
A Scalable Deep Learning System for Monitoring and Forecasting

Pollutant Concentration Levels on UK Highways

Abstract

The construction of intercity highways by the government has resulted in a progressive in-
crease in vehicle emissions and pollution from noise, dust, and vibrations despite its recog-
nition of the air pollution menace. Efforts that have targeted roadside pollution still do not
accurately monitor deadly pollutants such as nitrogen oxides and particulate matter. Reports
on regional highways across the country are based on a limited number of fixed monitoring
stations that are sometimes located far from the highway. These periodic and coarse-grained
measurements cause inefficient highway air quality reporting, leading to inaccurate air quality
forecasts. This paper, therefore, proposes and validates a scalable deep learning framework
for efficiently capturing fine-grained highway data and forecasting future concentration lev-
els. Highways in four different UK regions - Newport, Lewisham, Southwark, and Chepstow
were used as case studies to develop a REVIS system and validate the proposed framework.
REVIS examined the framework’s ability to capture granular pollution data, scale up its
storage facility to rapid data growth and translate high-level user queries to structured query
language (SQL) required for exploratory data analysis. Finally, the framework’s suitability
for predictive analytics was tested using fastai’s library for tabular data, and automated
hyperparameter tuning was implemented using bayesian optimisation. The results of our
experiments demonstrated the suitability of the proposed framework in building end-to-end
systems for extensive monitoring and forecasting of pollutant concentration levels on high-
ways. The study serves as a background for future related research looking to improve the
overall performance of roadside and highway air quality forecasting models.

Keywords: Urban Air Pollution, Air Quality Prediction, Highway, Deep Learning, Big
Data, Internet of Things

1. Introduction1

Long-term exposure to air pollution is the most significant environmental threat to human2

health (Public Health England 2019). According to World Bank (2022), the global cost of3

the adverse health effects associated with exposure to air pollution is $8.1 trillion, equivalent4

to 6.1 per cent of global GDP. It is, therefore, surprising that a substantial fraction of the5

UK populace (particularly those that commute to their various destinations via highways)6

are still susceptible to the adverse health effects of air pollutants along the UK highways7

(Vohra et al. 2021). Due to exposure to motor vehicle exhaust emissions, non-exhaust related8

pollution from brake and tyre wear, and particles from highway construction (Barikayeva et al.9

2018), commuters are constantly at risk of high concentrations of air pollutants (e.g., PM2.5,10

PM10, NO2). These pollutants are some of the most life-threatening road pollutants, which11



have been linked to cardiovascular and respiratory illnesses (Mabahwi et al. 2014, Alvanchi12

et al. 2020). According to Public Health England (2019), between 2017 and 2025, these air13

pollutants will cost the NHS and social care system in England a total of £1.6 billion.14

Hence, there is a pressing and cogent need to find innovative and sustainable ways to mon-15

itor air pollutants and curb their devastating effects on health and human capital, as well16

as associated GDP losses (DEFRA 2020). According to (Alvanchi et al. 2020), monitoring17

particulate matter (PM2.5, PM10) and other highway pollutants like NO2 is not a straight-18

forward task because pollutants tend to decay and diffuse into the background concentration19

within 200m from the source. Furthermore, highway speed limits and traffic congestion com-20

plicate things further as they result in varying driving patterns such as sudden slow-downs21

and speedups, which elevate these pollution levels or limit their dispersion (Karner et al.22

2010, Zhang & Batterman 2013). In response to the ever-increasing impacts of air pollution23

and its associated intricacies, the UK government has invested about £100 million to proac-24

tively tackle air quality (AQ) challenges to protect health and support clean growth (DEFRA25

2019). However, despite these investments by the UK, the issue of how to proactively tackle26

and ultimately improve air quality across UK highways persists.27

According to Barthwal & Acharya (2018), most countries monitor air pollution using sta-28

tionary monitoring stations operated by government authorities. Figure 1 illustrates how the29

UK currently monitors highways to come up with its ultra low emission policies. Highways30

are monitored by Highways England (a government-owned company charged with operat-31

ing, maintaining, and improving motorways in England) via its automatic urban and rural32

network (AURN), which collects sparse air pollutant data. However, evidence suggests that33

these air quality analysers are relatively heavy and expensive to install or maintain (Carullo34

et al. 2007, Barthwal & Acharya 2018). Therefore, it is impracticable for Highways Eng-35

lands’ monitoring stations to be deployed across the UK to capture pollutant concentration36

levels and improve air quality. On the other hand, low-cost/off-the-shelf IoT sensors that37

have been proposed in previous studies (e.g., Badura et al. (2018), Borghi et al. (2018),38

Budde et al. (2018)) for monitoring air quality are plagued with interference issues from39

weather, cross-sensitivities between pollutants and ageing effects of integrated circuit tech-40

nology (Karagulian et al. 2019). These limitations are coupled with the fact that it would41

take a significant and environmentally unfriendly investment to install low-cost IoT sensors42

across every road in the UK.43

Asides from inefficient highway air quality monitoring, another major challenge rests on44

the issue of how data disparity and isolated data sets affect the accurate prediction of pollu-45

tant concentration levels. Evidence suggests that data sources that could collectively predict46

pollutant concentration levels (e.g., historic pollution, GIS location data, traffic flow, weather47

and background pollution) exist in silos, thus resulting in numerous integration and data pro-48

cessing issues (Umadevi & Geraldine Bessie Amali 2020). In addition, existing forecasting49

methods are riddled with computational issues like scalability and memory demand which50

limits their optimal adoption (Zhang et al. 2012). For instance, Alléon et al. (2020) and51

