Re-Provisioning of Cloud-based Execution
Infrastructure using the Cloud-Aware
Provenance to Facilitate Scientific Workflow
Execution Reproducibility

Khawar Hasham*, Kamran Munir, Richard McClatchey, and Jetendr
Shamdasani

Centre for Complex Cooperative Systems (CCCS), Department of Computer Science
and Creative Technologies (CSCT), University of the West of England (UWE),
Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
{mian.ahmad, kamran2.munir,richard.mcclatchey, jetendr2.shamdasani}@uwe.ac.
uk

Abstract. Provenance has been considered as a means to achieve sci-
entific workflow reproducibility to verify the workflow processes and
results. Cloud computing provides a new computing paradigm for the
workflow execution by offering a dynamic and scalable environment with
on-demand resource provisioning. In the absence of Cloud infrastructure
information, achieving workflow reproducibility on the Cloud becomes a
challenge. This paper presents a framework, named ReCAP, to capture
the Cloud infrastructure information and to interlink it with the work-
flow provenance to establish the Cloud-Aware Provenance (CAP). This
paper identifies different scenarios of using the Cloud for workflow execu-
tion and presents different mapping approaches. The reproducibility of
the workflow execution is performed by re-provisioning the similar Cloud
resources using CAP and re-executing the workflow; and by comparing
the outputs of workflows. Finally, this paper also presents the evaluation
of ReCAP in terms of captured provenance, workflow execution time and
workflow output comparison.

Keywords: Cloud Computing, Scientific Workflows, Cloud Infrastruc-
ture, Provenance, Reproducibility, Repeatability

1 Introduction

Modern scientific experiments such as the Large Hadron Collider (LHC)!, and
projects such as neuGRID [1] and its follow-on neuGRIDforUsers [2] are pro-
ducing huge amounts of data. This data is processed and analysed to extract
meaningful information by employing scientific workflows that orchestrate the
complex data analysis processes [3]. A large pool of compute and data resources

* This is the corresponding author
! http://lhc.web.cern.ch

Citation:

Hasham, K; Munir, K; McClatchey, R; Shamdasani, J, 2016, “Re-provisioning of Cloud-Based Execution Infrastructure Using the Cloud-Aware Provenance to Facilitate
Scientific Workflow Execution Reproducibility”, Edited by: Helfert, M; Munoz, VM; Ferguson, D, Cloud Computing and Services Science, CLOSER 2015, Springer Book
Series: Communications in Computer and Information Science, Volume: 581, Pages: 74-94, DOI: 10.1007/978-3-319-29582-4_5, Published: 03 February 2016

Citation:
Hasham, K; Munir, K; McClatchey, R; Shamdasani, J, 2016, “Re-provisioning of Cloud-Based Execution Infrastructure Using the Cloud-Aware Provenance to Facilitate Scientific Workflow Execution Reproducibility”, Edited by: Helfert, M; Munoz, VM; Ferguson, D, Cloud Computing and Services Science, CLOSER 2015, Springer Book Series: Communications in Computer and Information Science, Volume: 581, Pages: 74-94, DOI: 10.1007/978-3-319-29582-4_5, Published: 03 February 2016

2 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

is required to execute the workflows. These resources have been available through
the Grid [4] and are now also being offered by the Cloud-based infrastructures.

Cloud computing [5] offers a new computing and storage paradigm, which
is dynamically scalable and usually works on a pay-as-you-go cost model. Its
ability to provide an on-demand computing infrastructure enables distributed
processing of scientific workflows with increased complexity and data require-
ments [6]. Research is under way to exploit the potential of Cloud infrastructure
for workflow execution [7].

During the data processing, an important consideration is given to collect
provenance [8] information. This can provide detailed information about both
the inputs and the processed outputs, and the processes involved in a workflow
execution. This information can be used to debug the workflow execution, to aid
in error tracking and reproducibility. This vital information can enable scientists
to verify the outputs and iterate on the scientific method, to evaluate the process
and results of other experiments and to share their own experiments with other
scientists [9]. The execution of scientific workflows in the Cloud brings to the
fore the need to collect provenance information that is necessary to ensure the
reproducibility of these experiments on the Cloud infrastructure.

A research study [10] conducted to evaluate the reproducibility of scientific
workflows has shown that around 80% of the workflows cannot be reproduced,
and 12% of them are due to the lack of information about the execution environ-
ment. This lack of information affects a workflow on two levels. It can affect a
workflow’s overall execution performance and also job failure rate. For instance,
a data-intensive job can perform better on a resource with more available Ran-
dom Access Memory (RAM) because it can accommodate more data in RAM,
which is a faster medium to access data than hard disk. However, the job’s per-
formance will degrade if the allotted resource does not provide adequate RAM.
Moreover, it is also possible that jobs will fail during execution if their required
hardware dependencies are not met. This becomes a more challenging issue in
the context of Cloud in which resources can be created or destroyed at runtime.

The dynamic nature of Cloud computing makes the capturing and process-
ing of provenance information a major research challenge [11,12]. Since Cloud
presents a transparent access to dynamic execution resources, the workflow pa-
rameters including execution resource configuration should also be known to a
scientist [13] i.e. what execution environment was used for a job in order to
reproduce a workflow execution on the Cloud. Due to these reasons, there is a
need to capture information about the Cloud infrastructure along with work-
flow provenance, to aid in the reproducibility of workflow experiments. There
has been a lot of research related to provenance in the Grid (e.g. [14]) and a
few initiatives (e.g. [15,16]) for the Cloud. However, they lack the information
that can be utilised for re- provisioning of resources on the Cloud, thus they
cannot create the similar execution environment(s) for workflow reproducibility.
In this paper, the terms Cloud infrastructure and virtualization layer are used
interchangeably.

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 3

This paper presents a framework, named ReCAP, that augments workflow
provenance with the Cloud infrastructure information; and uses it to provision
similar execution environment(s) and reproduces the execution of a given work-
flow. Important areas discussed in this paper are as follows: section 2 presents
the related work in provenance related systems. Section 3 presents a set of re-
quirements identified for workflow reproducibility on the Cloud after collecting
guidelines used and discussed in literature. Section 4 presents an overview of
ReCAP’s architecture. Section 4 also discusses two scenarios of using Cloud re-
sources and the provenance capturing approaches devised for these scenarios.
Section 5 presents an evaluation of the developed prototype. And finally section
6 presents some conclusions and directions for future work.

