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Abstract 

In this study, a new adaptive synchronized tracking control approach is developed for the operation of multiple 

robotic manipulators in the presence of uncertain kinematics and dynamics. In terms of the system 

synchronization and adaptive control, the proposed approach can stabilize position tracking of each robotic 

manipulator while coordinating its motion with the other robotic manipulators. On the other hand, the developed 

approach can cope with kinematic and dynamic uncertainties. The corresponding stability analysis is presented to 

lay a foundation for theoretical understanding of the underlying issues as well as an assurance for safely operating 

real systems. Illustrative examples are bench tested to validate the effectiveness of the proposed approach. In 

addition, to face the challenging issues, this study provides an exemplary showcase with effectively to integrate 

several cross boundary theoretical results to formulate an interdisciplinary solution. 

Keywords: Adaptive control, synchronized control, multiple robotic manipulators, kinematic uncertainty, 

dynamic uncertainty 

1 Introduction 

It has been increasingly important to employ multiple robotic manipulators to fulfil a common task 
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simultaneously in modern manufacturing systems such as assembling, transporting, painting and welding, and so 

on (Gueaieb et al. 2007; Gueaieb and Karray 2007; Nijmeijer and Rodriguez-Angeles 2003). Such multiple 

manipulators will have more functions in space and deep seas exploration. The aforementioned industrial 

applications require large maneuverability and manipulability, for which a single robotic manipulator cannot 

undertake easily. To effectively achieve these largely demanded task functionalities, an effective solution has been 

to use cooperative or coordinated multiple robotic manipulators systems (MRMS) (Gudino-Lau and Artegag 2005; 

Martinez-Rosas et al. 2006). Technically the corresponding algorithms are the most important key issues in 

MRMS (Kawasaki et al. 2006; Liu et al. 1999; Rocha et al. 2005; Zhang et al. 2008). Commonly kinematic and 

dynamic relationship of the manipulators must be coordinated during the motion process. It has been noticed that 

control of such systems still sands as one of the challenging issues in the field of robot control. It should be 

mentioned that most of the existing studies have focused on the control of single robotic manipulator, which 

cannot be used in MRMS directly. Cooperative control and master-slave control (Gueaieb et al 2007; Lee and 

Chung 1998) are conventional approaches in the MRMS. In common, these approaches require internal force 

measurement in controller design. It may be very difficult to measure or estimate internal force in practice (Sun 

and Mills 2002; Su 2003). Position synchronized control can coordinate MRMS without requiring internal force 

(Cheong et al. 2009; Chung and Slotine 2009). By virtue of efficient implementation, position synchronized 

control algorithms have attracted extensive attentions from academic research to industrial applications. 

To justify the motivation and necessity of the proposed study, there must make a critical survey on the existing 

representative work, which scrutinizes the achievement and potential hard nut issues. To use a structural way, the 

literatures about the position synchronized control are classified into four cases. 

(1) Joint space synchronized control for MRMS 

In the joint space synchronized control, the joints of MRMS will be synchronized or consensus, which means 

that all of the manipulators’ joints position will be the same or keep a constant difference. In light of 

cross-coupling technique, an adaptive synchronized control algorithm has been designed for multi-robot assembly 

tasks (Sun and Mills 2002; Su 2003). A mutual synchronized control approach is studied with velocity observer 

(Rodriguez-Angeles and Nijmeijer 2004). By removing some restrictive assumptions, an adaptive position 

synchronized control algorithm is developed for multi-robots with flexible/rigid constraints by literature (Zhu 

2005). A robust adaptive terminal sliding mode synchronized control scheme has been developed for MRMS, 

which can achieve finite-time stability (Zhao et al. 2009). The MRMS achieves synchronization in their joint 

space by using the above approaches, which deal with dynamic uncertainty by using adaptive control or robust 
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control. Though the joint position synchronized control can resolve some problems in the MRMS. However, the 

task space synchronized control algorithms of MRMS are more necessary in the practice. Compared with the 

existing approaches in joint space, the proposed approach is designed in task space and can deal with kinematic 

and dynamic uncertainties together.  

(2) Task space synchronized control for MRMS 

To achieve synchronized control objective, the desired position trajectories of end-effector of manipulators 

must be planned in task space, such as Cartesian space (Chen et al. 2011). This is the basis for MRMS based 

synchronized control algorithms. A kernel assumption of existing synchronized algorithms is that kinematics and 

Jacobian matrix of the robotic manipulator can be accurately obtained from joint space to Cartesian space. 

However it is difficult to obtain these accurate kinematic parameters in practice. Kinematic uncertainty is a 

practical and challenging problem in robot control (Cheah et al. 2006; Liu et al. 2008). For example, the robotic 

end-effector may be often interchanged with the other end-effector tools with different lengths, the manipulator 

picks up a tool with unknown length and unknown grasping points, there may be joint offsets in manipulators 

(Dixon 2007). From the above analysis, it can be concluded that kinematic uncertainty is a separate problem from 

dynamic uncertainty (Braganza et al. 2008; Cheah 2008). Without including kinematic uncertainties in robot 

controller design, it may compromise control performance or even affect the system stability (Cheng et al. 2009; 

Liang et al. 2010; Wang and Xie 2009a; Wang and Xie 2009b). 

