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Abstract: Machine learning has become widely adopted as a strategy for dealing with a variety
of cybersecurity issues, ranging from insider threat detection to intrusion and malware detection.
However, by their very nature, machine learning systems can introduce vulnerabilities to a security
defence whereby a learnt model is unaware of so-called adversarial examples that may intentionally
result in mis-classification and therefore bypass a system. Adversarial machine learning has been
a research topic for over a decade and is now an accepted but open problem. Much of the early
research on adversarial examples has addressed issues related to computer vision, yet as machine
learning continues to be adopted in other domains, then likewise it is important to assess the potential
vulnerabilities that may occur. A key part of transferring to new domains relates to functionality-
preservation, such that any crafted attack can still execute the original intended functionality when
inspected by a human and/or a machine. In this literature survey, our main objective is to address
the domain of adversarial machine learning attacks and examine the robustness of machine learning
models in the cybersecurity and intrusion detection domains. We identify the key trends in current
work observed in the literature, and explore how these relate to the research challenges that remain
open for future works. Inclusion criteria were: articles related to functionality-preservation in adver-
sarial machine learning for cybersecurity or intrusion detection with insight into robust classification.
Generally, we excluded works that are not yet peer-reviewed; however, we included some significant
papers that make a clear contribution to the domain. There is a risk of subjective bias in the selection
of non-peer reviewed articles; however, this was mitigated by co-author review. We selected the
following databases with a sizeable computer science element to search and retrieve literature: IEEE
Xplore, ACM Digital Library, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The literature
search was conducted up to January 2022. We have striven to ensure a comprehensive coverage of
the domain to the best of our knowledge. We have performed systematic searches of the literature,
noting our search terms and results, and following up on all materials that appear relevant and fit
within the topic domains of this review. This research was funded by the Partnership PhD scheme at
the University of the West of England in collaboration with Techmodal Ltd.

Keywords: cybersecurity; adversarial machine learning; machine learning; intrusion detection;
functionality-preservation

1. Introduction

Machine learning (ML) has become widely adopted as a strategy for dealing with a
variety of cybersecurity issues. Cybersecurity domains particularly suited to ML include:
intrusion detection and prevention [1], network traffic analysis [2], malware analysis [3,4],
user behaviour analytics [5], insider threat detection [6], social engineering detection [7],
spam detection [8], detection of malicious social media usage [9], health misinformation [10],
climate misinformation [11], and more generally “Fake News” [12]. These are essentially

J. Cybersecur. Priv. 2022, 2, 154–190. https://doi.org/10.3390/jcp2010010 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp2010010
https://doi.org/10.3390/jcp2010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0001-8054-0776
https://orcid.org/0000-0003-4897-0180
https://orcid.org/0000-0002-3490-3123
https://orcid.org/0000-0003-3460-5609
https://doi.org/10.3390/jcp2010010
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2010010?type=check_update&version=3


J. Cybersecur. Priv. 2022, 2 155

classification problems. Papernot et al. [13] stated that most ML models can be described
mathematically as functions h0(x) with an input x and parameterized by a vector θ ∈ Θ,
although some models such as K nearest neighbor are non-paremetric. The output of the
the function h0(x) is the model’s prediction of some property of interest for the given input
x. The input x is usually represented as a vector of values called features. The space of
functions h = x 7→ h0(x)|θ ∈ Θ defines the set of candidate hypotheses. In supervised
learning, the parameters are adjusted to align model predictions h0(x) with the expected
output y. This is achieved by minimizing a loss function that captures the dissimilarity of
h0(x) and the corresponding y. Model performance must be validated against a separate
training dataset to confirm if the model also generalizes well for unseen data. Classification
ML systems find a function ( f ) that matches a vector (~x) to its corresponding class (y).

Dhar et al. [14] noted that few studies analyzed the complexity of models and as-
sociated trade-offs between accuracy and complexity. The complexity of an algorithm is
often expressed in Big-O notation. They reviewed models, stating the number of features
and activations have an effect on memory usage and computational complexity. Moreover,
they argued that accuracy alone cannot justify the choice of model type, particularly in
regard to DNN; however, we consider the risks involved for inaccurate predictions will
vary across domains. In security domains, greater accuracy may be considered critical,
possibly assuaging concerns regarding computational complexity of models.

Critically, ML systems are increasingly trusted within cyber physical systems [15],
such as power stations, factories, and oil and gas industries. In such complex physical envi-
ronments, the potential damage that could be caused by a vulnerable system might even
be life threatening [16]. Despite our reliance and trust in ML systems, the inherent nature
of machine learning—learning to identify patterns—is in itself a potential attack vector
for adversaries wishing to circumvent ML-based system detection processes. Adversarial
examples are problematic for many ML algorithms and models including random forests
(RF) and naive Bayes (NB) classifiers; however, we focus on artificial neural networks and
particularly deep neural networks. Artificial neural networks (ANN) are inspired by the
network of neurons in the human brain. ANNs are useful because they can generalize from
a finite set of examples, essentially mapping a large input space (infinite for continuous
inputs) to a range of discrete outputs. Unfortunately, in common with other ML algorithms,
neural networks are vulnerable to attacks using carefully crafted perturbations to inputs, in-
cluding evasion and poisoning attacks. In recent work, carefully crafted inputs described as
“adversarial examples” are considered possible in ANN because of these inherent properties
that exist within neural networks [17], such as:

1. The semantic information of the model is held across the model and not localised to
specific neurons;

2. Neural networks learn input–output mappings that are discontinuous (and discon-
tiguous).

These properties mean that even extremely small perturbations of an input could cause
a neural network to provide a misclassified output. Given that neural networks have these
properties, we reasonably expect our biological neural networks to suffer misclassifications,
and/or to have evolved mitigations. Human brains are more complex than current artificial
neural networks, yet they suffer a type of misclassification (illusory perception), in the form
of face pareidolia [18,19]. This strengthens the case that the properties of neural networks
are a source of adversarial examples (AE). In cybersecurity-related domains it has been
seen how adversaries exploit adversarial examples, using carefully-crafted noise to evade
detection through misclassification [20,21].

In this way, an adversarial arms race exists between adversaries and defenders. The
recent SolarWinds supply chain attack [22,23] identified in December 2020 indicates the
reliance that organisations have on intrusion detection software, and the presence of ad-
vanced persistent threats (APTs) with the expertise and resources to attack organisations’
network defenses. Adversarial machine learning is a critical area of research. If not ad-
dressed, there is increasing potential for novel attack strategies that seek to exploit the
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inherent weaknesses that exist within machine learning models. For this reason, this survey
addresses the issues related to the robustness of machine learning models against adversar-
ial attacks across the cybersecurity domain, where problems of functionality-preservation
are recognized. While we use a case study of a network-based intrusion detection system
(NIDS), these issues might be applicable in other areas where ML systems are used. We
focus on papers detailing adversarial attacks and defenses. Attacks are further classified
by attack type, attack objective, domain, model, knowledge required, and constraints.
Defenses are further categorised by defense type, domain, and model. In the domain of
network traffic analysis, adversaries need to evade detection methods. A suitable network
firewall will reject adversarial traffic and malformed packets while accepting legitimate
traffic. Therefore, successful adversarial examples must be crafted to comply with domain
constraints such as those related to the transmission control protocol/internet protocol
(TCP-IP) stack. Moreover, adversaries wish to preserve the functionality of their attacks.
A successful attack must not lose functionality at the expense of evading a classifier. The
essence of a simple adversarial attack is that a malicious payload evades detection by mas-
querading as benign. We refer to this characteristic as functionality-preserving. Compared to
domains such as computer vision whereby the image modification is only to fool human
vision sensors, adversarial attacks in other domains are significantly more challenging to
fool both a human and/or system-based sensor.
The major contributions of this paper are:

• We conduct a survey of the literature to identify the trends and characteristics of
published works on adversarial learning in relation to cybersecurity, addressing both
attack vectors and defensive strategies;

• We address the issue of functionality-preservation in adversarial learning in contrast
to domains such as computer vision, whereby a malformed input must suitably
fool a system process as well as a human user such that the original functionality is
maintained despite some modification;

• We summarise this relatively-new research domain to address the future research
challenges associated with adversarial machine learning across the cybersecurity
domain.

The remainder of this paper is structured as follows: Section 2 provides an overview
of other important surveys; Section 3 discusses background material; Section 4 details the
literature survey; Section 5 details our results; Section 6 provides our discussion, and the
conclusion summarises our findings and identifies research challenges.

2. Related Works

Corona et al. [24] provided a useful overview of intrusion detection systems. They
predicted greater use of machine learning for intrusion detection and called for further
investigation into adversarial machine learning. We now consider a number of related
academic surveys that have been presented in the last five years with a focus on adversarial
examples, security, and intrusion detection.

2.1. Secure and Trustworthy Systems

Machine learning systems are used in increasingly diverse areas including those of
cyber-security. Trust in these systems is essential. Hankin and Barrèere [25] note that there
are many aspects to trustworthiness: reliability, trust, dependability, privacy, resilience, and
safety. Adversaries ranging from solo hackers to state-sponsored APTs have an interest in
attacking these systems. Successful attacks against machine learning models mean that
systems are vulnerable and therefore potentially dangerously deployed in cyber-security
domains. Cho et al. [26] proposed a framework considering the security, trust, reliability
and agility metrics of computer systems; however, they did not specifically consider
adversarial machine learning, or robustness to adversarial examples.
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2.2. Adversarial ML in General

Papernot et al. [13] noted that the security and privacy of ML is an active but nascent
area of research. In this early work, they systematized their findings on security and privacy
in machine learning. They noted that a science for understanding many of the vulnerabili-
ties of ML and countermeasures is slowly emerging. They analysed ML systems using the
classical confidentiality, integrity and availability (CIA) model. They analysed: training in
adversarial settings; inferring adversarial settings; and robust, fair, accountable, and private
ML models. Through their analysis, they identified a total of eight key takeaways that
point towards two related notions of sensitivity. The sensitivity of learning models to their
training data is essential to privacy-preserving ML, and similarly the sensitivity to inference
data is essential to secure ML. Central to both notions of sensitivity is the generalization
error (i.e., the gap between performance on training and test data). They focused on attacks
and defenses for machine learning systems and hoped that understanding the sensitivity
of modern ML algorithms to the data they analysed will foster a science of security and
privacy in machine learning. They argued that the generalization error of models is key to
secure and privacy-preserving ML.

Zhang and Li [27] discussed opportunities and challenges arising from adversarial
examples. They introduced adversarial examples and surveyed state-of-the-art adversarial
example generation methods and defenses, before raising future research opportunities
and challenges. They noted three challenges for the construction of adversarial examples:

1. The difficulty of building a generalizable method;
2. The difficulty in controlling the size of perturbation (too small will not result in

adversarial examples, and too large can easily be perceived);
3. Difficulty in maintaining adversarial stability in real-world applications (some adver-

sarial examples do not hold for transformations such as blurring).

