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Introduction

In tests of differences, the most frequent desired compari-

son is a comparison of group means. In general, the com-

parisons of central location or distributions, is a source of

much confusion in the literature, because these are often

mistreated as having the same null hypothesis (Fagerland

& Sandvik, 2009). Non-parametric tests designed to assess

differences in central location are appropriate when the

distributions are the same or with a simple location shift

(Rietveld & vanHout, 2017). Non-parametric tests designed

to be sensitive to location effects, may also be sensitive to

other distributional differences, including those situations

when the central location is the same but with different

distributions (Hart, 2001) and as such clarity over the pre-

cise form of the statistical null hypothesis is needed along

with clarity over the distributional assumptions.

Within the partially overlapping samples framework,

the research question and related statistical hypotheses

may relate to a comparison of central locations such as

means or medians, or of distributions, or proportions or

variances as appropriate.

The avoidance of partially overlapping samples is de-

sirable through good study design. In general, paired sam-

ples designs can be advantageous relative to independent

samples designs (Amro, Konietschke, & Pauly, 2019). How-

ever, real-world paired designs rarely result in only com-

plete pairs being collected (Derrick, Dobson-Mckittrick, To-

her, & White, 2015).

To demonstrate the breadth of the two partially over-

lapping samples design, the following list illustrates some

situations which may be encountered:

A paired samples design, which inadvertently con-
tains independent observations. The most frequent oc-
currence of partially overlapping samples is a paired sam-

ples design with missing observations (Martinez-Camblor,

Corral, & De La Hera, 2013; Ramosaj, Amro, & Pauly, 2020).

If observations are missing due to equipment failure or

loss in transit, the data could potentially be regarded as be-

ing MCAR (Kang, 2013). A likely general scenario is missing

data due to participant drop out leading to unpaired data

in a paired design, and participant attrition could lead to
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independent observations in one sample only (e.g. com-

plete baseline data, but some data missing at follow-up).

Observations taken at two points in time, where the
population membership changes over time but retains
some common members. When observations are taken
on the same study unit on two occasions, it is anticipated

that the dependent variable is recorded on both occasions,

thus forming paired observations. However, where there

is a natural turnover of membership of a group, there may

be participants that are only available to provide a re-

sponse on one of the two occasions, thus forming obser-

vations which cannot be paired.

An independent samples design, which inadvertently
contains paired observations. In an example by Looney
and Jones (2003), participants were randomly allocated

to either placebo or active treatment and were each to

provide one measurement on the response variable, how-

ever some participants allocated to the active treatment

group received the placebo by mistake. For the partici-

pants where the error was made, the response variable

was recorded following the placebo, and these participants

were then given the active treatment and the response

variable again recorded.

The observations of a paired samples design and a sepa-
rate independent samples design are combined. In em-
pirical research, paired samples and independent samples

may be obtained in separate tranches of a study. This can

arise in a situation where practices are different, for exam-

ple a clinic takingmeasurements at baseline and follow-up,

a clinic only taking measurements at baseline and a clinic

only taking measurements at follow-up. In other experi-

mental contexts, some participants may go into both con-

ditions A and B (paired data), whereas others only go into

A or B (independent data).

A matched pairs design where some participants can-
not be paired. In a matched pairs design, pairs are deter-
mined based on similar attributes, but it may not be possi-

ble to find an appropriate match for all (Cochran, 1953).

A paired samples design, where some observations are
untraceable. Scenarios may occur when it may not be
able to identify the natural pairing, for example if the pair

includes the biological mother and biological father of a

child where the latter is ‘unknown’. In a medical context,

especially in matched case-control studies, the status for a

response variable in some participants may be difficult to

detect (Tian, Zhang, & Jiang, 2018).

A design which includes both paired observations
and unpaired observations, due to limited resource
of paired observations. When a resource is scarce, re-
searchers may only be able to obtain a limited number of

paired observations, and would want to avoid wastage by

making use of the independent observations. An exam-

ple given in cancer genomic experiments is where either

the normal tissue or tumour tissue for an individual is not

large enough for extraction (Qi, Yan, & Tian, 2018).