Lee et al. (2020) attempted to develop large-scale air quality forecasting systems. However,52

the authors highlighted the inability to integrate additional granular data and insufficient53
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computational power as the shortcomings of their research.54

On the back of significant advancements in scalable machine learning (ML) approaches55

such as deep learning, which are known to thrive on huge data (Akinosho et al. 2020), this56

study, therefore, proposes a scalable deep learning framework for monitoring and forecast-57

ing pollutant concentration levels on UK highways. This framework leverages internet of58

things (IoT) sensors for real-time monitoring, graphics processing units (GPUs) for parallel59

computing, big data for scalable storage and deep learning for forecasting highway pollu-60

tant concentration. In the design of a system that implements the proposed framework, the61

following objectives were set for this study:62

• Develop, calibrate, and deploy energy efficient hardware devices with practicable accu-63

racy to capture real-time pollution data on four different UK highways.64

• Integrate missing or inaccurate data from heterogeneous sources to enhance forecasting65

accuracy of the developed model.66

• Develop and evaluate a baseline deep learning model to make hourly predictions of67

PM2.5, PM10 and NO2 concentration levels due to the deadly nature of these pollu-68

tants.69

• Perform a system scalability test to determine response time and throughput as hard-70

ware device load increases.71

This manuscript is structured as follows: Immediately after introduction follows a sec-72

tion that summarises the research methodology adopted to achieve the highlighted research73

objectives while section 3 highlights features of the proposed framework. Afterwards, the74

development process of a prototype system that implements the proposed framework is dis-75

cussed in section 4. The discussion also includes the scalability test that was performed on76

the system. Section 5 correlates the findings of this study with existing research and high-77

lights its relevance to practice. Finally, conclusions are drawn, and future research directions78

are indicated in Section 6.79
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Figure 1: The current situation of highway AQ monitoring in the UK. This study seeks to address three main
challenges which include: 1) expensive cost of deploying monitoring stations such as the AURN on highways
2) Data silos/segregated data operated by different data agencies 3) Inefficient air quality estimation methods
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2. Research Methodology80

A combination of experimental design with case-study methodology was adopted to81

achieve the identified research objectives of this study. The rationale behind this approach82

is based on the need to fulfil two principal goals. One, system implementation is needed to83

demonstrate the practicality of the proposed framework using a developed system. This ap-84

proach reflects an experimental design method of research. On the other hand, the adoption85

of case-study strategy is to test the results of the developed system in disparate real-life envi-86

ronments. This approach is quite effective and has been utilised in related research involving87

multiple case-studies (Chen et al. 2015, Zheng et al. 2015). The experimental design approach88

was also used to conceive the layered architecture of the proposed framework with each layer89

addressing at least one research objective. Layering remains a prevalent application design90

technique that allows the disintegration of a complex software system into modules. Lay-91

ers within the proposed framework consist of libraries, programming languages, and services92

required for monitoring and forecasting.93

A careful market analysis of “grey literature” and an extensive review of academic pub-94

lications revealed several sensors suitable for designing monitoring units to address the first95

research objective. Google scholar and scientific databases such as Scopus and ScienceDirect96

were also used to search for academic publications, while Google’s search engine revealed97

additional sensor manufacturers. We limited our search to the three pollutants of interest98

in this study - NO2, PM2.5 and PM10. A similar search of relevant integration libraries99

and big data frameworks informed the framework’s approach to solving integration and data100

storage challenges. From the array of available options, enterprise frameworks that allow the101

integration of data from legacy as well as newly built systems were selected. There are a102

lot of algorithms that are available for air quality forecasting. However, it was important to103

choose a scalable machine learning approach such as deep learning that has shown significant104

promise using distributed computing clusters (Sergeev & Del Balso 2018, Chen et al. 2019).105
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3. A Proposed Deep Learning Framework for Highway AQ Monitoring and Pre-106

diction107

The proposed framework is a four-layered architecture composed of the hardware layer,108

data storage layer, integration layer and analytics layer as depicted in Figure 2. This section109

introduces these layers and their functionalities.110

3.1. Hardware Layer111

This layer serves as the entry point for the entire framework. It initiates the monitoring112

and analytics process by ensuring that real-time data are captured and subsequently trans-113

ferred to a cloud platform for data aggregation. A typical real-time sensing device in this114

layer would push data at an interval of 30secs-1min and be able to sense multiple pollutants115

and capture weather data. Other device functionalities such as self-powering capability, edge116

computing and on-board intelligence are desirable but not entirely mandatory for monitoring.117

Multiple gateways and a cloud platform are essential for this layer to function as required.118