They identified two challenges for defense against adversarial examples. First, black-
box attacks do not require knowledge of the model architecture and therefore cannot be
easily resisted by modifying the model architecture or parameters. Second, defenses are
often specific to an attack method and are less suitable as a general defense. Defenses
against one attack method do not easily defend against adversarial examples based on
other methods for generating adversarial examples. They subsequently identified three
opportunities:

1. Construction of adversarial examples with high transferability (high confidence);
2. Construction of adversarial examples without perturbing the target image; they

suggested that perturbation size will affect the success rate and transferability of
adversarial examples;

3. Considering and modeling physical transformations (translation, rotation, brightness,
and contrast).

Their focus was on the visual domain and they did not specifically discuss IDS or
functionality-preserving adversarial attacks.

Apruzzese et al. [28] examined adversarial examples and considered realistic attacks,
highlighting that most literature considers adversaries with complete knowledge about
the classifier and are free to interact with the target systems. They further emphasized
that few works consider “relizable” perturbations that take account of domain and/or real-
world constraints. There is perhaps a perception that the threat from adversarial attacks is
low based on the assumption that much prior knowledge of the system is required. This
approach has some merit; however, this could be an over-confident position to take. Their
idea was that realistically the adversary has less knowledge of the system. This conflicts
with Shannon’s maxim [29] and Kerckhoff’s second cryptographic principle [30], which
states that the fewer secrets the system contains, the higher its safety. The pessimistic
“complete knowledge” position is often used in cryptographic studies; in cryptographic
applications it is considered safe because it is a bleak expectation. This expectation is also
realistic since we must expect well-resourced adversaries to eventually discover or acquire
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all details of the system. Many adversarial example papers assume complete knowledge;
this is however unlikely to always be the case, perhaps leading some to believe models
are more secure against adversarial examples. However, the transferability property of
adversarial examples means that complete knowledge is not required for successful attacks,
and black-box attacks are possible with no prior knowledge of machine learning models. An
adversary may only learn through interacting with the model. We must therefore account
for the level of knowledge required by an adversary, including white-box, black-box, and
gray-box knowledge paradigms.

2.3. Intrusion Detection

Wu et al. [31] considered several types of deep learning systems for network attack
detection, including supervised and unsupervised models, and they compared the effi-
ciency and effectiveness of different attack detection methods using two intrusion detection
datasets: the “KDD Cup 99” dataset and an improved version known as NSL-KDD [32,33].
These two datasets have been used widely in the past by academic researchers; however,
they do not fairly represent modern network traffic analysis problems due to concept-drift.
Networks have increasing numbers of connected devices, increasing communications per
second, and new applications using the network. The use of computer networks and the
Internet has changed substantially in twenty years. The continued introduction of IPv6,
network address translation, Wi-Fi, mobile 5G networks, and cloud providers has changed
network infrastructure [34]. Furthermore, the Internet is now increasingly used for financial
services. Akamai [35] reported that financial services now see millions or tens of millions
of attacks each day. These attacks were less common twenty years ago. Furthermore, social
media now constitutes much internet traffic and most social media platforms were founded
after the KDD Cup 99 and NSL-KDD datasets were introduced. For example, Facebook,
YouTube, and Twitter were founded in 2004, 2005, and 2006, respectively. This limits the
validity of some research using outdated datasets. Therefore, we suggest research should
use modern datasets that represent modern network traffic.

Kok et al. [36] analysed intrusion detection systems (IDS) that use a machine learning
approach. They specifically considered the datasets used, the ML algorithms, and the eval-
uation metrics. They warned that some researchers are still using datasets first introduced
decades ago (e.g., KDD Cup 99, NSL-KDD). They warned that this trend could result in
no or insufficient progress on IDS. This would ultimately lead to the untenable position of
obsolete IDS while intrusion attacks continue to evolve along with user behaviour and the
introduction of new technologies. Their paper did not consider adversarial examples or
robustness of ML models. Alatwi and Morisset [37] tabulated a list of network intrusion
datasets in the literature that we extend in Table 1.

Table 1. Datasets used in the literature.

Work Dataset Network Year Attack Categories

[32] KDD Cup 99 Traditional 1999 DoS, Probe, User 2 Root and Remote to User
[38] NSL-KDD Traditional 2009 DoS, Probe, User 2 Root and Remote to User
[39] DARPA Traditional 2009 DDoS, Malware, Spambots, Scans, Phishing
[40] CTU-13 Traditional 2011 Botnet
[41] Kyoto Traditional 2015 Botnet
[42] UNSW-NB15 Traditional 2016 Backdoors, Fuzzers, DoS, Generic, Shell code, Reconnaissance, Worms, Exploits, Analysis
[43] WSN-D5 Wireless 2016 Greyhole, Blackhole, Scheduling, Flooding.
[44] SDN Traffic SDN 2016 DDoS
[45] CICIDS2017 Traditional 2017 DoS, DDoS, SSH-Patator, Web, PortScan, FTP-Patator, Bot.
[46] Mirai IoT 2017 Botnet
[45] CICIDS2018 Traditional 2018 Bruteforce Web, DoS, DDoS, Botnet, Infiltration.
[45] CICDDoS2019 Traditional 2019 DDoS
[47] Bot-IOT IoT 2018 DDoS, DoS, OS Service Scan, Keylogging, Data exfiltration
[48] Kitsune IoT 2018 Recon, Man in the Middle, DoS, Botnet Malware
[49] IEEE BigData Cup Traditional 2019 N/A
[50] HIKARI-2021 IoT 2021 Brute force attack, Brute force attack (XMLRPC), Vulnerability, probing, Synthetic Traffic
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Martins et al. [51] considered adversarial machine learning for intrusion detection
and malware scenarios, noting that IDS are typically signature-based, and that machine
learning approaches are being widely employed for intrusion detection. They described
five “tribes” of ML algorithms before detailing some fundamentals of adversarial machine
learning, including commonly used distance metrics: L∞, L0, and L2. They subsequently
described common white-box methods to generate adversarial examples, including: Broy-
den–Fletcher–Goldfarb–Shanno algorithm (L-BFGS), the fast gradient sign method (FGSM),
Jacobian-based saliency map attack (JSMA), Deepfool, and Carlini and Wagner attacks
(C&W). They also considered black-box methods using generative adversarial networks
(GANS). Traditional GANS sometimes suffer problems of mode collapse. Wasserstein
generative adversarial networks (WGANS) solve some of these problems. They introduced
Zeroth-order optimization attack (ZOO) as a black-box method. ZOO estimates the gradi-
ent and optimises an attack by iteratively adding perturbations to features. They noted
that most attacks have been initially tested in the image domain, but can be applied to
other types of data, which poses a security threat. Furthermore, they considered there is
a trade-off when choosing an adversarial attack. For example, JSMA is more computa-
tionally intensive than FGSM but modifies fewer features. They considered JSMA to be
the most realistic attack because it perturbs fewer features. When considering defenses,
they tabulated advantages and disadvantages of common defenses. For example, feature
squeezing is effective in image scenarios, but unsuitable for other applications because
compression methods would result in data loss for tabular data. They noted that GANS are
a very powerful technique that can result in effective adversarial attacks where the samples
follow a similar distribution to the original data but cause misclassification.

2.4. Cyber-Physical Systems

Cyber-physical systems (CPSs) rely on computational systems to create actuation of
physical devices. The range of devices is increasing from factory operations to power
stations, autonomous vehicles, and healthcare operations. Shafique et al. [52] considered
such smart cyber-physical systems. They discussed reliability and security vulnerabilities
of machine learning systems, including hardware trojans, side channel attacks, and ad-
versarial machine learning. This is important, because system aging and harsh operating
environments mean CPSs are vulnerable to numerous security and reliability concerns.
Advanced persistent threats could compromise the training or deployment of CPSs through
stealthy supply-chain attacks. A single vulnerability is sufficient for an adversary to cause
a misclassification that could lead to drastic effects in a CPS (e.g., an incorrect steering
decision of an autonomous vehicle could cause a collision). We consider that vulnerabilities
in ML could lead to a range of unwanted effects in CPSs, including those that could lead to
life-threatening consequences [16]. The Stuxnet worm is an example of malware with dire
consequences.

2.5. Contributions of This Survey

Our main objectives are:

• Collect and collate current knowledge regarding robustness and functionality-preserving
attacks in cybersecurity domains;

• Formulate key takeaways based on our presentation of the information, aiming to
assist understanding of the field.

This survey aims to complement existing work while addressing clear differences, by
also studying the robustness of adversarial examples, specifically functionality-preserving
use cases. Most previous work aimed to improve the accuracy of models or examine the
effect of adversarial examples. Instead, we consider the robustness of models to adversarial
examples.

Machine learning systems are already widely adopted in cybersecurity. Indeed, with
increasing network traffic, automated network monitoring using ML is becoming essential.
Modern computer networks carry private personal and corporate data including financial
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transactions. These data are an attractive lure to cyber-criminals. Adversaries may wish to
steal or disturb data. Malware, spyware, and ransomware threats are endemic on many
computer networks. IDS help keep networks safe; however, an adversarial arms race exists,
and it is likely that adversaries, including advanced persistent threats, are developing new
ways to evade network defenses. Some research has evaded intrusion detection classifiers
using adversarial examples.

We identify that while adversarial examples in the visual domain are well understood,
less work has focused on how adversarial examples can be applied to network traffic
analysis and other non-visual domains, similarly to machine learning models used for
image and object recognition. For example, convolutional neural networks (CNNs) are
well researched, whereas other model types used for intrusion detection, e.g., recurrent
neural networks (RNNs), receive less attention. The generation of adversarial examples
to fool IDS is more complicated than visual domains because the features include discrete
and non-continuous values [53]. Compounding the defense against adversarial examples
is the overconfident assumption that successful adversarial examples require “complete
knowledge” of the model and parameters. On the contrary, black-box attacks are possible
with no or limited knowledge of the model. Most defenses so far proposed consider the
visual domain and most are ineffective against strong and black-box attacks. This survey
addresses the problem of adversarial machine learning across cyber-security domains.
Further research is required to head off future mature attack methods that could facilitate
more complex and destructive attacks.

3. Background

Here we provide further background on some key concepts that are related to adver-
sarial learning, to support the reader of this survey. We cover the topics of model training,
robustness, common adversarial example algorithms, adversary capabilities, goals, and
attack methods.

3.1. Model Training

It is important to consider the dataset on which models are trained, because the
trustworthiness and quality of a model is impacted by the distribution, quality, quantity,
and complexity of dataset training samples [54]. Biased models are more susceptible
to adversarial examples. Therefore, models must be trained on unbiased training data;
however, Johnson et al. considered that the absolute number of training samples may be
more important than the ratio of class imbalance [55]. For example, a small percentage
of a large number of samples is sufficient to train a model regardless of high class im-
balance (e.g., 1% malicious samples in 1 million network flows yields 10,000 samples).
Unfortunately, cybersecurity datasets are often prone to bias, in part because of limited
samples of some malicious traffic (e.g., zero-day attacks) and large amounts of benign traffic.
Sheatsley et al. [56] state biased distributions enable successful adversarial examples with
the modification of very few features.