2 Related Work

Significant research [17,18] has been carried out in workflow provenance for
Grid-based workflow management systems. Chimera [17] is designed to man-
age the data-intensive analysis for high-energy physics (GriPhyN)? and astron-
omy (SDSS)(http://www.sdss.org) communities. It captures process informa-
tion, which includes the runtime parameters, input data and the produced data.
It stores this provenance information in its schema, which is based on a rela-
tional database. Although the schema allows storing the physical location of a
machine, it does not support the hardware configuration and software environ-
ment in which a job was executed. VisTrails [18] provides support for scientific
data exploration and visualization. It not only captures the execution log of a
workflow but also the changes a user makes to refine his workflow. However, it
does not support the Cloud virtualization layer information. Similar is the case
with Pegasus/Wings [19] that supports evolution of a workflow. However, this
paper is focusing on the workflow execution provenance on the Cloud, rather
than the provenance of a workflow itself (e.g. design changes).

There have been a few research studies (e.g. [15,16]) performed to capture
provenance in the Cloud. However, they lack the support for workflow repro-
ducibility. Some of the work in Cloud towards provenance is directed to the file
system [20, 21] or hypervisor level [22]. However, such work is not relatable to
our approach because this paper focuses on virtualized layer information of the
Cloud for workflow execution. Moreover, the collected provenance data provides
information about the file access but it does not provide information about the
resource configuration. The PRECIP [9] project provides an API to provision
and execute workflows. However, it does not provide provenance information of
a workflow.

There have been a few recent projects [23,24] and research studies e.g. [25]
on collecting provenance and using it to reproduce an experiment. A semantic-
based approach [25] has been proposed to improve reproducibility of workflows
in the Cloud. This approach uses ontologies to extract information about the

2 http://www.phys.utb.edu/griphyn/

4 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

computational environment from the annotations provided by a user. This in-
formation is then used to recreate (install or configure) that environment to
reproduce a workflow execution. On the contrary, our approach is not relying
on annotations rather it directly interacts with the Cloud middleware at run-
time to acquire resource configuration information and then establishes map-
ping between workflow jobs and Cloud resources. The ReproZip software [23]
uses system call traces to provide provenance information for job reproducibility
and portability. It can capture and organize files/libraries used by a job. The
collected information along with all the used system files are zipped together for
portability and reproducibility purposes. Similarly, a Linux- based tool, CARE
[24], is designed to reproduce a job execution. It builds an archive that contains
selected executable/binaries and files accessed by a given job during an obser-
vation run. Both these approach are useful at individual job level but are not
applicable to an entire workflow, which is the focus of this paper. Moreover,
they do not maintain the hardware configuration of the underlined execution
machine. Furthermore, these approaches operate along with the job on the vir-
tual machine (VM). On the contrary, out proposed approach works outside the
virtual machine and therefore does not interfere with job execution.

3 Requirements for Workflow Reproducibility on Cloud

As per our understanding of the literature, there is not a standard reproducibility
model proposed thus far for scientific workflows, especially in a Cloud environ-
ment. However, there are some guidelines or policies, which have been highlighted
in literature to reproduce experiments. There is one good effort [26] in this re-
gard, but it mainly talks about reproducible papers and it does not consider
execution environment of workflows. In this section, we have highlighted a set of
requirements for workflow reproducibility on Cloud that can provide guidelines
for future work in this regard. These requirements are discussed as follows.

— Data and Code Sharing: In computational science, particularly for sci-
entific workflow executions, it is emphasized that the data, code, and the
workflow description should be available in order to reproduce an exper-
iment [27]. Code must be available to be distributed, and data must be
accessible in a readable format [28]. In the absence of such information, ex-
periment reproducibility cannot be achieved because different result would
be produced if the input data changes. It is also possible that the experiment
cannot be successfully executed in the absence of the required code and its
dependencies or configurations.

— Execution Infrastructure: The execution infrastructure is composed of a
set of computational resources (e.g. execution nodes, storage devices, net-
working). The physical approach, where actual computational hardware are
made available for long time periods to scientists, often conserves the com-
putational environment including supercomputers, clusters, or Grids [25].
As a result, scientists are able to reproduce their experiments in the same
hardware environment. However, this luxury is not available in the Cloud

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 5

in which resources are virtual and dynamic. Therefore, it is important to
collect the Cloud resource information in such a manner that will assist in
re-provisioning of similar resources on the Cloud for workflow re-execution.

From a resource provisioning as well as a performance point of view, various
factors such as RAM, vCPU, Hard Disk and CPU speed (e.g. MIPS) are
important in selecting appropriate resources especially on the Cloud. As
discussed previously, the RAM can affect the job’s execution performance
as well as its failure rate. A job will fail if it is scheduled to a resource with
less available RAM (as shown in Figure 4). Similarly, vCPU (virtual CPUs
meaning CPU cores) along with the MIPS (million instructions per second)
value directly affect the job execution performance. In a study [29], it was
found that the workflow task durations differ for each major Cloud, despite
the identical setup.

Hard disk capacity also becomes an important factor in provisioning a new
resource on the Cloud. It was argued [29] that building images for scientific
applications requires adequate storage within a virtual machine (VM). In
addition to the OS and the application software, this storage is used to hold
job inputs and output that are consumed and produced by a workflow job
executing on a VM [29].

— Software Environment: Apart from knowing the hardware infrastructure,
it is also essential to collect information about the software environment. A
software environment determines the operating system and the libraries used
to execute a job. Without the access to required libraries information, a job
execution will fail. For example, a job, relying on MATLAB library, will
fail in case the required library is missing. One possible approach [30] to
conserve software environment is thought to conserve VM that is used to
execute a job and then reuse the same VM while re-executing the same job.
One may argue that it would be easier to keep and share VM images with
the research community through a common repository, however the high
storage demand of VM images remains a challenging problem [31]. In the
prototype presented in this paper, the OS image used to provision a VM is
conserved and thought to present all the software dependencies required for
a job execution in a workflow. Therefore, the proposed solution also retrieves
the image information to build a virtual machine on which the workflow job
was executed.

— Provenance Comparison: The provenance traces of two executed work-
flows should be compared to determine workflow reproducibility. The main
idea is to evaluate the reproducibility of an entire execution of a given work-
flow, including the logical chaining of activities and the data. To provide the
strict reproducibility functionality, a system must guarantee that the data
are still accessible and that the corresponding activities are accessible [32].
Since the focus of this paper is on workflow reproducibility on the Cloud
infrastructure, the execution infrastructure should also be part of the com-
parison. Therefore the provenance comparison should be made at following
levels:

6 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

1. Workflow structure should be compared to determine that both work-
flows are similar. Because it is possible that two workflows are having
similar number of jobs but with different job execution order.

2. Execution infrastructure (software environment, resource configuration)
used on the Cloud for a workflow execution should also be compared.

3. Comparison of input and output should be made to evaluate workflow
reproducibility. There could be a scenario that a user repeated a work-
flow but with different inputs, thus producing different outputs. It is
also possible that changes in job or software library result into differ-
ent workflow output. There are a few approaches [33], which perform
workflow provenance comparison to determine differences in reproduced
workflows. The proposed system in this paper incorporates the workflow
output comparison to determine the reproducibility of a workflow.

