that is, the non-linear pat- 

erns between the predictor variable and outcome variable when 

inearity is not satisfied. Polynomial models can approximate con- 

inuous functions with precision which makes them more power- 

ul at handling nonlinearity. In PR, a single predictor variable is 

xpressed as: 

 = β0 + β1 x + β2 x 
2 + . . . + βk x 

k + ε (2) 

The Eq. (2) is a k th-order polynomial model in one variable; 

here β0 is the bias term, β1 , β2 , ���, βk are the coefficients to be 

etermined and x the predictor variable with additional variables 

 

2 , …, x k created by raising x to an exponent. 

Table 1 Summary of literature reviewIt is always possible to fit 

 polynomial model of order n-1 perfectly to a data set of n points.

owever, this will almost certainly result in overfitting. Therefore, 

 low-order model should be preferred to a high-order model as 

ong as the model provides a “good” fit to the data. A typical low- 

rder polynomial such as the 2-order degree polynomial can be 

xpressed as: 

 = β0 + β1 x + β2 x 
2 + · · · + βp x 

p + ε (3) 

ith a 2-order degree polynomial, only one new variable is 

dded. For instance, using a given predictor vector, x , where x = 

 1 x 11 x 22 · · · x nm 

] T , a system of linear equations can be 

reated as: 

 = βx + ε (4) 
4 
Then from Eq. (4) an nth-order polynomial can be created from 

he powers of the vector x as: 

 = 

⎡ 

⎢ ⎢ ⎣ 

1 x 11 x 2 12 · · · x p 
1 m 

1 x 21 x 2 22 · · · x p 
2 m 

. . . 
. . . 

. . . · · ·
. . . 

1 x nm 

x 2 nm 

· · · x p nm 

⎤ 

⎥ ⎥ ⎦ 

(5) 

.3. Machine learning classification models 

This paper only considers nonlinear classifiers for the classifica- 

ion problem. 

.3.1. Random forest model 

Random forest is a supervised learning algorithm for building 

 predictor ensemble of decision trees, usually trained with the 

bagging” method, that grows in randomly selected subspaces of 

ata. By bagging, it is meant that multiple decision tree learning 

odels are combined for accurate and stable prediction. As pro- 

osed by Breiman [24] , each tree in the ensemble of trees outputs 

 prediction, however, only the class with the most votes is con- 

idered the model’s prediction [ 25 , 26 ]. However, the model’s pre- 

iction can take two forms: if the output is a mean value, then 

he RF solves a regression problem, while if the output is a mode 

f the classes, then the RF solves a classification problem. Essen- 

ially, RF prediction stability is formed from weakly-correlated clas- 

ifiers/regressors. 

For the RF to be capable of identifying and responding to the 

est features among a random subset of features, it has to be in- 

ensitive to noisy variables [27] and be stable in the presence of 

mall amounts of data [ 28 , 29 ]. However, the ability of the RF to be

nsensitive to noisy variables might not always be the case. There- 

ore, by ensuring the best features are fed in, a higher performance 

s more likely. 

.3.2. Support vector machines 

The SVM is a supervised machine learning algorithm [30] that 

ims to find the optimal boundary between data points in fea- 
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Fig. 2. The architecture of the proposed twice-growth deep neural network (2GDNN) model for diabetes prediction. 
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Fig. 3. Evaluation of missing value imputation methods within the proposed ML 

framework. 
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ure space. Traditionally, the SVM tries to find the best fit line, a 

yperplane, that maximizes the separation margin between two 

lasses. However, most real-world data are mostly nonlinear. Non- 

inear problems in SVM are solved by mapping n -dimensional in- 

ut space to a high dimensional feature space where the SVM can 

till operate linearly. Similarly, in a multi-classification problem, 

VM generates multiple binary classifiers to linearly separate data 

oints of pairs of classes within a high dimensional feature space. 

his is achieved using what is popularly termed the kernel trick 

30] . SVM has been popularly investigated for binary classification 

roblems in diabetes research [ 13 , 15 ], and [17] . 