3.1.1. Resampling

Three common data-level techniques tackle biased datasets by resampling:

• Oversampling: Random samples of minority classes are duplicated until the bias of
majority classes is compensated;

• Undersampling: Random samples from the majority class are discarded until the bias
of majority classes is compensated;

• Hybrid Sampling: Combines modest oversampling of minority classes and modest
undersampling of majority classes aiming to give better model performance than
applying either technique alone.

Algorithm-level techniques tackling dataset bias commonly employ cost-sensitive
learning where a class penalty or weight is considered or decision thresholds are shifted to
reduce bias [55].
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3.1.2. Loss Functions

When training a model the goal is to minimize the loss function through use of an
optimizer that adjusts the weights at each training step. Common optimizers include
stochastic gradient descent (SGD), adaptive moments (Adam), and root mean squared
propagation (RMSProp). Commonly, a regularizer is employed during training to ensure
the model generalizes well to new data. A dropout layer is often employed as a regularizer.

The loss function must be chosen carefully: for binary classification binary_crossentropy
(Equation (1)) is usual; for multiclass classification problems categorical_crossentropy
(Equation (2)) or mean_squared_error (Equation (3)) are suitable.

fbinary_crossentropy(y) = −ylabel
i log yiiprediction −

(
1− ylabel

i

)
log

(
1− yprediction

i

)
(1)

fcategorical_crossentropy(y) = −
categories

∑
i=1

ylabel
i log yprediction

i (2)

fmean_squared_error(y) =
1

categories

categories

∑
i=1

(
ylabel

i − yprediction
i

)2
(3)

3.1.3. Cross Validation

Cross validation [57] is a widely used data resampling method to assess the general-
izability of a model and to prevent over-fitting. Cross validation often involves stratified
random sampling, meaning the sampling method retains the class proportions in the learn-
ing set. In leave-one-out cross validation, each sample is used in turn as the validation
set. The test error approximates the true prediction error; however, it has high variance.
Moreover, its computational cost can be high for large datasets. k-fold cross validation
aims to optimise the bias/variance trade-off. In k-fold cross validation, the dataset is
randomly split into k equal size partitions. A single partition is retained for test data,
and the remaining k − 1 partitions are used for training. The cross validation steps are
reiterated until each partition is used once for validation, as shown in Figure 1. The results
are averaged across all iterations to produce an estimation of the performance of the model
(Equation (4)). Refaelzadeh et al. highlighted risks of elevated Type I errors (false positives).
With larger values of k, variance is reduced. Moreover, bias also reduces because the model
is trained on more of the dataset. We posit that resampling techniques could be used to
improve robustness against adversarial examples.

CV(k) =
1
k

k

∑
i=1

MSEi (4)

Figure 1. k-fold cross validation.

3.1.4. Bootstrapping

Bootstrapping is resampling with replacement, and is often used to statistically quan-
tify the performance of a model, to determine if a model is statistically significantly better
than other models.
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3.2. Robustness

Robustness can be defined as the performance of well-trained models facing adversar-
ial examples [58]. Essentially, robustness considers how sensitive a model’s output is to
a change in the input. The robustness of a model is related to the generalization error of
the model. There is a recognised trade-off between accuracy and robustness in machine
learning. That is, highly accurate models are less robust to adversarial examples. Machine
learning models in adversarial domains must be both highly accurate and robust. Therefore,
improving the robustness of machine learning models enables safer deployment of ML
systems across a wider range of domains.

To critically evaluate and make fair comparisons, robustness metrics are necessary.
Common metrics include precision (Equation (5)), recall (Equation (6)), and F1-score
(Equation (7)).

Precision =
TruePositives

TruePositives + FalsePositives
(5)

Recall =
TruePositives

TruePositives + FalseNegatives
(6)

F1Score = 2× Precision× Recall
Precision + Recall

(7)

Other possible useful metrics to evaluate robustness include: the Lipschitzian property,
which monitors the changes in the output with respect to small changes to inputs; and
CLEVER (cross-Lipschitz extreme value for network robustness), which is an extreme
value theory (EVT)-based robustness score for large-scale deep neural networks (DNNs).
The proposed CLEVER score is attack-agnostic and computationally feasible for large
neural networks improving on the Lipschitzian property metric [59]. Table 2 details some
advantages and disadvantages of some robustness metrics.

Table 2. Robustness metrics.

Work Metric Advantages Disadvantages

N/A F1-Score Commonly used by researchers. Biased by the majority class
[59] CLEVER Attack-agnostic and computa-

tionally feasible.
CLEVER is less suited to black-box
attacks and where gradient masking
occurs [60]; However, extensions to
CLEVER help mitigate these scenar-
ios [61].

[62] Empirical robustness Suitable for very deep neural net-
works and large datasets.

N/A

3.3. Common Adversarial Example Algorithms

There are numerous algorithms to produce adversarial examples. Szegedy et al. [17]
used a box-constrained limited memory L-BFGS. Other methods include FGSM [63] and
iterative derivatives, including the basic iterative method (BIM) and projected gradient
descent (PGD). JSMA optimises for the minimal number of altered features (L0). The Deep-
fool algorithm [62] optimises for the root-mean-square (Euclidean distance, L2). Carlini and
Wagner [64] proposed powerful C&W attacks optimizing for the L0, L2, and L∞ distance
metrics. There are many algorithms to choose from. Furthermore, Papernot et al. [65]
developed a software library for the easy generation of adversarial examples. There are
now a number of similar libraries that can be used to generate adversarial examples, as
shown in Table 3.
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Table 3. Libraries for Generating Adversarial Examples.

Work Library Name Year Advantages Disadvantages

[65] CleverHans 2016 Recently updated to v4.0.0,
well used by the community.
MIT License

Can be complicated to
configure.

[66] Foolbox 2017 Fast generation of adversarial
examples. MIT License

Large number of open is-
sues.

[67] Adversarial robustness tool-
box

2018 Well maintained and sup-
ported. Supports most known
machine learning frame-
works. Extensive attacks and
model robustness tools are
supported.

Does not support all
models.

[68] Advertorch 2019 GNU lesser public license. Few active contributors.

Moreover, algorithms such as FGSM that modify all features are unlikely to preserve
functionality. Algorithms such as JSMA that modify a small subset of features are not
guaranteed to preserve functionality; however, with fewer modified features, the likelihood
improves. Checking for and keeping only examples that preserve functionality is possible,
although it is a time-consuming and inelegant solution. A potentially better solution could
ensure only functionality-preserving adversarial examples are generated.

When considering the robustness of machine learning models, we first must consider
the threat model. We must consider how much the adversary knows about the classifier,
ranging from no knowledge to perfect knowledge. Adversaries may have a number of different
goals:

1. Accuracy degradation (where the adversary wants to sabotage the effectiveness of the
overall classifier accuracy);

2. Target misclassification (where the adversary wants to misclassify a particular instance
as another given class);

3. Untargeted classification (where the adversary wants to misclassify a particular in-
stance to any random class).

We now consider the attack surface. In IDS, the attack surface can be considered as
an end-to-end pipeline, with varying vulnerabilities and potential for compromise at each
stage of the pipeline.

In one basic pipeline, as shown in Figure 2, the raw network traffic on network
interfaces is collected as packet capture files (PCAPs), which are then processed into
network flows. There are different applications that could be used to process PCAPs into
network flows. CICFlowMeter [69] is a network traffic flow generator and analyser that
has been used in cyber-security datasets [70,71] and produces bidirectional flows with
over 80 statistical network traffic features. The generated flows are unlabelled and so
must be labelled manually with the traffic type, typically benign/malicious, although
multiclasses could be labelled given sufficient information including attack type, IP source
and destination dyad, duration, and start time. Finally, the labelled flows are used to train
the model. Repetitive training cycles could enable detection of new attacks; however, the
cyclic nature of the training means that an adversary could attack any iteration of training.
Furthermore, an adversary could choose to attack any point in the pipeline. The training
data used to train the model generally consist of feature-vectors and expected outputs,
although some researchers are considering unsupervised learning models. The collection
and validation of these data offer an attack surface. Separately, the inference phase also
offers an attack surface. It is interesting to note that the size of the feature set a machine
learning model uses can be exploited as an attack surface. A fundamental issue is that each
feature processed by a model may be modified by an adversary. Moreover, Sarker et al. [72]
noted that the computational complexity of a model can be reduced by reducing the feature
dimensions. Large feature sets include more features and hence provide more opportunities
to an adversary for manipulation. Almomani et al. [73] indicated that accuracy can be
maintained with fewer features, and McCarthy et al. [74] indicated that more features
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tend to reduce the necessary size of perturbations. Therefore, larger feature sets are more
readily perturbed than smaller feature sets, which have fewer modifiable features and
hence require larger perturbations.

Figure 2. End-to-end pipeline for network intrusion detection system.

3.4. Threat Model—Adversary Capabilities

Adversaries are constrained by their skills, knowledge, tools, and access to the system
under attack. An insider threat might have access to the classification model and other
associated knowledge, whereas an external threat might only be able to examine data
packets. While the attack surface may be the same for both adversaries, the insider threat is
potentially a much stronger adversary because they have greater knowledge and access.
Adversary capabilities mean that attacks can be split into three scenarios: white-box,
black-box, and gray-box.

In white-box attacks, an adversary has access to all machine learning model param-
eters. In black-box attacks, the adversary has no access to the machine learning model’s
parameters. Adversaries in black-box scenarios may therefore use a different model, or
no model at all, to generate adversarial examples. The strategy depends on successfully
transferring adversarial examples to the target model. Gray-box attacks consider scenarios
where an adversary has some, but incomplete, knowledge of the system. White-box and
black-box are most commonly considered.

3.5. Threat Model—Adversary Goals

Adversaries aim to subvert a model through attacking its confidentiality, integrity, or
availability. Confidentiality attacks attempt to expose the model or the data encapsulated
within. Integrity attacks occur when an adversary attempts to control the output of the
model, for example, to misclassify some adversarial traffic and therefore allow it to pass
a detection process. Availability attacks could misclassify all traffic types, or deteriorate
a model’s confidence, consistency, performance, and access. In this way, an integrity
attack resembles a subset of availability attack, since an incorrect response is similar in
nature to a correct response being unavailable; however, the complete unavailability of a
response would likely be more easily noticed than decreases in confidence, consistency,
or performance. The goals of an adversary may be different but are often achieved with
similar methods.

3.6. Threat Model—Common Attack Methods

Figure 3 shows some common categories of adversarial machine learning attack
methods, that we explore in this section.
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Figure 3. Common adversarial machine learning attacks.

