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A B S T R A C T

A self-adaptive deep learning model powered by ranking selection-based particle swarm optimisation (RSPSO)
is developed to predict electricity load in buildings with moving horizons. The main features of the load
prediction model include its self-adaptability, repeatability, robustness and accuracy. In real-world building
applications, the relationship among weather data, time signature and electricity load is quite complicated.
In the proposed self-adaptive deep learning model, a deep learning model with multiple hidden layers is
implemented to improve prediction precision. Meanwhile, RSPSO is implemented to select the network’s
optimum architecture, which involves discrete variables (i.e. the quantity of neurons in each layer and
the quantity of hidden layers) and categorical variables (i.e. activation function in each layer and learning
approach). Moreover, the moving horizon approach is adopted to update the architecture and structure of the
dynamic deep learning model while enabling its capability in capturing the latest featuring patterns in the
electricity load of the building. The proposed load prediction model is tested with the local meteorological
profile and electricity load of an educational building. The self-adaptive load prediction model is identified to
be the most effective at forecasting the next horizon’s energy consumption, while its prediction performance
would deteriorate with the increase of time. The mean squared error, mean absolute error, and coefficient of
determination of the proposed prediction model are within the range of 4.48 kW–11.23 kW, 1.28 kW–2.31
kW and 97.52%–98.92%, respectively, demonstrating its prediction accuracy and repeatability. When Gaussian
white noise is added to meteorological data, the increase in mean absolute error is within the range of 2.08%–
15.33%, demonstrating the robustness of the proposed prediction model in overcoming uncertainty in the
weather forecast. Therefore, the proposed accurate, robust, repeatable and self-adaptive load prediction model
can be rooted in practical energy management systems thus facilitate building operation and system control.
. Introduction

In recent years, the global energy demand has been primarily
oosted owing to population growth, economic development and cli-
ate change. During 2016–2040, the primary energy consumption is

xpected to rise at a multifactorial yearly growth rate of one percent
Sieminski, 2017). As human beings generally spend a considerable
uantity of time indoor, building energy consumption is growing
wiftly. The quantity of electricity fed into the electricity grid must
lways equal the quantity consumed to keep its frequency and volt-
ge stable (Kennedy & Eberhart, 1995, 1997). Therefore, accurate
stimation of electricity consumption for each building is essential,
hile the grid-scale electricity should be able to satisfy the electricity

onsumption of each building connected to the electricity grid. Under-
stimation of building electricity consumption may cause frequency
nd voltage drop, power plants switch off and even system collapse.
n the other hand, overestimation leads to power plants disconnection
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and unnecessary operating costs (Luo & Fong, 2019). Hence, a highly
accurate, robust, repeatable and adaptive electricity load prediction
model will support building energy management and fault detection of
building appliances and power network infrastructure (Roman Cardell,
2020).

1.1. Related works

In recent years, there have been many deep learning and machine
learning-based building energy prediction models. Sheraz et al. (Aslam
et al., 2021) presented an overview of deep learning-based methods
for the prediction of electrical power production from solar panels and
wind turbines, as well as the electrical power consumption of buildings.
The reviewed deep learning models include artificial neural network
(ANN), convolutional neural network (CNN), deep neural network
(DNN), autoencoder, deep belief network, long short term memory
(LSTM) and recurrent neural network (RNN). It points out that lowering
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computational cost and complexity as well as uncertainty quantification
will be significant future research directions. Liang et al. (Zhang et al.,
2021) presented an overview of machine learning-based electricity
load prediction methods. It covered support vector machine (SVM),
regression models, neural network, tree-based algorithm, deep learning,
extreme learning, Bayesian networks, ensemble methods and fuzzy time
series methods. It points out that robust autotuning algorithms will
be crucial to vast industrial applications of electricity load prediction.
From a systematic review of electrical load forecasting models, Corentin
et al. (Kuster et al., 2017) revealed that ANN, SVM, and autoregressive
integrated moving average are more appropriate for short-term energy
prediction.

From the above literature review of deep learning and machine
learning methods for predicting building energy consumption, it is
seen that neural network-based models are the most effective ones
for building electricity consumption prediction. It is mainly because
of its capability of adequately, arbitrarily and precisely approximating
the comprehensive nonlinear association among the output and input
datasets of a complex system (Wang & Yin, 2008). As a result, various
ANN-based predictive models have been developed for building energy
consumption thanks to its capability of self-learning. Luo et al. (Luo &
Fong, 2019) developed an ANN forecasting model for office building’s
heating and cooling loads. Historical weather profile, historical heating
and cooling load, along with temperature sensors measurements from
various rooms of the building, are adopted as input datasets to the
ANN prediction model. The optimal neuron numbers were verified and
chosen for different sub-zones of the building. Kusiak et al. (Kusiak
et al., 2010) proposed a multi-layer perceptron-based ANN prediction.
Different quantity of neurons and activation functions were tried in a
single hidden layer. Deb et al. (Deb et al., 2016) proposed a feedforward
structure-based ANN prediction model for building cooling load. The
trial-and-error approach was adopted to choose the optimum quantity
of neurons in the hidden layer. Ahmad et al. (Ahmad et al., 2019)
proposed three ANN models to predict the cooling load of the building.
Gaussian process regression approach, linear regression approach, and
Levenberg–Marquardt backpropagation approach were adopted sepa-
rately in each ANN model, while the different number of neurons
was also tested in each prediction model. Yang et al. (Yang, Hugues
et al., 2005; Yang, Rivard et al., 2005) and Wang et al. (Wang et al.,
2018) also evaluated the performance of ANN models for forecasting
building heating and cooling loads. In these two ANN models, the
quantity of neurons was selected by two different empirical equations
(Hecht-Nielsen, 1989 and NeuroShell, 1993). Moon et al. (Moon et al.,
2019) constructed diverse ANN models for electrical energy consump-
tion. The ANN-based prediction models were designed with a different
combination of the activation functions and quantity of hidden layers.
It was concluded that better performance could be achieved when
scaled exponential linear units were used as the activation function and
when five hidden layers were adopted. Luo et al. (Luo, Oyedele, Ajayi
et al., 2020; Luo, Oyedele, Ajayi, Akinade, Delgado et al., 2020; Luo,
Oyedele, Ajayi, Akinade, Owolabi et al., 2020; Luo, Oyedele, Akinade
et al., 2020) constructed an ANN model for predicting building cooling
demand. The year-round cooling demand was grouped by k-means
clustering, while several ANN sub-models were trained for each group.
The quantity of neurons in each sub-model was decided by a trial-and-
error process. Kim et al. (Kim et al., 2020) identified that the ANN
model is more precious and steady than linear regression methods in
forecasting electricity load. Renzhi et al. (Lu & Hong, 2019) developed
a DNN model to forecast price and load in smart grids. The difference
between DNN and ANN models is that there are multiple hidden layers
in the former, while there is generally one single hidden layer in the
latter. The quantity of neurons and hidden layers was decided by the
accuracy test. It was found that the multiple layered-DNN models had
greater prediction precision than a single layered-ANN model.

In the above-mentioned ANN prediction models, the model ar-
chitecture is mainly determined through experiences, trial-and-error
2

processes and experiments. To enhance computational efficiency, grid
search, random search and Bayesian optimisation approaches were
adopted to tune the neural network’s architecture using cross-validation.
For example, Gustavo et al. (Paneiro Gustavo et al., 2020) developed
an ANN model to analyse environmental effects caused by blast-
induced ground vibrations, in which grid search and cross-validation
are adopted to choose the optimal number of neurons, activation
function, optimiser and epochs. Kalliola et al. (Kalliola et al., 2021)
developed an ANN model to predict real estate prices, in which the
hyper-parameters were fine-tuned by random search. Zhou et al. (Zhou
et al., 2021) developed an adaptive hyper-parameter tuning model
to forecast ship fuel consumption. Bayesian optimisation was im-
plemented to choose the optimum architecture of ANN, SVM, least
absolute shrinkage, random forest, and selection operator. However, in
practical application, the limitation of computational time in predicting
real-time electricity consumption makes it challenging to find the
optimal set of hyper-parameters by sweeping through the parameter
space. On the other hand, the Gaussian distribution of the optimisation
function is the essential requirement of Bayesian optimisation, which
is not the case in many prediction datasets.