Partially overlapping samples by design due to a par-
tially common element. Two groups with some common
units in both, but without intrinsically ‘missing data’, are

frequently confronted. For example, in comparing an as-

sessment conducted in Spanish with an assessment con-

ducted in English, bi-lingual participants may be assessed

in both conditions but mono-lingual participants in just

one condition. This category also includes scenarios for the

incomplete block design where a factor has multiple levels

and experimental units are each assigned randomly to two

of those levels.

Pairwise comparisons in a comparison of more than
two partially overlapping samples. In a repeated mea-
sures scenario, multiple pairwise comparisons can be

considered within the two partially overlapping samples

framework. Approaches to pairwise comparisons may not

be without controversy due to the issues concerned with

the control of the Type I error rate (e.g., Streiner & Nor-

man, 2011; Saville, 1990).

Tests for the comparison of two partially overlapping
samples

Whether the research question be a comparison of means,

proportions or variances, arguments for and against the

application of competing approaches are similar. Some

of the best-known approaches from the 20th century are

given.

Amro and Pauly (2017) define four categories of solu-

tions to the partially overlapping samples problem that use

all available data. The categories are stated as; ‘tests based

on maximum likelihood estimators’, ‘weighted combina-

tion tests’, ‘solutions requiring resampling methods’, and

‘tests based on a simple mean difference’. To reflect the

broader partially overlapping samples framework, this last

category is changed to ‘tests based on a parameter differ-

ence’.

Primitive approaches

Some simple approaches to analysis of partially overlap-

ping samples data, simply ignore the paired nature of data

and proceed to analyse all data assuming independence.

However, if the number of pairs is relatively large, then

an alternative common approach is to perform a paired

samples test on only the paired observations and to not

include unpaired observations in the analysis. When the

sample comprises more independent observations than

paired observations, some researchers may choose to per-

form an independent samples test on only the indepen-

dent observations discarding paired data from the anal-

ysis. In the comparison of proportions for example, the
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traditional two sample tests are the Chi-square test for as-

sociation on the independent observations, or the McNe-

mar test on the paired observations. In either case, the

corresponding paired or independent observations are not

utilised. Approaches that discard observations to perform

a basic traditional test are referred to as naive approaches

(Guo & Yuan, 2017; Mantilla & Terpstra, 2018). Naive ap-

proaches have reduced relative power because they do not

make use of all of the available information. In addition,

the discarding of data could induce bias.

For the comparison of means, some statistical software

perform paired samples tests, discarding unpaired obser-

vations in the dataset. This is often donewithout anywarn-

ing to the user. Examples of this include SPSS, SAS and Uni-

stat (Derrick, Toher, & White, 2017). Caution should be ex-

ercised when using software because inexperienced users

may not realise that they have discarded observations, and

may be unaware of the consequences. The scipy.stats
module within Python will not perform a related samples

t-test with unequal length arrays. Likewise, Minitab and

the default t-test in R present similar error messages when

a paired samples test is selected for unequal sample sizes.

This starts to make users aware that there are further con-

siderations with the analyses they are attempting to per-

form.

Identifying suitable tests for equality of variances pro-

vide a challenge. The sensitivity of tests for equal variances

to violations of the normality assumption is where the term

‘statistical robustness’ was coined, or moreover the lack of

‘robustness’ (Box, 1953; Hogg, 1979). For the comparisons

of variances, tests which use deviations from the median

are preferable (Conover, Johnson, & Johnson, 1981). Shoe-

maker (2003) offers two potential fixes to the F-test, and

concludes that the Brown-Forsythe test is robust even for

highly skewed distributions.