3.6.1. Poisoning

An adversary with access to the training data or procedure manipulates it, implanting
an attack during the training phase, when the model is trained on adversarial training
data. This is achieved with carefully crafted noise or sometimes random noise. Unused
or dormant neurons in a trained deep neural network (DNN) signify that a model can
learn more; essentially, an increased number of neurons allows for a greater set of distinct
decision boundaries forming distinct classifications of data. The under-utilised degrees of
freedom in the learned model could potentially be used for unexpected classification of
inputs. That is, the model could learn to provide selected outputs based on adversarial
inputs. These neurons have very small weights and biases. However, the existence of
such neurons allows successful poisoning attacks through training the model to behave
differently for poisoned data. This suggests that distillation [75] could be effective at
preventing poisoning attacks, because smaller models have lower knowledge capacity and
likely fewer unused neurons. Distillation reduces the number of neurons that contribute to
a model by transferring knowledge from a large model to a smaller model. Despite initial
analysis indicating reduction in the success of adversarial attacks, Carlini [64] experimented
with three powerful adversarial attacks and a high confidence adversarial example in a
transferability attack, and found that distillation does not eliminate adversarial examples
and provides little security benefit over undistilled networks in relation to powerful attacks.
Unfortunately, they did not specifically consider poisoning attacks. Additional experiments
could determine whether distillation is an effective defense against poisoning attacks.
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3.6.2. Evasion

In evasion attacks, the adversary is often assumed to have no access to the training
data. Instead, adversaries exploit their knowledge of the model and its parameters, aiming
to minimise the cost function of adversarial noise, which, when combined with the input,
causes changes to the model output. Untargeted attacks lead to a random incorrect output,
targeted attacks lead to a specific incorrect output, and an attack may disrupt the model
by changing the confidence of the output class. In the visual domain, the added noise is
often imperceptible to humans. In non-visual domains such as intrusion detection, this
problem may be much more challenging, since even small modifications may corrupt
network packets and may cause firewalls to drop these malformed packets. This highlights
the need for functionality preservation in adversarial learning as a clear distinction from
vision-based attacks that exploit the human visual system.

3.6.3. Transferability

The transferability property of adversarial examples means that adversarial examples
generated against one model will likely also work against other models trained for the same
purpose. The second model need not have the same architecture or underlying model as the
first and need not be trained on the same data. The transferability property of adversarial
examples can form the basis for some black-box attacks where a surrogate model is used to
generate adversarial examples that are subsequently presented to the target model.

4. Methodology

In this section, we describe our approach to surveying the literature so as to conduct
an effective and meaningful survey of the literature.

Eligibility Criteria We determined our search terms leading to the most relevant
articles. We chose the search terms detailed in Table 4.

Table 4. Topics and associated search terms used in this survey.

Topic Search Query

Cyber security/intrusion detection (“cyber security” OR “intrusion detection” OR “IDS”)
Adversarial machine learning attacks and de-
fences

(“adversarial machine learning” OR “machine learning”
OR “adversarial example”) and (“attack” OR “defence”)

Robustness/Functionality Preservation ((“robustness” OR “generalization error” OR “accuracy”
OR “f1score” OR “f-score” OR “TPR” OR “FPR”) OR
((“functionality” OR “payload”) AND “preservation”)))

We expect these to result in good coverage of the relevant literature. We searched
each database using the identified search terms. The literature search was conducted up to
September 2021. Generally, we have chosen to exclude works that have not yet been peer-
reviewed, such as those appearing on arXiv, unless deemed by the authors as a significant
paper that makes a clear contribution to the subject domain. We collated the searches and
any subsequent duplicates were removed. Each paper was screened by reading the title
and abstract to determine the relevance. Inclusion criteria were: the article is related to
functionality preservation in adversarial machine learning for cybersecurity or intrusion
detection with insight into robust classification.

From this large list, we specifically focused on adversarial machine learning attacks
and defenses, narrowing the literature down to relevant papers. Our selection process was
roughly based on the preferred reporting items for systematic meta-analysis (PRISMA)
framework [76]. Figure 4 details our selection process.
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Figure 4. Preferred reporting items for systematic meta-analysis.

Information Sources We selected the following databases with a sizeable computer
science element to search and retrieve literature: IEEE Xplore, ACM Digital Library,
ScienceDirect, Scopus, SpringerLink, and Google Scholar.

5. Results

In this section, we describe the results of our search and selection process. We further
describe our classification scheme, and tabulate and discuss our findings, including ad-
versarial attacks in traditional and cybersecurity domains of malware, IDS, and CPS. We
included 146 relevant papers in this survey.

5.1. Classification Scheme

We classify attacks by attack type, attack objective (targeted/untargeted), domain,
model, knowledge required, and whether any constraints are placed on the adversarial
examples. Defenses are classified by type, domain, and model. We summarise the attacks
in Table 5.
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Table 5. Chronologically ordered summary of adversarial example attacks.

Work Year Attack Type Obj Domain Model Knowledge Constraint
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[17] 2014 L-BFGS X X X X X X
[77] 2013 GradientDescent X X X X X X
[78] 2016 Adversarial Sequences X X X X X X
[79] 2016 JSMA X X X X X X X
[62] 2016 Deepfool X X X X X
[80] 2017 AddSent,AddOneSent X X X X X X
[81] 2018 GAN X X X X X
[82] 2017 EnchantingAttack X X X X X
[82] 2017 StrategicAttack X X X X X
[64] 2017 C&W, L0, L2, L∞ X X X X X
[83] 2017 FGSM,JSMA X X X X X
[84] 2018 Generative RNN X X X X X X
[85] 2018 NPBO X X X X X X
[86] 2018 GADGET X X X X X X
[87] 2018 JSMA,FGSM,DeepFool,CW X X X X X
[88] 2018 FGSM X X X X X
[89] 2018 IDS-GAN X X X X X
[90] 2018 ZOO,GAN X X X X X
[91] 2019 One Pixel Attack X X X X X X
[92] 2019 ManifoldApproximation X X X X X X
[93] 2019 FGSM,BIM,PGD X X X X X X
[94] 2019 GAN Attack X X X X X X
[95] 2020 PWPSA X X X X X X X X
[95] 2020 GA X X X X X X X X
[96] 2020 One Pixel Attack X X X X X X
[97] 2020 Opt Attack,GAN Attack X X X X X X
[98] 2021 GAMMA X X X X X
[99] 2021 UAP X X X X X X X

[100] 2020 Variational Auto Encoder X X X X X X
[101] 2021 Best-Effort Search X X X X X X X X X X

5.2. Adversarial Example Attacks

The attacks we focus on exploit adversarial examples that cause differences in the
output of neural networks. Adversarial examples were discovered by Szegedy et al. [17].
Adversarial examples are possible in ANN as a consequence of the properties of neural
networks; however, they are possible for other ML models. This complicates mitigation
efforts, and adversarial examples can be found for networks explicitly trained on adversarial
examples [102]. Furthermore, adversarial examples can be algorithmically generated, e.g.,
using gradient descent. Moreover, adversarial examples are often transferable, that is, an
adversarial example presented to a second machine learning model trained on a subset
of the original dataset may also cause the second network to misclassify the adversarial
example.

5.2.1. Adversarial Examples—Similarity Metrics

In the visual domain, distance metrics are well used to judge how similar two inputs
are, and therefore how easy the differences might be perceived. The following metrics are
commonly used to describe the difference between normal and adversarial inputs:

• Number of altered pixels, (L0);
• Euclidean distance (L2, root-mean-square);
• Maximum change to any of the co-ordinates, (L∞).

Human perception may not be the best criterion to judge a successful adversarial input.
A successful attack in a vision ML task may be to fool a human. Success in an ML-based
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system is to fool some other detection routine, while conforming to the expected inputs of
the system. For example, a malicious packet must remain malicious after any perturbation
has been applied. If a perturbed packet is very close to the original packet, this would only
be considered successful if it also retained its malicious properties, and hence its intended
function.

5.2.2. Adversarial Examples-Types of Attack

White-Box Attacks: Most white-box attacks are commonly achieved through gradient
descent to increase the loss function of the target model. The algorithmic generation
of adversarial examples is possible. Moreover, Papernot et al. [65] developed a software
library for the easy generation of adversarial examples and other libraries are now available.
An early gradient descent approach was proposed by Szegedy et al. [17] using a box-
constrained limited memory L-BFGS. Given an original image, this method finds a different
image that is classified differently, whilst remaining similar to the original image. Gradient
descent is used by many different algorithms; however, algorithms have been designed
to be optimized for different distance metrics. There are numerous gradient descent
algorithms that produce adversarial examples; they can differ in their optimization and
computational complexity. We note the relative computational complexity of common
adversarial example algorithms in Table 6 (adapted from [27]). High success rates correlate
with high computational complexity. We expect this correlation to be more pronounced
for functionality-preserving attacks. FGSM [63] was improved by Kurakin et al. [103],
who refined the fast gradient sign by taking multiple smaller steps. This iterative granular
approach improves on FGSM by limiting the difference between the original and adversarial
inputs. This often results in adversarial inputs with a predictably smaller L∞ metric.
However, FGSM modifies all parameters. This is problematic for features that must remain
unchanged or for discrete features such as application programming interface (API) calls.
JSMA differs from FGSM in that it optimises to minimize the total number of modified
features (L0 metric). In this greedy algorithm, individual features are chosen with the
aim of step-wise increasing the target classification in each iteration. The gradient is
used to generate a saliency map, modelling each feature’s impact towards the resulting
classification. Large values significantly increase the likelihood of classification as the target
class. Thus, the most important feature is modified at each stage. This process continues
until the input is successfully classified as the target class, or a threshold number of pixels
is reached. This algorithm results in adversarial inputs with fewer modified features. The
Deepfool algorithm [62] similarly uses gradient descent but optimises for the root-mean-
square, also known as Euclidean distance (L2). This technique simplifies the task of shifting
an input over a decision boundary by assuming a linear hyper-plane separates each class.
The optimal solution is derived through analysis and subsequently an adversarial example
is constructed; however, neural network decision boundaries are not truly linear. Therefore,
subsequent repetitions may be required until a true adversarial image is found.

Table 6. Computational complexity of common adversarial example algorithms.

Method Computational Complexity Success Rate

L-BFGS High High
FGSM Low Low
JSMA High High

DeepFool Low Low
One-pixel Low Low

CW Attack High High
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The optimizations for different distance metrics are types of constraint: maximum
change to any feature (L∞); minimal root-mean-square (L2); minimal number of altered
features (L0). Constrained adversarial examples are important for functionality-preserving
attacks. Additional constraints for specific domains are likely required, and this remains an
open avenue for further research.

Most gradient descent algorithms were originally presented in the visual domain
and used on images and pixel values. The pixel values of images are often presented as
continuous values (0–255). The use of adversarial examples with discrete data values is
less well explored and remains an interesting avenue for further research.

Black-Box Attacks: Researchers have also considered black-box attacks that do rely
on gradient descent. Some black-box techniques commonly rely on the transferability of
adversarial examples. Table 5 shows that few researchers employed the transferability of
adversarial examples. Other common black-box techniques include GANS and genetic
algorithms (GAs). Sharif et al. [104] proposed a method of attacking DNNs with a general
framework to train an attack generator or generative adversarial network (GAN). GANs
can be trained to produce new, robust, and inconspicuous adversarial examples. Attacks
like Biggio et al. [77] are more suitable for the security domain, where assessing the security
of algorithms and systems under worst-case attacks is needed [105,106].