.3.3. Deep neural network 

The deep neural network (DNN) of interest in this paper is a 

lass of feed-forward DNN that extracts a feature and transforms it 

sing nonlinear activation functions. DNN layers comprise the in- 

ut, hidden, and output layers. The connection between these lay- 

rs begins from the input layer with associated weights to the hid- 

en layers and then to the output layer. For any neuron in each 

ayer to pass data to the next layer, the output of that node has

o be above a specified threshold value defined by an activation 

unction. During training, the weight of a neuron is updated using 

ack-propagation [31] to minimize the error of the network to gen- 

ralize to unseen samples. The added capability of the DNNs comes 

rom the depth of the hidden layers. Depending on the problem, 

he more the depth, the better the generalizability of the network 

32] . This is especially true for image-based problems. DNNs have 

een adopted for diabetes prediction [ 7,8 ]. 

In this paper, our deep learning model is designed to be double, 

r twice in size, and is twice repeated. As such, we term it twice 

rowth deep neural network (2GDNN). In essence, the hidden lay- 

rs grow by two in size of the input and are repeated twice. Our 

GDNN architecture is described in Fig. 2 and consists of an input 

ayer, four hidden layers, and an output layer. The decision to pass 

 neuron from one layer to another is dependent on the function, 

 , acting on a neuron, x , to either pass or not pass the neuron. This

s expressed as: 

f ( x ) = ϕ 

( 

n ∑ 

i 

w i x i + b 

) 

(6) 

here x, w, b , φ, are the inputs, weights, bias, and activation func- 

ion, respectively. During learning, the network updates its w i and 

 using the backpropagation method [31] to minimize the differ- 

nce between a target output of a problem and the network’s pre- 
5 
icted output. The parameters of the 2GDNN and their descriptions 

re provided in Table 4 . 

.4. The proposed framework 

.4.1. Data 

The datasets used in this paper are the publicly available PIMA 

ndian diabetes mellitus dataset and the publicly available diabetes 

ataset from the Laboratory of Medical City Hospital (LMCH). The 

ormer consists of 768 instances: 268 patients belong to the dia- 

etic class and 500 patients belong to the non-diabetic class. The 

iabetes data is sampled from the 

Pima Indian population near Phoenix, Arizona [ 33 ]. Each pa- 

ient is described by the following attributes: pregnancies, glucose, 

lood pressure, skin thickness, insulin, body mass index (BMI), dia- 

etes pedigree function, and age. A description of the PIMA Indian 

ataset is provided in Table 2 . The latter consists of data from 10 0 0

atients of Iraqi nationals collected from LMCH [34] . In all, about 

03, 53, and 844 patients belong to the normal, prediabetes, and 

iabetes class, respectively. Each patient is described using the fol- 

owing attributes: the number of patients, sugar level blood, age, 

ender, creatinine ratio (Cr), BMI, urea, cholesterol (Chol), Fasting 

ipid profile, including total, LDL, VLDL, Triglycerides (TG) and HDL 

holesterol, HBA1C. There are no available descriptions for these 

ttributes. 
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Table 2 

Description of the PIMA Indian diabetes dataset. 

S/N Feature Description Missing Value 

1 Pregnancies Number of pregnancies 110 

2 Glucose Glucose concentration 

(2h oral test) 

5 

3 Blood Pressure 

(BP) 

Diastolic blood pressure 35 

4 Skin Thickness 

(ST) 

Skin fold thickness in 

mm 

227 

5 Insulin 2h insulin serum (mm 

u/ml) 

374 

6 BMI Body mass 

index = weight in kg / 

height in m ̂ 2 

11 

7 Diabetes 

Pedigree 

Function (DPF) 

Likelihood value 

computed from the 

relationship between 

the patient and the 

genetic history of the 

patient’s relative 

0 

8 Age Age in years 0 
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Algorithm 1 

Feature Importance Determination. 

Input: data: nonzero entries of the original PIMA Indian diabetes dataset 

Output: sorted feature: list of features sorted in the order of importance 

based on the probability value 

Initialization p = ← [] // p-value list for all features 

Initialization label ← [] // feature labels list 

t = 

r× f √ 
1 −r 2 

// t -statistics 

p = tdist ( t, f, k ) // probability values 

where r is the correlation coefficient, n is the sample size, and p is the 

associated p-value given t -statistics with degrees of freedom, f, and a 

number of tails, which is usually 2. 