— Cloud Resource Pricing: Cloud resource pricing can be important for
experiments in which cost is also a main factor. However, this can also be
argued that this information is not trivial for an experiment due to strong
industry competition between big Cloud providers such as Amazon, Google,
Microsoft etc., which can bring prices down. Having said this, one still can-
not deny the fact that a cost is associated with each acquired resource on
the Cloud, thus making this factor important to be focused on. The pricing
factor has been used in various studies to conduct the feasibility of a Cloud
environment for workflow execution [6]. In this study, the cost factor for
various resources such as compute and storage has been evaluated for work-
flow execution. The pricing information has also been used in cost-effective
scheduling and provisioning algorithms [34, 35]. Therefore, this pricing infor-
mation, if collected as part of provenance, can help in reproducing an exper-
iment within the similar cost as was incurred in earlier execution. However,
one must keep this in mind that the prices are dynamic and subject to change
and it depends entirely on the Cloud providers. For an environment, in which
cost does not change rapidly, such information can be helpful. Therefore, this
information is captured as part of the Cloud-Aware Provenance data.

Workflow versioning is another factor that aids in achieving workflow repro-
ducibility [36]. Sandve et al. [26] also suggested archiving the exact versions of
all processes and enabling version control on all scripts used in an experiment.
With the help of workflow versioning, a user can track the evolution of a work-
flow itself. Since the focus of this research work is on the workflow execution
provenance and not on the workflow evolution, this factor is outside the scope
of the presented work. Based on the identified factors in this section, following
section presents a framework, named ReCAP, to capture the Cloud infrastruc-
ture information and to interlink it with the workflow provenance to establish
the Cloud-Aware Provenance (CAP). This information is used to re-provision
similar execution infrastructure on the Cloud in order to reproduce the execution
of a scientific workflow.

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 7

4 ReCAP: Workflow Reproducibility using Cloud-Aware
Provenance

An overview of the ReCAP’s architecture, a proposed solution, is presented in
this section. This architecture is inspired by the mechanism used in a paper [37]
for executing workflows on the Cloud. Figure 1 illustrates the proposed archi-
tecture that collects the Cloud infrastructure information and interlinks it with
the workflow provenance gathered from a workflow management system such
as Pegasus. This augmented or extended provenance information compromis-
ing of workflow provenance and the Cloud infrastructure information is named
as Cloud-Aware provenance (CAP). The components of this architecture are
discussed as follow:

Cloud environment
\ Application Layer
WMS Wrapper Workflow Management Workflow
Service System provenance
Submits
workflow '\Oy B\ Virtualized Layer
VM1 VM2 Infrastructure
information
Scientist Physical Layer
A
Provenance Aggregator
selects [Workflow Provenance }
an 1
isti %

existing [Cloud Layer Provenance }
workflow %

\ Cloud-aware l

"-\ provenance -

", Provenance API
.\.

mmm Prototype Storage
m Existing tools

ReCAP Store

Prototype components|

Fig. 1. General overview of the ReCAP architecture

— WMS Wrapper Service: This component exposes the functionality of an
underlining workflow management system (WMS) by providing a wrapper
service. It is responsible for receiving various user and ReCAP’s components
requests in submitting a user provided workflow and monitoring its status.
For instance, there is no suitable HTTP-based facility available that a user
can use to submit a workflow and its associated files to Pegasus. Tradition-
ally, a command-based approach is used in which Pegasus provided com-
mands are invoked from a terminal. With such a service based component,
a user can submit his workflow through an HTTP client. Another purpose
of this component is to engage with a user from the very first step of work-
flow execution i.e. workflow submission. Although this paper is focusing on
workflow execution, it still needs a mechanism to access the submitted work-
flow and its associated configuration files in order for it to reproduce and

8 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

resubmit the same workflow. Therefore, such a mechanism was required that
can act as an entry point for the system and also help in ensuring the ac-
cess to the workflow source, which is one of the points of the reproducibility
requirements identified for the Cloud (see Section 3).

— Workflow Provenance: This component, named W F Provenance, is re-
sponsible for receiving provenance captured at the application level by the
workflow management system e.g. Pegasus. Since workflow management sys-
tems may vary, a plugin-based approach is used for this component. Common
interfaces are designed to develop plugins for different workflow management
systems. The plugin also translates the workflow provenance according to the
representation that is used to interlink the workflow provenance along with
the information coming from the Cloud infrastructure.

— Cloud Layer Provenance: This component, CloudLayer Provenance, is
responsible for capturing information collected from different layers of the
Cloud. To achieve re-provisioning of resources on Cloud, this component
focuses on the virtualization layer and retrieves information related to the
Cloud infrastructure i.e. virtual machine configuration. This component in-
teracts with the Cloud infrastructure as an outside client to obtain the re-
source configuration information. This component is discussed in detail in
Section 4.2 and 4.3.

— Provenance Aggregator: This is the main component task to collect and
interlink the provenance coming from different layers as shown in Figure 1.
It establishes interlinking connections between the workflow provenance and
the Cloud infrastructure information. The provenance information is then
represented in a single format that could be stored in the provenance store
through the interfaces exposed by the ProvenanceAPI.

— Provenance API: This acts as a thin layer to expose the provenance stor-
age capabilities to other components. Through its exposed interfaces, outside
entities such as the ProvenanceAggregator would interact with it to store
the workflow provenance information. This approach gives flexibility to im-
plement authentication or authorization in accessing the provenance store.

— ReCAP Store: This data store is designed to keep record of the workflow
and its related configuration files being used to submit a user analysis on
the Cloud. It also keeps the mapping between workflow jobs and the virtual
resources used for execution on the Cloud infrastructure. This information
is later retrieved to reproduce the workflow execution.

4.1 Cloud Usage Scenarios

This section discusses the job to Cloud resource mapping, which will be used
later for re-executing a workflow on similar Cloud resources, mechanisms devised
in this research study. Before indulging into detailed discussion of these mecha-
nisms, first it is important to understand two different resource usage scenarios
on Cloud. These scenarios and their understanding provide a better picture of
the requirements and the motivation behind devising different mechanisms to
establish job to Cloud resource mapping for each discussed scenario.

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 9

— Static Environment on Cloud
In this environment, the virtual resources, once provisioned, remain in RUN-
NING state on Cloud for a longer time. This means that the resources will
be accessible even after a workflows execution is finished. This environment
is similar to creating a virtual cluster or Grid on top of Clouds resources.
Such a Cloud environment is also in used in the N4U infrastructure. The
Static Mapping approach devised for such environment has been discussed
in Section 4.2.

— Dynamic Environment on Cloud
In this environment, resources are provisioned on demand and released when
they are no more required. This means that the virtual machines are shut-
down after the job is done. Therefore, a virtual resource, which was used
to execute a job, will not be accessible once a job is finished. The Eager
Mapping has been devised (see Section 4.3) to handle this scenario.