An important consideration in attacks against intrusion detection systems is that
attackers cannot perform simple oracle queries against an intrusion detection system and
must minimize the number of queries to decrease the likelihood of detection. Apruzzese
et al. [28] further note that the output of the target model is not directly observable by
the attacker; however, exceptions occur where detected malicious traffic is automatically
stopped or dropped, or where the attacker gains access to/or knowledge of the system.

Gray-box attacks consider scenarios where an adversary has only partial knowledge
of the system. Biggio et al. [77] highlighted the threat from skilled adversaries with
limited knowledge; more recently, gray-box attacks have received some attention: Kuppa
et al. [92] considered malicious users of the system with knowledge of the features and
architecture of the system, recognizing that attackers may differ in their level of knowledge
of the system. Labaca-Castro et al. [99] used universal adversarial perturbations, showing
that unprotected systems remain vulnerable even under limited knowledge scenarios.
Li et al. [101] considered limited knowledge attacks against cyber physical systems and
successfully deployed universal adversarial perturbations where attackers have incomplete
knowledge of measurements across all sensors.

Building on Simple Adversarial Examples: Table 5 shows that much research consid-
ers simple adversarial examples, although less research considers sequences of adversarial
examples or transferability. We chose to classify attacks as either a simple adversarial ex-
ample, a sequence of adversarial examples, or a transferable adversarial example. A simple
adversarial example is sufficient to alter the output of a simple classifier. Lin et al. [82]
suggested that using adversarial examples strategically could affect the specific critical
outputs of a machine learning system. Sequences of adversarial examples consist of two or
more adversarial examples. Sequences of adversarial examples are more challenging than
simple adversarial examples. Lin et al. [82] further suggested an enchanting attack to lure a
machine learning system to a target state through crafting a series of adversarial examples.
Table 5 shows that most research considers simple adversarial examples. Researchers are
starting to consider sequences of adversarial examples and consider the transferability of
adversarial examples. We chose to classify attacks in this way to clarify the complexity level
of attack types. Furthermore, the table shows that sequences of adversarial examples and
the transferability of adversarial examples is under-represented, providing opportunities
for further research.

5.2.3. Adversarial Examples—Attack Objectives

There is a distinction between the objectives of attacks: targeted or untargeted. An
attack objective might be to cause a classifier to misclassify an input as any other class
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(untargeted) or to misclassify an input as a specific class (targeted). In the cyber-security
domain, IDS often focus on binary classification: malicious or benign. For binary classifica-
tion the effect of targeted and untargeted attacks is the same. More complex multi-class
IDS can help network analysts triage or prioritise different types of intrusions. Network
analysts would certainly treat a distributed denial of service (DDoS) attack differently than
a BotNet or infiltration attempt. Adversaries could gain significant advantage through
targeted attacks, for example, by camouflaging an infiltration attack as a comparatively less
serious network intrusion.

Recent research goes beyond adversarial examples causing misclassification of a single
input. Moosavi-Dezfooli et al. [107] further showed the existence of untargeted universal
adversarial perturbation (UAP) vectors for images, and ventured that this is problematic for
classifiers deployed in real-world and hostile environments. In the cyber-security domain,
Labaca et al. [99] demonstrated UAPs in the feature space of malware detection. They
showed that UAPs have similar effectiveness to adversarial examples generated for specific
inputs. Sheatsley et al. [56] looked at UAP in the constrained domain of intrusion detection.
Adversaries need only calculate one UAP that could be applied to multiple inputs. Pre-
calculation of a UAP could enable faster network attacks (DDoS) that would otherwise
require too much calculation time. Table 5 shows that most research considers untargeted
attacks. Targeted attacks are less represented in the literature. Furthermore, UAPs are a
more recent avenue for research.

5.2.4. Adversarial Examples in Traditional Domains

Table 5 shows that attacks in the visual domain were the subject of much early research,
and the visual domain continues to attract researchers; however, researchers are beginning
to consider attacks against other DNN systems such as machine learning models for natural
language processing, with some considering semantic preserving attacks.

In visual domains, features are generally continuous. For example, pixel values range
from 0 to 255. A consensus exists in the visual domain that adversarial examples are
undetectable to humans. Moreover, the application domain is clearly interrelated with the
choice of machine learning model. Models such as CNNs are appropriate for visual-based
tasks, whereas RNNs are appropriate for sequence-based tasks. We discuss model types in
Section 5.2.6.

Some models, such as recurrent neural networks, cannot be attacked using traditional
attack algorithms; however, some research aims to discover new methods to attack these
systems. Papernot et al. [78] noted that because RNNs handle time sequences by intro-
ducing cycles to their computational graphs, the presence of these computation cycles
means that applying traditional adversarial example algorithms is challenging because
cycles prevent direct computation of the gradients. They adapted adversarial example
algorithms for RNNs and evaluated the performance of their adversarial samples. If the
model is differential, FGSM can be applied even to RNN models. They used a case study of
a binary classifier (positive or negative) for movie reviews. They defined an algorithm that
iteratively modifies words in the input sentence to produce an adversarial sequence that is
misclassified by a well-trained model. They noted that their attacks are white-box attacks,
requiring access to, or knowledge of, the model parameters. Szegedy [17] discovered
the transferability of adversarial examples, noting that the same perturbation can cause a
different network that was trained on a different subset of the dataset to misclassify the
same input. This property of adversarial examples has serious implications because it
means gaining access to a model is unnecessary to attack it. An adversary can employ the
transferability of adversarial examples, where adversarial examples generated against a
model under the adversary’s control can be successfully used to attack the target model.
The transferability of adversarial examples implies that an adversary does not need full
access to a model to attack it (black-box).
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5.2.5. Adversarial Examples in Cyber-Security Domains

Adversarial examples (AE) have been shown to exist in many domains. Indeed,
no domain identified (so far) is immune to adversarial examples [56]. Researchers are
beginning to consider cyber-security domains (Figure 5) where features are often a mixture
of categorical, continuous, and discrete. Some research focuses on adversarial example
attacks against IDS, although few studies specifically consider functionality-preserving
attacks.

Figure 5. Common machine learning tasks in cyber security.

In the visual domain, we briefly discussed the consensus that adversarial examples
are undetectable to humans. However, it is unclear how this idea should be translated
to other domains. Carlini [64] held that, strictly speaking, adversarial examples must be
similar to the original input. However, Sheatsley et al. [56] noted that research in non-
visual domains provides domain-specific definitions: perturbed malware must preserve
its malware functionality [56], perturbations in audio must be nearly inaudible [56], and
perturbed text must preserve its meaning. Sheatsley et al. further offered a definition
for adversarial examples in intrusion detection: perturbed network flows must maintain
their attack behaviour. We consider that human perception may not be the best criterion
for defining adversarial examples in cyber-security domains. Indeed, human perception
in some domains might be immaterial. For example, only very skilled engineers could
perceive network packets in any meaningful way even with the use of network analysis
tools. Furthermore, users likely cannot perceive a difference between the execution of
benign or malicious software. After malware is executed, the effects are clear; however,
during malware execution users often suspect nothing wrong. We therefore consider that
while fooling human perception remains a valid ambition, it is critical that adversarial
perturbations in cyber-security domains preserve functionality and behaviour.

In the cyber-security domain, traditional gradient descent algorithms may be insuffi-
cient. Algorithms that preserve functionality are required. Moreover, some models used
in the cyber-security domain are distinct from those used for purely visual problems. For
example, RNNs are useful for time sequences of network traffic analysis. We now consider
recent functionality-preserving attacks in the cybersecurity domains of malware, intrusion
detection, and CPS. We further examine Functionality-preserving attacks in Table 7.
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Table 7. Functionality-preservation in cybersecurity and intrusion detection.

Work Year Domain Generation Method Realistic Constraints Findings

[53] 2019 Malware Gradient-based Minimal content addi-
tions/modification

Experiments showed that we are able to use that informa-
tion to find optimal sequences of transformations without
rendering the malware sample corrupt.

[94] 2019 IDS GAN Preserve functionality The proposed adversarial attack successfully evades the
IDS while ensuring preservation of functional behavior
and network traffic features.

[108] 2019 IDS Gradient-based Respects mathematical de-
pendencies and domain con-
straints.

Evasion attacks achieved by inserting a dozen network
connections.

[109] 2019 IDS Random modification
≤4 features: flow
duration, sent bytes, re-
ceived bytes, exchanged
packets.

Retains internal logic Feature removal is insufficient defense against
functionality-preserving attacks, which may are
possible by modifying very few features.

[110] 2019 IDS Legitimate transforma-
tions: split, delay, inject

Packets must maintain mali-
cious intent, transformations
hold to underlying proto-
cols.

Detection rate of packet-level features dropped by up to
70% and flow-level features dropped by up to 68%.

[56] 2020 IDS—
Flows

Jacobian method (JSMA) Obeys TCP/IP constraints Biased distributions with low dimensionality enable con-
strained adversarial examples. Constrained to five ran-
dom features, −50% adversarial examples succeed.

[95] 2020 IDS—
packet

Valid packet Minimal modifica-
tion/insertion of packets

Experimental results show powerful and effective
functionality-preserving attacks. More accurate models
are more susceptible to adversarial examples.

[98] 2021 Malware Injected unexecuted be-
nign content

Minimal injected content Section-injection attack can decrease the detection rate.
Their analysis highlights that commercial products can be
evaded via transfer attacks.

[101] 2021 CPS Best-effort search Real-world linear inequality Best-effort search algorithms effectively generate adver-
sarial examples meeting linear constraints. Their evalua-
tion shows constrained adversarial examples significantly
decrease detection accuracy.

[111] 2021 IDS Minimal perturbation of
each feature

FGSM Functionality is not reported, but is less likely to preserve
functionality because all features are perturbed.

[112] 2021 CPS/ICS JSMA Minimal number of per-
turbed features

Functionality is not reported, but is more likely to pre-
serve functionality because relatively few features are
perturbed.

[113] 2021 IDS PSO-based mutation Original traffic retained and
packet order is unchanged

Measured attack effect, malicious behavior and attack
efficiency

[114] 2021 IDS GAN preserving functional fea-
tures of attack traffic

F1 score drop to zero from around 99% DIGFuPAS adver-
sarial examples.

[115] 2021 IDS PSO/GA/GAN Only modifies features
where network functionality
is retained

In the network traffic data, it is unrealistic to assume
an adversary can alter all traffic features—constraints on
features that do not break functionality

[116] 2020 IDS GAN/PSO Original traffic and packet
order is retained.

Detection performance and robustness should both be
considered in feature extraction systems.