The cloud platform will store captured data, but on-device storage will also be helpful to119

avoid data loss when data transfer fails. Additional data on vehicle categories and traffic120

flow in this layer will provide more insights into the ’culprit’ vehicle that contributes the121

most to highway pollution. Advanced computer vision and edge computing technologies can122

enable this functionality in monitoring devices through embedded ML models. Development123

technologies relevant to this layer include VHDL, Verilog, FPGA, and Arduino.124

3.2. Data Storage Layer125

This layer stores pollution data and model weights. Readings captured from deployed126

sensing devices are either sent immediately to this layer or stored temporarily and pushed127

later through HTTP post requests. The data storage layer is responsible for ensuring data128

consistency, security and integrity. According to Ahmed et al. (2017), it is best practice to129

have the unified prediction service (UPS) reside close to the historic pollution data to reduce130

latency. Hence, this layer also houses weights and parameters from training pollutant con-131

centration forecasting models. Data stored in this layer are bound to increase exponentially,132

and necessary technologies to configure big data storage must be put in place. Relevant tech-133

nologies such as hadoop, spark and hive are possible open-source options to consider in this134

configuration. Data streaming frameworks like Apache Kafka or ActiveMQ are also available135

for real-time sensing of changes in this layer and to send alerts in the event of data trans-136

fer failures. Triggers, procedures and packages are useful to automate most of the required137

database tasks such as populating tables, generating logs or automatically generating SQL138

for data aggregation.139

3.3. Integration Layer140

The data integration layer ingests data from third-party sources into a central repository.141

The layer handles this data ingestion using the extract, transform and load (ETL) process.142

External data can include pollution data captured by other monitoring stations, highway143

geographical data, meteorological data and traffic data. The essence of this layer is to ensure144

that data not captured in the hardware layer by the monitoring devices can be integrated145

into the system to improve the performance of developed estimation models. If the suggested146
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Figure 2: Deep Learning Framework for Highway Air Quality Monitoring and Prediction
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functionalities of the hardware layer are too expensive to implement, this layer can grab147

open-source or paid data from available online sources. Data can be downloaded in different148

formats such as TXT, JSON, XML and CSV or exposed as external links. The data from this149

layer should be stored as separate tables in the data storage layer for unique identification150

and also to avoid mix-ups with existing data.151

3.4. Analytics Layer152

The analytics layer handles exploratory and inferential analysis of historic highway pol-153

lution data to estimate future air quality. The layer extracts data from the data storage154

layer for model training and validation. Essential data pre-processing steps such as data con-155

sistency verification, target attribute transformation, feature extraction, data encoding and156

data imputation are carried out in this layer as part of the first stages of training. A machine157

learning approach suitable for tabular or time-series data such as the historic pollution data is158

required for estimation. Deep learning is one of many machine learning approaches that has159

stood the test of time (Akinosho et al. 2020). Frameworks and libraries such as fastai, scikit-160

learn, PyTorch and TensorFlow make it relatively easy to train a baseline model. Additional161

functionalities that are beginning to gain traction and could be included in implementing this162

layer is MLOps - model maintenance in the production environment. MLOps encompasses163

automation and monitoring steps such as continuous integration, deployment and training164

on data collected in production.165

4. Development and Deployment of the REVIS System Prototype166

In this section, the proposed framework is validated for practicality through the imple-167

mentation of a Real-Time Highways Emission Visualisation (REVIS) platform use case. The168

framework was tested for scalability and performance through different stages of data collec-169

tion, exploratory data analysis and predictive model development.170

4.1. REVIS Highway Monitoring Devices171

The development and evaluation steps of the monitoring devices and the deployment172

strategy adopted are highlighted in this section.173

4.1.1. REVIS Device Development and Evaluation174

REVIS demonstrates the hardware layer through the development and calibration of de-175

vices with built-in sensors to measure the atmospheric composition of NO2, PM2.5 and PM10,176

alongside weather parameters - pressure, temperature and relative humidity. Table 1 below177

summarises details of manufacturers of the chosen sensors and their accuracy figures. Each178

REVIS device required an excellent design of both analogue and digital circuitry around it179

and several stages of calibration. The Alphasense NO2 sensor for example, showed during180

experimentation that it was best suited for fixed sensing installations and urban air monitor-181

ing since varying meteorological conditions had a significant influence on it’s readings. The182

sensor’s cross-interference with the PM2.5 SPS30 sensor and detection range limits (DRL)183

were also evaluated using equation 1184

DRL = 3.3σ/S (1)
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where S denotes the calibration curve’s slope, and σ denotes the standard deviation of the185

sensor response in the absence of air (Shrivastava et al. 2011). The nearest AURN stations186

to the monitoring devices were identified for field evaluation. The selected stations were187

deemed suitable for calibration since they were close to deployed sensors and mainly provided188

missing weather data and also average hourly measurement of the pollutants of interest. Data189

from the REVIS devices were averaged over an hour for appropriate comparison with the190

reference data. Figure 3 shows PM2.5 and NO2 readings on one of the REVIS devices after191

calibration. Aside from the occasional underestimated measurement of the NO2 sensors,192

other sensors such as PM2.5 and PM10 showed close estimates to the reference measurements193

with correlation coefficient r > 0.8.194

Table 1: Sensor Specifications and Accuracy

Measured Quantity Units Sensor used Accuracy Comments

Temperature ◦C Texas: HDC2010 ±40 Could be affected by direct
sunlight, depending on how
well airflow works within the
unit - may require additional
physical shading.

