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Social Behaviour and Collective Motion in Plant-Animal Worms. 2 

Nigel R. Franks et al. corresponding author email: nigel.franks@bristol.ac.uk  3 

Additional information about the statistical analysis 4 

Figure 1. (c) Initially we fitted a linear regression model with an intercept which 5 

showed a significant relationship between number of interactions per frame in the 6 

experimental videos and the null model simulations for the same values of worm 7 

density (slope = 1.206, t9 = 9.79, p < 0.001, R2 = 91.4%) and fitted the data well (the 8 

residuals were compatible with a Normal distribution, Anderson-Darling test: AD = 9 

0.334, n = 11, p = 0.440). However, the intercept was not significantly different from 10 

zero (intercept = -0.018, t9 = -0.01, p = 0.992). Given this and the absence of 11 

interaction at 0 density, we fitted a new linear regression model through the origin. 12 

Figure 1. (d) “Worm density” is calculated 13 

as L2 n (n-1) where L is the mean length of 14 

the worms and n is the number of worms 15 

in the arena. Hence, this measures the 16 

total length of worms in a sample and yet 17 

accounts for individual worms not crossing 18 

themselves. Initially we fitted a General 19 

Linear Model (GLM) to the mean duration 20 

of polarization interactions with predictors 21 

treatment (experimental videos or null 22 

model simulations) as a fixed factor and 23 

worm density as a covariate. There was a 24 

significant relationship between mean 25 

interaction duration (s) and worm density 26 

(F1,18 = 8.70, p = 0.009) but treatment (F1,18 27 

= 0.04, p = 0.845) and the interaction between treatment and worm density (F1,18 = 28 

2.34, p = 0.144) did not have significant effects. The model did not fit the data well 29 

(R2(adj) = 30.69%) and the residuals were not compatible with a Normal distribution 30 

(Anderson-Darling test: AD = 1.228, n = 22, p < 0.005). A log10 transformation of the 31 

response variable gave the same qualitative results but this time R2(adj) = 32.54% 32 

and the residuals were compatible with a Normal distribution (Anderson-Darling test: 33 

AD = 0.548, n = 22, p < 0.140). We can conclude that a reduced model with worm 34 

density as the only predictor is the best model and hence there is no evidence to 35 

suggest that either the intercepts or slopes for this relationship are different between 36 

the experimental videos and the null model simulations. However, while the gradient 37 

of the relationship between log10 mean interaction duration (s) and worm density is 38 

significantly different from 0 for the videos, this is not the case for the null model 39 

simulations (figure 1d). This means that the relationship between interaction duration 40 

and density is entirely attributable to the videos. Note that the log10-transformation in 41 

figure 1d excludes the videos point with mean interaction duration of 0s at 0 worm 42 

density, which, if included, as in the plot above, has a lot of leverage, even though 43 

the results remain qualitative the same. 44 
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Figure 1. (e) The residuals were nearly-normal (Anderson-Darling test: AD = 0.958, 47 

n = 14, p = 0.011). The slope of 0.85779 had a s.e. = 0.02215. The critical t-value at 48 

d.f. = 12 and alpha = 0.05 (two-tailed) is 2.179. Therefore, the 95% CI for the 49 

gradient is (0.80953, 0.90605).The critical t-value at d.f. = 12 and alpha = 0.001 (two-50 

tailed) is 3.055. Therefore, the 99% CI for the gradient is (0.79012, 0.92546). 51 

Figure 2. (b) The model fits the data well (Hosmer-Lemeshow goodness-of-fit test: 52 

χ2= 14.83, n = 8, p = 0.062) and has good predictive power (concordance = 95.5%; 53 

Somers’ D = 0.91). It was fitted after the removal of four outliers (1 for milling and 3 54 

for no milling; n = 81, 27 milling and 54 no milling) identified from the delta beta, delta 55 

deviance and delta chi-square residual plots. The predicted probabilities for these 56 

points did not fit the observed outcome well. However, the model fitted to all the 85 57 

data points gave the same qualitative results, namely that with every additional worm 58 

per ml the probability of milling increases on average by 2% (95% CI: 1 – 3%). 59 