There are some achievements in task space synchronized control of MRMS. An adaptive consensus control is 

designed in light of multi-agent control principle and considers kinematic uncertainties (Cheng et al. 2008a). By 

the adaptive consensus control, the robots’ end-effectors can move towards the same configuration. However, this 

control algorithm does not consider the robot dynamics which have to be incorporated in practical applications. A 

task space synchronized control is proposed for MRMS (Liu and Chopra 2012). By exploiting passivity-based 

synchronization principle, an adaptive synchronized control is designed, which can deal with dynamic uncertainty 

and time varying communication delays. Note that the kinematic uncertainties have not considered in this paper. A 

passivity based synchronized control is proposed for MRMS and can deal with uncertain kinematics and dynamics 

(Wang 2013). Though uncertain kinematics and dynamics are considered in this paper all end effectors of the 

MRMS are required to track the common desired trajectory which is a limited situation. In practice, the end 

effectors of MRMS are required to track their own desired trajectories while keep synchronization with each other. 

In general, the desired trajectories are different from each other, such as several manipulators transfer a workpiece 

together. Compared with the existing task space synchronized control algorithms, the proposed approach not only 
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achieves synchronization with considering kinematic and dynamic uncertainty but also can guarantee each 

manipulator to track different desired trajectories. 

(3) Synchronized control for parallel robot 

Parallel robots can be treated as a group of serial manipulators holding a load together. Some synchronized 

control algorithms are designed to improve their performance, which are very good inspiration for the MRMS. A 

saturated PI synchronous control algorithm is designed for parallel manipulators (Su et al. 2006). By using 

cross-coupling technique, a synchronous tracking control strategy has been developed without using robot 

dynamic model explicitly (Sun et al. 2006). A fully adaptive feedforward feedback synchronized control algorithm 

is designed for Stewart Platform (Zhao et al. 2008). A convex synchronized control method has been developed 

for a planar parallel manipulator to achieve several control performance specifications simultaneously (Ren et al. 

2008). A finite time position synchronized control strategy has been developed for a 6 DOF parallel robot (Zhao et 

al. 2009). By modeling a 2DOF parallel robot in joint space, a computed torque based synchronized control 

algorithm is studied in (Shang et al. 2009). By defining a Jacobian matrix based synchronization error, an adaptive 

synchronized control algorithm is designed for a planar parallel manipulator (Ren et al. 2006). The parallel robot 

can be considered as a special case of MRMS. From the existing achievements in parallel robots, it shows that the 

synchronized control can improve the performance indeed. However, the existing approaches have not considered 

the kinematic uncertainties.  

(4) Synchronized control for some other mechanical systems 

There are synchronized control approaches for some other different mechanical systems, such as, experimental 

helicopters (Shan and Nowotny 2005), spacecraft formation flying (Shan 2008) and high order multi-agent system 

(Cui et al. 2008), multiple mobile robots (Zhao and Zou 2012) and so on. These literatures show that the 

synchronized control have many potential applications. To study the synchronized control in MRMS is 

developmental in the future practice. Another application is the counter control. The contour tracking is a task, and 

this control task is about position instead of time. Therefore, it requires all the motors to synchronize with respect 

to one position (Ouyang et al. 2012). 

In brief summary of the existing synchronized control approaches, most of them are designed in joint space. 

Though some of them are designed in task space only a few literatures considering kinematic uncertainty. In 

industrial applications, such as transporting manipulators and assembly manipulators, require each manipulator to 

track different task space trajectories while maintain synchronization with each other (Sun 2010). Though (Wang 

2013) presented a synchronized control approach for MRMS and can deal with both kinematic and dynamic 
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uncertainties it requires all of the manipulators to track a common desired trajectory. The main difference of the 

proposed approach from the one in (Wang, 2013) is that it can make the manipulators to track different desired 

trajectories and maintain synchronization among them. Although difficulties in design, considering 

synchronization, dynamic uncertainty and kinematic uncertainty together is more practical and will provide new 

insight in enhancing MRMS performance. 

It also should be mentioned that there are some bilateral control for robotic manipulators (Chopra et al. 2009; 

Liu et al. 2010). Note that, teleoperation systems only have two robotic manipulators, in which the two robotic 

manipulators track each other. Subjected to the adaptive bilateral control, the two robot’s end-effectors converge 

to the same configuration. The synchronized control for MRMS considers n  2n   robots, which can guarantee 

each robotic manipulator track its own reference while synchronizing motions between each other (Sun et al. 2007; 

Sun and Tong 2009). For example, robot i  can track its own reference while maintains the same distance 

between robot 1i   and robot 1i  . To achieve this purpose, cross-coupling technique is used in the proposed 

approach while the aforementioned two papers do not use this method. In summary, the two papers mainly focus 

on the consensus without taking the each robotic manipulator’s reference tracking into consideration. Though they 

consider robot consensus control with kinematic uncertainty they cannot be used to achieve synchronized control 

of MRMS directly. In contract, the proposed approach in this study is distinguished from them in synchronization 

error definition, control algorithm design and control objective. To the best of the author’s knowledge, there has 

been no paper to study on the synchronized control of MRMS against both kinematic and dynamic uncertainties. 

With above justification, this study proposes a new adaptive synchronized tracking control (ASTC) MRMS 

with capacity in dealing with both kinematic and dynamic uncertainties explicitly. It should be mentioned that the 

presented ASTC is different from existing adaptive Jacobian tracking control (AJTC) (Cheah et al 2006; Liu et al 

2008) and position adaptive synchronized control (PASC) (Sun and Mills 2002; Sun 2003) in controller design 

and stability analysis. Compared with AJTC, ASTC considers and coordinates complex kinematic relationship of 

MRMS. However, AJTC is designed for individual robotic manipulator without considering synchronized control 

issues. Compared with PASC, ASTC considers kinematic uncertainties explicitly and can estimate kinematic 

parameters online. However, PASC assumes that kinematic parameters can be known exactly before the controller 

design. Hence, the proposed approach extends AJTC in the case of synchronized control and extends PASC in the 

case of kinematic uncertainties. It also should be mentioned there two cases to deal with uncertain parameters in 

the multiple robotic manipulators’ control, that is, satisfying linearity-in-parameters (Cheng et al. 2008b; 2008c) 
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and un-satisfying linearity-in-parameters (Cheng et al. 2010; Hou et al. 2009; Hou, Cheng et al. 2009). The 

proposed approach will use linearity-in-parameters approach to design kinematic and dynamic adaptive law.  