Relative Humidity % Texas: HDC2010 ±3 start of life
±0.25/yr drift

As above

Pressure hPa ST: LPS22HB ±1

PM2.5 and PM10 µg/m3 Sensirion: SPS30 ±10µg/m3

±10%
Over 0-100 µg/m3 range
Over 100-1000 µg/m3 range

NO2 ppb Alphasense: NO2-
B43F

Approx. ±20 Careful design and several
stages of calibration are re-
quired when measuring tiny
gas concentrations
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(a) PM2.5 field readings after calibration

(b) NO2 field readings after calibration

Figure 3: Calibrated NO2 and PM2.5 readings from field. Vertical units are in µg/m3 for PM2.5 and ppb for
NO2. Even with the calibration, NO2 readings sometimes record negative readings because of temperature
and humidity effects.
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4.1.2. Device Deployment in Case Study Regions195

Major highways in London, Newport and Chepstow were chosen as case studies for this196

research. The city of London is made up of 9 million inhabitants which includes 4.49 million197

males and 4.51 million males (ONS 2020). With 74.9% of this population belonging to the198

working age 16-64 years (ONS 2021), the government faces the challenge of addressing traffic199

congestion hurdles across the city. A survey reported in TFL (2019) showed that 59% of200

Londoners tend to use the bus at least once a week, with car passenger commuting more201

popular among the younger populace. Newport and Chepstow are located in the south202

eastern region of Wales. According to ONS (2018), 1.53 million residents live in the region203

with a population density of 546 person/km2. The region also has the highest and lowest life204

expectancy figures across wales with Monmouthshire boasting the highest life expectancy.205

74.3% of the employed populace prefer to journey by motorcycle,van or car while 8.8% choose206

to travel by bus or train (Statswales 2020). Major highways in the region such as the M4,207

A48 and A466 highways connect neighbouring cities.208

Figure 4 depicts the distribution of REVIS devices in these cities. In London, twelve209

devices were distributed on sections of the A302, A2209 and A1203 highways. One device210

was placed 92.79m from Junction 25 of the M4 highway in Newport and another device211

was positioned close to The A48 motorway in Chepstow. The deployment approach that was212

adopted during the distribution of these devices ensured three key requirements: (1) sufficient213

highway length (2) cellular data connectivity and (3) electrical/solar power availability. It214

was also necessary that device installation required minimum technical skills and data was215

captured for a minimum of 6-8 months.216

4.2. Exploratory Analysis of Pollution and Weather Data217

It is important to verify data consistency before commencing model training in ML re-218

gression tasks such as the one being considered. The minimum recommendation is to confirm219

the total number of rows and columns within the data, as this may have been compromised220

during data transfer (Bilal & Oyedele 2020). This section analyses the impact of weather pa-221

rameters and the case-study region on pollutant levels. Although data was captured between222

November 2020 and August 2021, missing data in the early stages of deployment (shown in223

Figure 5 below) influenced the decision to analyse data between February 2021 and August224

2021 when missing data was minimal.225
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(a) Map of regions where case-study highways are located.

(b) Sensor distributions across the highways

Figure 4: Maps showing the distribution of 14 REVIS devices in four regions across the UK - Newport(1),
Chepstow(1), Lewisham (6), Southwark(6). The devices in London were deployed to capture readings from
the A302, A2209 and A1203 highways, while the devices in Newport and Chepstow were deployed close to
the M4 and A48 highways, respectively
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(a) Average monthly readings captured by deployed REVIS devices.

(b) This plot illustrates the number of readings captured per region.

Figure 5: Total monthly readings captured by deployed sensors between November 2020 and August 2021.
These plots illustrate the amount of missing data in the first two months when some devices were offline.
Chepstow had the lowest monitored readings overall.

4.2.1. The Impact of Weather on PM2.5, PM10 and NO2226

Weather parameters influence the dispersion rates of pollutants (Barrera-Animas et al.227

2022). It is worthwhile to first check the correlation between the weather parameters before228

investigating the impact of weather on highway pollution. Figure 6 illustrates a correlation229

matrix constructed to identify the hierarchical similarities between these parameters which230

revealed a strong correlation between temperature, wind speed and wind direction. To un-231

derstand the effects of temperature on the four pollutants, the seasonal trends were plotted232

as shown in Figure 7. The average temperature for all four regions ranged between 8.6233

and 12.56◦C in Winter, 9.73 and 19.76◦C in spring and 19.41 and 21.78◦C in summer. A234

regression analysis of temperature against each pollutant as presented in Table 2a depicts235

a positive correlation between PM2.5 and PM10 and temperature in Newport, Southwark236

and Lewisham for spring and summer seasons. Chepstow had no correlation calculated for237

winter when there was no temperature reading recorded and a negative correlation in spring238

and summer. NO2 had a negative correlation with temperature in all of these regions in239

winter and spring but had a positive correlation in Southwark and Lewisham in Summer.240

These findings corroborate studies that suggest that concentration levels are highest when241

the temperature is high (Pearce et al. 2011, Analitis et al. 2014).242
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Figure 6: Distance matrix of weather parameters using Pearson’s correlation. A strong correlation can be
noticed between “temp”,“temp min”,“temp max”,“wind speed”, “wind degree” and “feels like”. There is
also a discernible correlation between “clouds all” and “humidity”/“windspeed”.

Table 2: Regression analysis of weather parameters vs pollutant concentration

Regions
Winter Spring Summer

temp(◦C) NO2(r
2) PM2.5(r

2) PM10(r
2) temp(◦C) NO2(r

2) PM2.5(r
2) PM10(r

2) temp(◦C) NO2(r
2) PM2.5(r

2) PM10(r
2)

Newport 8.60 0.53 0.03 0.46 9.73 0.56 0.59 0.48 19.58 0.32 0.61 0.51

Southwark 12.68 0.40 0.10 0.32 10.44 0.33 0.23 0.18 19.41 0.11 0.24 0.26

Lewisham 12.56 0.46 0.13 0 11.80 0.41 0.38 0.10 20.77 0.33 0.35 0.09

Chepstow - - - - 19.76 0.44 0.38 0.33 21.78 0.19 0.20 0.17

(a) Correlation between regional temperature and pollutants in spring, winter and summer