The mapping approaches discussed in following sections achieve the job to Cloud
resource mapping using the workflow provenance information. One such infor-
mation is an indication of execution host or its IP in the collected workflow
provenance. Many a workflow management systems such as Pegasus, VisTrail
or Chiron [38] do maintain either machine name or IP information. In Clouds
infrastructure layer across one Cloud provider or for one user, no two virtual
machines can have same IP at any given time. This means any running virtual
machine should have unique IP or name. However, it is possible that a name or
IP can be reused later for new virtual machines. All rest properties of a virtual
machine accessible through the infrastructure layer can be used by multiple ma-
chines at a time. For instance, multiple machines can be provisioned with flavour
ml.small or with OS image Ububtu 14.04 or Fedora etc.

4.2 Static Mapping Approach

As mentioned earlier, this information is used for reprovisioning the resources to
provide a similar execution infrastructure to repeat a workflow execution. The
Static Mapping approach has been devised for the Static environment on the
Cloud. Once a workflow is executed, Pegasus collects the provenance and stores
it in its own internal database. Pegasus also stores the IP address of the virtual
machine (VM) where the job is executed. However, it lacks other VM specifica-
tions such as RAM, CPUs, hard disk etc. The CloudLayerProvenance component
retrieves all the jobs of a workflow and their associated VM IP addresses from
the Pegasus database. It then collects a list of virtual machines owned by a re-
spective user from the Cloud middleware. Using the IP address, it establishes a
mapping between the job and the resource configuration of the virtual machine
used to execute the job. This information i.e. Cloud-Aware Provenance is then
stored in the ReCAPStore. The flowchart of this mechanism is presented in
Figure 2. In this flowchart, the variable wfJobs representing a list of jobs of
a given workflow is retrieved from the Pegasus database. The variable vmList
represents a list of virtual machines in the Cloud infrastructure is collected from

10 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

Start (wfid)
Workflow jobs
’ Get Workflow Jobs (wflobs)
v 5
Get VM list from Cloud (vmlList) ‘ WMS
‘L database

‘ Establish mapping (wflobs, vmlList) ‘

Fig. 2. Flowchart of the job to the Cloud resource mapping in the Static environment

the Cloud. A mapping between jobs and VMs is established by matching the IP
addresses (see in Figure 2). Resource configuration parameters such as flavour
and image are obtained once the mapping is established. flavour defines resource
configuration such as RAM, Hard disk and CPUs, and image defines the oper-
ating system image used in that particular resource. By combining these two
parameters together, one can provision a resource on the Cloud infrastructure.
After retrieving these parameters and jobs, the mapping information is then
stored in the Provenance Store (see in Figure 2). This mapping information pro-
vides two important data (a) hardware configuration (b) software configuration
using VM name. As discussed in section 3, these two parameters are important
in recreating a similar execution environment.

4.3 Eager Mapping Approach

This approach is devised to establish a job to Cloud resource mapping for the
dynamic environment on Cloud. As discussed in Section 4.1, the resource on
Cloud may not be accessible once a job is finished, thus making a job to re-
source mapping a challenge. This is why, this approach attempts to identify, as
early as possible, the virtual machine on which a job is executing. In this map-
ping approach, the Cloud-aware provenance is acquired in two phases, which are
discussed as follows.

Phase 1: Temporary Job to Resource Mapping: In this phase, the Ea-
ger approach monitors the underlying WMS database i.e. Pegasus for the im-
plemented prototype. In Pegasus, along with the host name, its database also
maintains the Condor’s schedd_ID, which is assigned to each job by Condor
[39]. The monitoring thread in W F Provenance retrieves the job’s Condor ID
and contacts the WMS Wrapper Service (WMS-WS) for information about the
job. Since the WMS-WS works on top of the underlying workflow managment

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 11

system, it has an access to the Condor cluster. Upon receiving the request, WMS-
WS retrieves job information from the Condor. This information contains the
machine IP on which the job is currently running. The CloudLayer Provenance
component retrieves the virtual machine’s configuration information from the
Cloud middleware based on the machine IP (as discussed in the Section 4.2) and
stores this information in the database. This information is treated as temporary
because the job is not finished yet and there is a possibility that a job may be
re-scheduled to another machine due to runtime failures [40]. This information is
then used in the second phase for establishing the final mapping between the job
and the Cloud resource. The flowchart of this mechanism is presented in Figure
3.

0) Start (wfid) WMS
D o] o
1) Get Workflow database

Jobs (wfid)

(a)Ifnd Host D

Get Job details

CloudLayer
Provenance

3) Cloud Parse details
Infrastructure
information

Retrieve VM info
Update Job Host info

4) Insert Temp. Job Resource]
Mapping

{ WMS Wrapper Service
)/ 2(a) Get job detail from
the Condor cluster

(@1 1opuod)
uoneuwloul qol 189 (z

Fig. 3. Temporary resource mapping established in the phase 1 of the Eager approach

Phase 2: Final Job to Resource Mapping: This phase starts when the
workflow execution is finished. The ProvenanceAggregator component starts
the job to resource mapping process. In doing so, it retrieves the list of work-
flows from the database and list of virtual machines from the Cloud middle-
ware through the CloudLayerProvenance component. It starts the mapping
between the jobs and the virtual machines based on the IP information, stored
in the database, associated with the jobs. In the case of not finding any host
information in the database, which is possible in the Dynamic use case, the
ProvenanceAggregator retrieves the resource information for that job from
the temporary repository that was created in the first phase (as discussed in
the Section 4.2). Upon finding the Cloud resource information, the Provenance
Aggregator component registers this Cloud-Aware Provenance information in
the ReC APStore. Once the mapping for a job is established and stored in the
database, its corresponding temporary mapping is removed in order to reduce

12 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

the disk storage overhead. The algorithm of the Eager mapping approach is
shown in Algorithm 1.

Algorithm 1 Eager Approach
Require: wfJobs : Set of jobs in the workflow.