2 Kinematic and dynamic models of MRMS 

Assume that a MRMS is composed of n robotic manipulators. Joint space dynamic equation of the ith-robotic 

manipulator can be described: 

            
1

,
2

i i i i i i i i i i ii
M q q t M q S q q q t G q 

 
    
 

 (1) 

where   m

iq t R  denotes the joint angular position,   m m

i iM q R   is inertia matrix,   m

i iG q R  is the 

gravitational force vector, 
m

i R   denotes the input torque vector,  ,i i iS q q  is given as follows: 

     
1 1

,
2 2

T

T

i i i i i i i i i

i

S q q M q q M q q
q

 
   

 
 1, ,i n  

Property 1: Inertia matrix  i iM q  is symmetric and uniformly positive definite for all   m

iq t R . 

Property 2: Matrix  ,i i iS q q  is skew-symmetric so that  , 0T

i i iy S q q y   for all 
my R . 

Property 3: Dynamic equation (1) is linear in a set of physical parameters 
d l

i R  : 

         
1

, , , ,
2

d d

i i i i i i i i i i i i i i i i iM q q M q S q q q G q Y q q q q 
 

    
 

 

where  d m l

iY R    is dynamic regressor matrix.  

For the synchronized control of MRMS, desired trajectories are specified in task space, such as Cartesian space. 

Let 
m

ix R  is the real task space trajectory of ith manipulator, the following equation is satisfied: 

    i i ix t h q  (2) 

where   m m

ih R R    denotes transforming function from joint space to task space of ith manipulator. Task 

space velocity ix  is related to joint space velocity iq  as: 

      i i i ix t J q q t  (3) 

where   m m

iJ R    is Jacobian matrix from joint space to task space.  
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Property 4: The right hand of equation (3) is linear in a set of constant kinematic parameters 
k p

i R  , such as 

link length and link twist angles. Equation (3) can be written as: 

        ,k k

i i i i i i ii
x t J q q t Y q q    (4) 

where  k n p

iY R    is the kinematic regressor matrix. 

Dynamic uncertainty of a robotic manipulator denotes to the dynamic parameter uncertainty here. For example, 

d

i  relates to dynamic equation (1) directly. If it cannot be estimated exactly, that is, the estimated errors is called 

dynamic uncertainty. Kinematic uncertainty of a robotic manipulator means the kinematic parameter uncertainty. 

In general, Jacobian matrix can describe the kinematic issue of a manipulator. Hence, the parameters of Jacobian 

matrix can be considered as kinematic parameters. If the parameters of Jacobian matrix cannot be known exactly, 

then they have kinematic uncertainty. For more details about dynamic and kinematic uncertainty, the readers can 

refer to the literatures (Dixon 2007) and reference therein.  

3 Synchronization of MRMS 

Consider n robotic manipulators. Their end-effectors move in task space in a synchronous manner. Task space 

position error vector of ith manipulator is defined as: 

      d

i i ix t x t x t    (5) 

where 
d m

ix R  is desired trajectory of ith manipulator.  

The synchronization of multiple manipulators means that the difference of task space coordinate among the 

robotic manipulators should be a constant during their movement. This can be described by a synchronization 

function: 

  1 2 1 2 2 3 1 1, , , n n n nf x x x x x x x x x x x A            (6) 

where A  is a constant vector. 

Equation (6) is valid for the desired trajectory, that is: 

  1 2 1 2 2 3 1 1, , ,d d d d d d d d d d d

n n n nf x x x x x x x x x x x A            (7) 

Equation (6) minus (7), there will be:  

      1 2 nx t x t x t       (8) 
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Equation (8) gives the synchronized objective of multiple robotic manipulator systems. For more details of the 

synchronization definition of multiple robotic manipulator, the readers can refer to the literatures (Sun 2010) and 

references therein.  

In summary, the synchronized control is to design a control algorithm which can guarantee each manipulator to 

track its desired trajectory while keep the difference among their task space coordinates to be a constant. 

 

Figure 1 Information topology of multiple MRMS 

Assume cyclic information topology is used in the MRMS. Figure 1 shows the topological graph. According to 

the synchronized objective and Figure 1, synchronization error and cross-coupling error vectors are defined as 

follows: 

 

     

     

     

   

1 1 2

2 2 3

1 1

1

n n n

n n

t x t x t

t x t x t

t x t x t

t x x t









 

  


  


   


  

 (9) 

where   m

i t R   is synchronization error. If   0i t   for all 1, ,i n , the synchronized objective can 

be achieved. 
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        

        

        

        

1 1 1
0

2 2 2 1
0

1 1 1 2
0

1
0

t

n

t

t

n n n n

t

n n n n

e t x t w w dw

e t x t w w dw

e t x t w w dw

e t x t w w dw

  

  

  

  

   



    



   




   

    










 (10) 

where   m

ie t R  is cross-coupling error, 
m mR   is diagonal positive definite matrix, which represents 

coupling parameters matrix.  

Remark 1: Position error  ix t  and synchronization error  i t  are included in cross-coupling error  ie t . 

If a synchronized controller can drive  ie t  and  i t  converged to zero asymptotically, it also can make 

 ix t  converged to zero asymptotically. Hence cross-coupling technique can simplify the synchronized 

controller design (Koren 1980). Note that  i t  appear in  ie t  and  1ie t  with opposite sign. Then  ie t  

and  1ie t  are driven in opposite directions with respect to  i t . This is helpful to eliminate the 

synchronization error (Sun and Mills 2002; Sun 2003). 