Regions
Winter Spring Summer

pressure NO2(r
2) PM2.5(r

2) PM10(r
2) pressure NO2(r

2) PM2.5(r
2) PM10(r

2) pressure NO2(r
2) PM2.5(r

2) PM10(r
2)

Newport 1014 -0.10 0.42 0.38 1022.50 -0.06 0.12 0.31 1012.90 -0.13 0.33 0.55

Southwark 1018.50 -0.22 0.10 0.13 1026.10 -0.15 0.17 0.22 1015.30 -0.26 0.08 0.03

Lewisham 1018.80 -0.07 0.03 0.11 1026.30 -0.01 0.10 0.18 1014.20 -0.19 0.16 0.15

Chepstow - - - - 1009.50 0.44 -0.22 0.15 1007.20 0.19 0.10 0.09

(b) Correlation between regional pressure and pollutants in spring, winter and summer

Regions
Winter Spring Summer

humidity(%) NO2(r
2) PM2.5(r

2) PM10(r
2) humidity(%) NO2(r

2) PM2.5(r
2) PM10(r

2) humidity(%) NO2(r
2) PM2.5(r

2) PM10(r
2)

Newport 90.96 0 -21 -18 73.54 2 -11 -3.40 70.85 1.30 -13.70 -4.80

Southwark 66.27 7 -1 -15 65.85 13 -6.50 -8.90 73.30 6.80 -3 -2.20

Lewisham 72.93 3 -8 -5 64.04 11 -15.20 -4.20 70.98 17.6 -17 -5.60

Chepstow - - - - 53.95 8 -1.70 -6 64.95 13.30 -3.4 -11.20

(c) Correlation between regional humidity and pollutants in spring, winter and summer
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(a) Average winter temperature for all four regions

(b) Average spring temperature for all four regions

(c) Average summer temperature for all four regions

Figure 7: The seasonal trends for temperature in Newport, Southwark, Lewisham and Chepstow. Newport
has the lowest temperature of 8.6◦C in winter as there was also no reading recorded for Chepstow, as
illustrated in plot (a). Chepstow had the highest average temperature of 19.76◦C in spring and 21.78◦C in
summer, as shown in plots (b) and (c)
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(a) Average winter humidity for all four regions

(b) Average spring humidity for all four regions

(c) Average summer humidity for all four regions

Figure 8: The seasonal trends for humidity in Newport, Southwark, Lewisham and Chepstow. Similar to
temperature and pressure, no reading was captured for Chepstow in winter. However, the region recorded
the least humidity of 53.95% in spring, as illustrated in plot (b). Newport had the highest average humidity
of 90.96% in winter and 73.54% in spring, as shown in plots (a) and (b)
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For pressure, the lowest readings were recorded in Chepstow during Spring and Summer243

seasons while Lewisham and Southwark recorded the highest pressures in spring. Table 2b244

summarises the pressure readings during these seasons and the correlation figures with the245

pollutants. The PM2.5 and PM10 concentrations in Newport and Chepstow were positively246

correlated with pressure, indicating that an increase in atmospheric pressure will increase the247

concentration levels of these highway pollutants. All three pollutants negatively correlate248

with pressure in Southwark and Lewisham in spring but positive in winter and summer.249

The conclusion drawn from this result is a strong correlation between pressure and PM2.5250

and PM10 but a significant negative correlation with NO2. Figure 8 illustrates the average251

seasonal humidity across the regions with the lowest humidity value was recorded in Chepstow252

during summer and the highest in Newport during winter. It can be deduced from Table253

2c that the three pollutants were negatively correlated with humidity for winter, spring254

and summer seasons. In particular, particulate matter (PM2.5 and PM10) are prone to be255

absorbed in the atmosphere as humidity increases. Naturally, rain results in higher relative256

humidity and soaks up these particles, resulting in a lower level of particulate in winter.257

(Odat 2009).258

4.2.2. The Impact of Region on PM2.5, PM10 and NO2259

Each region has its unique attributes which can influence the concentration level of pol-260

lutants measured over the experimentation period. Aside from the weather, other attributes261

such as the highway gradient, region terrain, residential development, background coefficient262

and traffic flow can also contribute to the concentration levels across regions. Although some263

of these attributes were not captured in this research, their effects on the captured concen-264

tration levels remain to be seen. This section presents some primary insights across the four265

regions in the dataset.266

Table 3: Pollutant summary statistics based on region

Regions
NO2 PM2.5 PM10

count mean min max count mean min max count mean min max

Newport 40326 -6.85 -602.37 111.99 40326 11.41 0.28 745.45 40326 12.49 0.28 746.04

Southwark 38757 4.35 -714.97 1094.81 38757 10.27 0.55 4384.20 38757 11.35 0.60 6888.54

Lewisham 32986 -15.168 -1406.17 93.06 32986 12.42 0.60 277.02 32986 13.98 0.60 424.42

Chepstow 9138 7.33 -190.18 180.30 9138 7.31 0.43 127.45 9138 12.11 0.431 179.02

Table 3 shows that the average concentration levels across regions vary significantly,267

and this can be linked to the calibration accuracy of the sensor devices. Chepstow and268