Tests for the comparison of variances with paired data

are less well established in statistical software, for exam-

ple, in Minitab, only independent tests are available as

standard. This could encourage researchers to adopt an

approach of ignoring the pairing, but this is not statistically

valid (Derrick, Toher, & White, 2017; Zumbo, 2002). These

naive and other ad-hoc approaches emphasise the need for

statistically valid tests in the partially overlapping samples

case that use all the available data.

Maximum likelihood estimators

Early literature for the partially overlapping samples

framework focused on maximum likelihood estimators,

assuming Normal distributions. Lin (1973) and Lin and

Stivers (1974) use maximum likelihood estimates for the

comparison of group means, but find no single solution is

universally applicable.

Using simulation of normally distributed data, Ekbohm

(1976) compared the Lin and Stivers (1974) approach with

similar proposals based on maximum likelihood estima-

tors and naive tests. He found the only solution to main-

tain the nominal 5% Type I error rate when the correlation

is zero is the independent samples t-test. For positive corre-

lation, the paired samples t-test has greater power than the

other tests considered, except when the variances between

two samples are not equal. Therefore, the proposed maxi-

mum likelihood statistics offer little further benefit relative

to primitive approaches.

Guo and Yuan (2017) reviewed parametric solutions for

the comparison of means under the condition of normal-

ity, and they recommend the Lin and Stivers (1974) maxi-

mum likelihood approach when the normality assumption

is met. However, Amro and Pauly (2017) demonstrate that

this approach has an inflated Type I error rate under nor-

mality and non-normality.

These maximum likelihood proposals are complex

mathematical procedures, which could be a barrier to

some analysts in a practical setting (Choi & Stablein, 1982;

Derrick, Russ, Toher, & White, 2017). A more practical

solution, easily performed in most standard software, is

to fit a mixed model using all of the available data. In a

mixed model, effects are assessed using Restricted Max-

imum Likelihood estimators (REML). Within the mixed

model the group is declared as a repeated measures fixed

effect and the experimental units are declared as a random

effect. Mehrotra (2004) indicates that in the comparison

of means, REML is Type I error robust for positive corre-

lation. However, REML is not Type I error robust when

there is a large imbalance in the sample sizes of the two

groups, or if there is negative correlation (Derrick, Russ, et

al., 2017).

Weighted combination tests

Weighted combination tests are where separate tests for

independent samples and paired samples are combined,

often weighted using complex methods. These tests do

not answer the fundamental question of the difference be-

tween the two groups on the numerator. Neither do these

proposals have a denominator that represents the stan-

dard error of the estimated difference. It would be difficult

to obtain confidence intervals for the difference between

means using these weighted approaches. Further issues

arise with the creation of a non-parametric test based on

these approaches.

For the comparisons of means, many authors have pro-

posed solutions. A method by Bhoj (1978) demonstrates

reasonable Type I error robustness, although they do not

consider situations that violate the normality assumption

(Derrick, White, & Toher, 2020). Yu et al. (2012) reveal
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that a similar technique proposed by Kim et al. (2005)

does not always satisfy liberal robustness criteria. Samawi

and Vogel (2014) and Martinez-Camblor et al. (2013) pro-

pose weighted averages of paired and independent sam-

ples t-tests. The principle is adding two t-tests together
and treating the combination as a t-statistic. However, the
sum of two distributions does not lead to a t-distribution,

and the approximation used in this approach is particular

problematic with small sample sizes. The weights used by

Samawi and Vogel (2014) involve a square root weighting

functionmeaning that the weights do not accurately reflect

the ratio of the number of observations in the two samples.

Uddin and Hasan (2017) optimised the weighting constants

used by Bhoj (1978) so that the combined variance of the

two elements is minimised. Samawi, Yu, and Vogel (2015)

put forward a non-parametric solution attempting to com-

bine the Wilcoxon signed rank test and the Mann Whitney

test, which offers a Type I error robust alternative for non-

normal distributions.