for i, j in data do check 

set k to the index of the response variable 

set the significance threshold, T 

scale j [ k ] 

if scaled j [ k ] ≤ T then 

add j [ k ] to p 

add i to label 

end if 

end for 

(
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.4.2. Data preprocessing 

As the base dataset, the PIMA Indian dataset is analyzed for 

ormality using a whisker plot. This is a statistical tool often used 

n explanatory data analysis. From Fig. 2 , it can be observed that 

he values of some features are skewed which is an indication of 

 violation of normality assumptions. Considering that the PIMA 

ndian dataset does not satisfy normality assumptions, we ap- 

roached data preprocessing differently. As an initial step to the 

reprocessing, the dataset is relabeled to include the prediabetes 

lass. This is because the existing diabetes research is limited to 

nly the prediction of normal and diabetes classes. However, if 

he research is targeted towards diagnosing diabetes, then there 

s a need for the prediabetes class. As a result, the dataset is rela-

eled based on the levels of glucose to conform to medical charts 

rovided online 1 on clinical practices in the diagnosis of diabetes. 

hen, SC and PR methods are employed for feature importance se- 

ection, and missing value imputation, respectively. 

.4.3. Feature importance and selection 

Since the PIMA Indian dataset consists of numerous missing 

alues, as shown in Table 2 , which is likely to bias feature se-

ection, the dataset is replicated to be used for feature selection. 

ith the replicated dataset, each row entry with missing values 

or all features is removed to eliminate bias the zero entries will 

resent to the feature selection process. Next, the SC is applied 

o the non-zero entries of the dataset to generate the p-values. A 

-value measures the probability of significance of the correlation 

etween each predictor variable and the outcome variable - that 

eans the less the p-value, the higher the feature importance. The 

ignificance threshold, T , is set to 0.01 for a confidence rate of 99%.

o address the problem of features competing for importance, the 

-values are scaled. This is to amplify the importance of one fea- 

ure over another. The scaled p-values are presented in Table 3 . 

hen, the most important features are selected by evaluating the 

caled p-value over T . If a scaled p-value is less than T , the null hy-

othesis, H 0, is rejected in favor of the alternative hypothesis, H 1 , 

therwise, it is accepted. The algorithmic structure of these steps 

s presented in Algorithm 1 and the hypothesis is given as follows: 

H 0 : There is no significant correlation between each feature 

 f 1 , f 2 , …, f n ) and the outcome variable. 
1 https://www.niddk.nih.gov/health-information/diabetes/overview/ 

ests-diagnosis#type1 

M

l

p

i

6 
H 1 : There is a significant correlation between each feature 

 f 1 , f 2 , …, f n ) and the outcome variable 

Table 3 shows that glucose, blood pressure, insulin, and age, are 

ignificantly correlated to the outcome variable. Therefore, H 1 , is 

ccepted and leads to the selection of features considered to be 

mportant and will make up a subset of the original PIMA Indian 

ataset. Though there exist multicollinearities among the selected 

redictor features as evidenced from Table 3 , they are negligible 

ince they do not affect predictions of new observations [35] . The 

ame feature selection algorithm is applied to the LMCH dataset 

nd can be adapted to any other data. 

.4.4. Missing value imputation 

A common practice in diabetes research is the use of mean, and 

edian for imputing missing values. However, these methods are 

ighly likely to increase data bias [36] . Another method is that of 

ultiple imputations of missing values (MICE) [37] . This method 

s known to surpass the mean and median approaches; however, 

ICE suffer from performance degradation in the presence of non- 

inearities in predictor variables [38] . In this paper, we employ a 

redictive approach to missing value imputation using PR which 

s a nonlinear regressor. The input to the missing value imputation 

https://www.niddk.nih.gov/health-information/diabetes/overview/tests-diagnosis#type1
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Table 3 

Statistical significance of the scaled p-value of predictor and outcome variables for feature selection. 

Variables Preg Glucose BP ST Insulin BMI DPF Age Output 

Preg 0 0.022 0.061 > 0.1 > 0.1 > 0.1 > 0.1 < 0.0001 0.043 

Glucose 0.022 0 0.086 > 0.1 < 0.0001 > 0.1 > 0.1 < 0.0001 < 0.0001 

BP 0.061 0.086 0 > 0.1 > 0.1 0.0007 > 0.1 < 0.0001 0.007 

ST > 0.1 > 0.1 > 0.1 0 > 0.1 < 0.0001 > 0.1 0.062 > 0.1 

Insulin > 0.1 < 0.0001 > 0.1 > 0.1 0 < 0.0001 > 0.1 0.003 < 0.0001 

BMI > 0.1 > 0.1 0.0007 < 0.0001 < 0.0001 0 > 0.1 > 0.1 > 0.1 

DPF > 0.1 > 0.1 > 0.100 > 0.1 > 0.1 > 0.1 0 > 0.1 > 0.1 

Age < 0.0001 < 0.0001 < 0.0001 0.062 0.003 > 0.1 > 0.1 0 < 0.0001 

Output 0.043 < 0.0001 0.007 > 0.1 < 0.0001 > 0.1 > 0.1 < 0.0001 0 

ST - Skin Thickness, DPF – Diabetes Pedigree Function, Preg – Pregnancy. 
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rocess is the subset of the PIMA Indian dataset with only selected 