Southwark seemed to have the most practical NO2 averages, with Southwark having the269

highest. Lewisham has the highest PM2.5 and PM10 average of 12.42µg/m3 and 13.98µg/m3,270

respectively. This analysis and the plot in Figure 9 reveal some prevalent calibration issues271

within the recorded values, which were sometimes exaggerated, as in the case of the maximum272

values for PM2.5 and PM10. Nevertheless, a one-way ANOVA variance test carried out to273

check the variance in NO2, PM2.5 and PM10 by region resulted in p values of 2.36e-4, 1.45e-3274
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(a) Monthly NO2 average for all four regions

(b) Monthly PM2.5 average for all four regions

(c) Monthly PM10 average for all four regions

Figure 9: Plots highlighting the varying monthly averages for the three monitored pollutants. These averages
varied significantly and are an indication that some influential factors may have affected the concentration
levels
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and 1.68e-4, respectively. This result indicates that the impact of regions on the concentration275

levels of these three pollutants is notable.276

4.3. Forecasting Model Training and Evaluation277

Fastai was used for data pre-processing and model training. The library is built on the278

PyTorch framework and allows quick analysis using its readily encoded best practices. The279

aim was to develop a model capable of efficiently making hourly predictions of the pollutant280

of interest. This section introduces the data processing procedure, the network’s architecture281

used for training and the validation method.282

4.3.1. Meteorology Data Integration and Dataset Pre-Processing283

Weather data such as wind speed and direction, precipitation, visibility, pressure, cloud284

cover, dew point, and wind gust which were not captured by the REVIS devices, were inte-285

grated from OpenWeather. Also, ozone data from the AURN stations were integrated into286

the dataset to be analysed and used for training. These integration exemplify the integration287

capabilities of the framework while enriching the data needed to train an estimation model.288

Appendix A presents a complete list of the columns, their description and data types be-289

fore processing. An SQL procedure for automatically generating SQL codes such as the one290

illustrated in Figure 10 was implemented to summarise the pollution data. This generated291

hourly, 3-hourly and 6-hourly summaries of the pollutant concentration levels with the aim292

of capturing periodicity within the training data.293

Three key data pre-processors: categorify, fillMissing and normalize from fastai were294

adopted for additional data pre-processing. These pre-processors map categorical columns to295

distinct categories, replaces null values with column median values and normalises continuous296

columns by subtracting the mean and dividing by the standard deviation. The “add datepart”297

helper function of the library allows the specification of the date column which generates298

additional predictors such as “Year”, “DayofWeek”, “DayOfYear”, “Is Month End” and so299

on. Appendix B highlights the list of categorical and continuous variables in the dataset after300

processing.301

4.3.2. Validation Set Creation and Training Architecture302

Model training is typically initiated by splitting the dataset into training, test and val-303

idation datasets. As the name implies, training data is used for training, while validation304

data is used for selecting the model that works best after verification using the test data.305

It is customary to randomise the dataset before splitting when there is a class imbalance306

- stratification; but since this problem is similar to a time-series problem where the date307

order is important, the validation and test sets can not be randomly selected. The common308

practice is to select the last few weeks or months of the dataset for validation and testing.309

Our dataset of 991662 rows and 34 columns had no class imbalance for the three pollutants310

which meant that stratification was not necessary. An experiment with different numbers of311

last days was carried out to determine the best validation approach, and the last 45 days of312

the dataset from July and August were eventually chosen for validation(15 days) and test(30313

days). Fastai’s “TrainTestSplitter” class was used to implement this division.314
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Figure 10: Auto-SQL generation to pre-process the dataset. An SQL command which generates 3-hour and
6-hour pollutant averages from the preceding readings is depicted.

Suitable optimisers, loss functions and activation functions had to be selected from an315

array of available options. Series of experimentation were carried out on popular optimisation316

functions such as SGD, RMSProp, LAMB, LARS and Adam and regression loss functions like317

BCELossflat, MSELossFlat and L1LossFlat before deciding the most suitable. Eventually,318

Adam optimiser and MSELossFlat were chosen for model training. Bayesian-optimization319

library was used to test and optimise the number of architecture layers, the size of each layer320

and dropout rates for the network. The final architecture used to train the model was made321

up of 14 embedding layers, 3 dropout layers, 3 batchnorm1d layers, 3 linear layers and 2322

ReLU activation functions. The embedding layer was adopted for improved performance as323

inspired by the architecture proposed in Guo & Berkhahn (2016). Finally, the learning rate324

finder (lr find) function of TabularLearner class was used to determine the best learning rate325

to be used for training. This resulted in a minimum value of 2.5e−4, and steep value of 1.3e−4.326

Figure 11 below shows the plot of the learning rate against the loss. Experts recommend327

selecting the learning rate at the point where the plot starts to dip. (i.e., 10−4).328
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Figure 11: The model’s training loss against the learning rate to determine the appropriate learning rate.
The learning rate was fixed at the point where the plot started dipping (i.e., 10−4)

4.3.3. Model Evaluation329

In this section, the results of the deep learning model developed are presented. The model330

was trained to make day-ahead predictions of the three pollutants, but first, an appropriate331

evaluation metric had to be selected. The top metrics for regression problems are mean332

squared error/root mean squared error(MSE/RMSE), mean absolute error(MAE) and R333

Square. The fastai library has two variants of RMSE: rmse and exp rmse. The mean absolute334

error and root mean squared error (exp rmse variant), defined as shown in equations 2 and335

3 below, were selected as the metrics for evaluating the developed model.336

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

RMSE =

√√√√ 1

n

n∑
i=1

|yi − ŷi|2 (3)