Some popular evolutionary optimisation algorithms were adopted
to improve the convergence rate and computational efficiency of neural
network-based prediction models. The evolutionary optimisation algo-
rithms mainly include particle swarm optimisation (Li et al., 2015; Mu-
ralitharan et al., 2018), genetic algorithm (Li et al., 2018; Ruiz et al.,
2018) and teaching–learning algorithm (Li et al., 2018). However, they
were primarily used to amend threshold values and weighting factors
of neural networks. Our previous study (Luo, Oyedele, Ajayi, Akinade,
Owolabi et al., 2020) is the first paper to adopt an evolutionary
algorithm in choosing DNN architecture to the best of our knowledge.
Historical weather data and time signatures were adopted as input
datasets to the DNN model, while the historical energy consumption
profile was not accounted. The number of neurons in each hidden layer
was chosen between 5 and 10, which might not be sufficient to disclose
the complex relationship between historical weather data, time vari-
ables, past energy consumption data and future energy consumption.
Moreover, the robustness of the prediction model in overcoming un-
certainty in weather forecast data was not tested (Weather.com, 2021;
Weatheronline, 2021). More importantly, the self-adaptive ability in
capturing the latest featuring patterns in building energy consumption
for practical online energy prediction was not investigated. Last but not
least, the categorical variables such as activation function and learning
approach were treated as integer variables during GA optimisation,
which is not close to the reality since there is no numerical relationship
among different activation functions and learning approaches. Mean-
while, the number of decision variables was constant. For example,
when there are fewer than 4 hidden layers, there are still 4 decision
variables for the number of neurons while 5 decision variables for
activation function. The extra decision variables were designed for the
GA algorithm but actually optimised without any purpose.

In order to enhance the accuracy for online day-ahead heating de-
mand forecast, Felix et al. (Bünning et al., 2020) suggested integrating
the historical data with newly collected data at each day to train the
DNN model. However, the architecture of the DNN model was fixed. Jin
et al. (Yang, Hugues et al., 2005; Yang, Rivard et al., 2005) proposed
two adaptive ANN models which can adjust themselves to unforeseen
pattern changes in the input dataset using accumulative and sliding
window techniques, respectively. Although the input datasets were
updated along with the time being, the architecture of ANN was fixed.

1.2. Identification of knowledge gaps

From the above literature review, the following knowledge gaps
are identified from the state-of-art research works regarding building
energy prediction:
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• Lack of effective approach to finding optimal architecture
of neural network: Neural network’s optimal architecture is
dependent on the features of input and output datasets. Inappro-
priate architecture may deteriorate the accuracy of the prediction
model. In neural network-based energy prediction models, no
matter with a single hidden layer or multiple hidden layers, the
neural network’s architecture was decided by experience or trial-
and-error process. For example, the quantity of neurons in each
layer was decided by empirical equations (Lu & Hong, 2019;
Wang et al., 2018; Yang, Hugues et al., 2005; Yang, Rivard
et al., 2005) or through the tedious trial-and-error process (Deb
et al., 2016; Kusiak et al., 2010; Lu & Hong, 2019; Luo, 2020;
Moon et al., 2019; Ruiz et al., 2018), numerous experiments
(Ahmad et al., 2019; Luo et al., 2019), grid search (Paneiro &
Rafael, 2021), random search (Kalliola et al., 2021) and Bayesian
optimisation (Zhou et al., 2021). Levenberg–Marquardt back-
propagation was generally used as the learning process, while
different activation functions for hidden and output layers were
chosen through experience or trial-and-error process. However,
empirical equations are not suitable for multiple hidden layers,
heuristic trial-and-error approach, grid search, and random search
is time-consuming and may still not be able to reach the global
optimum, while Gaussian distribution of optimisation function is
the essential requirement of Bayesian optimisation, which is not
the case in many prediction datasets.

• The state-of-the-art neural network models lack self-
adaptivity: Most energy load prediction models were trained
using fixed-term historical data. The quantity of hidden layers and
neurons, activation function, weighting factors of interconnected
neurons of the prediction models did not change afterwards. The
quantity of hidden layers and neurons determine the dimension
and length of the proposed DNN model. The activation function
affects the comprehensive relationship between output and input
datasets. The optimisation approach decides the training process
of weighting factors. Therefore, the prediction model lacks self-
adaptive capability, while the accuracy may decrease when new
features occur in building energy consumption.

• Lack of evolutionary algorithm for optimising discrete and
categorical variables in the neural network. In previous hybrid
evolutionary optimisation and machine learning prediction mod-
els, evolutionary algorithms were generally adopted to assist the
training process of the DNN weighting coefficients. The weighting
factors could be treated as continuous variables while the total
quantity of design variables was constant due to the fixed archi-
tecture of the DNN model. Therefore, the conventional and basic
versions of evolutionary algorithms were commonly adopted.

• Lack of robustness in tackling uncertainties in weather fore-
cast: Most of the energy consumption prediction models were
assessed by accuracy and repeatability. The prediction perfor-
mance was generally evaluated by applying the prediction model
on training and testing datasets collected from weather stations
and energy management systems. However, the building energy
prediction relies on the weather forecast, which there may exist
uncertainty. The robustness of the prediction model in dealing
with such forecast uncertainty was generally not considered.

1.3. Innovation and contribution

To overcome the above-mentioned knowledge gaps, the innovation
and contribution of this study are identified as follows:

• Effective evolutionary algorithm to optimising the architec-
ture of neural network: To help decrease computational time
as well as improve prediction accuracy and repeatability, ranking
selection-based PSO (RSPSO) is used to optimise DNN’s architec-
ture, including the discrete variables (i.e. the quantity of hidden
layers and quantity of neurons in each hidden layer) and the
categorical variables (i.e. activation function and the learning).
3

• RSPSO to optimise discrete and categorical variables in a
neural network: To facilitate the optimisation process of both
discrete and categorical variables, the revised RSPSO is adopted.
For discrete variables, the feasible positions are ranked based
upon the fitness value of its objective function. For categorical
variables, the historical best value is adopted. The different selec-
tion probability schemes are adopted for discrete and categorical
variables, respectively.

• Moving horizon to improve self-adaptability: To enable the
proposed predictive model to be self-adaptive to online and dy-
namic electricity load patterns, the moving horizon approach is
adopted. At the beginning of each month, the new DNN model’s
optimal architecture is decided by PSO. Meanwhile, the DNN
model with the new optimal architecture is trained using the
latest 12 months’ meteorological and energy data to determine
corresponding weighting factors.

• Improved robustness in tracking uncertainties in weather
forecast: To evaluate the impacts of uncertainty in weather fore-
cast profile on building energy consumption prediction, Gaussian
white noises are added on the input datasets to exhibit the
robustness of the proposed prediction model.

The rest of this paper is organised as follows. Section 2 introduces
the data collection and pre-processing approach using a case study.
Section 3 illustrates the methodology for the proposed self-adaptive
prediction model. Section 4 discusses the prediction performance, with
the focus on its accuracy, repeatability, robustness and self-adaptive
capability. Section 5 illustrates how the proposed model can be used
in practical moving horizon energy prediction. The last section sum-
marises the contributions of this study, as well as discusses limitations
and possible follow-up work.

2. Data collection and pre-processing

The proposed self-adaptive prediction model is utilised at a real-life
campus building to assess its effectiveness. Upon collection and pre-
processing of raw data, it serves as the historical database for training,
testing and evaluation purposes.

2.1. Collection of raw data

To afford sufficient data for training, testing and evaluating for
the proposed self-adaptive prediction model, the building electricity
load profile E(t) is collected from the Northavon House over one and
a half years (i.e. Jul. 2018–Dec. 2019) at each hour. The collected
electricity load profile is presented in Fig. 1. The Northavon House is
a campus building in University of the West of England, Bristol, the
United Kingdom, which mainly contains both scheduled classrooms,
non-scheduled meeting rooms and scheduled office rooms.