Figure 3. (c) The initial binary logistic regression model had proportion milling as the 60 

response variable and density, bias (rad) and the interaction between the two as the 61 

predictors but bias (chi-sq = 2.335, d.f. = 4, p = 0.674) and the interaction (chi-sq = 62 

1.646, d.f. = 4, p = 0.801) did not have a significant effect. The model was refitted 63 

without the interaction. Now both density (coefficient = 0.0710, p < 0.001) and bias 64 

(chi-sq = 58.413, d.f. = 4, p < 0.001) had significant effects. This model had a good fit 65 

(all goodness-of-fit tests had a p-value > 0.05, except Brown’s tests for an alternative 66 

link function with 0.01 < p-value < 0.05) and excellent predictive power (Somers' D = 67 

0.96). For differences between inflection points for different levels of bias, please see 68 

table S1. 69 

Supplementary tables and figures 70 

Table S1. Differences between inflection points for different levels of bias (rad) in the 71 

movement of individual worms in the simulation of interacting worms (figure 3c). 72 

Bias (rad) -0.13 -0.06 0.00 0.06 0.13 

-0.13 180 Z = -4.98 
p < 0.001 

Z = -7.05 
p < 0.001 

Z = -4.81 
p < 0.001 

Z = -0.94 
p = 0.345 

-0.06  228 Z = -3.86 
p < 0.001 

Z = 0.26 
p = 0.798 

Z = 4.34 
p < 0.001 

0.00   256 Z = 4.06 
p < 0.001 

Z = 6.69 
p < 0.001 

0.06    226 Z = 4.15 
p < 0.001 

0.13     189 

0.00 rad represents no bias; both -0.06 and 0.06 rad, and -0.13 and 0.13 rad 73 

represent equal levels of bias clockwise and anticlockwise, respectively; numbers 74 

along the diagonal represent inflection point densities (i.e. the number of worms per 75 

simulation arena); z-values and p-values represent differences between the inflection 76 

points as measured by differences between the constants in the binary logistic 77 

equation for different levels of bias (since the inflection point is equal to the constant 78 

divided by the coefficient for density, which is the same for all levels of bias) 79 
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 83 
Figure S1. The relationship between mean speed and body length is best described 84 

by the line: worm speed (mm.s-1) = 1.53 + 0.178 worm length (mm). (F1,38 = 6.13, p= 85 

0.018, R2 = 0.139). The average mean speed of these 40 worms was 1.78 mm.s-1. 86 

One worm, which was much smaller than the rest (just over 0.5 mm long) was 87 

removed from this analysis. With this individual, the mean speed was 1.76 mm.s-1. 88 

 89 
Figure S2. Turn direction for 41 worms as summarised by a handedness variable h 90 

= (C-A)/(C+A+S) where C, A and S are the numbers of clockwise, anticlockwise and 91 

straight-on manoeuvres respectively. The worms are predominantly right biased – 92 

making clockwise movements; blue: right-biased or clockwise movement, red: left-93 

biased or anticlockwise movement. 94 
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 98 
Figure S3. Worms executing curved trajectories are slower. (a) A worm’s body 99 

curvature over time and (b) the speed of the same worm over the same 165s. 100 

Comparison of (a) and (b) shows that when the worm curves its body its speed dips 101 

as indicated by the grey bars. The even spacing of the grey bars suggests some 102 

rhythmicity to the changes in body curvature and speed (see also figure 1a). The 103 

curvature c is the reciprocal of the radius of curvature multiplied by +/-1 depending 104 