eatures. The steps are as follows: 

i. Firstly, the percentage of missing values for each selected fea- 

ture is checked over a decision threshold of 5%. The decision 

is: if the number of zero entries in the subset data is greater 

than 5%, PR is applied, otherwise, the entry is removed. From 

the PIMA diabetes dataset, Insulin is observed to have above 5% 

zero entries. 

ii. Secondly, the feature from the subset data that highly correlates 

to Insulin becomes the predictor variable for predicting Insulin. 

The variable is Glucose. 

ii. Lastly, the data points are divided into nonzero and zero sets, 

where the nonzero set is used for training and testing while the 

zero set is predicted. The resulting output is combined with the 

nonzero set to form the final dataset. 

.4.5. Classifier optimization 

We hypothesize that: with the reduced feature space, the best 

yperparameters of each classifier, RF, SVM can be optimized. 

e define the space of the hyperparameters for RF, SVM, as: 

1 , �2 , ���, �n , which is integer valued. For the hyperparameter 

etting λ ∈ �, the best possible hyperparameter value combina- 

ions can be obtained by: 

∗ = arg max 
λ∈ �

f ( λ) (7) 

here the objective function f ( λ) is to maximize accuracy with 

ombinations of hyperparameters λ. 

In this paper, the hyperparameters used for each of the classi- 

ers, RF, SVM and 2DGNN are briefly described in Table 4 . How- 

ver, RF and SVM parameters were optimized because only a frac- 

ion of the hyperparameters contribute to the classification perfor- 

ance [39] . To find the best configuration of λ ∈ �, an exhaustive 

imple search mechanism, the grid search method is adopted, par- 

icularly because the hyperparameter is of reduced space. As a re- 

ult, the problem of the curse of dimensionality can be avoided. We 

pecify a finite set of values for the hyperparameters, to evaluate 

= �1 × �2 × ����n , the Cartesian product of the sets. Then, 

he grid search for hyperparameter tuning follows repeated cross- 

alidation with stratification. Stratification implies the sorting of 

ata into smaller sub-groups known as strata, such that each group 

s a good representative of the whole. The output variable is strat- 

fied, and the dataset is pseudo-randomly split into k-folds to en- 

ure that different strata are proportionally in each fold. Then the 

umber of times the cross-validation is repeated is minimized. This 

s to avoid redundancy [40] . Finally, the hyperparameter tuning re- 

ults in a model, considered to be the best model obtained from 

he combination of the hyperparameters with the highest cross- 

alidation accuracy. However, finding the best combination of hy- 

erparameters is not a trivial task and as such might not always 

resent the best accuracy. 
7 
.4.6. Evaluation 

The experimental settings for evaluating the proposed machine 

earning framework for diabetes prediction are (1) evaluation of 

he proposed data preprocessing methods within the ML frame- 

ork, (2) performance evaluation of different machine learning 

lassifiers with and without optimization and severity assessment 

f the best model in diabetes prediction, (3) performance eval- 

ation of the proposed deep learning model performance across 

atasets, and (4) comparison with the state-of-the-art. Perfor- 

ance in each setting is evaluated using the following metrics: 

ensitivity, precision, F1-score, specificity, and accuracy which are 

riefly discussed in the following subsections. 

.4.6.1. Specificity. This is the proportion of patients with no di- 

betes, the negative instances, who are identified as being non- 

iabetic and it is computed as the ratio of true negatives (TN) to 

he sum of TN and false positives (FP). 

pecificity = 

TN 

TN + FP 

(8) 

.4.6.2. Sensitivity. This is the proportion of patients with diabetes, 

he positive instances, who are correctly identified as being dia- 

etic and it is computed as the ratio of true positives (TP) to the 

um of TP and false negatives (FN). 

ensitivity = 

TP 

TP + FN 

(9) 

.4.6.3. Precision. This is the proportion of patients with diabetes, 

he positive instances, who are correctly identified as being dia- 

etic out of all the diabetic patients and is computed as the ratio 

f TP to the sum of TP and false positives (FP). 

recision = 

TP 

TP + FP 

(10) 

.4.6.4. F1-Score. This is the weighted average of precision and re- 

all. As a result, this score considers both false positives and false 

egatives. 