1: Phase 1

2: procedure JOBMONITOR(w f Jobs)

3 cloudResources < GETCLOUDRESOURCES(())}

4 for all job € wfJobs do

5: condorid < job.condor > each job is assigned unique id
6: hostname <’ PEGASUSCLIENT.GETHOSTINFO (condorid)

7 vm < cloudResource[hostname]

8 if vm != None & VMMAPPINGEXISTS(vm, job) then

9 resourceFlavor < vm.flavor

10: resourcelmage <— vm.image

11: CREATETEMPMAPPING (job, resourceFlavor, resourceImage)

12: Phase 2
13: procedure ESTABLISHMAPPING(w f Jobs)
14: for all job € wfJobs do

15: vim < GETTEMPJOBMAPPING(jo0b)

16: if tempMap then

17: resourcelmage < vm.image

18: resourceFlavor <— vm.image

19: STOREJOBRESOURCEMAPPING (job, resourceFlavor, resourcelmage)
20: REMOVETEMPMAPPING (job, resourceFlavor, resourceImage)

4.4 Workflow Reproducibility using ReCAP

In Section 4, different mapping approaches have been discussed to interlink the
job to Cloud resource information, which is stored in the database for workflow
reproducibility purposes. In order to reproduce a workflow execution, researcher
first needs to provide the wiID (workflow ID), which is assigned to every work-
flow in Pegasus, to ReCAP to re-execute the workflow using the Cloud-aware
provenance. ReCAP retrieves the given workflow from the ReC' APStore along
with the Cloud resource mapping stored against this workflow. Using this map-
ping information, it retrieves the resource flavour and image configurations, and
provisions the resources on Cloud. Once resources are provisioned, it submits the
workflow for execution. At this stage, a new workflow ID is assigned to this newly
submitted workflow. This new wfID is passed over to the ProvenanceAggregator
component to monitor the execution of the workflow and start collecting its
Cloud-aware provenance information. Recapturing the provenance of the re-
peated workflow is important, as this will enable us to verify the provisioned
resources by comparing their resource configurations with the old resource con-
figuration.

4.5 Workflow Output Comparison

Another aspect of workflow reproducibility is to verify that it has produced the
same output that was produced in its earlier execution (as discussed in Section
3). In order to evaluate workflow repeatability, an algorithm has been proposed

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 13

that compares the outputs produced by two given workflows. It uses the MD5
hashing algorithm [41] on the outputs and compares the hash value to verify the
produced outputs. The two main reasons of using a hash function to verify the
produced outputs are; a) simple to implement and b) the hash value changes
with a single bit change in the file. If the hash values of two given files are same,
this means that the given files contain same content.

Algorithm 2 Pseudocode to compare outputs produced by two given workflows

Require: srcW fID : Source Workflow ID.
destW fID : Destination Workflow 1D

1: procedure CoMPAREWORKFLOWOUTPUTS(srcW fID, destW fID)

2: src WorkflowJobs <— GETWORKFLOWJOBS (srcW fID)

3: destWorkflowJobs < GETWORKFLOWJOBS (destW fID)

4: FileCounter < 0

5: ComparisonCounter <+ 0

6: for all jobfiles € srcWork flowJobs do

7 src_container < jobfiles.container_name

8: src_filename <— jobfiles.file_name

9: dest_container < destWorkflowJobs[jobfiles.jobname]

10: dest_filename<— dest WorkflowJobs[jobname].file_name

11: src_cloud_file <~ GETCLOUDFILE (src_container src_filename)
12: dest_cloud_file <~ GETCLOUDFILE (dest_container dest_filename)
13: FileCounter < FileCounter + 1

14: if src_cloud-file.hash = dest_cloud_-file.hash then

15: ComparisonCounter < ComparisonCounter + 1

16: if FileCounter = ComparisonCounter then

17: return True

18: return False

The proposed algorithm (as shown in Algorithm 2) operates over the two
given workflows identified by srcW fID and destW fID, and compares their
outputs. It first retrieves the list of jobs and their produced output files from
the Provenance Store for each given workflow. It then iterates over the files
and compares the source file, belonging to src¢W fID, with the destination
file, belonging to destW fID. Since the files are stored on the Cloud, the al-
gorithm retrieves the files from the Cloud (see lines 11 and 12). Cloud stor-
age services such as OpenStack Swift (http://swift.openstack.org), Amazon S3
(http://aws.amazon.com/s3) use the concept of a bucket or a container to store
a file. This is why src_container and dest_container along with src_filename
and dest_filename are given in the GetCloudFile function to identify a spe-
cific file in the Cloud. The algorithm then compares the hash value of both files
and increments ComparisonCounter. If all the files in both workflows are the
same, ComparisonCounter should be equal to FileCounter, which counts the
number of files produced by a workflow. Thus, it confirms that the workflows
are repeated successfully. Otherwise, the algorithms returns false if both these
counters are not equal.

5 Results and Discussion

To demonstrate the effect of Cloud resource configuration such as RAM on job
failure rate, a basic memory-consuming job is written in Java. The job attempts

14 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

to construct an alphabet string of given size (in MB), which is provided at
runtime. To execute this experiment, three resource configurations, (a) ml.tiny,
(b) ml.small and (c) ml.medium, each with 512 MB, 2048 MB and 4096 MB
RAM respectively were used. Each job is executed at least 5 times with a given
memory requirement on each resource configuration. The result in Figure 5 shows
that jobs fail if required RAM (hardware) requirement is not fulfilled. All jobs
with RAM requirement less than 500 MB executed successfully on all resource
configurations. However, the jobs start to fail on Cloud resources with ml.tiny
configuration (as shown in Figure 4)as soon as the jobs memory requirement
approaches 500 MB because the jobs could not find enough available memory
on the given resource. This result confirms the presented argument (discussed in
section 1 and also in section 3) regarding the need for collecting Cloud resource
configuration and its impact on job failure. Since a workflow is composed of
many jobs, which are executed in a given order, a single job failure can result
in a workflow execution failure. Therefore, collecting Cloud-aware provenance is
essential for reproducing a scientific workflow execution on the Cloud.

Impact of VM RAM configuration on job success
for 100 MB job
T

for 750 MB job
T

successful jobs
—TT—T—T

successful jobs
T T T T
R

for 250 MB job for 500 MB job
T T

T T T T T
I R S

successful jobs
O b N Ww s o O N W s uo

for 1000 MB job
T

T T T T T
I R '

successful jobs
O b N WA OO Ol N WA WO O LN WA 0o
T T

successful jobs

EE ml.medium
3 ml.small
3 ml.tiny

Fig. 4. The effect of the Cloud resource’s RAM configuration on the job’s success rate

To evaluate the presented mapping algorithm, which collects the Cloud in-
frastructure information and interlinks it with the workflow provenance, a Python
based prototype has been developed using Apache Libcloud?, a library to inter-
act with the Cloud middleware. The presented evaluation of the prototype is very
basic currently. However, as this work progresses further a full evaluation will
be conducted. To evaluate this prototype, a 20 cores Cloud infrastructure is ac-
quired from the Open Science Data Cloud (OSDC)(opensciencedatacloud.org).
This Cloud infrastructure uses the OpenStack middleware (openstack.org) to

3 http://libcloud.apache.org

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 15

provide Infrastructure-as-a-Service (IaaS) capability. A small Condor cluster of
three virtual machines is also configured. In this cluster, one machine is a master
node, which is used to submit workflows, and the remaining two are compute
nodes. These compute nodes are used to execute workflow jobs. Using the Pe-
gasus APIs, a wordcount workflow application composed of four jobs is written.
This workflow has both control and data dependencies [42] among its jobs along
with the split and merge characteristics, which are common characteristics in
scientific workflows. The first job (Split job) takes a text file and splits it into
two files of almost equal length. Later, two jobs (Analysis jobs), each take one
file as input, and then calculate the number of words in the given file. The fourth
job (merge job) takes the outputs of earlier analysis jobs and calculates the final
result i.e. total number of words in both files.