The comparison of variances in the partially overlap-

ping samples case has been given very little consideration

in the existing literature. Bhoj (1978) and Ekbohm (1981)

separately consider a weighted combination of indepen-

dent observations and paired observations to create a new

test statistic. Bhoj (1984) concluded that his test statistic

is a powerful approach if the correlation is negative or

small. Otherwise, performing the F-test on all of the avail-

able data is more powerful than these proposals (Ekbohm,

1982). No solution is comprehensively agreed upon for all

scenarios. A different solution that uses all available data

without a complex weighting structure may therefore be

advantageous.

For the comparison of proportions, the approach by

Choi and Stablein (1982) is found to maintain better Type

I error robustness than its competitors (Bland & Butland,

2011; Tang & Tang, 2004).

A familiar weighted combination approach frommeta-

analysis is to obtain the p-values for a paired samples
test (discarding unpaired observations) and an indepen-

dent samples test (discarding paired observations). These

are then combined using a weighted z-test (Stouffer et al.,
1949). In general, it is usual that the weights are deter-

mined by the sample size (Chen, 2011). Alternatively, these

weights could be calculated so as to maximise power, but

there is no one way of deciding upon ‘optimal weights’ and

doing so could be computationally intensive. Practition-

ers may be more comfortable adopting the Stouffer et al.

(1949) method if weights are based on sample sizes. There

are many other methods for combining p-values of inde-
pendent tests and there is no uniformly most powerful test

(Whitlock, 2005). A noteworthy alternative is the gener-

alised Fisher test proposed by Lancaster (1961). When used

to combine p-values from independent tests, this method
is more powerful (Chen, 2011). Advantages for this type

of approach are that; it can be performed without the re-

quirement of resampling methods, it can be more easily

extended to the situation where there are more than two

groups to be compared, and it can be more easily extended

to the non-parametric situation. The key disadvantage of

these techniques is that confidence intervals for the mean

difference are not easy to obtain. Of note is that two sep-

arate tests are required before applying this third test.

These drawbacks make the results harder to interpret.

These approaches are also limited by the robustness

of each individual test. For example, despite the Pitman-

Morgan test being the best-known paired samples test for

equality of variances, it is not robust for skewed distribu-

tions (Mudholkar, Wilding, & Mietlowski, 2003).

Resampling based methods

Resampling methods are increasingly advocated tech-

niques that do not make any prior assumptions about the

distribution of the data (Odén & Wedel, 1975). Many re-

sampling strategies are available and bootstrapping gen-

erally gives the most consistent results (Fan & Wang,

1996). However, resampling methods are not often used

for paired samples designs (Rietveld & van Hout, 2017).

Amro and Pauly (2017) propose a permutation solution

based on the solution by Bhoj (1978). This test statistic in-

volves a complex weighting structure of the paired sam-

ples t-test and the independent samples t-test. Unlike the
test statistic the permutation test is based on, the solution

by Amro and Pauly (2017) is Type I error robust across a

range of distributions. Rempala and Looney (2006) demon-

strate that a linear combination of randomization tests can

be robust. However, it is not robust for non-positive cor-

relation. Yu et al. (2012) applied permutation methods

on statistics proposed by both Bhoj (1978) and Kim et al.

(2005), and found that permutation based methods per-

form similarly to their counterparts. In all tests simulated,

when applied to non-normal data, the Type I error rates

are reasonably maintained, but with decreased power.

Amro et al. (2019) propose further non-parametric per-

mutation approaches. This incorporates weighted tests for

the paired samples t-test andWelch’s test, as well as for the

Wilcoxon test and the Mann-Whitney test. For the three

distributions they consider, Normal, Exponential and Log-

normal, they show that show that these methods do not

maintain Type I error robustness, unless permutation tests

are adopted. However, Amro et al. (2019) only show the

average Type I error rate at the Pearson’s correlation co-

efficient level, so some sample size conditions where the

test may be particularly liberal or conservative may be ob-

scured.
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These resampling strategies are computationally inten-

sive to the point of being prohibitive if the sample size is

large, and modifications such as randomization tests may

be needed rather than complete enumeration of all permu-

tations.