From cross-coupling error, the following task space command vectors can be defined as (Sun and Mills 2002; 

Sun 2003): 

 

          

          

          

          

1 1 1 1

2 2 2 1 2

1 1 1 2 1

1

x d

n

x d

x d

n n n n n

x d

n n n n n

u t x t t t e t

u t x t t t e t

u t x t t t e t

u t x t t t e t

  

  

  

  

    



    


   




   

    

 (11) 

where  x m

iu t R  is the task space command vector, 
m mR   is diagonal positive definite matrix, which is 

a feedback gain matrix. 

From equations (10) and (11), task space general error vectors can be defined as (Sun and Mills 2002; Sun 

2003): 
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         

         

         

         

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

x x

x x

x x

n n n n n

x x

n n n n n

r t x t u t e t e t

r t x t u t e t e t

r t x t u t e t e t

r t x t u t e t e t

    

    


   


    


   

 (12) 

The control objective of this study can be summarized as: design an adaptive synchronized control law to be 

able to estimate kinematic and dynamic parameters to guarantee asymptotical stability of MRMS. This means that 

the proposed approach can make position error ix  and synchronization error i  to be converged to zero 

asymptotically and simultaneously. 

4 Adaptive synchronized controller design and stability Analysis 

Since kinematic parameters are not known exactly. Assume ˆk

i  is the estimated value vector of real 
k

i . Then 

the estimated task space velocity vector can be defined as: 

          ˆ ˆˆ ˆ , ,k k k

i i i i i i i i ix t J q q t Y q q t    (13) 

Estimated task space general error vector can be defined as: 

            ˆˆ ,x x k k

i i i i i i i i ir t x t u t Y q q e t e t        (14) 

where  k

i t  is estimation error of kinematic parameters, which is defined as: 

    ˆk k k

i i it t      (15) 

Remark 2: In light of the definitions of task space command vectors and general error vectors developed in (Sun 

and Mills 2002; Sun 2003), the estimated task space general error vector is defined as (14) by using the estimated 

velocity which is computed from the Jacobian regressor matrix  ,k

i i iY q q  and estimated kinematic parameters 

 ˆk

i t . Note that estimation error  k

i t  will be eliminated by a kinematic adaptive law in the following 

development.  

Define joint space command vector as: 

      1 ˆˆ , k x

i i i i iu t J q u t  (16) 

          1 1ˆˆ ˆˆ , ,k x k x

i i i i i i i i iu t J q u t J q u t     (17) 
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Define joint space general error vector as: 

          1 ˆˆ ˆ, k x

i i i i i ii
r t q t u t J q r t    (18) 

      i i ir t q t u t   (19) 

In light of (16)-(19), the ith robotic manipulator dynamic equation can be rewritten as: 

              
1 1

, ,
2 2

i i i i i i i i i i i i i i i i i i i i iM q r M q S q q r M q u M q S q q u G q
   

         
   

1
 (20) 

According to Property 3, equation (18) can be written as: 

        
1

, , , ,
2

d d

i i i i i i i i i i i i i i i iM q r M q S q q r Y q q u u 
 

    
 

 (21) 

where  , , ,d d

i i i i i iY q q u u   is defined as: 

          
1

, , , ,
2

d d

i i i i i i i i i i i i i i i i iY q q u u M q u M q S q q u G q
 

    
 

 (22) 

Assumption 1: The desired joint position 
d

ix  and its derivatives 
d

ix , 
d

ix  are all bounded and smooth. 

Assumption 2: The task space position ix  and velocity ix , joint space position iq  and velocity iq  are 

measurable. 

Assumption 3: The robotic manipulators are working in a finite task space such that the Jacobian matrices are of 

full rank (Cheah et al 2006; Liu et al 2008).  

Under Assumptions 1-3, the following distributed ASTC control law is designed to achieve synchronized 

control of MRMS in the presence of both kinematic and dynamic uncertainties: 

 

      

      

      

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1 1 1 1 2

ˆ ˆ ˆˆ ˆ, ,

ˆ ˆ ˆˆ ˆ, ,

ˆ ˆ ˆˆ ˆ, ,

ˆ ˆˆ ,

d d T k T k

v p n

d d T k T k

v p

d d T k T k

n n n n n n v n p n n n n n n

d d T

n n n n n

Y J q K e K e J q K

Y J q K e K e J q K

Y J q K e K e J q K

Y J q







     

     

     

  

            

    

    

    

        1
ˆˆ ,k T k

n v n p n n n n n nK e K e J q K   











  


 (23) 

where 
m m

vK R  , 
m m

pK R  , 
m mK R

  are all diagonal positive definite matrices, ˆd m

i R   is the 

                                                        

1 For the simplicity of expression,  t  is omitted in the following context. 
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estimation of 
d

i , the estimation error is defined as: 

 ˆd d d

i i i      (24) 

Distributed kinematic adaptive law is designed as: 

 

      

      

      

      

1 1 1 1 1 1 1

2 2 2 2 2 2 2 1

1 1 1 1 1 1 1 2

1

ˆ
,

ˆ
,

ˆ
,

ˆ
,

T
k k

k v p n

T
k k

k v p

T
k k

n k n n n v n p n n n

T
k k T

n k n n n v n p n n n

L Y q q K e K e K

L Y q q K e K e K

L Y q q K e K e K

L Y q q K e K e K









  

  

  

  

       



     
 


      





      

     

 

 (25) 

where 
p p

kL R   is diagonal positive definite matrix. 

Distributed dynamic adaptive law is designed as: 

   ˆ
, , ,

T
d d

i d i i i i i iL Y q q u u r   , 1, ,i n  (26) 

where 
l l

dL R   is diagonal positive definite matrix. 