This workflow is submitted using Pegasus. The wfID assigned to this work-
flow is 114. The collected Cloud resource information is stored in database. Table
1 shows the provenance mapping records in the ReC' AP Store for this workflow.
The collected information includes the flavour and image (image name and Im-
age id) configuration parameters. The Image id uniquely identifies an OS image
hosted on the Cloud and this image contains all the software or libraries used
during the job execution (as discussed earlier in Section 3). As an image contains
all the required libraries of a job, this prototype does not extract the installed
libraries information from the virtual machine at the moment for workflow re-
producibility purpose. However, this can be done in future iterations to enable
the proposed approach to reconfigure a resource at runtime on the Cloud. The

Table 1. Cloud-Aware Provenance captured for a given workflow

WI{ID |Host IP nodename |[Flavour Id [minRAM |minHD |[vCPU |image name |image Id

114 174.16.1.49 [osdc-vm3 2 2048 20 GB 1 wf_peg-repeat |f102960c-557¢c-4253-
8277-2df5ffe3c169

114 174.16.1.98 |mynode 2 2048 20 GB 1 wf_peg_repeat [f102960c-557c-4253-
8277-2df5ffe3c169

reproducibility of the workflow using the proposed approach (discussed in Sec-
tion 4.2) has also been tested. The prototype is requested to repeat the workflow
with wfID 114. Upon receiving the request, it first collects the resource config-
urations, captured from earlier execution, from the database and provisions the
resources on the Cloud infrastructure. The name of re-provisioned resource(s)
for the repeated workflow has a postfix -rep e.g. mynova-rep as shown in Table
2. It was named ’mynova’ in original workflow execution as shown in Table 1.
From Table 2, one can assess that similar resources have been re-provisioned us-
ing the ReCAP system to reproduce the workflow execution because the RAM,
Hard disk, vCPUs and image configurations are similar to the resources used
for workflow with wfID 114 (as shown in Table 1). This result confirms that
the similar resources on the Cloud can be re- provisioned with the Cloud-Aware
Provenance (CAP) collected using the proposed approach (discussed in Section
4). Table 2 shows two repeated workflow instances of original workflow 114. In
order to measure the execution time of the original workflow and the re- pro-
duced workflow on the similar execution infrastructure on the Cloud, the same

16 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

Table 2. Provenance data of the reproduced workflow showing that ReCAP success-
fully re-provisioned similar resources on the Cloud

WfID |Host IP nodename Flavour Id | minRAM |minHD |[vCPU |image name |[image Id

117 172.16.1.183 [osdc-vm3-rep |2 2048 20 GB 1 wf_peg-repeat |f102960c-557¢c-4253-
8277-2df5ffe3c169

117 172.16.1.187 [mynode-rep |2 2048 20 GB 1 wf_peg-repea [f102960c-557c-4253-
8277-2df5ffe3c169

122 172.16.1.114 [osdc-vm3-rep |2 2048 20 GB 1 wf_peg-repeat |f102960c-557¢c-4253-
8277-2df5ffe3c169

122 172.16.1.112 | mynode-rep |2 2048 20 GB 1 wf_peg_repea [f102960c-557c-4253-
8277-2df5ffe3c169

workflow was executed multiple times on the Cloud infrastructure. An average
execution time is calculated for these workflow executions and treated as the av-
erage execution time of the original workflow. The ReCAP approach is then used
to reproduce the workflow execution by re-provisioning the similar execution in-
frastructure using the Cloud-Aware Provenance (CAP). The same workflow was
re-executed on the re-provisioned resources to measure the execution time of the
reproduced workflow. Figure 5 shows the average workflow execution times for
both the original and reproduced workflows respectively. In the case of origi-
nal execution, the average workflow execution is 434.84 + 6.52 seconds and the
workflow execution time for the reproduced workflow is 434.76 +7.3657 seconds.
This result shows that there is no significance difference (i.e. 0.08 seconds) in
workflow execution time because of the similar execution infrastructure used for
workflow re-execution. This result confirms that workflow can be reproduced
with similar execution performance provided a similar execution infrastructure
is available on the Cloud.

Average Workflow Execution Time Comparison

445

440 T

435 -

B Original

B Reproduced
430

Workflow Execution Time (secs)

Workflow Execution Type

Fig. 5. Comparing the average workflow execution time of the original and the repro-
duced workflow execution

The other aspect to evaluate the workflow reproducibility (as discussed in
Section 3) is to compare the outputs produced by both workflows. This has been
achieved using the algorithm discussed in Section 4.5. Four jobs in both the

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 17

given workflows i.e. 114 and 117 produce the same number of output files (see
Table 3). The Split job produces two output files i.e. wordlistl and wordlist2.
Two analysis jobs, Analysisl and Analysis2, consume the wordlist1l and wordlist2
files, and produce the analysisl and analysis2 files respectively. The merge job
consumes the analysisl and analysis2 files and produces the merge_output file.
The hash values of these files are shown in the MD5 Hash column of the Table 3,
here both given workflows are compared with each other. For instance, the hash
value of wordlistl produced by the Split job of workflow 117 is compared with
the hash value of wordlistl produced by the Split job of workflow 114. If both
the hash values are same, the algorithm returns true. This process is repeated for
all the files produced by both workflows. The algorithm confirms the verification
of workflow outputs if the corresponding files in both workflows have the same
hash values. Table 3 shows that both workflows have produced the identical files
because the hash values are same. In order to measure the impact of prove-

Table 3. Provenance data of the reproduced workflow showing that ReCAP success-
fully re-provisioned similar resources on the Cloud

Job WIfID |Container Name |[File Name MD5 Hash
114 wfoutput123011 wordlist1 0d934584cbcl124eed93c4464abl178a5d
Split 117 wfoutput125819 wordlist1 0d934584cbcl24eed93c4464abl78a5d
114 wfoutput123011 wordlist2 0d934584cbcl24eed93c4464abl78a5d
117 wfoutputl125819 wordlist2 0d934584cbcl124eed93c4464abl78a5d
Analysisl 114 wfoutput123011 analysisl 494f24e426dbabcclce9al32d50ccbda
117 wfoutput125819 analysisl 494f24e426dba5cclce9al32d50ccbda
Analysis2 114 wfoutput123011 analysis2 127e8dbd6beffdd2e9dfed79d46elebc
117 wfoutput125819 analysis2 127e8dbd6beffdd2e9dfed79d46elebe
Merge 114 wfoutput123011 merge-output [d0bd408843b90e36eb8126b397c6efed
117 wfoutput125819 merge-output [d0bd408843b90e36eb8126b397c6efed