Building thermal performance is generally affected by meteorologi-
cal data and time index (Luo, Oyedele, Ajayi, Akinade, Owolabi et al.,
2020, Luo XJ et al., 2020e). The meteorological profile involves:

• dry-bulb temperature
• dew-point temperature
• cloud ratio
• wind velocity
• and solar radiation

Meanwhile, time index stands for the stamps series of time, including:

• hour
• day
• and month

Therefore, during the same period of 1 Jul 2018–31 Dec 2019, the
meteorological profile measured at the Bristol weather station is used
as a weather database [Weatheronline].
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Fig. 1. Electricity consumption profile.
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Table 1
One-hot encoding results of time variables.

Time variable Results of one-hot encoding

Day (d) d’
Mon. 00000001
Tue. 00000010
Wed. 00000100
Thu. 00001000
Fri. 00010000
Sat. 00100000
Sun. 01000000
Bank holiday 10000000

Month of the year (m) m’

January 000000000001
February 000000000010
March 000000000100
April 000000001000
May 000000010000
June 000000100000
July 000001000000
August 000010000000
September 000100000000
October 001000000000
November 010000000000
December 100000000000

2.2. Pre-processing of raw data

Due to the value range of different meteorological data, the min–
max scaling approach (Luo, Oyedele, Akinade et al., 2020) is adopted
to normalise dry-bulb temperature 𝛼1, dew-point temperature 𝛼2, wind
velocity 𝛼3, cloud ratio 𝛼4 and solar radiation 𝛼5 into the range of [0-1]:

𝛼′𝑗 (𝑡) =
𝛼𝑗 (𝑡) − min1≤𝑡≤365×24 𝛼𝑗 (𝑡)

max1≤𝑡≤365×24 𝛼𝑗 (𝑡) − min1≤𝑡≤365×24 𝛼𝑗 (𝑡)
(1)

Owing to the cyclical nature of hour h(t), it is converted into the
corresponding sine value ℎ𝑠(𝑡) and cosine value ℎ𝑐 (𝑡). For example,
in fact, there is only one hour difference between 23:00 and 0:00.
However, there would be 23 h difference if categorical or original hour
variables are adopted (Mena et al., 2014).

ℎ𝑠(𝑡) = 𝑠𝑖𝑛
2𝜋ℎ(𝑡)
24

(2)

ℎ𝑐 (𝑡) = 𝑐𝑜𝑠
2𝜋ℎ(𝑡)
24

(3)

Bank holidays are regarded as an extra day type owing to their
different occupancy behaviour and corresponding operating perfor-
mance of lighting, office equipment and heating-and-cooling systems.
Meanwhile, day d(t) and month m(t) is converted into binary variables
 1

4

using a one-hot encoding approach (Roman Cardell 2020), as shown in
Table 1. The min-max scaling approach is also adopted to convert the
energy data into the range of [0-1]:

𝐸′(𝑡) =
𝐸(𝑡) − min1≤𝑡≤365×24 𝐸(𝑡)

max1≤𝑡≤365×24 𝐸(𝑡) − min1≤𝑡≤365×24 𝐸(𝑡)
(4)

2.3. Composition of input datasets

In summary, the input datasets consist of meteorological profile
(i.e. dry-bulb temperature, wet-bulb temperature, wind velocity, cloud
ratio and solar radiation), time index (i.e. hour, day, and month) as
well as energy data over the past 24 h. Therefore, the input dataset 𝑋𝑡
at time step t is composed of 33 elements: 𝑋𝑡 =

{

𝑥𝑖,𝑡|𝑖 = 1, 2,… , 33
}

,
1,𝑡 = 𝑇 ′

𝑑𝑏(𝑡), 𝑥2,𝑡 = 𝑇 ′
𝑑𝑒𝑤(𝑡), 𝑥3,𝑡 = 𝑉 ′(𝑡), 𝑥4,𝑡 = 𝜉′(𝑡), 𝑥5,𝑡 = 𝑅′(𝑡),

6,𝑡 = ℎ𝑠(𝑡), 𝑥7,𝑡 = ℎ𝑐 (𝑡), 𝑥8,𝑡 = 𝑑′(𝑡), 𝑥9,𝑡 = 𝑚′(𝑡) 𝑥9+𝑗,𝑡 = 𝐸′(𝑡 − 𝑗). The
utput dataset 𝑧𝑡 is the electricity consumption at the corresponding
ime step, and 𝑧𝑡 = 𝐸(𝑡).

. Self-adaptive deep learning model powered by RSPSO

The RSPSO-powered self-adaptive deep learning model is proposed
o enhance the accuracy, robustness and repeatability of building
lectricity consumption prediction. The main priority of the RSPSO-
owered DNN model is its advanced searchability, in which RSPSO is
ollaboratively hybrid with the DNN model to figure out its optimal
rchitecture. Moreover, the moving horizon is adopted to catch up with
he latest patterns in building energy consumption. Simultaneously, the
rchitecture and structure of the deep learning model are determined
sing the updated training datasets and RSPSO.

.1. Theory of the DNN

The DNN models consist of an input layer, multiple hidden layers
nd an output layer. The number of neurons in each hidden layer
ndicates the length of the network, while the number of hidden layers
etermines its dimension. In general, with a larger quantity of hidden
ayers and corresponding neurons, DNN is able to deliver a multi-level
epiction of the dataset, thus alleviate the local-optimum problem in
ata approximating (Deng & Yu, 2013). The graph of the DNN model
s illustrated in Fig. 2.

.1.1. DNN algorithm
As discussed in Section 2.2, the database is composed of input

ataset X and desired output dataset Z , and 𝑋 = {𝑥𝑖,𝑡|𝑖 = 1, 2,… , 33; 𝑡 =

, 2,… , 𝑇 }, 𝑍 = {𝑧𝑡|𝑡 = 1, 2,… , 𝑇 }, where 𝑇 is the total quantity
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Fig. 2. Structure of DNN model.
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of training time steps. In the first hidden layer, the 𝑗𝑡ℎ1 (𝑗1|𝑗1 =
1, 2,… , 𝑁𝐻,1) neuron can be calculated as:

𝑦1,𝑗1 = 𝑓 (
𝑖=33
∑

𝑖=1

𝑡=𝑇
∑

𝑡=1
(𝑤𝐼𝑁,𝑖,1,𝑗1𝑥𝑖,𝑡)) (5)

hile the 𝑗𝑡ℎ𝑘 neuron in the 𝑘𝑡ℎ(𝑛 ≥ 𝑘 ≥ 2) the hidden layer can be
obtained as:

𝑦𝑘,𝑗𝑘 = 𝑓 (
𝑗𝑘−1=𝑁𝐻,𝑘−1

∑

𝑗𝑘−1=1
(𝑤𝑘−1,𝑗𝑘−1 ,𝑘,𝑗𝑘𝑦𝑘−1,𝑗𝑘−1 )) (6)

The neuron 𝑧 in the output layer is calculated as:

𝑧𝑡 = 𝑓 (
𝑗𝑛=𝑁𝐻,𝑛
∑

𝑗𝑛=1
(𝑤𝑛,𝑗𝑛 ,𝑂𝑦𝑛,𝑗𝑛 ,𝑡)) (7)

where 𝑤 is the weighting coefficients among connected neurons, 𝑖 is the
ndex of neurons in the input layer, 𝑘 is the index of hidden layers, 𝑗𝑘

is the index of neurons in the 𝑘𝑡ℎ hidden layer, while 𝑓 is the activation
function.

3.1.2. Activation function
Four typical activation functions (i.e. sigmoid, hyperbolic tangent,

rectified linear unit and exponential linear unit) are tested to achieve
better prediction performance for the DNN model.

3.1.3. DNN training algorithm
The objective of training DNN is to minimise the mean absolute

error MAE between the predicted �̂� and the actual measurement 𝑧. The
training process is conducted by fine-tuning the weighting factors set
𝑊 = {𝑤𝐼𝑁,𝑖,1,𝑗1 |𝑁𝐼𝑁 ≥ 𝑖 ≥ 1, 𝑁𝐻,1 ≥ 𝑗1 ≥ 1} ∪ {𝑤𝑘−1,𝑗𝑘−1 ,𝑘,𝑗𝑘 |𝑛 ≥ 𝑘 ≥
2, 𝑁𝐻,𝑘−1 ≥ 𝑗𝑘 ≥ 1} ∪ {𝑤𝑛,𝑗𝑛 ,𝑂|𝑁𝐻,𝑘 ≥ 𝑗𝑛 ≥ 1}.