Remark 3: In control law (23) ˆd d

i iY   is feedforward compensation for robotic manipulator dynamics. 

  ˆˆ ,T k

i i i v i p iJ q K e K e   is feedback control to stabilize cross-coupling error to 0 asymptotically. 

   1
ˆˆ ,T k

i i i i iJ q K     as 1i  , 1i n   is feedback control to stabilize synchronization error to 0 

asymptotically. Note that estimated parameters of kinematics and dynamics are used in the control law, distributed 

kinematic (25) and dynamic adaptive law (26) are designed to update them online. 

Theorem 1 Consider a multiple robotic manipulators system (1) with Assumption 1-3, if the proposed control law 

is designed with (23), (25) and (26), position tracking error ix  and synchronization error i  will be 

asymptotically stable, 1, ,i n . 

Proof: Consider the following Lyapunov function candidate: 
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     

 

          

          

1 1

1

1 1
0 0

1 1
0 0

2

1 1 1

2 2 2

1 1

2 2

1

2

1

2

n
T T

T d d k k

i i i i i d i i k i

i

T T

i p v i i i

t tT

n n

n t tT

i i i i

i

V r M q r L L

e K K e K

w w dw K w w dw

w w dw K w w dw







   

  

    

    

 



 




      




   



   

   



 

  

 (27) 

Differentiating V  with respect to time and considering equation (21) and Property 2, it yields: 

 

   

   

      

         

1

1

1

1 1
0

1 1
0

2

ˆ
, , ,

ˆ

n
T

T T d d d d

i i i i i i i i i i d i

i

T
k k T T

i k i i p v i i i

tT

n n

n tT

i i i i

i

V r r Y q q u u L

L e K K e K

K w w dw

w w K w w dw







   

    

    

    







 



   


    


   

   





 

 (28) 

Substituting control law (23) and adaptive laws (25)-(26) into (28), there must be: 

 

   

 

       

      

         

1

1 1 1 1

2

1 1
0

1 1
0

2

n
T

i i v i p i

i

T T

i p v i i i

n
T T

i i i i n

i

tT

n n

n tT

i i i i

i

V e e K e K e

e K K e k

e e k e e k

k w w dw

w w k w w dw



 





  

   

    

    







 



    


  


      

   

   







 

 (29) 

Consider the following two equations: 

 

     
1

1

1

n
T T

i i v i p i i p v i

i

n
T T T T T T

i v i i p i i v i i p i i p i i v i

i

n
T T

i v i i p i

i

e e K e K e e K K e

e K e e K e e K e e K e e K e e K e

e K e e K e







      
 

           

     







 (30) 
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       

   

   

   

   

1 1 1

2

1 1 1

2 2 2 1

1 1

1

1 1

1

n
T T

x x

i i i n

i

T T
x x

n

T T
x x

T T
x x

n n n n

n
T T

x x x x

i i i n n

i

r K r K

r K r K

r K r K

r K r K

r r K r r K

 

 

 

 

 

   

 

 

 

 





 







  

 

 

 

   





 (31) 

Substituting (30) and (31) into (29) and using (12), it yields: 

    

   

1

1

1 1

1 1

1 1 0

n
T T

i v i i p i

i

n n
TT

i i i i i i

i i

T

n n

V e K e e K e

K K

K

 



      

    





 

 

     

      

   



   (32) 

Since  i iM q  is uniformly positive definite, V  is positive definite in ir , 
d

i , 
k

i , ie , i  and 

    1
0

t

i iw w dw    (as 1i  , 1i n  ). Since 0V  , V  is bounded, ir , 
d

i , 
k

i , ie , i  and 

    1
0

t

i iw w dw    (as 1i  , 1i n  ) are all bounded vectors. This also means, that ˆk

i  and ˆd

i  are 

bounded. Due to 
d

ix  is bounded, ix  is bounded. Because the terms of Jacobian matrix are trigonometric 

function of iq  and ˆk

i ,  ˆˆ , k

i i iJ q   is bounded. Then  ˆˆˆ ,x k

i i i i ir J q r  is bounded with (18). Using (12), it 

can be concluded that ie  is bounded. Since ie  and 
d

ix  are bounded, 
x

iu  is also bounded with (11). Hence, 

iu  is bounded if inverse approximate Jacobian matrix is bounded (  ˆˆ , k

i i iJ q   is bounded and full rank). From 

(18), iq  is bounded, and it also means that ix  is bounded because that Jacobian matrix is bounded. Then, x  

is bounded, it also means that ie , i , 1i i    (as 1i  , 1i n  ) are bounded. The terms of  ,k

i i iY q q  

are trigonometric functions of iq  and iq , hence  ,k

i i iY q q  is bounded. From kinematic adaptive law (25), 

ˆk

i  is bounded. It is obvious that iu  is bounded if 
d

ix  is bounded. From closed-loop equation (21) with 

control law (23), (25) and (26), it can be concluded that r  is bounded. Because  1 ˆˆ , k

i i iJ q 
 and  ˆ ˆ, k

i iJ q   

are bounded,  1ˆ ˆ, k

i i iJ q 
 is bounded. Then,  ˆx

ir t  is bounded. Due to iu  is bounded, iq  is bounded. Note 
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that the terms of  ,k

i i iY q q  are trigonometric functions of iq  multiplied with iq  and/or iq ,  ,k

i i iY q q  is 

bounded. Because of 
k

i , 
ˆk

i   ie t  and  ˆx

ir t  are bounded,  ie t  is bounded. 