Tests based on a simple parameter difference

These test statistics have a form where the numerator is

the difference between two means, or proportions, with

a denominator representing the standard error of the dif-

ference, thus facilitating an easier interpretation of the re-

sults.

Looney and Jones (2003) proposed a statistic con-

structed as a linear interpolation between the paired sam-

ples z-test and the independent samples z-test, using the
Normal distribution to calculate p-values based on the re-
sulting statistic. Qin, Prentice, and Freeman (2018) demon-

strated that application of this test can be extended to

community survey research with cross-sectional data and

praised the effectiveness of this test relative to the naive

paired samples t-test or independent samples t-test. In the
extremes, this test defaults to the independent samples z-

test or the paired samples z-test. For example, if there
were no paired observations this would result in the test

statistic defaulting to the independent version of the test

statistic. Looney and Jones (2003) demonstrate that when

only 10% of the sample is paired, the naive independent

samples t-test performs just as well as the proposed z-test.
When the paired sample is 50% or 90% of the data, then the

proposed z-test maintains the Type I error rate to a better
extent relative to the independent samples t-test, however
the error rate is generally slightly higher than the nominal

significance level. The approach was designed for equal

variances only and is not robust under unequal variances

with a large sample size imbalance (Derrick, Russ, et al.,

2017). Looney and Jones (2003) do not give guidance as to

how ‘large’ the samples should be for their z-test, but the
paired sample size must be ≥ 3 so that covariance can be
calculated. The covariance is calculated based only on the

paired observations. Uddin andHasan (2017) offer aminor

adjustment to the calculation of the covariance, however

the issue for small sample sizes remain.

The test statistic by Samawi and Vogel (2014) is very

conservative, but the principle that as the sample size in-

creases, asymptotically the t-distribution approximates to
the z-distribution, is useful to incorporate. The test con-
structed by Looney and Jones (2003) gives credence to

the theory that a t-statistic constructed in a similar man-
ner could be used in a greater number of conditions, for

smaller sample sizes.

Using the result for the difference between two ran-

dom variables, relatively simple tests for the comparison

of means, proportions and variances are proposed by Der-

rick, Russ, et al. (2017); Derrick et al. (2015); Derrick, Ruck,

Toher, and White (2018). For the comparison of means, in

the extremes the solution defaults to the independent sam-

ples t-test or paired samples t-test.
Derrick, Russ, et al. (2017) show that the parametric

partially overlapping samples t-tests for comparingmeans,
Tnew1 and Tnew2, are Type I error robust under conditions
of normality. The latter is designed for when equal vari-

ances cannot be assumed. These solutions remain valid

when only one sample contains independent observations

(Derrick, Toher, & White, 2019). A worked example for

the comparison of means under the normal distribution is

given in Derrick, Toher, and White (2017).

When both samples are taken from the same skewed

continuous distribution, Tnew1 maintains Type I error ro-
bustness, however Tnew2 is not robust for highly skewed
distributions Derrick et al. (2020). Tnew1 maintains Type I
error robustness for discrete observations on a five-point

or seven-point ordinal scale (Derrick & White, 2018). On

these discrete scales, Tnew2 is not robust when the distribu-
tions are skewed (Derrick & White, 2018).

Parametric tests dominate the literature due to their

ease of interpretation and degree of robustness particu-

larly with increasing sample size. Non-parametric tests

still retain their use particularly with skewed data. Some

practitioners may habitually test samples for normality to

determine if a non-parametric approach may be more ap-

propriate (Mahdizadeh, 2018) and this increases their rel-

ative frequency in use, although test selection based as-

sumption testing is not universally endorsed. For a non-

parametric solution to compare central location, Derrick

et al. (2020) consider applying rank values to the statistics

Tnew1 and Tnew2 to give TRNK1 and TRNK2 respectively. For
the same distributions considered by Amro et al. (2019),

when two samples are taken from the same distribution,

TRNK1 provides a Type I error robust solution which max-
imises power (Derrick et al., 2020). TRNK1 also provides su-
perior Type I error robustness relative to parametric tests

when the distribution is inherently Normal but with out-

liers (Derrick, 2018; Derrick, White, & Toher, 2017). Thus,

TRNK1 is recommended for a location shift model. For a less
restrictive null hypothesis of equal distributions, the rank-

based approaches offer high power.