Four different training algorithms are used to find out the optimal
weighting coefficients of the neural network, such as adaptive moment
estimation (ADAM), stochastic gradient descent (SGD), ADAMAX, and
Nesterov-accelerated adaptive moment estimation (NADAM).

3.1.4. Performance indicator
As mentioned in Section 3.1.3, mean absolute error (MAE) is

adopted to evaluate the prediction performance:

𝑀𝐴𝐸 = 1
𝑡=𝑇
∑

(

𝑧𝑡 − �̂�𝑡
)

(8)

𝑇 𝑡=1

5

oreover, the mean squared error (MSE) is adopted to verify the
rediction accuracy further:

𝑆𝐸 = 1
𝑇

𝑡=𝑇
∑

𝑡=1

(

𝑧𝑡 − �̂�𝑡
)2 (9)

Furthermore, the coefficient of determination R2 is adopted to assess
the repeatability of the proposed prediction model:

𝑅2 =

[

∑𝑡=𝑇
𝑡=1

(

𝑧𝑡 −
∑𝑡=𝑇

𝑡=1 𝑧𝑡
𝑇

)(

�̂�𝑡 −
∑𝑡=𝑇

𝑡=1 �̂�𝑡
𝑇

)]2

∑𝑡=𝑇
𝑡=1

(

𝑧𝑡 −
∑𝑡=𝑇

𝑡=1 𝑧𝑡
𝑇

)

∑𝑡=𝑇
𝑡=1

(

�̂�𝑡 −
∑𝑡=𝑇

𝑡=1 �̂�𝑡
𝑇

) (10)

3.2. Selection of decision variables

The architecture of the DNN prediction model is generally problem-
dependent, which will have significant implications on DNN perfor-
mance. Selection-based PSO would be adopted to enable the automatic
process of finding the optimal architecture from a multidimensional
space. The whole-set hyperparameters of the DNN model can be se-
lected using RSPSO algorithms to originate a well-generalised archi-
tecture, even though the searching process would be considerably
complex. On the other hand, if only a small part of optimal hyperpa-
rameters are selected, the performance improvement would be quite
slight compared to the existing fixed-architecture models. Under-fitting
may be caused by small quantity of hidden layers and small quantity
of neurons in each hidden layer. On the other hand, over-fitting will be
resulted from large quantity of neurons and hidden layers. Connecting
performance among each neuron and layer is determined by the cor-
responding activation function as it reveals the relationship between
each neuron. The convergence performance of DNN is affected by the
learning algorithm, as it decides how weighting factors are founded.
Therefore, these four hyper-parameters are crucial in determining the
overall performance of DNN model. As a result, the total quantity of
hidden layers, the total quantity of neurons and activation function in
each hidden layer, as well as the learning algorithm, are considered
as critical parameters for the proposed ranking selection-based PSO
approach.

The decision variables are summarised in Table 2, while two fea-
tures are identified:

• The number of decision variables that need optimisation depends
on the value of one of the decision variables (i.e. quantity of
hidden layers), which is changeable. For example, if there are

2 hidden layers, there would be 1 (quantity of hidden layers)
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Table 2
Decision variables of PSO for DNN.

Quantity of hidden layers {2, 3, 4, 5}
Quantity of neurons in each hidden layer {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
Activation function {tanh, sigmoid, ReLU, ELU}
Learning approach {ADAM, NADAM, ADAMAX, SGD}

+ 2 (quantity of neurons in each hidden layer) + (2 + 1) (each
layer’s activation function) + 1 (learning algorithm) = 7 decision
variables in determining the DNN architecture. If there are 5
hidden layers, there would be 1 + 5 + (5 + 1) + 1 = 13 decision
variables.

• The quantity of neurons in each hidden layer and the quantity
of hidden layers can be considered as discrete variables, while
activation function and learning approaches are regarded as cat-
egorical variables. As a result, the type of decision variables is a
mix of discrete and categorical.

.3. Ranking selection based PSO algorithm

PSO is a robust evolutionary algorithm that has been widely adopted
n handling various highly nonlinear and sophisticated engineering
roblems. The first version of PSO was developed by Kennedy and
berhart (J. Kennedy & R. C. Eberhart, 1995) to solve continuous prob-
ems. Later on, they also proposed a binary version of PSO for discrete
ptimisation problems (J. Kennedy & R. C. Eberhart, 1997). The key
enefits of the PSO are its less computational time and swift learning
peed. In PSO, each particle, with its position and velocity, represents
single solution. Generally, the fundamental PSO is only suitable for

ither continuous or discrete problems. According to the analysis in
ection 3.2, the optimisation problem requires the changeable number
nd mixed types of decision variables, Although categorical variables,
ike activation function and learning approach, can be transformed into
iscrete variables, there is no relationship between the adjacent num-
ers and no velocity for the categorical variables. Therefore, ranking
election is integrated into fundamental PSO algorithm to consider both
ontinuous and discrete design variables. Additionally, the ranking se-
ection can adjust the search behaviour of a swarm at various searching
hases of categorical variables. The optimisation of DNN architecture
an be regarded as a mixed variable optimisation problem as:

inimise𝑓 (𝛷) (11)

here 𝑓 (𝛷) is the objective function (i.e. MAE of the prediction value
rom the DNN model), 𝛷 is a vector made up of design variables.
=
(𝛷𝐷

𝛷𝐶

)

, while 𝛷𝐷 =
[

𝜙1, 𝜙2,… , 𝜙𝜙1+1

]𝑇
and 𝛷𝐶 = [𝜙𝜙1+1,… , 𝜙2𝜙1+1,

𝜙2𝜙1+2]
𝑇 . The number of decision variables in 𝛷𝐷 and 𝛷𝐶 depends

on the value of 𝜙1. Compared to the basic PSO algorithm, RSPSO has
wo prior processes. At first, a population of individuals is ranked. Sec-
ndly, each individual is chosen with a certain probability distribution
ccording to its ranks.

The optimal selection scheme used in the evolutionary algorithm
epends on the optimisation task and the type of problem (Blickle &
hiele, 1996). In the proposed RSPSO, two types of ranking schemes
re developed to rank the population of individuals:

• For discrete variables, the feasible positions are ranked according
to the objective function’s fitness value, while the infeasible posi-
tions are ranked in accordance with their nondomination levels.
Furthermore, the infeasible positions at the same nondomination
level are graded based upon the fitness value of the objective
function. After the ranking of each population, a sequence Pbest-
Seq is formulated to store the topmost N historical positions with
superior ranking values. The elements in PbestSeq are indicated
by Pbest :

𝑃𝑏𝑒𝑠𝑡𝑆𝑒𝑞(𝑘) =
{

𝑅𝑎𝑛𝑘
(

𝑃 1) , 𝑘 = 1
𝑅𝑎𝑛𝑘

(

𝑃𝑏𝑒𝑠𝑡𝑆𝑒𝑞(𝑘−1) ∪ 𝑃 (𝑘)) [1∶𝑁] , 𝑘 > 1
(12) a

6

• For categorical variables, the allowable value of each categorical
variable memorises its historical best value, which refers to the
fitness value of the objective function. If there is the historical
best value for a permissible value yet, then the permissible value
would be regarded as the historical best value. If the existing
historical best value and the corresponding permissible values are
all the objective function values, the smaller one of the existing
historical best value and permissible values would be regarded
as the new historical best value. When all allowable values of
a categorical variable have their historical best values, it would
be graded based upon the fitness value of the objective function,
𝐷𝐶𝑉𝑖 = 𝑅𝑎𝑛𝑘𝑉 (𝐷𝐶𝑖)

or the discrete variables, the selection probability distribution is for-
ulated, while the selected element is determined as:

= 𝑐𝑒𝑖𝑙
(

𝑐𝑒𝑖𝑙
(

𝑀 ×
(

𝑟𝑎𝑛𝑑1
)

log(𝐸𝑅)
log(0.5)

)

× 𝑟𝑎𝑛𝑑2

)