1 − score = 2 ∗
[

( Recall ∗ Precision ) 

Recall + Precision 

]
(11) 

.4.6.5. Accuracy. This is the ratio of the total number of correct 

redictions and the total number of predictions, and it is expressed 

s follows. 

ccuracy = 

T P + T N 

T P + F P + T N + F N 

(12) 

Unlike commonly practiced in diabetes research, this paper will 

lso report each model’s training and testing accuracy for each ex- 

eriment. 
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Table 4 

Experimental setup and parameters for the classifiers with and without optimization. 

Items Description 

Without 

Optimization 

With 

Optimization 

RF Max-Depth Controls how specialized each tree is 

to the training dataset. The more the 

value the more likely overfitting. 

2 3 

Max-Features The maximum allowable number of 

trees the RF will consider for each 

split. 

3 4 

n-Estimators The number of trees you want the 

algorithm to build. 

50 50 

SVM C A regularization parameter that 

controls the error of the 

misclassification of SVC to data. 

100 1000 

Kernel A non-linear transformation function 

to map data to a high-dimensional 

space 

rbf rbf 

Gamma A nonlinear parameter that represents 

the separation line or decision region 

between classes. 

0.0001 0.001 

Optimizer An algorithm that minimizes the loss 

function of the network during 

training. 

Adam RMSProb 

2GDNN Epoch Defines the number of passes made 

to the entire training dataset during 

training. 

100 200 

Batch_size The number of samples utilized in 

one iteration. 

1 5 

K-Fold n-Splits The number of different validations 

set to create from the given train 

data. 

10 10 

n-repeats The Number of times cross-validation 

is repeated. 

– 3 

PIMA (#728) Train Percentage of the dataset for training 582 582 

Test Percentage of the dataset for testing 146 146 

MCH Train 700 700 

Test 150 150 

Table 5 

Evaluation of the performance of feature selection within the ML framework. 

Set Model Precision(%) Recall(%) F1-Score(%) Train Acc.(%) TestAcc.(%) 

No FS SVM 94.385 94.000 93.714 95.429 94.000 

RF 88.651 92.500 90.432 92.000 92.500 

With FS 2GDNN 96.212 96.000 96.051 100 95.999 

SVM 94.116 94.667 94.272 95.286 94.667 

RF 96.653 96.500 95.976 97.375 96.500 

2GDNN 97.348 96.667 96.965 98.714 96.667 

FS – feature selection. 

Table 6 

Evaluation of the performance of missing value imputation methods. 

Data Preprocessor Precision(%) Recall(%) F1-Score(%) Train Accuracy(%) Test Accuracy(%) 

FS + Mean 97.045 96.753 96.761 98.208 96.753 

FS + Median 97.045 96.753 96.761 98.208 96.753 

FS + Mice 96.054 95.455 95.552 98.208 95.455 

FS + PR 98.119 97.931 97.954 98.618 97.931 

FS – feature selection, MVI – missing value imputation method, PR – polynomial regression. 
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. Results 

The result of the experiments with its supporting discussions 

ill be presented in the order of the experimental scenarios. 

.1. Performance evaluation of the proposed data preprocessing 

ethods 

We will begin the evaluation of the data preprocessing methods 

n the proposed ML framework from the feature selection point of 

iew. To analyze the contribution of the feature selection method 

o the performance of the ML framework, the LMCH dataset is 
8 
sed. This is because it originally came with a prediabetes class 

nd there is no missing value. Therefore, it will be easy to equate 

 difference in accuracy to the feature selection method across dif- 

erent experimental settings with and without feature selection. 

able 5 shows that feature selection improves the performance of 

he classifiers by 0.68%, 4%, and 0.67% for the 2GDNN, RF, and SVM 

odels, respectively. This result shows that the performance of the 

F model is greatly enhanced after feature selection. Subsequently, 

ll analyses will use the subset of the datasets after feature selec- 

ion as input. 