Derrick, White, and Toher (2017) consider performing

inverse normal transformations of the data and applying

these to the statistics Tnew1 and Tnew2 to give TINT1 and TINT2
respectively. TINT1 maintains superior Type I error robust-
ness relative to TINT2. However, these tests do not suffi-
ciently improve the Type I error rate or power relative to

TRNK1.
For a comparison of two groups with a dichoto-
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mous response variable, the z8 statistic given by Der-
rick et al. (2015) offers a powerful Type I error ro-

bust solution and can be performed using the R package

Partiallyoverlapping (Derrick, 2017). This statistic
is the difference in the two group proportions, divided by

the combined standard error, i.e.

z8 =
p1 − p2√

σ2
p1

+ σ2
p2
− 2ϕσp1σp2

where ϕ is Pearson’s phi correlation coefficient.
This test statistic construction allows for the forma-

tion of confidence intervals, and the original paper demon-

strates that this approach, when used for calculating confi-

dence intervals, is robust and superior to competing alter-

natives.

For fully paired designs, the effect size for McNemar’s

test requires the odds ratio of discordant pairs. The par-

tially overlapping z8 statistic itself includes no informa-
tion on the number of discordant pairs, therefore a cal-

culation of the effect size for two independent propor-

tions could act as a reasonable approximation, for example

arcsin
√
p1 − arcsin

√
p2 (Cohen, 1992).

For variances, the widely acclaimed Brown-Forsythe

test for independent samples (Mirtagiouglu, Yiugit,

Mendecs, & Mendecs, 2017; Nordstokke & Zumbo, 2007),

is equivalent to the independent samples t-test applied to

absolute deviations from group medians. It follows that in

the partially overlapping samples case, the statistic Tnew1
could be used in a similar manner. This solution, TVAR1 is
a valid solution, and more powerful than performing the

Brown-Forsythe test on the independent observations only

(Derrick et al., 2018).

Revisiting a classic example

An example by Rempala and Looney (2006), considered

by Guo and Yuan (2017), Amro and Pauly (2017) and Der-

rick et al. (2020) is revisited. The outcome variable is the

Karnofsky performance score, which measures the func-

tional status of a cancer patient (bigger scores represent a

better health status). The data is recorded on the last day

of life and on the second to the last day. For parametric

tests, the null hypothesis that the mean Karnofsky score is

the same on the last two days of life is tested. For non-

parametric tests, the null hypothesis that the distribution

of the Karnofsky score is the same on the last two days

of life is tested. Assuming the distributions differ only in

central location, both the parametric and non-parametric

tests are assessing the same research question. For a to-

tal of 60 patients, 9 were recorded on both days, 28 were

recorded only on the second to the last day of life, and 23

were recorded only on the last day of life. Observations are

as per Table 1.

Using the Partiallyoverlapping R package (Der-
rick, 2017), the results are (Tnew1 = 2.522, v = 51.609,
p = .015), (Tnew2 = 2.522, v = 49.341, p = .016) which
in both cases indicates a statistically significant effect with

mean scores on the last day of life lower than the second to

last day.

The partially overlapping R package was introduced

in this journal with an explanation of the mathematics

and usage for the comparison of means (Derrick, Toher, &

White, 2017).