Cloud-Aware Provenance Overhead on Workflow Execution Time
445

‘ ¥ No Mapping
N Static Mapping
Eager Mapping

Workflow Execution Time (secs)

Provenance Capturing Approaches

Fig. 6. Cloud-Aware Provenance capturing overhead on the workflow execution time

nance mapping approaches (as discussed in Section 4.2 and 4.3) on the workflow
execution performance, the workflow jobs were modified to eliminate the effect
of the data transfer time on the workflow execution. The jobs in the workflow
mimic the job processing by introducing a sleep interval for a given time pe-

18 ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

riod, which is passed as an argument. Figure 6 shows that the average workflow
execution time in the absence of any provenance approach (i.e. No Mapping)
is 434.69 £ 6.52 seconds. The average workflow execution time is 434.71 £ 4.49
and 434.74 £+ 4.28 seconds for the Static and Eager Mapping approaches respec-
tively. The difference between the execution times is 0.02 and 0.05 seconds for
the Static and Eager approaches respectively. This slight difference in execu-
tion time is mainly caused by the delays a job faces during its execution. The
overall workflow execution time remains almost the same in the presence of the
proposed provenance capturing approaches. The main reason for these mapping
approaches to not having a major impact on the workflow execution time is be-
cause they work outside the virtual machines, thus they don’t interfere with the
job execution.

6 Conclusion and Future Direction

The dynamic nature of the Cloud makes provenance capturing of workflow(s)
with the underlying execution environment(s) and their reproducibility a diffi-
cult challenge. In this regard, a list of workflow reproducibility requirements has
been presented after analysing the literature and workflow execution scenario on
the Cloud infrastructure. The proposed ReCAP’s framework can augment the
existing workflow provenance with the Cloud infrastructure information. Based
on the identified Cloud usage scenarios i.e. Static and Dynamic , the proposed
mapping approaches iterate over the workflow jobs and establishes mappings
with the resource information available on the Cloud. The results show that the
proposed approaches can capture the Cloud-Aware Provenance (CAP) by cap-
turing the information related to Cloud infrastructure (virtual machines) used
during a workflow execution. It can then re-provision a similar execution infras-
tructure with same resource configurations on the Cloud using CAP to reproduce
a workflow execution. Figure 5 shows that the workflow execution time remains
the same for reproduced workflow because similar execution infrastructure was
provisioned using the Cloud-Aware Provenance. The workflow reproducibility is
verified by comparing the outputs produced by the workflows. In this regard,
the proposed algorithm (see Algorithm 2) compares the outputs produced by
two given workflows. Furthermore, this paper also presents the impact of the
devised mapping approaches on the workflow execution time. The result in Fig-
ure 6 shows that the presented mapping approaches do not significantly affect
the workflow execution time because they work outside the virtual machine and
do not interfere with the job execution. In future, the proposed approach will
be extended and a detailed evaluation of the ReCAP framework will be con-
ducted. Different performance matrices such as the impact of different resource
configuration on workflow execution performance, and total resource provision-
ing time will also be measured. In this paper, only workflow outputs have been
used to compare two workflows’ provenance traces. In future, the comparison
algorithm will also incorporate workflow structure and execution infrastructure
(as discussed in Section 3) to verify workflow reproducibility. Moreover, the Re-

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 19

CAP framework has not addressed the issue of securing the stored Cloud-Aware
Provenance. In future, the presented architecture will be extended by adding a
security layer on top of the collected Cloud-Aware Provenance.

Acknowledgments. This research work has been funded by a European Union
FP-7 project, NAU neuGrid4Users (grant agreement n. 283562, 2011-2014). Be-
sides this, the support provided by OSDC by offering a free Cloud infrastructure
of 20 cores is highly appreciated.

References

10.

11.

12.

Mehmood, Y., Habib, I., Bloodsworth, P., Anjum, A., Lansdale, T., McClatchey,
R.: A middleware agnostic infrastructure for neuro-imaging analysis. In: Computer-
Based Medical Systems, 2009. CBMS 2009. 22nd IEEE International Symposium
on. (Aug 2009) 1-4

Munir, K., Kiani, S.L., Hasham, K., McClatchey, R., Branson, A., Shamdasani, J.:
Provision of an integrated data analysis platform for computational neuroscience
experiments. Journal of Systems and Information Technology 16(3) (2014) 150-
169

Deelman, E., Gannon, D., Shields, M., Taylor, I.. Workflows and e-science: An
overview of workflow system features and capabilities. Future Generation Com-
puter Systems 25(5) (2009) 528 — 540

Foster, 1., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)
Mell, P.M., Grance, T.: Sp 800-145. the nist definition of cloud computing. Tech-
nical report, Gaithersburg, MD, United States (2011)

Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing sci-
ence on the cloud: The montage example. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. SC ’08, USA, IEEE Press (2008) 50:1-50:12
Juve, G., Deelman, E.: Scientific workflows and clouds. Crossroads 16(3) (March
2010) 14-18

Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3) (September 2005) 31-36

Azarnoosh, S., Rynge, M., Juve, G., Deelman, E., Niec, M., Malawski, M., da Silva,
R.: Introducing precip: An api for managing repeatable experiments in the cloud.
In: Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th Inter-
national Conference on. Volume 2. (Dec 2013) 19-26

Belhajjame, K., Roos, M., Garcia-Cuesta, E., Klyne, G., Zhao, J., De Roure, D.,
Goble, C., Gomez-Perez, J.M., Hettne, K., Garrido, A.: Why workflows break -
understanding and combating decay in taverna workflows. In: Proceedings of the
2012 IEEE 8th International Conference on E-Science (e-Science). E-SCIENCE
'12, USA, IEEE Computer Society (2012) 1-9

Vouk, M.: Cloud computing — issues, research and implementations. In: Infor-
mation Technology Interfaces, 2008. ITI 2008. 30th International Conference on.
(June 2008) 31-40

Zhao, Y., Fei, X., Raicu, I., Lu, S.: Opportunities and challenges in running scien-
tific workflows on the cloud. In: Cyber-Enabled Distributed Computing and Knowl-
edge Discovery (CyberC), 2011 International Conference on. (Oct 2011) 455-462

20

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

ReCAP: Reproducibility using the Cloud-Aware Provanance, Khawar et al.