Malware: Hu and Tan [84] proposed a novel algorithm to generate adversarial se-
quences to attack an RNN-based malware detection system. They claimed that algorithms
adapted for RNNs are limited because they are not truly sequential. They considered a sys-
tem to detect malicious API sequences. Generating adversarial examples effective against
such systems is non-trivial because API sequences are discrete values. There is a discrete
set of API calls; changing any single letter in an API call will create an invalid API call and
cause that API call to fail. This will result in a program crash. Therefore, any perturbation of
an API call must result in a set of valid API calls. They proposed an algorithm based around
a generative RNN and a substitute RNN. The generative RNN takes an API sequence as
input and generates an adversarial API sequence. The substitute RNN is trained on benign
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sequences and the outputs of the generative RNN. The generative model aims to minimize
the predicted malicious probability. Subsequently, adversarial sequences are presented
to six different models. Following adversarial perturbation, the majority of the malware
was not detected by any victim RNNs. The authors noted that even when the adversarial
generation algorithm and the victim RNN were implemented with different models and
trained on different training sets, the majority of the adversarial examples successfully
attacked the victim RNN through the transferability property of adversarial examples. In
MLP, they reported a TPR of 94.89% that fell to 0.00% under adversarial perturbations.

Demetrio et al. [98] preserved the functionality of malware while evading static win-
dows malware detectors. Their attacks exploit the structure of the portable executable
(PE) file format. Their framework has three categories of functionality-preserving manip-
ulations: structural, behavioural, and padding. Some of their attacks work by injecting
unexecuted (benign) content in new sections in the PE file, or at the end of the malware
file. The attacks are a constrained minimization problem optimizing the trade-off between
the probability of evading detection and the size of injected content. Their experiments
successfully evaded two Windows malware detectors with few queries and a small payload
size. Furthermore, they discovered that their attacks transfered to other Windows malware
products. We note that the creation of new sections provides a larger attack surface that
may be populated with adversarial content. They reported that their section-injection attack
was able to drastically decrease the detection rate (e.g., from an original detection rate of
93.5% to 30.5%, also significantly outperforming their random attack at 85.5%).

Labaca-Castro et al. [53] presented a gradient-based method to generate valid exe-
cutable files that preserve their intended malicious functionality. They noted that malware
evasion is a current area of adversarial learning research. Evading the classifier is often the
foremost objective; however, the perturbations must also be carefully crafted to preserve
the functionality of malware. They noted that removing objects from a PE file often leads
to corrupt files. Therefore, they only implement additive or modifying perturbations. Their
gradient-based attack relies on complete knowledge of the system with the advantage that the
likelihood of evasion can be calculated and maximised. Furthermore, they stated that their
system only generates valid executable malware files.

Intrusion Detection: Usama et al. [94] used a generative adversarial network (GAN)
to generate functionality-preserving adversarial examples. They noted that adversarial
examples aiming to evade IDS should not invalidate network traffic features. A typical
GAN composed of two neural networks, a generator G and discriminator D, was used
to construct adversarial examples that masquerade as benign but functionally probe the
network. Their attack was able to evade an IDS while preserving the intended behaviour.
They suggested that adversarial training using GAN-generated adversarial examples
improved the robustness of their model. They reported F1-scores of 89.03 (original), 40.86
(After attack), 78.49 (after adversarial training), and an improved 83.56 after GAN-based
adversarial training.

Wang et al. [117] noted that relatively few researchers are addressing adversarial
examples against IDS. They proposed an ensemble defense for network intrusion detection
that integrates GANS and adversarial retraining. Their training framework improved
robustness while maintaining accuracy of unperturbed samples. Unfortunately, they
evaluated their defences against traditional attack algorithms: FGSM, basic iterative method
(BIM), Deepfool, and JSMA. However, they did not specifically consider functionality-
preserving adversarial examples. They further recognised the importance of using recent
datasets for intrusion detection. They reported F1-scores for three classifiers and a range of
adversarial example algorithms. For example, the F1-score for an ensemble classifier tested
on clean data was 0.998 compared to 0.746 for JSMA. Among all classifiers, the ensemble
classifier achieved superior F1-scores under all conditions.

Huang et al. [95] noted that it is more challenging to generate DDoS adversarial
examples because of their discrete properties. They noted that work in the visual domain
cannot be directly applied to adversarial examples for intrusion detection of DDoS. The
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input to their algorithm is a series of packets. This makes it difficult to optimize the distance
between the original and adversarial sample while guaranteeing the validity of each packet.
They proposed two black-box methods to generate DDoS adversarial examples against
LSTM-based intrusion detection systems: genetic algorithm (GA) and probability weighted
packet saliency attack (PWPSA). Each method modifies the original input, either inserting
or modifying packets. The GA method evolves a population of DDoS samples and selects
adversarial examples from the population. The PWPSA method finds the most important
packet in the sequence and replaces it with a different “best packet” for this position. Both
methods produce adversarial examples that can successfully evade their DDoS intrusion
detection model. They reported success rates for their different attacks against different
detectors. For example, success results for detector D: GA-Replace 91.37%, GA-Insert 74.5%,
PWPSA-Replace 88.9%, and PWPSA-Insert 67.17%.

Cyber-Physical Systems: Cai et al. [100] warned that adversarial examples have
consequences for system safety because they can cause systems to provide incorrect outputs.
They presented a detection method for adversarial examples in CPS. They used a case
study of an advanced emergency braking system, where a DNN estimates the distance to
an obstacle. Their adversarial example detection method uses a variational auto-encoder to
predict a target variable (distance) and compare it with a new input. Any anomalies are
considered adversarial. Furthermore, adversarial example detectors for CPS must function
efficiently in a real-time monitoring environment and maintain low false alarm rates. They
reported that since the p-values for the adversarial examples are almost 0, the number of
false alarms is very small and the detection delay is smaller than 10 frames or 0.5 s.

CPS include critical national infrastructure, such as power grids, water treatment
plants, and transportation. Li et al. [101] asserted that adversarial examples could exploit
vulnerabilities in CPS with terrible consequences; however, such adversarial examples
must satisfy real-world constraints (commonly linear inequality constraints). For example,
meter readings downstream may never be larger than meter readings upstream. Adver-
sarial examples breaking constraints are noticeably anomalous. Risks to CPS arising from
adversarial examples are not yet fully understood. Furthermore, algorithms and models
from other domains may not readily apply because of distributed sensors and inherent
real-world constraints. However, generated adversarial examples that meet such linear con-
straints were successfully applied to power grids and water treatment system case studies.
The evaluation results show that even with constraints imposed by the physical systems,
their approach still effectively generates adversarial examples, significantly decreasing the
detection accuracy. For example, they reported the accuracy under adversarial conditions
to be as low as 0%.

5.2.6. Adversarial Examples and Model Type

We classify models based on their architecture in four broad types: multi-layer per-
ceptron (MLP), CNN, RNN, and RF. Ali et al. [118] observed that different deep learning
architectures are more robust than others. They noted that CNN and RNN detectors are
more robust than MLP and hybrid detectors, based on low attack success rates and high
query counts. Architecture plays a role in the accuracy of these models because CNNs can
learn contextual features due to their structure, and RNNs are temporally deeper, and thus
demonstrate greater robustness.

Unsurprisingly, research on CNNs coincides with research in the visual domain, as
shown in Table 5. The majority of adversarial example research on RNNs has until recently
focused on the text or natural language domain; however, RNNs are also useful in the
cybersecurity domain and researchers have recently considered adversarial example attacks
against RNN-based IDS.

Other promising research shows that radial basis function neural networks (RBFNN)
are more robust to adversarial examples [119]. RBFNNs fit a non-linear curve during
training, as opposed to fitting linear decision boundaries. Commonly, RBFNNs transform
the input such that when it is fed into the network it gives a linear separation. The non-
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linear nature of RBFNNs could be one potential direction for adversarial example research.
Powerful attacks that are able to subvert RBFNNs would improve our understanding of de-
cision boundaries. Goodfellow et al. [63] argued that the primary cause of neural networks’
vulnerability to adversarial perturbation is their linear nature. However, RBFNNs are less
commonly deployed and are therefore not further discussed.

5.2.7. Adversarial Examples and Knowledge Requirement

The majority of the research focus is on white-box attacks, as shown in Table 5,
perhaps because such attacks are known to be efficient and effective. Less research focuses
on black-box attacks and few studies recognise gray-box attacks that need only partial
model knowledge. Gray-box attacks will likely have advantages over black-box attacks.
Adversaries will undoubtedly use any and all information available to them.

We classify the attacks on the knowledge required by the adversary. White-box attacks
are likely the most effective and efficient method of attack, because the adversary has
complete knowledge of the model architecture, and information on how the model was
trained. However, access to this knowledge is harder to attain, although it might also be
gained through insider threats [120] or model extraction attacks [121]. Extracted models
might be a feasible proxy on which to develop and test adversarial examples.

Notwithstanding the efficiency of white-box attacks, effective black-box attacks are
possible. Black-box (or oracle) attacks require no knowledge of the model. Adversaries
only need the ability to query the model and receive its output. Adversaries generate
inputs and receive the output of the model. Typical black-box attacks include GA [95], and
GANs [89,97].

Gray-box attacks require only limited model knowledge, perhaps including knowledge
of the features used by the model. This is a realistic prospect, as adversaries will likely have
or gain at least partial knowledge of the model.

5.2.8. Adversarial Example Constraints

Table 5 shows little research considering constraints of any sort. Much research on
IDS ignores constraints; however, network traffic is highly constrained by protocols, and
some network firewalls may drop malformed packets. Furthermore, it is insufficient that
well-formed adversarial examples progress past firewalls. They must also retain their
intended functionality.

Stringent constraints exist in the cyber-security domain. Extreme care must be taken
to create valid adversarial examples. For example, in IDS, adversaries must conform the
protocol specification of the TCP/IP stack.

We classify adversarial example constraints into three groups: (1) box constraints,
simple constraints where values must remain within certain values; (2) sparse constraints,
where a maximum number of features can be modified, the most extreme version being
where only one feature can be modified; and (3) functionality-preserving constraints, where
adversarial examples must retain their original functionality. For example, malware must
function as malware when perturbed to evade a malware detector, and DDoS attacks must
function as DDoS attacks when perturbed to evade detection. Functionality-preserving
adversarial examples are an interesting avenue for further research.

5.3. Defenses Against Adversarial Examples

Figure 6 shows some common defence types that we explore in this section. We further
detail proposed defenses against adversarial examples in Table 8.
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Figure 6. Common defence types against adversarial machine learning.