, 0 < 𝐸𝑅 ≤ 1,

𝑖𝑓𝑔 = 0 𝑡ℎ𝑒𝑛 𝑠𝑒𝑡 𝑔 = 1 (13)

where M is the total quantity of particles in a sequence. ER is the
utilisation-regulated parameter, which indicates the anticipated ratio
of the total quantity of the elements to be designated to M . If ER < 1,
he probability of selecting the ith element is

(𝑘)
𝑖,𝑑 =

𝑁
∑

𝑘=𝑖

𝑘1∕𝑠 − (𝑘 − 1)1∕𝑠

𝑀1∕𝑠 × 𝑘
, 𝑖 = 1, 2, 3,… ,𝑀 (14)

𝑠 =
log(𝐸𝑅)
log(0.5)

(15)

For the categorical variables, its value would be arbitrarily chosen
from its allowable values until each value has been explored:

𝑔 = 𝑐𝑒𝑖𝑙
(

𝑁𝐶 × 𝑟𝑎𝑛𝑑
)

, 𝑖𝑓𝑔 = 0𝑡ℎ𝑒𝑛𝑠𝑒𝑡𝑔 = 1 (16)

𝑃 (𝑘)
𝑖,𝑑 = 𝐶𝑑,𝑔 (17)

𝑁𝐶 is the total number of the particles in 𝐶𝑑 . Once each permissible
alue of the categorical variables is visited at least once, the categorical
ariables will be arbitrarily chosen from the ranked sequence:

= 𝑐𝑒𝑖𝑙
(

𝑐𝑒𝑖𝑙
(

𝑀 ×
(

𝑟𝑎𝑛𝑑1
)

log(𝐸𝑅)
log(0.5)

)

× 𝑟𝑎𝑛𝑑2

)

, 0 < 𝐸𝑅 ≤ 1,

𝑖𝑓𝑔 = 0𝑡ℎ𝑒𝑛𝑠𝑒𝑡𝑔 = 1 (18)

𝑃 (𝑘)
𝑖,𝑑 = 𝐷𝐶𝑉𝑑,𝑔 (19)

𝑉 (𝑘+1)
𝑖,𝑑 = 𝐼𝑁𝑇𝑅𝛾1 × 𝑉 (𝑘)

𝑖,𝑑 + 𝛾2 × 𝑐1 ×
(

𝑃𝑏𝑒𝑠𝑡(𝑘)𝑛,𝑑 − 𝑃 (𝑘)
𝑖,𝑑

)

+ 𝛾3 × 𝑐2 ×
(

𝑃𝑏𝑒𝑠𝑡(𝑘)𝑔,𝑑 − 𝑃 (𝑘)
𝑖,𝑑

)

(20)

𝑃 (𝑘+1)
𝑖,𝑑 = 𝑃 (𝑘)

𝑖,𝑑 + 𝑉 (𝑘+1)
𝑖,𝑑 (21)

where 𝛾1 is the inertia weight, 𝛾2 is the cognitive coefficient, 𝛾3 is
he social coefficient, 𝑐1 and 𝑐2 are random values in range [0, 1].
𝑏𝑒𝑠𝑡𝑛,𝑑 is the 𝑑𝑡ℎ the dimension of the particle 𝑃𝑏𝑒𝑠𝑡𝑛. Operation INTR

s formulated to deal with the design variables with integer values:

𝑁𝑇𝑅 (𝑟) =
{

𝑓𝑙𝑜𝑜𝑟 (𝑟) , 𝑖𝑓𝑟𝑎𝑛𝑑 > 𝑟 − 𝑓𝑙𝑜𝑜𝑟(𝑟)
𝑐𝑒𝑖𝑙 (𝑟) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(22)

.4. Framework of rspso-powered DNN prediction model

According to Eq. (23) given in Box I, there are a total of 4.201 × 108

ypes of DNN architectures. Depending on the complexity of the DNN,
t could take between 1 and 30 s to simulate each type of architecture.
he optimisation of DNN architecture is a complex mixed discrete and
ategorical variables optimisation problem. If the grid search optimi-
ation approach is adopted, this could take one week to simulate all
ossible types of architecture. Due to its robustness in handling a wide
ariety of highly nonlinear and complex engineering problems, PSO is
dopted to select the optimal architecture of DNN in this study.
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Box I.
Fig. 3. Flowchart of interaction between RSPSO and DNN.
The framework of the proposed RSPSO-powered DNN model is
emonstrated in Fig. 3. The DNN model, with its architecture, is
egarded as a particle of the PSO algorithm. At the start, n𝑝𝑜𝑝 = 20

DNN models are arbitrarily assigned with different architectures. Since
training DNN is a random process, there would be slight differences
in the resulted MAE while the training process is repeated. Therefore,
each DNN model is trained three times, while the mean value of MAE
is adopted as the fitness value of PSO objective function. Thereafter,
pbestSeq and HBVs are ranked and selected to update the discrete and
categorical variables of each particle (i.e. architecture of each DNN
model). This iteration process is repetitive for 50 times. After obtaining
the optimal architecture for the DNN model, the testing dataset is
adopted to validate the well-trained DNN model. If the MAE value of
he testing dataset is 15% larger than that resulted from the training
ataset, the above-mentioned RSPSO optimisation process would be
epeated to select the optimal architecture for the DNN model. Other-
ise, the DNN model would be considered effective and treated as the
ptimal DNN model. Thereafter, the evaluation dataset can be adopted
o simulate the energy prediction process for the future coming months.

Meanwhile, according to Table 3, there would be 5 hidden layers
nd 50 neurons in each hidden layer at most, this would result in
3 × 50 + 4 × 50 ×50 + 50 = 11700 weighting factors to opti-

mise. Therefore, the performance of 4 different learning approaches,
including ADAM, NADAM, ADAMAX, SGD is investigated.
7

3.5. Moving horizon

Yearly update of DNN architecture may not reflect the latest feature
in energy consumption profile, while weekly or daily update may be
too time consuming. Therefore, monthly update of DNN architecture
is adopted. In other words, the moving horizon is set at 1 month. As
illustrated in Section 2, the historical meteorological and energy data is
available from the past one and a half years in this study. To enable the
training dataset considers the seasonal change of weather and energy
profile, one year is set as the base timeline of training dataset. To
enable the RSPSO-powered deep learning model to be self-adaptive, six
groups of the historical datasets are constructed as there are one and
a half year’s historical data available. In practical application, this is
a continuous process and there will be more than 6 DNN models with
the time being. As demonstrated in Fig. 4, to enhance the robustness
of the DNN model, in each one-year set, 80% of the randomly chosen
datasets and the remaining 20% of datasets are adopted to train and test
the neural network, respectively. Meanwhile, the following one-month
datasets are treated as future prediction scenarios to evaluate the well-
trained prediction model. In the following description, DNN1, 2, 3, 4, 5
and 6 represents the DNN model for predicting energy consumption in
July, August, September, October, November and December 2019, re-
spectively. The following one-month datasets are named as evaluation
datasets in the following discussion. Afterwards, the prediction horizon
moves one month forward.
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Fig. 4. Diagram of moving horizon.
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Table 3
Optimisation result at different RSPSO parameters.

RSPSO parameters

𝛾1 = 0.5

𝛾2 = 1

𝛾3 = 3

𝛾1 = 0.5

𝛾2 = 3

𝛾3 = 1

𝛾1 = 0.5

𝛾2 = 2

𝛾3 = 2

𝛾1 = 0.7

𝛾2 = 2

𝛾3 = 2

𝛾1 = 0.9

𝛾2 = 2

𝛾3 = 2

Average MAE value (kW) 1.16 1.14 1.12 1.15 1.17

In practical application, the training and testing datasets are still se-
ected from the past year’s historical data, while the evaluation datasets
onsist of the future one month’s weather forecast, time variables and
redicted electricity consumption. In other words, at the beginning
f each month, the past year’s historical data is split randomly as
raining and testing datasets with the ratio of 80%:20%. Thus the well-
rained neural network can be adopted to forecast the future one-month
lectricity load. This process is repeated at the beginning of each month
o ensure the DNN have the optimal architecture to catch the latest
hanges in the energy consumption patterns.