Figure 12 illustrates the model training and validation losses after 20000 epochs. It is337

noteworthy that the training loss gradually as the number of epoch increased. The validation338

loss took a slightly different pattern and dropped significantly after 2500 epochs but became339

steady for the remaining training epochs. The final MAE and exponential RMSE after340

training were 0.350 and 1.591 respectively. Figure 13 captures the actual NO2 concentration341

levels (highlighted in blue) and the model’s day ahead prediction(highlighted in red). The342

difference in the model’s predicted NO2 and actual values is slight, and the predicted values343

were close to the actual.344
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Figure 12: A plot showing the model’s training and validation losses against the number of epochs. It is
worth noting that there was a gradual decrease in both losses as the training epochs increased which indicates
that the model was learning. Further training beyond 20000 epochs would have either resulted in overfitting
or no further drop in both losses

Figure 13: An illustration of captured NO2 pollutant readings (blue highlight) and the deep learning model
predictions (red highlight). These results were derived from an evaluation using the validation dataset. It
should be pointed out that the model’s predictions are not too far off the actual readings.
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4.4. Evaluating the Scalability Performance of the REVIS System345

The REVIS system was tested for scalability using the IoT asset monitoring tool and346

database performance hub of two different oracle cloud instances. The fourteen REVIS347

devices were deployed sequentially to capture both system’s response time and throughput.348

The first experiment was run on a bare metal cloud instance with specifications as shown in349

Table 4. Figure 14a shows the performance of this cloud instance as it could not scale past350

8 devices and exploded at 3 and 4 devices for EDA and deep learning analysis. However,351

the GPU cloud instance performed better due to its auto-scale feature. Figure 14b shows a352

plot of the CPU cores utilised for exploratory data analysis, data storage and deep learning353

analysis as the number of deployed devices increased. It can be observed that the number of354

CPU cores increased gradually for each task and then stabilised at some point. The system355

was able to scale up its resources according to the computation/storage requirements. For356

the database performance, the test was run between November 2020 and Jan 2021 on the357

GPU instance and evaluated for utilisation, execution count, number of running statements358

and number of sessions metrics as shown in Figure 15. The maximum GPU utilisation was359

under 20% even with over 1.5 million execution queries.360

Table 4: Hardware specifications of the two oracle cloud instances used to test scalablity

Name Instance
Type

Processor GPU
type

CPU
cores

CPU
memory

GPU
memory

Compute – Ampere
A1 – OCPU

Bare Metal OCPU - 6 32GB -

VM.GPU2.1 GPU Pascal 1 NVIDIA
P100

12 72GB 16GB
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(a) System performance of the bare metal instance as the number of REVIS devices increased.

(b) System performance of the GPU instance as the number of REVIS devices increased.

Figure 14: Plots of bare metal vs GPU instance as number of devices increased
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(a) Metrics showing system’s performance after the deployment of 14 sensors

Figure 15: Plots of scalability metrics showing database performance as the number of devices increased
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5. Discussion and Implication of Study361

The REVIS system was used to demonstrate the possibility of optimising the cost, effi-362

ciency and environmental impact of hardware IoT devices through the development, calibra-363

tion and deployment of monitoring units to capture real-time pollution data on highways.364

The devices were developed through an excellent design of both analogue and digital circuitry365

around it and an iterative approach of calibration and performance optimisation. Although366

we were able to address the energy interference and cross-sensitivity issues of existing sens-367

ing devices, the developed units still had some NO2 data inconsistencies which were directly368

linked to the chosen pollutant sensor. A probable solution is the adoption of machine learning369

techniques for sensor data calibration. This technique is increasingly becoming popular and370

has been explored in studies such as that of Zimmerman et al. (2018) and Si et al. (2020). Nev-371

ertheless, our implementation still demonstrates the hardware layer of the proposed frame-372

work and also the effectiveness of carefully designed low-cost and environmentally-friendly373

sensors in capturing and processing accurate data on highway air quality.374

It is important to note that sensors data alone are not sufficient for ensuring accuracy375

in air quality forecasting models. There are a number of air quality data sources, which376

exist separately but can provide better insights about air quality if well explored and inte-377

grated. An important aspect of this study is to integrate missing or inaccurate data from378

heterogeneous sources to enhance forecasting accuracy of the developed deep learning model.379

The essence of this layer is to ensure that data not captured in the hardware layer by the380

monitoring devices can be integrated into the system to improve the performance. Similarly,381

an exploratory analysis on the captured and integrated data was conducted to evaluate the382

impact of different parameters on pollutant concentration. It is well established in literature383

that weather parameters such as rainfall and temperature influence the dispersion rates of384

pollutants (Barrera-Animas et al. 2022). Hence, there is need for a more coordinated ap-385

proach such as the one proposed in this study to manage multiple data sources, which are386

relevant for accurately forecasting air quality on highways through common data environment387

and data integration.388

Finally, this study set out to develop and evaluate a baseline deep learning model to389

make hourly predictions of PM2.5, PM10 and NO2 concentration levels. The problem is390

modelled as a structured data with additional features added to extend a typical time-series391

problem. This method allows us to explore entity embeddings for the categorical features.392

The performance of the baseline model on individual pollutant concentration is good, thereby393

suggesting that this approach of modelling is practicable. An improved forecasting model is394

directly applicable to highways where air quality sensing devices are not available but data395

on other features such as traffic flow and weather are captured. These models can then396

be used as a substitute to estimate the air quality on these highways. The scalability test397

performed on the REVIS system indicated it was able to scale up its resources according to398

the computation/storage requirements. This study has addressed an important aspect of air399

quality management on highways, provided a scalable solution for academics and industry400

practitioners; and a pathway for policy makers and highway regulators to make more informed401

decisions.402
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6. Conclusion403