Table 8. Chronologically ordered summary of defenses against adversarial examples.
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[63] 2014 Adversarial Training X X X
[75] 2016 Distillation as defense X X X
[122] 2016 Feedback Alignment X X X
[123] 2016 Assessing Threat X X X
[124] 2017 Statistical Test X X X X X
[125] 2017 Detector SubNetwork X X X
[126] 2017 Artifacts X X X
[127] 2017 MagNet X X X
[128] 2017 Feature Squeezing X X X
[129] 2017 GAT X X X
[102] 2018 EAT X X X
[130] 2018 Defense-GAN X X X
[103] 2018 Assessing Threat X X X
[131] 2018 Stochastic Activation Pruning X X X X
[132] 2018 DeepTest X X X
[133] 2018 DeepRoad X X X
[134] 2018 Defensive Dropout X X X
[134] 2018 Def-IDS X X X
[105] 2018 Multi-Classifier System X X X
[135] 2019 Weight Map Layers X X X
[136] 2019 Sequence Squeezing X X X
[109] 2019 Feature Removal X X X
[137] 2020 Adversarial Training X X X
[138] 2020 Adversarial Training X X X
[139] 2019 Game Theory X X X
[140] 2020 Hardening X X X X
[141] 2021 Variational Auto-encoder X X X
[142] 2021 MANDA X X X

It is hard to defend against adversarial examples. People expect ML models to give
good outputs for all possible inputs. Because the range of possible inputs is so large, it is
difficult to guarantee correct model behaviour for every input. Some researchers explored
the possibility of exercising all neurons during training [132]. Furthermore, consideration
must be given to how adversaries might react when faced with a defense. Researchers in
secure machine learning must evaluate whether defenses remain secure against adversaries
with knowledge of model defenses.

We classify the suggested defenses against adversarial examples into the following
groups: pre-processing, adversarial training, architectural, detection, distillation, testing,
ensembles, and game theory.
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5.3.1. Pre-Processing as a Defense against Adversarial Examples

Some promising research considers transformations, such as translation, additive
noise, blurring, cropping, and resizing. These often occur with cameras and scanners in
the visual domain. Translations have shown initial success in the visual domain. Initial
successes have prompted some researchers to discount security concerns. For example,
Graese [123] overreached by declaring adversarial examples an “academic curiosity”, not a
security threat. This position misunderstands the threat from adversarial examples, which
remain a concern for cyber-security researchers.

Eykolt et al. [143] noted the creation of perturbations in physical space that survive
more challenging physical conditions (distance, pose, and lighting). Transformations
are appropriate for images; however, such translations may make little sense in cyber-
security domains. For example, what would it mean to rotate or blur a network packet?
Nevertheless, inspiration could be taken from pre-processing methods in the visual domain.
Adapting pre-processing methods to cyber-security and other non-visual domains is an
interesting avenue for research.

5.3.2. Adversarial Training as a Defense against Adversarial Examples

Szegedy et al. [17] found that robustness to adversarial examples can be improved
by training a model on a mixture of adversarial examples and unperturbed samples.
Specific vulnerabilities in the training data can be identified through exploring UAPs.
Identified vulnerabilities could potentially be addressed with adversarial training. We
recognise that adversarial training is a simple method aiming to improve robustness;
however, it is potentially a cosmetic solution: the problem of adversarial examples cannot
be solved only through ever greater amounts of adversarial examples in the training
data. Tramér et al. [102] found that adversarial training is imperfect and can be bypassed.
Moreover, black-box attacks have been shown to evade models subject to adversarial
training. Adversarial training has some merit because it is a simple method to improve
robustness. It is unfortunately not a panacea and should be bolstered by other defenses.
Research avenues could combine adversarial training with other techniques. We warn that
models used in cyber-security or other critical domains should not rely solely on adversarial
training.

5.3.3. Architectural Defenses against Adversarial Examples

Some research, rather than modifying a model’s training data, investigated defenses
through hardening the architecture of the model. This could involve changing model
parameters or adding new layers. In Table 8, we classify such defenses as architectural.

Many white-box attacks rely on the quality of the gradient. Some research consid-
ers how the model’s weights can be used to disrupt adversarial examples. Amer and
Maul [135] modified convolutional neural networks (CNN), adding a weight map layer.
Their proposed layer easily integrates into existing CNNs. A weight mapping layer may be
inserted between other CNN layers, thus increasing the network’s robustness to both noise
and gradient-based adversarial attacks.

Other research aims to block algorithms from using weight transport and back-
propagation to generate adversarial examples. Lillicrap et al. [122] proposed a mechanism
called “feedback alignment”, which introduces a separate feedback path via random fixed
synaptic weights. Feedback alignment blocks the generation of adversarial examples that
rely on the gradient because it uses the separate feedback path rather than weight transport.

Techniques to improve accuracy could similarly help harden models. For example,
dropout can improve accuracy when used during training. It is particularly useful where
there is limited training data and over-fitting is more likely to occur. Wang et al. [134]
proposed hardening DNN using defensive dropout at test time. Unfortunately, there is
inherently a trade-off between defensive dropout and test accuracy; however, a relatively
small decrease in test accuracy can significantly reduce the success rate of attacks. Such
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hardening techniques force successful attacks to use larger perturbations, which in turn
may be more readily recognized as adversarial.

Defenses that block gradient-based attacks complicate the generation of adversar-
ial examples; however, like adversarial training, these defenses could be bypassed. In
particular, black-box attacks and transferability-based attacks are not blocked by such
defenses. A more promising defense, “defensive dropout”, can block both black-box and
transferability-based attacks.

5.3.4. Detecting Adversarial Examples

Much research has considered the best way to detect adversarial examples. If adver-
sarial examples can be detected they could be more easily deflected, and perhaps even the
original input could be salvaged and correctly classified. Grosse et al. [124] proposed a
statistical test to detect adversarial examples before they are input into machine learning
models. They observed that adversarial examples are unrepresentative of the distribution,
and lie in unexpected regions of a model’s output surface. Their proposed outlier detection
system relies on the statistical separation of adversarial examples. They subsequently
evaluated their model against adaptive strategies and strong black-box strategies.

Metzen et al. [125] proposed a binary classifier “detector subnetwork” aiming to
distinguish between genuine data and adversarial examples. The detection of adversarial
examples does not unequivocally lead to correct classification; however, the effect of
adversarial examples could perhaps be mitigated through fallback solutions, for example,
by requesting human intervention. After successfully detecting adversarial examples in
their experiments, they later bypassed their defenses by generating adversarial examples
that fool both detector and classifier. They further proposed a training procedure called
“dynamic adversary training” as a countermeasure to their attack against the detector.

Feiman et al. [126] also detected adversarial examples by considering which artifacts of
adversarial examples could help detection. They considered two complementary features
used to detect adversarial examples: density estimates and Bayesian uncertainty estimates.
They evaluated these features on CNNs trained on MNIST and CIFAR-10 datasets. They
effectively detected adversarial examples with an ROC-AUC of 92.6%. They further sug-
gested that their method could be used in RNNs. This suggestion is bolstered by Gal and
Ghahramani’s [144] assertion that Bayesian approximation using dropout can be applied
to RNN networks.

Meng et al. [127] proposed a framework, “MagNET”, to detect adversarial examples.
This framework precedes the classifier it defends. The framework has two components:
(1) A detector finds and discards any out-of-distribution examples (those significantly far
from the manifold boundary); (2) A reformer that aims to find close approximations to
inputs before forwarding the approximations to the classifier. Their system generalizes
well because it learns to detect adversarial examples without knowledge of how they
were generated. They proposed a defense against gray-box attacks where the adversary
has knowledge of the deployed defenses. The proposed defense trains a number of auto-
encoders (or reformers). At test-time a single auto-encoder is selected at random.

Xu et al. [128] proposed “feature squeezing” as a strategy to detect adversarial exam-
ples by squeezing out unnecessary features in the input. Through comparing predictions of
the original and feature squeezed inputs, adversarial examples are identified if the differ-
ence between the two predictions meets a threshold. Two feature-squeezing methods are
used: (1) Reducing the colour bit-depth of the image; (2) Spatial smoothing. An adversary
may adapt and circumvent this defense; however, the defense may frustrate the adversary
because it changes the problem the adversary must overcome.

Rosenberg et al. [136] considered the feature squeezing defense designed for CNNs
and proposed “sequence squeezing”, which is adapted for RNNs. Adversarial examples
are similarly detected by running the classifier twice: once on the original sequence, and
once for the sequence-squeezed input. An input is identified as adversarial if the difference
in the confidence scores meets a threshold value.
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Zhang et al. [141] proposed an image classifier based on a variational auto-encoder.
They trained two models each on half the dataset: a target model and a surrogate model.
On the surrogate model they generated three types of strong transfer-based adversarial
examples: L0, L2, and L∞. Analysis of their model using the CIFAR-10, MNIST, and
Fashion-MNIST datasets found that their model achieves state-of-the-art accuracy with
significantly better robustness. Their work is in the visual domain; however, perhaps their
ideas can be applied to other domains such as intrusion detection.

We have discussed some architectural defenses against adversarial examples. In
particular, we have considered methods for detecting adversarial examples. Carlini and
Wagner [145] showed that adversarial examples are harder to detect and that adversarial
examples do not exhibit intrinsic properties. Moreover, many detection methods can be
broken by choosing good attacker-loss functions. Grosse et al. [124] noted that adversarial
defenses exist within an arms race and that guarantees against future attacks are difficult be-
cause adversaries may adapt to the defenses by adopting new strategies. Meng et al. [127]
advocated that defenses against adversarial examples should be independent of any par-
ticular attack. We have seen that human-in-the-loop solutions could be useful where few
cases need human intervention; however, repeated requests might quickly overwhelm
human operators given large numbers of adversarial examples, for example, as might be
seen in network traffic analysis.

5.3.5. Defensive Testing

Adversarial examples cause unexpected behaviour. Recent research considers testing
deep learning systems. Pei et al. [146] aimed to discover unusual or unexpected behaviour
of a neural network through systematic testing. They produced test data by solving a joint
optimization problem. Their tests aim to trigger different behaviours and activate a high
proportion of neurons in a neural network. Their method finds corner-cases where incorrect
behaviour is exhibited, for example, malware masquerading as benign. They claimed to
expose more inputs and types of unexpected behaviour than adversarial examples. They
further used the generated inputs to perform adversarial training. As a defense we question
the practicability of triggering all neurons in larger neural networks; however, as an attack,
their method could produce different types of adversarial inputs.

Other researchers are considering similar techniques to generate test data.
Tian et al. [132] evaluated a tool for automatically detecting erroneous behaviour, gen-
erating test inputs designed to maximise the number of activated neurons using realistic
driving conditions, including blurring, rain, and fog. Zhang et al. [133] proposed a system
to automatically synthesize large amounts of diverse driving scenes, including weather
conditions, using GANs. We consider GANs useful for generating adversarial inputs.
GANs should implicitly learn domain constraints.

5.3.6. Multi-Classifier Systems

Biggio et al. [105] highlighted that robustness against adversarial examples can be im-
proved through the careful use of ensemble classifiers, for example, by using rejection-based
mechanisms. Indeed, Biggio et al. had implemented a multi-classifier system (MCS) [147],
which was hardened using randomisation. Randomising the decision boundary makes a
classifier harder to evade. Since the attacker has less information on the exact position of a
decision boundary, they must make too conservative or too risky choices when generating
adversarial examples.