Differentiating (32) with respect to time, it yields: 

    

   

1

1

1 1

1 1

1 1

2 2

2 2

2

n
T T

i v i i p i

i

n n
TT

i i i i i i

i i

T

n n

V e K e e K e

K K

K

 



      

    





 

 

     

      

  



   (33) 

It is obvious that V  is bounded since ie , ie , ie , i , i , 1i i    and 1i i    ( 1, ,i n , as i n , 

1 1i   ) are all bounded. Hence, V  is uniformly continuous. Using Barbalat’s Lemma (Khalil 2002), one can 

obtain that as t  , 0ie  , 0ie  , 0i   and 1 0i i     ( 1, ,i n , as i n , 1 1i   ). 

When 0i   for all 1,i n , the synchronized objective defined by (8) can be achieved. All equations in 

expression (10) are combined in the following form: 

 1 2 1 2 0n nx x x e e e           (34) 

With (8), it yields: 

 1 2 0nx x x        (35) 

It also means that the invariant set of closed-loop equation (21) subjected to control law (23), (25), (26) 

includes zero position errors, i.e., 0ix  , 1 1i   . By using Barbalat’s Lemma (Khalil 2002), 0ix  , as 

t  . 

The motivation of proposing the ASTC has been justified as below: 

(1) By using the synchronization error and cross-coupling error (Sun and Mills 2002; Sun 2003), design 

synchronized controller to make each robotic manipulator track its own desired trajectory while synchronize its 

motion with the other manipulators according to the synchronized objective. 

(2) By using robot adaptive Jacobian tracking control theory (Cheah et al 2006; Liu et al 2008), design a 

kinematic adaptive law to estimate uncertain kinematic parameters online. 

(3) By using robot adaptive control theory (Slotine and Li 1991), design a dynamic adaptive law to estimate 

uncertain dynamic parameters online.  
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Remark 4: If let 0   and 0K  , control law (23), (25) and (26) will be an independent AJTC without 

accommodating synchronization (Cheah 2006): 

   ˆ ˆˆ ,d d T k

i i i i i i v i p iY J q K x K x        (36) 

     ˆ
,

T
k k

i k i i i v i p iL Y q q K x K x      (37) 

   ˆ
, , ,

T
d d

i d i i i i i iL Y q q u u r    (38) 

where pK , 
vK , 

kL  and dL  are the same as the ones of ASTC, 1, ,i n . Note that independent AJTC did 

not consider synchronization among the multiple robotic manipulators. Hence, it cannot be used directly for 

synchronized control of MRMS. 

Remark 5: Compared with PASC (Sun 2003), the proposed approach can cope with kinematic uncertainties 

explicitly by using adaptive law (25). However, PASC assumed that kinematic parameters and Jacobian matrices 

of MRMS can be obtained exactly. Kinematic uncertainty is a very practical problem that should be dealt with in 

the controller design. Neglect of uncertain kinematics in controller design will decrease the performance of 

close-loop system or even affect system stability. 

Remark 6: If an approximate Jacobian matrix replaces adaptive law (25), control law (23) can be redesign as the 

following approximate Jacobian synchronized control (AJSC): 

 

      

      

      

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1 1 1 1 2

ˆ , ,

ˆ , ,

ˆ , ,

ˆ ,

d d T k T k

v p n

d d T k T k

v p

d d T k T k

n n n n n n v n p n n n n n n

d d T

n n n n n

Y J q K e K e J q K

Y J q K e K e J q K

Y J q K e K e J q K

Y J q







     

     

     

  

            

    

    

    

        1,k T k

n v n p n n n n n nK e K e J q K   











  

 (39) 

   ˆ
, , ,

T
d d

i d i i i i i iL Y q q u u r    (40) 

where pK , vK  and dL  are same to the ones of ASTC, 1, ,i n . Note that approximate Jacobian matrices 

 ,T k

i i iJ q   and kinematic parameters 
k

i  are estimated before controller design. If Jacobian matrices can be 

estimated exactly control law (39)-(40) will be PASC developed by (Sun and Mills; Sun 2003). Due to kinematic 

uncertainties, the estimation errors cannot be avoided and cannot be corrected online without adaptive law (23). 

The following procedure are summarized to choose control gains and adaptive gains: 

Step 1: Estimate the kinematic and dynamic parameters according to the designer’s experience. Then substitute 
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them into control law (23). 

Step 2: Use trial and error method to design feedback control gains: 
vK , pK  and K  until the closed-loop 

system is stable.  

Step 3: Replace the estimated dynamic parameters by the ones updated by (25). Design dynamic adaptive gain 

dL  by using trial and error method. In this step, the control performance will be improved. 

Step 4: Use the updated kinematic parameters according to (26) to replace the estimated ones. Then design 

kinematic adaptive gain kL  by using trial and error method. The control performance will be further improved. 

Step 5: Tuning the control and adaptive gains slightly until the control performance is satisfied.  

Remark 7: Lyapunov method is used to guarantee the system stability, which requires the control gains and adaptive 

gains are both positive definite. However, these parameters affect the system performance. Steps 1-5 are developed by 

using trial and error method to find the appropriate gains. Though the trial and error method depends on the designer’s 

experience it is an effective solution with a few of trials in practice.Remark 7: Lyapunov method is used to 

guarantee the system stability, which requires the control gains and adaptive gains are positive definite. However, 

these parameters affect the system performance. Steps 1-5 are developed by using trial and error method to find 

the appropriate gains. Though the trial and error method depends the designer’s experience it is an effective 

solution in practice.  