The Partover.test function has usage as per the
t.test function in base R. An additional feature is that
data can either be passed into the function as two vari-

ables (including the missing observations) using the argu-

ment stacked=TRUE, or as four variables separating the
paired and independent observations for each group using

the argument stacked=FALSE.
The empirical test statistic Tnew1 or Tnew2 is compared

to the theoretical t-distribution with v degrees of freedom
to obtain the p-value. The choice to report either Tnew1 or
Tnew2 is based on underlying knowledge of the variance of
the two groups under consideration; Tnew1 if equal vari-
ances can be reasonably assumed, Tnew2 otherwise.
Application of the parametric partially overlapping

samples t-tests provide evidence at the 5% significance

level to suggest that there is a difference in the mean

Karnofsky performance scores between the last two days

of life. Using Tnew1, a 95% confidence interval for the mean
difference calculated using the argumentconf.level =
0.95 gives (0.763 , 6.711). The effect size is calculated
(manually) as d = 2t/

√
v = 0.698, indicating a medium

sized effect.

In this example, the outcome variable is not recorded

on a continuous scale, this is not remarked upon by Guo

and Yuan (2017) or Amro and Pauly (2017), who both tackle

the problem using parametric methods. A principled view

might lead an analysis to use a non-parametric test. Table

2 provides rank values for the non-parametric proposals

given by Derrick et al. (2020).

Using the Partiallyoverlapping R package (Der-
rick, 2017), applied to the rank values, the non-parametric

partially overlapping samples t-tests provide evidence at

the 5% significance level to suggest that there is a differ-

ence in the distributions of the Karnofsky scores between

the last two days of life (TRNK1 = 2.534, p = .014), (TRNK2 =
2.521, p = .015).
Performing the tests on a Van der Waerden (1952) in-

verse normal transformation of the ranks gives evidence

to reject the null hypothesis of equal means of the trans-

formed data (TINT1 = 2.15, p = .036), (TINT2 = 2.12,
p = .039).
A preliminary test for normality of the differences
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Table 1 Example from Rempala and Looney (2006)

Patients with scores on both days (ordered pairs, second to last day, last day)
(20,10), (30,20), (25,10), (20,20), (25,20), (10,10), (15,15), (20,20), (30,30)

Patients with scores only on the second to the last day
10, 10, 10, 10, 15, 15, 15, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 25, 25, 25, 25, 30, 30, 30, 30, 30, 30

Patients with scores only on the last day
10, 10, 10, 10, 10, 10, 10, 10, 10, 15, 15, 20, 20, 20, 20, 20, 20, 20, 25, 25, 30, 30, 30

Table 2 Ranks applied to Rempala and Looney (2006) data

Patients with scores on both days
(37,9), (63.5,37), (53.5,9), (37,37), (53.5,37), (9,9), (21,21), (37,37), (63.5,63.5)

Patients with scores only on the second to the last day
9, 9, 9, 9, 21, 21, 21, 37, 37 ,37, 37, 37, 37, 37, 37, 37, 37, 37, 53.5, 53.5, 53.5, 53.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5

Patients with scores only on the last day
9, 9, 9, 9, 9, 9, 9, 9, 9, 21, 21, 37, 37, 37, 37, 37, 37, 37, 53.5, 53.5, 63.5, 63.5, 63.5

from the group means , using all available data, gives evi-

dence to suggest that the normality assumption is violated

(Shapiro-Wilk p = .004; Kolmogorov-Smirnov p = .009).
These preliminary tests of normality might lead a practi-

tioner to use a non-parametric test.

Using the sample data alone to determine the appro-

priate test that uses all of the available data, would lead to

the decision to perform TRNK1. However, the selection of
the appropriate test in this way may be controversial and

is not straightforward given the vast number of tests for

normality and equal variances available (Razali, Wah, et

al., 2011). Instead, the appropriate test should be chosen

based on the study design and existing knowledge of the

behaviour of the response variable (Zumbo & Coulombe,

1997). In this specific example context, the very nature of

the outcome measure (ordered data) may be a better prin-

cipled guide to using a non-parametric approach.