5.3.7. Game Theory

Zhou et al. [139] consider game theoretic modeling of adversarial machine learning
problems. Many different models have been proposed. Some aim to optimise the feature set
using a set of high-quality features, thus making adversarial attacks more difficult. Game
theoretic models are proposed to address more complex situations with many adversaries
of different types. Equilibrium strategies are acceptable to both players and neither has
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an incentive to change. Therefore, assuming rational adversaries, game theory-based
approaches allowing a Nash equilibrium could potentially end the evolutionary arms race.

5.3.8. Adversarial Example Defenses in Cybersecurity Domains

We discussed domains in Sections 5.2.4 and 5.2.5. Most research on defenses against
adversarial examples has focused on the visual domain. Comparatively little research
has so far considered defenses in cybersecurity domains such as intrusion detection and
malware analysis. Applying current defenses in the visual domain to other domains might
efficiently kickstart research into defenses for other domains. Effective defenses against
adversarial examples could help enable the use of ML models in cybersecurity and other
adversarial environments.

Different model types are more suited to domains. We consider that different model
types may require different defenses. Again, we classify models into four types: MLP, CNN,
RNN, and RF.

6. Discussion and Conclusions

ML systems are deployed in complex environments, including cybersecurity and
critical national infrastructure. Such systems attract the interest of powerful advanced
persistent threats that may target them. Crucially, we must address robustness against
functionality-preserving adversarial examples before novel attack strategies exploit inher-
ent weaknesses in critical ML models.

Machine learning and adversarial learning are becoming increasingly recognised
by the research community, given the rapid uptake of ML models in a whole host of
application domains. To put this in context, 2975 papers were published on arXiv in the
last 12 months (October 2020–September 2021) related to machine learning and adversarial
learning. Over recent years, the number of papers being published on this topic has grown
substantially. According to Carlini, who maintains a blog post “A Complete List of All
(arXiv) Adversarial Example Papers” [148], the cumulative number of adversarial example
papers neared 4000 in the year 2021. It is therefore evident that there is a lot of interest and
many researchers active in this area. Not all papers in this list are useful or relevant; we
pass no judgement of their quality but merely aim to clarify the research landscape and
draw important research to the fore. The majority of prior research has been applied to the
visual domain. Seminal contributions have been made by Szegedy et al. [17], Goodfellow
et al. [63], Carlini et al. [64], and Papernot [79]. It is clear that the visual domain continues
to be well researched.

We conducted an extensive survey of the academic literature in relation to functionality-
preservation in adversarial machine learning. We derived a classification based on both
attack and defense. We consider edpossible robustness metrics. Moreover, we considered
model training and data-level techniques that could help improve robustness through
tackling biased datasets.

Analysis of functionality-preservation methods finds gradient-based methods may
be less suitable for functionality-preservation and other constraints. Methods modifying
large numbers of features are less likely to preserve functionality. We found that GANS
and genetic algorithms are suitable for functionality-preserving attacks. We subsequently
discussed defense strategies against functionality-preserving adversarial examples. We
found that functionality-preserving adversarial machine learning is an open research topic.
Finally, we will identify some key future directions and research challenges in functionality-
preserving machine learning.

Future Directions and Research Challenges

We now discuss future research challenges. Few researchers address the problem of
transferability, which remains a key area of concern because hard-to-attack models are
nevertheless susceptible to transferable adversarial examples generated against easy-to-
attack models. Breaking the transferability of adversarial examples is a key challenge for
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the research community. Currently, defensive dropout [134] at test time is a promising
defense. Adversarial example detection is a useful area of research.

We consider the area of functionality-preserving adversarial examples under-explored.
Research into improving robustness against such adversarial examples is an area requiring
urgent research. We suggest that adapting defenses used in the visual domain and CNN
models to other model types such as RNNs could offer potential solutions. Caution should
be exercised when adapting defenses in the visual domain to other domains. For example,
denoising defenses may not apply directly to discrete or noncontinuous data.

Constraints on adversarial examples are not limited to preserving the functionality
of malware or IDS attacks. CPSs model the real world, where linear and other physical
constraints must be respected. Adversarial examples that do not respect domain constraints
risk marking themselves as obvious anomalies.

Concept-drift is a real concern for cybersecurity [1], as new attacks and techniques
are discovered daily. As the model and the current state of the art diverge, the model
suffers from hidden technical debt. Therefore, the model must be retrained to reflect the
current state-of-the-art attacks and new network traffic patterns [149]. Researchers might
develop and use more up-to-date datasets. Further avenues for research include semi-
supervised/unsupervised ML and active learning methods that continuously update the
underlying model and do not rely on labelled datasets.

We identify that data-level techniques such as resampling, balancing datasets, and
cross validation could have effects on robustness against adversarial examples. Further
research is required to explore how the bias-variance trade-off can effect robustness.

We prioritise the areas of future research, setting the agenda for research in this area.
Critical areas of research include breaking the transferability of adversarial examples that
would hopefully be applicable across domains. Non-visual domains including cyberse-
curity and cyber physical systems have been under-explored and this oversight should
be rectified urgently. Further research on transformations in non-visual domains could
provide useful knowledge. Detection of adversarial examples and pushing the fields of
cybersecurity, intrusion detection, and cyber-physical systems will yield benefits beyond
cybersecurity and may be applicable in other non-visual domains. Moreover, research is
required in areas beyond instance classifiers. Areas of RNNs and reinforcement learning
have been under-explored. More research is required to understand the use of domain
constraints and functionality-preserving adversarial examples. Further research is needed
towards effective countermeasures.

Additionally, we consider that more research attention could be given to dataset
resampling strategies as a defence against adversarial examples. There is a need for better
robustness metrics. Some researchers simply state accuracy, and others might state the
better F1-score; however, the F1-score is biased by unbalanced datasets that are widespread
in intrusion detection, partly due to large numbers of benign samples. Using F1-score
could lead to a false sense of security. Researchers should adopt stronger metrics such as
CLEVER [59] or empirical robustness [62].

Adversarial machine learning is a critical area of research. If not addressed, there is
increasing potential for novel attack strategies that seek to exploit the inherent weaknesses
that exist within machine learning models; however, few works consider “realisable” pertur-
bations that take account of domain and/or real-world constraints. Successful adversarial
examples must be crafted to comply with domain and real-world constraints. This may be
challenging since even small modifications may corrupt network packets that are likely
to be dropped by firewalls. This necessitates functionality preservation in adversarial
learning.

We propose that human perception may not be the best criterion for analyzing ad-
versarial examples. In cybersecurity domains we propose that adversarial examples must
preserve functionality. Traditionally, adversarial examples are thought of as having imper-
ceptible noise. That is, that humans cannot perceive the difference between the original
and perturbed inputs. Indeed, human perception in some domains might be immaterial.
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For example, strategic attacks triggered at crucial moments might cause damage to CPS
before any human could reasonably act.

In cyber-security domains traditional gradient descent algorithms may be insufficient,
although JSMA may be reasonable because it perturbs few features. Stringent constraints
exist in the cyber-security domain and extreme care must be taken to create valid adversarial
examples. We offer some guidelines for generating functionality-preserving adversarial
examples. Functionality-preserving adversarial examples should: only perform legitimate
transformations; respect mathematical dependencies, real-world, and domain constraints;
minimize the number of perturbed features and restrict modification to non-critical features;
and where possible retain the original payload and/or packet order.

Defences against adversarial examples must consider that adversaries are likely to
adapt by adopting new strategies. Many researchers propose adversarial training to
improve robustness. Adversarial training is a simple method aiming to improve robustness;
however, it is potentially a cosmetic solution: the problem of adversarial examples cannot
be solved only through ever greater numbers of adversarial examples in the training
data. Adversarial training, if used, must be bolstered by other defenses. Interesting
defence strategies include randomisation: randomising decision boundaries makes evasion
more difficult because attackers have less information on the exact position of a decision
boundary. They must therefore make too conservative or too risky choices when generating
adversarial examples.

Game theoretic models could be used to address more complex situations with many
adversaries of different types as found in intrusion detection. Equilibrium strategies accept-
able to both defender and adversary mean neither has an incentive to change. Therefore,
assuming rational opponents, game theory-based approaches allowing a Nash equilibrium
could potentially end the evolutionary arms race, although it is difficult to conceive a world
where no advantage is possible.

Current promising defenses such as dropout exchange a relatively small decrease
in accuracy for a significant reduction of successful attacks, even successfully blocking
black-box and transferability-based attacks. Hardening techniques force successful attacks
to use larger perturbations, which in turn may be more readily recognized as adversarial.

In a broader cybersecurity context, risks arising from adversarial examples are not yet
fully understood. Furthermore, algorithms and models from other domains may not readily
apply because of distributed sensors and inherent real-world constraints. It is uncertain
whether current defences are sufficient. Furthermore, adversarial example detectors must
function efficiently in a real-time monitoring environment while maintaining low false
alarm rates.

Many academic researchers use old datasets that do not fairly represent modern
network traffic analysis problems due to concept-drift. Problems of labelling data and
retraining systems provide an impetus to explore unsupervised and active learning. Unfor-
tunately, adversarial attacks are possible on active learning systems [150]. Lin et al. [82]
described an enchanting attack to lure a machine learning system to a target state through
crafting a series of adversarial examples. It is conceivable that similar attacks could lure
anomaly detection systems towards normalizing and accepting malicious traffic.

Key Future Research Challenges

Adversarial ML is a critical area of research. Researchers must address the robustness
of ML models against adversarial examples allowing safer deployment of ML models
across cybersecurity domains. Better robustness metrics should be used and developed. We
find the traditional benchmark of human perception may be less relevant in functionality
preservation. Moreover, traditional gradient descent algorithms may be insufficient to
generate functionality-preserving attacks, and adversaries may use other methods such as
GANS. Therefore, defences against gradient descent algorithms may likewise be insufficient.
Defences must consider reactive adversaries who adapt to defences. Randomisation of
decision boundaries can make evasion more difficult. Moreover, research into multi-
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classifier systems could help thwart evasion attacks, making it harder to evade classification.
Dropout is currently a promising defense against adversarial examples, although multiple
defenses may be required and a combination of defenses will likely offer better defense
capability. Game-theory approaches could potentially end the adversarial arms race by
achieving a Nash equilibrium. Concept-drift requires further research. Many researchers
are using outdated datasets. Simply using newer datasets could postpone problems of
concept-drift and is a good first step. Unsupervised/semi-supervised and active learning
could potentially offer longer-term solutions to concept-drift, aiming for models to learn and
detect novel attack methods. Transferability of adversarial examples remains an open issue,
and more research here has the potential to disrupt many attack strategies. More research
is required in the area of functionality-preserving adversarial attacks, recognising the limits
and trade-offs between functionality-preserving adversarial examples and their ability
to evade classification; moreover, research into adversarial attacks in other constrained
domains could improve robustness against complex attacks.

We offer these insights and hope that this survey offers other researchers a base for
exploring the areas of robustness and functionality-preserving adversarial examples.
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