5 Illustrative Examples 

To validate the performance of the proposed approach, numerical studies were presented in this section. The 

planar two-link robotic manipulator dynamic equation was described with (Zhao et al, 2009): 

   

 

   

 

 

 
11 2 12 2 2 1 2 1 1 1 21 1

21 2 22 2 2 2 1 22 2

2 ,

0 ,

q q q q q q q q gq q

q q q q q gq q

    


   

         
          

        

 

     2 2

11 2 1 2 1 2 2 2 1 2 2 12 cosq m m r m r m rr q j       

   2

12 2 2 2 2 1 2 2cosq m r m rr q    

21 12   

2

22 2 2 2m r j    
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   2 2 1 2 2sinq m rr q   

       1 1 2 1 2 1 2 2 2 1 2, cos cosq q m m r q m r q q      

   2 1 2 2 2 1 2, cosq q m r q q    

where 1q , 2q  are angular position of each joint of robot. The parameters were assigned as: 1 0.3r m , 

2 0.3r m , 1 1m kg , 2 1m kg , 
29.81g m s , 1 5j kg m  , 2 5j kg m  . Assume these parameters 

unknown in controller design. Dynamic and kinematic adaptive laws were used to estimate them online. 

Assumed that the base coordinates of the four robotic manipulators’ were:  3.41, 2.41 m  , 

 3.15,1.44 m ,  3,1.48 m ,  3.26, 2.45 m . The initial positions of robot end-effectors  0ix  were: 

 3, 2 m  ,  3,2 m ,  3,2 m ,  3, 2 m . The desired final positions  i fx  were:  2.8, 2 m  , 

 2.8,2 m ,  3.2,2 m ,  3.2, 2 m . The desired trajectory of each robot end-effector was assigned as: 

         0 0 1 expd

i i i ix x x f x t     ,  1,2i   

Dynamic uncertain parameters were given as: 

    2 2 2 2

1 2 1 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2, , , , ,d

i m m r m r j m rr m r m m r m r m r j          

Kinematic uncertain parameters were given as: 

  1 2,k

i r r   

The initial values of ˆd

i  and ˆk

i  were chosen as:    1
ˆ 0 1,1,1,1,1,1,d  ,    1

ˆ 0 1,1k  , 

   2
ˆ 0 0.5,0.5,0.5,0.5,0.5,0.5d  , and    2

ˆ 0 0.5,0.5k   for ASTC and AJTC, respectively. 

The initial value of ˆd

i  of AJSC were chosen as    1
ˆ 0 1,1,1,1,1,1,d   and 

   2
ˆ 0 0.5,0.5,0.5,0.5,0.5,0.5d  . The estimated kinematic parameter of AJSC were chosen as 10 0.5r   

and 20 0.5r  . 

Figures 2-4 are the performances of the proposed ASTC. Figure 2 illustrates the synchronization errors, where 

solid lines and dashed lines denote the X and Y directions, respectively. Inspection of Figure 2, it shows that 

synchronization errors converge to 0 asymptotically. Figure 3 illustrates the task space position errors of the 
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robotic manipulators. Figure 3 shows that the configurations of position errors of robot 1 and robot 2 are similar to 

each other to avoid large synchronization error. Figure 4 illustrates the control input of ASTC which shows that 

the control inputs are bounded. Figures 5-7 are the performances of independent AJTC. This control algorithm 

does not include synchronized objective in the controller design. Figure 5 shows synchronization errors. Figure 6 

shows task space position errors. Figure 7 shows the control input variations against time. Compare Figure 2 with 

Figure 5, it is clear that synchronization errors of independent AJTC are larger than those of the proposed ASTC 

especially in transient process. Though synchronization errors of independent AJTC converge to 0 eventually as 

position errors converge to 0, large synchronization errors in transient process are undesired in practice of MRMS. 

Figures 8-10 are the performances of AJSC. This control algorithm does not include kinematic adaptive law in the 

controller design. Figure 8 shows synchronization errors. Figure 9 shows task space position errors. Figure 10 

shows the control inputs. Due to kinematic uncertainties are not included in controller design, control 

performances are not satisfactory. By comparing the control inputs shown in Figures 4, 7 and 10, it can be seen 

that all of them are bounded. The control inputs of ASTC and AJTC is similar in the amplitude. However the 

control inputs of AJSC are much larger than those of ASTC and AJTC. This is because approximate Jacobian 

parameters are used in the controller design, which cannot eliminate the kinematic modeling errors online during 

the system operation. From these comparisons, it is shown that the proposed ASTC is more effective to cope with 

system synchronization, kinematic uncertainty and dynamic uncertainty. 

Table 1 Controller parameters 

Control approach Controller parameters 

ASTC 

  50 50diag  ,   2 2diag  ,   100 100pK diag , 

  40 40vK diag ,   100 100K diag  ,   0.2 0.2kL diag , 

  0.2 0.2dL diag  

AJTC 

  0 0diag  ,   2 2diag  ,   100 100pK diag , 

  40 40vK diag ,   0 0K diag  ,   0.2 0.2kL diag , 

  0.2 0.2dL diag  

AJSC   60 60diag  ,   2 2diag  ,   120 120pK diag , 
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  50 50vK diag ,   110 110K diag  ,   0.5 0.5dL diag  

 

Figure 2 Synchronization error of ASTC 

 

Figure 3 Position tracking error of ASTC 
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Figure 4 Control input of ASTC 

 

Figure 5 Synchronization error of AJTC 

 

Figure 6 Position tracking error of AJTC 

 

Figure 7 Control input of AJTC 
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Figure 8 Synchronization error of AJSC 

 

Figure 9 Position tracking error of AJSC 

 

Figure 10 Control input of AJSC 
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Figure 11 Adaptive law of ASTC 

 

Figure 12 Adaptive law of AJSC 

Figures 11 and 12 are adaptive laws of ASTC and AJSC, respectively. From these two figures, one can see that 

the proposed approach can estimate both kinematic and dynamic parameters. However conventional robot 

adaptive law (Slotine and Li 1991) only can estimate dynamic parameters. Note that the regressor matrix based 

adaptive law is very complex especially as the number of the estimated parameters is larger. In spite of the 

limitation, this adaptive law is still a good alternative to deal with parameters uncertainty. 