. Performance evaluation of the proposed RSPSO-powered self-
daptive deep learning model

To guarantee the optimal DNN architecture is obtained, the perfor-
ance of RSPSO is investigated. To test the self-adaptive capability, the
erformance of DNN is evaluated using the moving horizon approach.
o precision and repeatability of the prediction model is explored by its
AE, MSE and 𝑅2 values, while the robustness of the prediction model

s tested by adding Gaussian white noises to input datasets.

.1. Performance evaluation of RSPSO

To improve the effectiveness of RSPSO algorithm in architecture op-
imisation, its parameters were selected through enumerate approach.
he convergence performance of RSPSO algorithm was evaluated with
DNN model architecture optimisation. To assess the optimisation

bility of RSPSO, the performance of the reference GA-enhanced DNN
odel is studied.

.1.1. RSPSO parameters selection
As shown in Eq. (14), RSPSO parameters generally include inertia

eight 𝛾1, cognitive parameter 𝛾2 and social parameter 𝛾3. Different
SPSO parameters are selected using the enumerate approach to pre-
ent the optimisation from being converged to a local optimum. The
8

performance of the RSPSO algorithm is evaluated according to the aver-
ageMAE value of training and testing datasets in DNN1. As summarised
in Table 3, the DNN1 model results in the smallest MAE value with
1 = 0.5, 𝛾2 = 2, 𝛾3 = 2. Therefore, this set of RSPSO parameters is
dopted in determining the optimal architecture of prediction models
NN 1–6.

.1.2. Comparison of RSPSO-powered DNN and reference GA-powered
NN prediction model

As discussed in Section 3.3, DNN architecture optimisation consists
f hybrid continuous and discrete design variables, while fundamental
SO is not able to solve such comprehensive problem. That is also
ne of the reason why RSPSO is proposed in this study. To assess the
ptimisation ability of RSPSO, a GA-powered DNN model is designed
s the reference case. In this study, perfect knowledge of weather
rofile for the entire period, to avoid uncertainty and noises in the
ata measurements when comparing the RSPSO-powered DNN and
A-powered DNN prediction model. The same pre-processed training
nd testing datasets are adopted as described in Section 4.1, while
he architecture of the DNN model is determined by GA optimisation.
hrough the same approach of sensitivity analysis as adopted in (Luo,
yedele, Ajayi et al., 2020), the optimal GA parameters are found to be
etain probability = 0.8, selection probability = 0.2, mutation probabilities
= 0.2. The optimal architecture of the DNN1 model from RSPSO and
GA is summarised in Table 4. From both RSPSO-powered DNN and
GA-powered DNN, 3 hidden layers with exponential linear activation
function and ADAM learning algorithm would result in the optimal
performance. Meanwhile, GA-DNN and PSO-DNN would result in a
different optimal number of neurons and activation functions in each
hidden layer. The MAE, MSE, 𝑅2 and computational time of both
models are illustrated in Table 5. The GA-DNN model is adopted
as the baseline, while performance improvement is calculated as in
Box II: The most significant advantage of RSPSO-DNN over GA-DNN
is its faster convergence speed in solving the optimisation problem of
DNN architecture. The computational time of the RSPSO-DNN model
is 39.69% shorter than that of GA-DNN. Moreover, when conducting
energy consumption prediction for the evaluation dataset, the MAE and
MSE of RSPSO-DNN is 4.94% and 7.72% smaller than that of GA-DNN.
Although there is only a 0.2 kW difference in MAE between GA-DNN
and RSPSO-DNN, there would result in a 1752 kWh difference in one
year. The prediction results of the first week of July is summarised in
Fig. 5. It is found that the prediction values from PSO-DNN are closer
to the real measurement most of the time.
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𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑜𝑓 𝑅𝑆𝑃𝑆𝑂 𝑝𝑜𝑤𝑒𝑟𝑒𝑑 𝐷𝑁𝑁 𝑚𝑜𝑑𝑒𝑙 − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑜𝑓 𝐺𝐴_𝐷𝑁𝑁 𝑚𝑜𝑑𝑒𝑙
𝑃 𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑜𝑓 𝐺𝐴_𝐷𝑁𝑁 𝑚𝑜𝑑𝑒𝑙

× 100%

Box II.
Table 4
The architecture of optimal DNN architecture determined by GA and RSPSO.

DNN architecture Quantity of neurons in
each hidden layer

Quantity
of layer (s)

Activation function Optimisation approach

1 2 3 Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

GA-optimised 55 25 20 3 ReLU sigmoid ReLU ELU ADAM
RSPSO-optimised 55 35 15 3 ReLU ReLU ReLU ELU ADAM
Table 5
Prediction performance of RSPSO-DNN and GA-DNN.

MAE (kW) MSE (kW) R2 (%) Computational time
Train&Test Evaluation Train&Test Evaluation Train&Test Evaluation

GA-DNN 1.13 2.43 3.31 12.17 99.24 97.70 9 h 32 min
RSPSO-DNN 1.12 2.31 3.11 12.23 99.29 97.89 5 h 45 min
Improvement ↓0.89% ↓4.94% ↓6.04% ↑0.49% ↑0.05% ↑0.19% ↓39.69%
Fig. 5. Prediction results of GA-DNN and PSO-DNN.
4.1.3. The convergence of RSPSO in DNN architecture optimisation
The convergence performance of the proposed self-adaptive deep

learning model for six sets of training datasets is shown in Fig. 6. The
optimisation of DNN architecture reaches convergent after 22, 27, 12,
36, 39 and 33 iterations for DNN1, DNN2, DNN3, DNN4, DNN5 and
DNN6, respectively. It is also identified that the MAE values of the 6
DNN prediction models are smaller than 1.70 kW.

The optimal architecture for the 6 DNN models is summarised in
Table 6. The quantity of neurons in each hidden layer, the quantity of
layers, activation function, the learning approach is different among the
6 DNN models. It also demonstrates its self-adaptive ability in chasing
the latest featuring patterns for online building energy consumption
prediction. The various DNN architecture indicates the varying featur-
ing patterns of meteorological and energy consumption data during the
different periods of the year.

4.1.4. Performance assessment of the determined optimal architecture
To demonstrate DNN’s optimal architecture in energy consump-

tion prediction, four reference DNN models are introduced, with each
changing one parameter from the optimal DNN1 architecture. The

architecture of each DNN reference model is summarised in Table 7.

9

• In DNN_R1, there is only one hidden layer with 55 neurons in that
hidden layer, while activation function and learning algorithm is
kept the same as those in RSPSO-powered DNN1.

• In DNN_R2, there are 35 neurons in each hidden layer, while the
total quantity of neurons is kept the same as that in the RSPSO-
powered DNN1. The number of layers, activation and learning
approaches is also kept the same as those in the RSPSO-powered
DNN1.

• In DNN_R3, the sigmoid activation function is adopted in hid-
den layers, while the quantity of neurons and layers, activation
function, and learning algorithm are kept the same as that in the
RSPSO-powered DNN1.

• In DNN_R4, SGD is adopted as the learning approach, while the
quantity of neurons in each layer, number of layers, activation
function, and learning algorithm is kept the same as that in the
RSPSO-powered DNN1.

The MAE, MSE, 𝑅2 and computational time of both models are
summarised in Table 8, while the prediction results of the first week
of July is summarised in Fig. 7. Compared to the four reference DNN

models, the RSPSO-powered DNN has a 7.63% and 17.67% reduction
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Fig. 6. The convergence of MAE in RSPSO optimisation.
Table 6
Optimal architecture of each DNN model.

DNN architecture Quantity of neurons
in each hidden layer

Quantity
of layer

Activation function Learning approach

1 2 3 4 Hidden layer 1 Hidden layer 2 Hidden layer 3 Hidden layer 4 Output layer

DNN1 55 35 15 3 ReLU ReLU ReLU ELU ADAM
DNN2 25 50 40 50 4 sigmoid ReLU sigmoid sigmoid ELU NADAM
DNN3 40 25 50 20 4 sigmoid ELU sigmoid ReLU ELU ADAMAX
DNN4 5 45 50 3 ELU ELU ELU ReLU ADAM
DNN5 5 45 2 tanh ELU ELU NADAM
DNN6 30 5 45 3 ELU ReLU sigmoid ELU NADAM
Table 7
The architecture of each DNN reference model.