Next, we evaluate the performance of the proposed missing 

alue imputation method. This is achieved by using the selected 
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Fig. 4. The plot of fit of the polynomial regression line of the predictor data (Glucose) to the predicted values of Insulin. An nth degree polynomial of 2, 7,12, and 17 are 

plotted. The performance summary shows that a 7-degree polynomial is a better fit. 
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eature subset of the PIMA Indian dataset which becomes the input 

o the ML framework. This experiment compares the performance 

f the mean, median, MICE missing value imputation methods to 

he proposed PR method. This is to determine the best method 

hat addresses missing value in the proposed ML framework. For 

implicity of the experiment, only the RF model was used as the 

ase classifier for this experiment and without optimization. 

Table 6 show that the PR predictive imputation method is bet- 

er at addressing missing values than the mean, median methods 

ommonly used in the literature by 1.2% difference in accuracy. As 

xpected, the MICE fell short in performance with a difference of 

.5% in accuracy compared to the PR. This is likely because of its 

ensitivity to nonlinearities in the data. Further, the results show 

hat the mean and median performed equally across the evaluation 

etrics which indicates that both methods are affected equally 

hen the data distribution is nonlinear. On the other hand, the 

ICE is observed to be more affected by the nonlinearities of the 

ata given its accuracy of 98.2% on train data and 95.5% on the test 

ata which is a difference of 2.7%. However, with a difference of 

.69% between the train and test accuracies, the predictive impu- 

ation method, PR, show that it is a better method for addressing 

issing values for nonlinearly distributed data. 

On a deeper note, the predictive power of the PR depended on 

he experimental evaluation of the best n th-order degree polyno- 

ial to find a fit for the insulin data. Using the root mean square

rror (RMSE) and R-squared (R2) errors, it can be inferred from 

ig. 4 that the 7 th-order degree polynomial is a better fit to the 

ata. Hence, the PR is generated with the 7 th-order degree poly- 

omial. 

.2. Performance evaluation of machine learning classifiers with and 

ithout optimization 

Using a subset of the feature selected PIMA Indian dataset and 

ddressing missing values with the PR method, the result of the 

upervised classification algorithms: SVM, PR, and the proposed 

GDNN are evaluated with and without optimization and com- 

ared to determine the best fit model to the given problem. To de- 
9 
ide on the classification algorithm for a given classification prob- 

em, it is important to select a model that generalizes best to un- 

een probe samples. The farther the test accuracy is from the train- 

ng accuracy, the less the generalizability of the model to unseen 

ata points. Table 7 shows the classifier’s performance in the order 

rom best to least: ORF, RF, O2GDNN, SVM, OSVM, 2GDNN in terms 

f accuracy for both scenarios of the classifier with and without 

ptimization. The optimized RF (ORF) and RF did not only achieve 

igher performance accuracies than the other classifiers, but they 

oth are also able to generalize best to unseen data points. They 

chieved a 0% and 0.68% difference between the train and test ac- 

uracies, respectively. The 2GDNN also had a better chance of gen- 

ralizing to unseen data by its 1.76% difference between the train 

nd test accuracies after its best parameters for the given data 

ere sorted. 

Further, we investigate the severity of a patients’ diabetes pre- 

iction using the ORF and O2GDNN models. To probe the perfor- 

ance of the proposed RF classifier, we created six data samples to 

esemble real-world normal, prediabetes, and diabetes samples as 

resented in [41] . From Table 8 , it can be observed that the 2GDNN

odel shows a higher probability of determining the severity of 

 diagnosis than ORF. However, the 2GDNN failed at one point to 

ake a correct diagnosis which makes the ORF modestly better at 

andling an accurate diagnosis of diabetes severity. In a broader 

ontext, the O2GDNN is better off used when the number of data 

oints is large, and in such a scenario, the ORF is expected to fail 

ecause it is only known to be stable with small amounts of data 

 28 , 29 ]. 

.3. Performance evaluation of the proposed deep learning model 

erformance across datasets 

For this experiment, the performance of the proposed 2GNN 

odel is evaluated across the PIMA Indian dataset and the LMCH 

ataset. The result of this experiment is shown in Table 9 and 

ig. 5 . The datasets were preprocessed before classification based 

n the need of the dataset. The performance of the proposed 

GDNN model across the datasets shows that it is a promising 
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Table 7 

Performance evaluation of classification algorithms within the proposed ML framework. 