Shamdasani, J., Branson, A., McClatchey, R.: Towards semantic provenance in
cristal. In: Third International Workshop on the role of Semantic Web in Prove-
nance Management (SWPM 2012). (2012)

Stevens, R.D., Robinson, A.J., Goble, C.A.: mygrid: personalised bioinformatics
on the information grid. Bioinformatics 19 (2003) 13021304

de Oliveira, D., Ogasawara, E., Baiao, F., Mattoso, M.: Scicumulus: A lightweight
cloud middleware to explore many task computing paradigm in scientific workflows.
In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on. (July
2010) 378-385

Ko, R., Lee, B., Pearson, S.: Towards achieving accountability, auditability and
trust in cloud computing. In Abraham, A., Mauri, J., Buford, J., Suzuki, J.,
Thampi, S., eds.: Advances in Computing and Communications. Volume 193 of
Communications in Computer and Information Science. Springer Berlin Heidelberg
(2011) 432444

Foster, 1., Vockler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for
representing, querying, and automating data derivation. In: Scientific and Statis-
tical Database Management, 2002. Proceedings. 14th International Conference on.
(2002) 37-46

Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S.; Freire, J., Silva, C.:
Tackling the provenance challenge one layer at a time. Concurr. Comput. : Pract.
Exper. 20(5) (April 2008) 473-483

Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance trails in
the wings-pegasus system. Concurr. Comput. : Pract. Exper. 20(5) (April 2008)
587-597

Zhang, O.Q., Kirchberg, M., Ko, R.K., Lee, B.S.: How to track your data: The case
for cloud computing provenance. In: Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on, IEEE (2011) 446-453
Tan, Y.S., Ko, R.K., Jagadpramana, P., Suen, C.H., Kirchberg, M., Lim, T.H., Lee,
B.S., Singla, A., Mermoud, K., Keller, D., Duc, H.: Tracking of data leaving the
cloud. 2013 12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications 0 (2012) 137-144

Macko, P., Chiarini, M., Seltzer, M.: Collecting provenance via the xen hypervisor.
3rd USENIX Workshop on the Theory and Practice of Provenance (TAPP) (2011)
Chirigati, F., Shasha, D., Freire, J.: Reprozip: Using provenance to support com-
putational reproducibility. In: Proceedings of the 5th USENIX Workshop on the
Theory and Practice of Provenance. TaPP ’13, Berkeley, CA, USA, USENIX As-
sociation (2013) 1:1-1:4

Janin, Y., Vincent, C., Duraffort, R.: Care, the comprehensive archiver for re-
producible execution. In: Proceedings of the 1st ACM SIGPLAN Workshop on
Reproducible Research Methodologies and New Publication Models in Computer
Engineering. TRUST ’14, New York, NY, USA, ACM (2014) 1:1-1:7
Santana-Perez, 1., Ferreira da Silva, R., Rynge, M., Deelman, E., Pérez-Hernédndez,
M., Corcho, O.: A semantic-based approach to attain reproducibility of computa-
tional environments in scientific workflows: A case study. In Lopes, L., Zilinskas,
J., Costan, A., Cascella, R., Kecskemeti, G., Jeannot, E., Cannataro, M., Ricci,
L., Benkner, S., Petit, S., Scarano, V., Gracia, J., Hunold, S., Scott, S., Lankes, S.,
Lengauer, C., Carretero, J., Breitbart, J., Alexander, M., eds.: Euro-Par 2014: Par-
allel Processing Workshops. Volume 8805 of Lecture Notes in Computer Science.
Springer International Publishing (2014) 452-463

Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E.: Ten simple rules for repro-
ducible computational research. PLoS Comput Biol 9(10) (10 2013) €1003285

ReCAP: Reproducibility using the Cloud-Aware Provanance, Hasham et al. 21

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

C., S.V.: Reproducible research: Addressing the need for data and code sharing in
computational science. Computing in Science & Engineering 12 (2010)
Santana-Perez, 1., Ferreira da Silva, R., Rynge, M., Deelman, E., Perez-Hernandez,
M.S., Corcho, O.: Leveraging semantics to improve reproducibility in scientific
workflows. In: The reproducibility at XSEDE workshop. (2014)

Véckler, J.S., Juve, G., Deelman, E., Rynge, M., Berriman, B.: Experiences using
cloud computing for a scientific workflow application. In: Proceedings of the 2Nd
International Workshop on Scientific Cloud Computing. ScienceCloud 11, USA,
ACM (2011) 1524

Howe, B.: Virtual appliances, cloud computing, and reproducible research. Com-
puting in Science Engineering 14(4) (July 2012) 36-41

Zhao, Y., Li, Y., Raicu, 1., Lu, S., Tian, W., Liu, H.: Enabling scalable scientific
workflow management in the cloud. Future Generation Computer Systems (0)
(2014) —

Lifschitz, S., Gomes, L., Rehen, S.K.: Dealing with reusability and reproducibility
for scientific workflows. In: Bioinformatics and Biomedicine Workshops (BIBMW)),
2011 IEEE International Conference on, IEEE (2011) 625-632

Missier, P., Woodman, S., Hiden, H., Watson, P.: Provenance and data differencing
for workflow reproducibility analysis. Concurrency and Computation: Practice and
Experience (2013)

Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Generation
Computer Systems 29(1) (2013) 158 — 169 Including Special section: AIRCC-
NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures.
Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost- and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
Future Generation Computer Systems 48(0) (2015) 1 — 18 Special Section: Business
and Industry Specific Cloud.

Woodman, S., Hiden, H., Watson, P., Missier, P.: Achieving reproducibility by
combining provenance with service and workflow versioning. In: Proceedings of
the 6th Workshop on Workflows in Support of Large-scale Science. WORKS 11,
USA, ACM (2011) 127-136

Groth, P., Deelman, E., Juve, G., Mehta, G., Berriman, B.: Pipeline-centric prove-
nance model. In: Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science. WORKS ’09, USA, ACM (2009) 4:1-4:8

Horta, F., Silva, V., Costa, F., de Oliveira, D., Ocana, K., Ogasawara, E., Dias,
J., Mattoso, M.: Provenance traces from chiron parallel workflow engine. In:
Proceedings of the Joint EDBT/ICDT 2013 Workshops. EDBT ’13, New York,
NY, USA, ACM (2013) 337-338

Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Beowulf cluster computing
with linux. MIT Press, Cambridge, MA, USA (2002) 307-350

Latchoumy, P., Khader, P.S.A.: Survey on fault tolerance in grid computing. Inter-
national Journal of Computer Science & Engineering Survey (IJCSES) Vol 2(2011)
(2011)

Stallings, W.: Cryptography and Network Security: Principles and Practice. 5th
edn. Prentice Hall Press, Upper Saddle River, NJ, USA (2010)

Ramakrishnan, L., Plale, B.: A multi-dimensional classification model for scientific
workflow characteristics. In: Proceedings of the 1st International Workshop on
Workflow Approaches to New Data-centric Science. Wands ’10, USA, ACM (2010)
4:1-4:12