DNN architecture Quantity of neurons
in each layer

Number of
layer (s)

Activation function Learning approach

1 2 3 Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

DNN_R1 55 1 ReLU ELU ADAM
DNN_R2 35 35 35 3 ReLU ReLU ReLU ELU ADAM
DNN_R3 55 35 15 3 sigmoid sigmoid sigmoid ELU ADAM
DNN_R4 55 35 15 3 ReLU ReLU ReLU ELU SGD
DNN1 55 35 15 3 ReLU ReLU ReLU ELU ADAM
Table 8
Prediction performance of each DNN reference model.

MAE (kW) MSE (kW) R2 (%)

DNN_R1 2.47 13.64 97.43
DNN_R2 2.37 12.76 97.60
DNN_R3 2.49 12.68 97.61
DNN_R4 2.49 12.40 97.67
PSO-DNN 2.30 11.23 97.89
Biggest performance improvement 7.63% 17.67% 0.47%

in MAE and MSE, respectively. The prediction values from PSO-DNN
are closer to the real measurement than those reference DNN models
during most of the time.

4.2. Analysis of the effectiveness of moving horizon

Moving horizon building energy prediction as described in Fig. 4
should be adopted owing to the varying featuring patterns of meteo-
rological and energy consumption data during the different periods of
the year. Therefore, the DNN model should be trained using the past
year’s historical database and adopted to predict next month’s building
energy consumption. In other words, the prediction models of DNN1,
DNN2, DNN3, DNN4, DNN5 and DNN6 should be adopted to forecast
10
the building energy consumption in July, August, September, October,
November and December 2019, respectively. Two sets of DNN reference
models are adopted to evaluate the effectiveness of moving horizons in
improving the prediction accuracy.

The specifications of the first set of DNN reference models are
illustrated in Table 9. The 6 DNN models are also adopted to forecast
the electricity load of the remaining months. For example, DNN1 is still
trained using the database during July 2018–June 2019. However, the
meteorological and energy consumption datasets from each month from
July–December 2019 are adopted as evaluation datasets. Namely, the
DNN model with the same architecture and structure (i.e. weighting
factors) is adopted for building energy consumption prediction of the
following months. The RMSE, MAE and 𝑅2 of the reference DNN
networks are illustrated in Table 10, while the prediction results of
the first week of July is summarised in Fig. 8. It is seen that the
smallest MAE, MSE and the biggest 𝑅2 value of July, August, Septem-
ber, October, November, December 2019 is obtained using DNN1,
DNN2, DNN3, DNN4, DNN5 and DNN6, respectively. However, the
prediction accuracy might be affected by the month. It is seen that
for the same month, the prediction model with the moving horizon
approach (the method proposed in this paper) has higher prediction
accuracy and repeatability compared to that without moving horizon
(reference model).
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Fig. 7. Prediction results of each DNN reference model.
Fig. 8. Prediction results of the proposed PSO-DNN and each DNN reference model.
v

Table 9
Training, testing and evaluation datasets information for the first set of reference
models.

Training & Testing Evaluation (2019)

DNN1 Jul. 2018–June 2019 Jul. Aug. Sept. Oct. Nov. Dec.
DNN2 Aug. 2018–Jul. 2019 Aug. Sept. Oct. Nov. Dec.
DNN3 Sept. 2018–Aug. 2019 Sept. Oct. Nov. Dec.
DNN4 Oct. 2018–Sept. 2019 Oct. Nov. Dec.
DNN5 Nov. 2019–Oct. 2018 Nov. Dec.
DNN6 Dec. 2019–Nov. 2019 Dec.
o

11
The specifications of the second set of DNN reference models are
summarised in Table 11. For each reference prediction model, al-
though its weighting factors are updated by training with the past 12
months dataset, the architecture of each DNN model is kept the same.
For example, the architecture of DNN1 is still determined using the
datasets during July 2018-June 2019. However, for each new month,
the structure (i.e. weighting factors) are determined using the past
year training datasets. The RMSE, MAE and 𝑅2 of the reference DNN
networks are illustrated in Table 12. Although the MAE and RMSE
alue in each individual case is smaller than those from the first set
f reference DNN models, it is still larger than that obtained from the
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Table 10
MAE, MSE and R2 value for DNN models using different evaluation datasets.
Table 11
Training, testing and evaluation datasets information for the second set of reference models.

Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation

DNN1 Jul.
2018–June
2019

Jul. 2019 Aug.
2018–Jul.
2019

Aug. 2019 Sept.
2018–Aug.
2019

Sept.
2019

Oct.
2018–Sept.
2019

Oct. 2019 Nov.
2019–Oct.
2018

Nov.
2019

Dec.
2019–Nov.
2019

Dec. 2019

DNN2 Aug.
2018–Jul.
2019

Aug. 2019 Sept.
2018–Aug.
2019

Sept.
2019

Oct.
2018–Sept.
2019

Oct. 2019 Nov.
2019–Oct.
2018

Nov.
2019

Dec.
2019–Nov.
2019

Dec. 2019

DNN3 Sept.
2018–Aug.
2019

Sept.
2019

Oct.
2018–Sept.
2019

Oct. 2019 Nov.
2019–Oct.
2018

Nov.
2019

Dec.
2019–Nov.
2019

Dec. 2019

DNN4 Oct.
2018–Sept.
2019

Oct. 2019 Nov.
2019–Oct.
2018

Nov.
2019

Dec.
2019–Nov.
2019

Dec. 2019

DNN5 Nov.
2019–Oct.
2018

Nov.
2019

Dec.
2019–Nov.
2019

Dec. 2019

DNN6 Dec.
2019–Nov.
2019

Dec. 2019
proposed self-adaptive DNN model. The prediction results from the
second week of each month are summarised in Fig. 9. It is found that
the prediction values from PSO-DNN are closer to the real measurement
most of the time. The above two reference cases indicate that the
DNN prediction model is the most effective at forecasting next month’s
energy consumption, while its prediction performance would diminish
with the increase of time. It also proves the necessity of adopting a
moving horizon in determining the optimal architecture and weighting
factors of DNN.
12
4.3. Performance analysis of robustness

As there generally exists uncertainty in the weather forecast, the
prediction model’s robustness is assessed. To represent the real sit-
uation of weather forecast, the Gaussian noises G are added to the
meteorological data. The Gaussian white noises have a mean of 0,
while the standard deviation equals 20% of the maximum value of each
type of meteorological data (i.e. dry-bulb temperature, wet-bulb tem-
perature, wind velocity, cloud ratio and solar radiation), respectively.
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Table 12
MAE, MSE and R2 value for DNN models using different evaluation datasets.
Fig. 9. Prediction results of the proposed RSPSO-DNN and each DNN reference model.
The MAE, MSE and 𝑅2 of these noises added and noise-free prediction
models are shown in Table 13, while corresponding prediction results
are summarised in Fig. 10. The largest increase of MAE and RMSE is
15.33% and 38.55%, respectively.
13
4.4. Performance analysis of input training datasets

To find out the optimal input training datasets, the rolling datasets
and accumulative datasets are adopted to train the 6 DNN models. The
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Fig. 10. Prediction results of the proposed PSO-DNN under noise-free and noise-added cases.
Table 13
Prediction performance under Gaussian white noises.

Performance Type Jul. Aug. Sept. Oct. Nov. Dec.

MAE (kW)
Noise added 2.49 2.26 1.73 1.47 1.46 1.41
Noise free 2.31 2.01 1.50 1.44 1.38 1.28
Increase 7.79% 12.44% 15.33% 2.08% 5.80% 10.16%

𝑅2
Noise added 97.47% 96.80% 97.97% 98.78% 98.81% 98.34%
Noise free 97.89% 97.52% 98.53% 98.86% 98.92% 98.71%
Decrease 0.43% 0.74% 0.57% 0.08% 0.11% 0.37%

MSE (kW)
Noise added 13.42 12.15 7.08 4.77 4.95 5.32
Noise free 11.23 9.45 5.11 4.48 4.47 4.15
Increase 19.50% 28.57% 38.55% 6.47% 10.74% 28.19%
specifications of the second set of DNN reference models are illustrated
in Table 14. The RMSE, MAE and 𝑅2 of the reference DNN models
are illustrated in Table 15. It is found that increasing the length of
training datasets does not necessarily improve prediction accuracy. It is
because that the latest one-year historical data is sufficient to cover the
characteristics of building energy consumption. An unbalanced histor-
ical database (e.g. two July) may result in biased training. Moreover,
a larger database means a longer computational time. Therefore, it is
suggested to use the exact past-year historical data as rolling datasets
to train the proposed RSPSO-DNN model, as illustrated in Fig. 7.