Data Preprocessor Classifier Precision (%) Recall (%) F1-Score (%) Train Accuracy(%) Test Accuracy(%) 

FS + MVI SVM 96.668 96.330 96.333 99.407 96.330 

OSVM 95.605 95.412 95.421 100 95.412 

RF 98.119 97.931 97.954 98.620 97.931 

ORF 100 100 100 100 100 

2GDNN 95.156 94.495 94.504 99.802 94.495 

O2GDNN 97.342 97.245 97.255 99.012 97.248 

FS – feature selection, MVI – missing value imputation. 

Table 8 

Determining the severity of a prediction model for diabetes diagnosis. 

S/N Patient 

State 

Glucose Insulin Blood 

Pressure 

Age Predicted Probability of Diabetes Severity (%) 

N P D 

ORF 

(%) 

O2GDNN 

(%) 

ORF 

(%) 

O2GDNN 

(%) 

ORF 

(%) 

O2GDNN 

(%) 

1 N 80 232 75 45 0 97.13 94.96 0.71 0.48 2.16 4.56 

2 D 126 34 35 38 2 0.00 0.00 4.54 82.74 95.46 17.26 

3 P 100 190 80 45 1 3.22 4.59 94.39 94.84 2.40 0.57 

4 D 130 20 100 50 2 0 0.00 3.07 0.00 96.93 100 

5 N 90 210 72 25 0 97.13 99.68 0.71 0.00 2.16 0.31 

6 P 121 181 76 30 1 3.22 0.00 94.39 99.99 2.40 0.00 

N - Normal, D - Diabetes, P – Prediabetes. 

Table 9 

Performance evaluation of the proposed ML framework on different datasets. 

Data Model Precision Recall F1-Score Train Acc(%) Train Loss TestAcc TestLoss 

PIMA FS + MVI + 2GDNN 95.156 94.495 94.504 99.802 1.000 94.495 0.152 

FS + MVI + O2GDNN 97.342 97.245 97.255 99.012 0.018 97.248 0.042 

LMCH FS + 2GDNN 97.348 96.667 96.965 98.714 3.600 96.667 2.151 

FS + O2GDNN 97.281 97.333 97.265 99.571 0.788 97.333 13.781 

FS – feature selection, MVI – missing value imputation. 

Table 10 

Comparison of the proposed methods with the state-of-the-art. 

Refs. Year FS MVIM Classifier 

Precision 

(%) 

Recall (SN) 

(%) SP (%) F1-S (%) 

Train Acc 

(%) Test Acc (%) 

NN based 

Models 

[10] 2018 PCA 

+ mRMR 

Remove 

missing values 

NN – 79.42 75.08 – – 77.25 

[9] 2019 PCA 

Median Value 

ANN – 75.00 29.00 – – 75.7 

Deep 

Learning 

95.22 98.46 99.29 96.81 – 98.07 

[6] 2021 – Median value ANN 98.00 98.00 99.00 98.00 – –

[7] 2021 Pearson 

Correlation 

Mean Values MLP – – – – 78.96 88.57 

Our proposed (2GDNN + O2GDNN) 97.342 97.245 97.255 97.351 99.012 97.248 

CCML based 

Models 

[10] 2018 PCA + mRMR Remove 

missing values 

RF – 74.58 79.85 – – 77.21 

[17] 2018 RF Group Median RF – 95.96 79.72 – – 92.26 

[16] 2019 – NB RF 80.60 85.40 – 83.00 – 87.10 

[9] 2019 PCA Median Value RF – 74.00 29.00 – – 75.70 

[15] 2019 – Median Stacked 

models 

– 96.10 79.90 88.80 – 83.80 

[14] 2020 Correlation 

Based 

Mean Value Ensemble 

Methods 

84.20 78.90 93.40 – – –

[12] 2020 – Mean Value RF 90.00 79.41 79.07 – – 76.54 

XGBoost 90.53 84.31 79.06 – – 77.54 

[13] 2020 – – RF & 

Others 

98.00 95.57 – 97.73 – 98.48 

[11] 2020 Step 

Forward + PCA 

Mean Values RF & 

Others 

83 82 – – – 77.61 

[7] 2021 Pearson 

Correlation 

Mean Values RF 77.90 77.10 – 77.40 

KNN 80.40 79.40 – 79.80 – 79.42 

[6] 2021 – Median RF 85.00 85.00 81.00 85.00 – –

GB 86.00 87.00 79.00 87.00 – –

Our proposed (RF + ORF) 