The conclusions made for each of the proposed test

statistics, Tnew1, Tnew2, TRNK1, TRNK2, TINT1 and TINT2 are
consistent with conclusions in the context of this appli-

cation made using methods by Looney and Jones (2003);

Samawi and Vogel (2011, 2014) and using REML (Guo &

Yuan, 2017). Amro and Pauly (2017) supply confirmation

that these methods are also consistent with conclusions

made by the method by Lin and Stivers (1974) and their

own permutation proposal. In contrast to these methods,

naive tests fail to rejectH0 (Derrick et al., 2020).

Now consider a research question of whether there is

a difference in the variability of patients scores between

the last day of life and the second to last day. Using the

Partiallyoverlapping R package (Derrick, 2017), ap-
plied to the deviations from group medians, the results are

TVAR1 = 0.886 (p-value = .380). Thus, there is no evidence
to suggest that the variability in Karnofsky performance

differs between the last and second last day of life.

Conclusion

We have identified many situations where the presence

of both paired observations and independent observations

cannot be avoided. Partially overlapping samples may oc-

cur due to missing data in a paired samples design, and

other occasions where paired samples tests alone might

not correctly reflect the structure of the data being col-

lected.

For large sample sizes, naive tests which discard obser-

vations are likely to be powerful enough for most practical

applications. In this situation it is important to ensure that

the discarded observations would not give different infor-

mation to the included observations.

Particularly for smaller sample sizes, partially overlap-

ping samples tests using all of the available data could be

advantageous. Tests which act as a simple parameter dif-

ference have ease of interpretation, and confidence inter-

vals can readily be formed.

The choice of which test to perform should be based on

prior knowledge of the context. For example, if random al-

location has been used in a controlled experiment, the as-

sumption of equal variances may be reasonable, whereas

this assumption may not be tenable when comparing two

pre-existing groups in an observational study. The practice

of preliminary testing assumptions may not be advisable

when the preliminary test is less robust than the statistical

test of interest. ‘To make the preliminary test on variances

is rather like putting to sea in a rowing boat to find out

whether conditions are sufficiently calm for an ocean liner

to leave port’ (Box, 1953, p. 22). Preliminary testing of as-

sumptions should be avoided unless prior consideration is

given to this in an analysis plan (Pearce & Derrick, 2019)
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and preferably with a robust testing strategy.

For the comparison of central location, if the assump-

tion of equal distributions and variances can be made, the

Type I error robustness of Tnew1 suggests that Tnew1 can be
used as default. Little power is lost relative to Tnew2. If
the normality assumption is reasonable but the equal vari-

ances assumption is not reasonable, Tnew2 is our recom-
mended test of choice.

Non-parametric tests are relatively over used by some

researchers that have an obsession with testing the nor-

mality assumption (Rasch & Guiard, 2004) whereas some

researchers will routinely use parametric tests. For cases

where extreme violation of the normality assumption is

anticipated, the non-parametric TRNK1 offers a robust al-
ternative to naive non-parametric tests. The form of the

null hypothesis should be given consideration, the non-

parametric tests can be viewed as a test of central location

when it is reasonable to postulate a location shift problem

(Rietveld & van Hout, 2017).

The statistic z8 (Derrick et al., 2015) is recommended
for the comparison of proportions and the statistic TVAR1
(Derrick et al., 2018) is recommended for the comparison

of variances. These solutions are robust with easy to inter-

pret results.

The above solutions do not easily extend to the par-

tially overlapping problem with more than two samples,

which is an area requiring further attention in the litera-

ture (Mantilla & Terpstra, 2018).

Controversial practices for comparing two samples of

paired observations and independent observations are fre-

quently performed, from discarding observations, to im-

puting observations (Choi & Stablein, 1982). Other poor

practices observed in a similar context range from treat-

ing all observations as independent and ignoring the pair-

ing, to randomly pairing unpaired observations (Bedeian

& Feild, 2002). Solutions discussed using all of the avail-

able data facilitated by the Partiallyoverlapping R
package (Derrick, 2017) offer intuitive, valid and powerful

solutions for partially overlapping samples.
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