Remark 8: Three control approaches are compared in the Figures 2-10. ASTC has better performances than those of 

AJTC and AJSC. In comparison with AJTC, ASTC has better synchronization performance especially in the transient 

process. This is because ASTC doesn’t consider the synchronized objective the controller design. The results illustrate 

that the proposed approach not only guarantees the position error convergence but also makes it  converging in a 

synchronous manner. In comparison with AJSC, ASTC has better convergence performance with  the position error 

and synchronization error. This is due to that ASTC uses the approximate Jacobian matrices in the controller design, 

which cannot eliminate kinematic uncertainty effect. In a word, it should consider the kinematic and dynamic 

uncertainty sensibly in the design of the synchronized controller of MRMS in task space. 
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Remark 8: Three control approaches are compared in the Figures 2-10. ASTC has better performances than those 

of AJTC and AJSC. In comparison with AJTC, ASTC has better synchronization performance especially in the 

transient process. This is because ASTC doesn’t consider the synchronized objective the controller design. The 

results illustrate that the proposed approach not only guarantees the position errors’ convergence but also makes 

them converging in a synchronous manner. In comparison with AJSC, ASTC has better performances in the 

position errors and synchronization errors’ convergence. This is due to that ASTC uses the approximate Jacobian 

matrices in the controller design, which cannot eliminate kinematic uncertainty effect. In a word, it should 

consider the kinematic and dynamic uncertainty in the design of the synchronized controller of MRMS in task 

space. 

To further test the proposed approach, more complex desired trajectories, that is, two circles was tracked by two 

different manipulators, respectively. The manipulators’ parameters were given in Table 2. This example can 

illustrate a more general situation. Figure 13 shows that the manipulators track the different circles in their task 

space. Figure 14 and Figure 15 are the synchronization errors and position tracking errors. From these figures, one 

can see that the proposed approach can make different robotic manipulators to track complex trajectories while 

keep synchronization among them. This example effectively demonstrates the proposed approach again.  

Table 2 The robotic manipulators’ parameters 

Robot 1 Robot 2 

1 0.3r m , 2 0.3r m , 1 1m kg , 2 1m kg  1 0.2r m , 2 0.2r m , 1 0.8m kg , 2 0.8m kg  

The desired trajectory were given as: 

 

 
1

1

2.3 0.1*cos

0.4 0.1*sin

d

d

x t

y t

  


 
  

 

 
2

2

4.25 0.1*cos

0.4 0.1*sin

d

d

x t

y t

  


 
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Figure 13 Two robotic manipulators track different circles in their task space  

 

Figure 14 Synchronization error of ASTC (Circle tracking) 

 

Figure 15 Position tracking error ASTC (Circle tracking) 

Remark 9: The proposed approach has well satisfied performance in  tracking of complex desired trajectories. It 
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illustrates that ASTC can track the complex desired trajectories while maintaining the synchronized objective. This is an 

expected capability in many industrial applications such as assembly, painting and machining by using multiple robotic 

manipulators. 

Remark 9: The proposed approach has satisfied performances in the tracking of complex desired trajectories. It 

illustrates that ASTC can track the complex desired trajectories while maintains the synchronized objective. This 

is an expected capability in many industrial applications such as assembly, painting and machining by using 

multiple robotic manipulators. 

The original purpose of this study is to present a MRMS synchronized control algorithm in task space in the 

presence of kinematic uncertainty and dynamic uncertainty. With reference to the numerical simulation results that 

are consistent with the analytical formulations, the proposed approach is effective to achieve the synchronized 

objective especially during the transient process. The proposed adaptive law can estimate kinematic and dynamic 

parameters online, which has strong robustness to these estimated parameters. The advantages of the proposed 

approach over the general robot adaptive control lies in the synchronized control and kinematic parameter 

estimation. Though synchronized control is proposed for multiple axes system in which dynamic adaptive law 

(Sun and Mills 2002; Sun 2003) is used, the kinematic uncertainty has not been considered by these literatures. It 

should be mentioned that (Cheng et al 2008a; Liu et al 2010) consider kinematic uncertainty in some aspect but 

not including robot dynamics in controller design. (Liu et al 2010) only considers two robot bilateral control 

teleoperation systems. These two methods cannot be used for MRMS directly. 

6 Conclusions 

By theoretical analysis and simulation demonstrations, a novel ASTC has been initially constructed to cope with 

kinematic uncertainties and synchronized control together in MRMS. In light of accommodating the 

cross-coupling errors the proposed approach can stabilize both position errors and synchronization errors that 

converge to zero asymptotically and simultaneously, which may achieve higher precision and more flexibility in 

manufacturing processes with multiple robotic manipulators. Note that the proposed approach expands the existing 

independent adaptive Jacobian tracking control algorithms (Cheah et al 2006; Liu et al 2008) to achieve 

synchronized objective of MRMS as well as expands existing adaptive synchronized control algorithms (Sun and 

Mills 2002; Sun 2003) to accommodate kinematic uncertainties in the controller design. It is worth noting that the 

study has provided a good example to develop new solutions to the challenging and practically highly demanded 

issues encountered in multiple robotic manipulators systems. In addition, this study provides an exemplary 
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showcase with effectively to integrate several cross boundary theoretical results in the fields of control and 

parameter estimation, which reflects the philosophy of interdisciplinary study having been the tendency in 

emerging research. The future work will be conducted in applying this new scheme to resolve some ad hoc 

problems (such as time delay and time varying information topology) encountered in MRMS. 
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