98.119 97.931 97.238 97.954 98.620 97.931 

100 100 100 100 100 100 

10 
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Fig. 5. Proposed 2GDNN performance on (a) PIMA Indian diabetes dataset and (b) Laboratory of Medical City Hospital. 
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lassifier that fits well to the proposed machine learning diabetes 

rediction and diagnosis framework. Precisely, the 2GDNN model 

chieved a 97.248% test accuracy on the PIMA Indian dataset and 

chieved a 97.333% accuracy on the LMCH dataset. Further com- 

arison is made to compare the 2GDNN with the only work in lit- 

rature [42] , as far as our search, where the LMCH dataset was 

sed. In [42] , they achieved a 98.95% accuracy with 392 randomly 

ampled data points of the LMCH dataset. In comparison to our 

roposed 2GDNN model which used the entire 10 0 0 data points of 

he LMCH, a 1.617% difference in accuracy is observed. 

.4. Comparison with the state-of-the-art 

The comparison of our work with the state-of-the-art focuses 

olely on the most recent literature and particularly where data 

re-processing methods were a substantial component of the re- 

orted work. The comparison will be for the NN-based and the 

ML-based diabetes prediction methods with the PIMA Indian 

ataset. From Table 10 , the NN-based models show interesting per- 

ormance gain in accuracy from 75.70% in 2018 to 98.07% in 2020 

ith the PIMA Indian dataset. A close comparison shows that our 

roposed ML framework with 2GDNN achieved a performance gain 

f 21.99%, 21.35%, −0.82%, 8.68% when compared to the work in 

 10 , 9 , 6 ], and [7] , respectively. Also, the proposed ML framework

ith RF achieved a performance gain of 20.71%, 5.67%, 10.83%, 

2.2%, 14.13%, 21.4%, 20.4%, −0.55%, 20.32% and 18.54% in compari- 

on to the work in [ 10 , 17 , 16 , 9 , 15 , 14 , 12 , 13 , 11 ], and [7] . Interestingly,

he difference between our proposed ML framework with RF model 

est accuracy and the training accuracy is 1.04% which suggests the 

odel is not overfitting. Though the method in [13] performed bet- 

er in terms of accuracy, ours outperformed in terms of F1-score by 

.224%. 
11 
. Limitation and future work 

The PIMA Indian diabetes dataset contains information of 768 

omen from a population near Phoenix, Arizona, in the USA. The 

ataset can be assumed to yield gestational diabetes informa- 

ion because there are pregnant women represented. On the other 

and, the LMCH dataset comprises 10 0 0 patients of Iraqi national 

atients, and though a more recent dataset it still does not address 

ome of the limitations of the PIMA Indian dataset as only adult 

ale and female patients information are presented. As such, there 

s a need for a representation that cuts across men, women (who 

re either pregnant or not), as well as children, and especially peo- 

le of African descent, who are more at risk of developing diabetes. 

his is to enable the proposed model to generalize well to a wider 

iabetes population. To address this limitation, we propose to ex- 

and the scope of the study beyond the PIMA Indian and LMCH 

atasets and engage in unbiased diabetes data collection. Then, 

nvestigate the generalizability of the proposed ML framework in 

omparison to other machine learning algorithms on the collected 

ata. The goal will be to develop a healthcare solution that meets 

he individualized diabetes diagnosis need of patients, irrespective 

f gender, age, or race. 

. Conclusion 

In this paper, we proposed a robust machine learning frame- 

ork to improve the performance of diabetes prediction using the 

IMA Indian and LMCH datasets. The framework incorporated data 

reprocessing approaches, Spearman correlation, and polynomial 

egression, from a perspective that strengthens their performance. 

he proposed framework works for the SVM, RF, and our proposed 

GDNN model and shows well to- address the diabetes classifica- 

ion problem. This was demonstrated by the outstanding classifi- 
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ation accuracy of 97.931% and 100% achieved on the PIMA Indian 

ataset. Similarly, a 97.333% accuracy was achieved on the LMCH 

ataset. These performances rank comparably to the state-of-the- 

rt performance for the NN-based models and best for CML-based 

odels. Therefore, it can be stated that the proposed framework 

resented a robust model for diabetes mellitus prediction and di- 

gnosis. 
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