A cost-effective deep learning framework for ubiquitous monitoring and predicting pollu-404

tant concentration levels on UK highways was proposed in this study. An implementation of405

the framework was demonstrated using the REVIS system. Details of the development of the406

REVIS IoT hardware for data collection, the configuration of big data tools for data storage407

and the and results of trained deep learning forecasting models were reported. The scalability408

feature of the framework was also highlighted using two cloud instances with different com-409

putational resources. This study showed that real-time monitoring and forecasting could be410

achieved with the right computational resources. Although the scope of the research was lim-411

ited to NO2 PM2.5 and PM10 pollutants and evaluation using deep learning, future research412

can focus on investigating other pollutants such as CO2, SO2 and Ozone as well as other413

machine learning approaches for estimation. This study is a part of a series of publications414

highlighting research findings on the REVIS project. This is just a scratch on the surface415

of our research outputs, as other articles will elaborate on developing more advanced deep416

learning models. Future research will integrate other relevant highway attributes such as417

traffic flow, highway terrain, background concentration, and pollutant characteristics such as418

washout coefficient, dispersion rate, and emission, critical to developing highway air quality419

estimation models.420
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Appendix A: Data summary for pollutant estimation before processing425

S/No Column Column Description Non-Null Count Data type

1 city name The name of the city of interest 991662 non-null object

2 lat The geographic coordinate of the city of interest
(Latitude)

991662 non-null float64

3 lon The geographic coordinate of the city of interest
(Latitude)

991662 non-null float64

4 date The observation time to include date, time, hour and
second

991662 non-null datetime64[ns]

5 rain desc Description of measured precipitation 5975 non-null object

6 rain 1h Integrated average hourly precipitation measure-
ment (mm)

5658 non-null float64

7 rain 3h Integrated precipitation measurement averaged over
3 hrs preceding the observation time (mm)

65 non-null float64

8 snow 1h Integrated average hourly snow depth measurement
(cm)

77 non-null float64

9 snow 3h Integrated snow depth measurement averaged over 3
hrs preceding the observation time (cm)

4 non-null float64

10 drizzle desc Description of measured drizzle 244 non-null object

11 fog desc Description of measured fog 193 non-null object

12 clouds desc Description of measured clouds 72395 non-null object

13 haze desc Description of measured haze 46 non-null object

14 mist desc Description of measured mist 312 non-null object

15 clear desc Description of measured clear 11342 non-null object

16 snow desc Description of measured snow 103 non-null object

17 storm desc Description of measured thunderstorm 1 non-null object

18 temp Captured average hourly temperature (◦C) 991662 non-null float64

19 temp min Captured minimum temperature over a 24-hr period
(◦C)

991662 non-null float64

20 temp max Captured maximum temperature over a 24-hr period
(◦C)

991662 non-null float64
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21 feels like Integrated measurement of human impression of
weather (K)

991662 non-null float64

22 pressure Captured average hourly pressure (hPa) 991662 non-null int64

23 humidity Captured average hourly relative humidity (φ) 991662 non-null int64

24 wind speed Integrated average hourly wind speed (knots) 991662 non-null float64

25 wind direction Integrated average hourly wind direction (true de-
grees)

991662 non-null int64

26 clouds all Integrated hourly measurement of cloudiness (%) 991662 non-null float64

27 ozone Integrated average hourly ozone (µg/m3) 181233 non-null float64

28 ozone avg6h Integrated ozone readings averaged over 6 hrs pre-
ceding the observation time (µg/m3)

181233 non-null float64

29 NO2 Captured average hourly NO2 (ppb) 121207 non-null float64

30 NO2 avg6h Captured NO2 readings averaged over 6 hrs preced-
ing the observation time (ppb)

121207 non-null float64

31 PM10 Captured average hourly PM10 (µg/m3) 121207 non-null float64

32 PM10 avg6h Captured PM10 readings averaged over 6 hrs preced-
ing the observation time (µg/m3)

121207 non-null float64

33 PM2.5 Captured average hourly PM2.5 (µg/m3) 121207 non-null float64

34 PM2.5 avg6h Captured PM2.5 readings averaged over 6 hrs pre-
ceding the observation time (µg/m3)

121207 non-null float64

426

Appendix B: List of attributes after processing and classification as categorical427

or continuous428

S/No Attribute Name Attribute Type

1 city name Categorical

2 lat Categorical

3 lon Categorical

4 year Categorical

5 month Categorical
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6 week Categorical

7 day Categorical

8 dayofweek Categorical

9 dayofyear Categorical

10 is month end Categorical

11 is month start Categorical

12 is quarter end Categorical

13 is quarter start Categorical

14 is year end Categorical

15 is year start Categorical

16 rain 1h Continuous

17 snow 1h Continuous

18 temp Continuous

19 temp min Continuous

20 temp max Continuous

21 feels like Continuous

22 pressure Continuous

23 humidity Continuous

24 wind speed Continuous

25 wind direction Continuous

26 clouds all Continuous

27 ozone Continuous

28 ozone avg6h Continuous

29 no2 Continuous

30 no2 avg6h Continuous

31 pm2.5 Continuous

32 pm2.5 avg6h Continuous
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34 PM10 Continuous

34 PM10 avg6h Continuous

429
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