5. Summary of the self-adaptive deep learning prediction model
and practical implication

The whole process of practical building energy consumption pre-
diction is illustrated in Fig. 11. its architecture should be self-adaptive
so that the moving horizon approach can be adopted. At the be-
ginning of each month, last year’s meteorological profile from the
local weather station and electricity load profile from the building
energy management system is adopted to select the DNN network’s
optimal architecture. After the optimal DNN network is well trained
14
and the weighting coefficients are obtained, it can be utilised to forecast
next month’s energy consumption with the up-to-date weather forecast
profile from reliable weather forecasting websites (i.e. Accuweather,
Weather.com, or Metoffice). Due to the capability of being accurate,
robust, repeatable and self-adaptive, the proposed deep learning can
be integrated into the building energy management system to forecast
day-ahead or week-ahead energy consumption. It can also assist in
supply-side management and fault detection.

6. Conclusion and future follow-up work

In this research, an RSPSO-powered deep learning model with a
moving horizon is proposed to enhance the accuracy, robustness, re-
peatability and self-adaptive capability in moving horizon building
electricity load prediction. Although the prediction model is a contin-
uous research of our previous GA-DNN prediction model, its distinct
innovation and contribution are summarised as follows:

• A robust evolutionary algorithm to optimise the DNN network’s
architecture, thus determine the dimension and length of the
DNN model, the comprehensive relationship between output and
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Table 14
Training, testing and evaluation datasets information for accumulative and rolling datasets.

Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation Training &
Testing

Evaluation

DNN1

Jul.
2018–Jul.
2019

Aug. 2019
Jul.
2018–Aug.
2019

Sept.
2019

July.
2018–Sept.
2019

Oct. 2019
Jul.
2018–Oct.
2019

Nov.
2019

Jul.
2018–Nov.
2019

Dec. 2019

DNN2
DNN3
DNN4
DNN5
DNN6

Proposed Aug.
2018–Jul.
2019

Aug. 2019 Jul.
2018–Aug.
2019

Sept.
2019

July.
2018–Sept.
2019

Oct. 2019 Jul.
2018–Oct.
2019

Nov.
2019

Jul.
2018–Nov.
2019

Dec. 2019

DNN2 DNN3 DNN4 DNN5 DNN6
Table 15
MAE, MSE and R2 value for DNN models using accumulative and rolling datasets.
input datasets, and the training procedure of various weighting
coefficients.

• A revised RSPSO algorithm is adopted to tackle with optimisation
problem with a varying number (i.e. the quantity of decision
variables is affected by the value of one of the decision variables)
and mixed types of decision variables (i.e. quantity of hidden
layers and quantity of corresponding neurons in each hidden
layer as discrete variables while activation function and learning
approach as categorical variables).

• A moving horizon approach is adopted to design the DNN net-
work’s architecture and structure. Thus it has the self-adaptive
capability to guarantee high prediction accuracy when new fea-
turing patterns occur in the building energy consumption.

• A Gaussian white noise test to ensure the robustness of the pre-
diction model; thus, it can deal with weather forecast uncertainty
and improve the energy prediction performance.
15
The historical meteorological profile from the local weather station and
the recorded electricity load from the energy management system from
a real-world campus building is adopted to test the proposed prediction
model. Six DNN models are designed with different architectures and
structures, with each trained by the past one-year data and being ap-
plied to predict next month’s electricity load. The main characteristics
of the DNN prediction model are summarised below:

• The most significant advantage of the RSPSO-powered DNN over
GA-powered DNN is its faster convergence speed in solving the
problem architecture optimisation. The computational time of
RSPSO-powered DNN is 39.69% shorter than that of GA-powered
DNN. Moreover, when conducting energy consumption prediction
for the evaluation dataset, the MAE and MSE of PSO-DNN is
4.94% and 7.72% smaller than that of GA-DNN.

• The different optimal quantity of hidden layers, the quantity
of neurons in each layer, activation function in each layer and
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Fig. 11. Summary of the proposed self-adaptive deep learning prediction model.
learning approach for weighting coefficients are determined for
the six DNN models. The optimal number of hidden layers is
found to be 4 for all the 6 DNN prediction models. It demonstrates
that the architecture of DNN models needs to be self-adaptive for
moving horizon building energy consumption prediction to chase
its latest featuring patterns.

• Take DNN1 as an example: the DNN with optimal architecture
determined by PSO shows better performance than the reference
DNN models. The architecture of reference DNN models is defined
by changing one parameter from the optimal DNN architecture.
By comparing with the four reference DNN models, the biggest
performance improvement is a 7.63% decrease in MAE , 17.67%
in MSE , and 0.47% in R2.

• The proposed self-adaptive deep learning model is the most ef-
fective at forecasting next month’s energy consumption, while
its prediction accuracy and repeatability would deteriorate with
the increase of timespan from last training. Even if the predic-
tion model is trained using the latest datasets, its prediction
performance will fade if its architecture is not adjusted.

• To represent the real situation of weather forecast, the Gaussian
noises G are added to the meteorological data. The smallest
increase of MAE, RMSE and decrease of 𝑅2 is 2.08%, 6.47% and
0.08%, while the largest ones are 15.33%, 38.55% and 0.74%,
respectively. The small changes in accuracy and repeatability
demonstrate the robustness of the proposed prediction model
in overcoming uncertainty in weather profiles from the forecast
website.

Although the proposed self-adaptive prediction model shows excel-
lent performance when applied on the real-world campus building,
its limitation and potential future follow-up work are summarised as
follows:

• It is found that the optimal DNN architecture is different for var-
ious databases. The correlation between the optimal DNN archi-
tecture and the changing characteristics of the training database
can be investigated.

• Compared to residential, hospital, hotel or other types of build-
ings, the operating schedules of lighting, office equipment, and
the heating-and-cooling system is relatively stable in office build-

ings. The accuracy, robustness, repeatability and self-adaptive

16
ability of the proposed prediction model should be further ex-
plored when it is adopted in other building types.

• The proposed prediction model is tested on an office building in a
temperate oceanic climate, while dry-bulb temperature, wet-bulb
temperature, cloud ratio, wind velocity and solar radiation are
adopted as meteorological data. It would be interesting to see
whether these types of meteorological data also have significant
effects on building energy performance in other climate zones.

• It is also essential to explore the accuracy and efficiency of other
deep learning algorithms in forecasting electricity load, includ-
ing the long short-term memory units, recurrent networks, and
convolutional neural networks.

Nomenclature

c Random values between 0–1 regenerated for each
velocity update

d Day
E Electricity load
f Activation function
h Hour
m Month
MAPE Mean absolute percentage error
N, n Number
pbest Particle’s best value
T Temperature
v Velocity of the particle
V Speed
w Weighting coefficient
W Set of weighting coefficients
x Neuron in the input layer
X Input dataset
y Neurons in hidden layer
z Neurons in output layer
�̂� Estimated output of DNN model
Z Output dataset
𝜃 Cloud ratio
𝜀 Solar radiation
𝛾 PSO parameters
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Subscripts

db Dry-bulb
dew Dew-point
i Index of neurons in input layer
j Index of neurons in hidden layer
k Index of hidden layers
m Particle number
l Iteration number
H Hidden layer
IN Input layer
O Output layer
pop Population
t Time step
𝜇 Iteration step

Abbreviations

ADAM Adaptive moment estimation
ANFIS Adaptive network-based fuzzy inference systems
ANN Artificial neural network
ELU Exponential linear function
DNN Deep neural network
GA Genetic algorithm
LM Levenberg–Marquardt backpropagation
MAE Mean absolute error
MSE Mean squared error
NADAM Nesterov-accelerated Adaptive Moment Estimation
PSO Particle swarm optimisation
ReLU Rectified linear unit function
RMSE Root mean square error
SGD Stochastic gradient descent approach
tanh Hyperbolic tangent function
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