upon whether the turning direction is clockwise or anticlockwise. 105 
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Place N worms at random in the arena - each worm consists of two rigid rods of equal length 108 
L units with a random angle in the range +/-0.05 radian between them. 109 
For as many iterations as required, each representing dt seconds of real time 110 
begin 111 
    Scramble the order of the worms 112 
    For each worm in turn 113 
    begin 114 
        Determine the centre of the circumcircle defined by the head, centre and tail positions 115 
        Determine the curvature of this circle = 1.0/radius of curvature 116 
        Calculate the worm speed = nominal speed*(1.0 - g*curvature) 117 
        Calculate dθ = speed*curvature*dt = the angle that the worm advances inside its 118 
          circumcircle 119 
        Calculate the new x,y coordinates of the worm tail, centre and head 120 
        For four alternative head positions 121 
        begin 122 
             Calculate alternative head positions with angles within +/-0.15 radian of the initial 123 
               one 124 
        end 125 
        For the total of five head positions 126 
        begin 127 
             Set the potential energy to zero 128 
             For all other worms within the distance rmax 129 
             begin 130 
                   Calculate the distance between the chosen head position and the tail of its 131 
                     neighbour 132 
                   Add the energy as determined from the potential energy curve (figure 3a) 133 
                   Calculate the distance between the chosen head position and the head of its 134 
                     neighbour 135 
                   Calculate the potential energy using figure 3a 136 
                   If the tails of the two worms are separated by >2L, set λ=0.5, else λ=2.0 137 
                   Add the energy multiplied by the weighting factor λ 138 
              end (loop over worm's near neighbours) 139 
        end (loop over possible head positions) 140 
        Adopt the head position with the lowest total energy 141 
        If the head is outside the arena, re-orient wholly within the boundary and facing inwards 142 
    end (loop over the N worms) 143 
end (iteration loop) 144 
 145 
L = 5 units (length of each of the two rods making up a worm) 146 
V = 11.07 s-1 (nominal speed in units.s-1 – real worms move their own length in ~1s) 147 
dt = 0.7s (elapsed time per iteration) 148 
g = 2.98 (speed reduction coefficient) 149 
r – range of interaction 150 
rmax = 25 units (the maximum range of any interaction – see figure 3a) 151 
rmin = 5 units (the range at which attraction is at is maximum – see figure 3a) 152 

Figure S4. Pseudocode for the simulation with interacting worms. 153 
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1. Are circular mills more likely to form near the arena walls? 156 

 157 
(a) For the data collected in 2015, the positions of a total of 45 occurrences of circular mills 158 

were recorded on a 3x3 grid in 30 arenas of different shapes and sizes. 159 
(b) For the simulation of interacting worms, the formation positions of circular mills were 160 

recorded on a 3x3 grid for a total of 45 runs. 161 

We compared a null model based on the assumption that a circular mill is equally likely to 162 
occur in any of the 9 cells of the 3x3 grid with (a) data on real worms and (b) data from the 163 
simulation of interacting worms. On the basis of the null model and the 45 circular mills 164 
observed altogether in the data for real worms, the probability of a cell containing no more 165 
than 1 circular mill is less than 5% and the probability of a cell containing no less than 10 166 
circular mills is less than 5%. Therefore, for the data, the 17 circular mills observed in the top 167 
right cell are significantly more than expected by chance and the zero circular mills observed 168 
in the top and middle left cells are significantly fewer than expected by chance. The former 169 
could be explained by the orientation of the top right cell towards the sun. For the simulation 170 
with interacting worms, the number of circular mills in each of the 9 cells was compatible with 171 
random expectation. We conclude, that circular mills are not more likely to form near the 172 
arena walls. 173 

2. Does the shape of the arena (perimeter-to-area ratio) influence the formation of circular 174 
mills? 175 

We tested this in the simulation with interacting worms by comparing the formation of circular 176 
mills in two arenas with the same areas but with different shapes: one was circular (radius = 177 
400 units), the other was square (with a side of 2*354.49 units). Therefore, although the two 178 
arenas had the same area, the perimeter of the square was 1.1284 times greater. Each 179 
arena had the same number of worms (n = 1016) and hence the same density. Hence, any 180 
difference between the formation of circular mills in the two arenas could be attributed to the 181 
difference in their shapes. We let the program run, repeatedly, for a fixed amount of (worm) 182 
time and at the end checked whether there was a mill or not. Every run that produced a mill 183 
at the end was counted as a success. No credit was given for a mill that formed before the 184 
end and then dispersed, nor for pairs of mills that merged. And if there were two at the end, it 185 
simply counted as a success. The initial worm time was 4min 30s. It was chosen on the 186 
basis of an approximately 50% success rate and was also long enough to allow any worm to 187 
cross either arena about three times. (The arenas were both ~800 units across and the 188 
worms 10 units long. Real worms cover their own length in ~1s so our simulated worms 189 
needed about 80s to cross the arena, so 4m 30s is ~3 crossings). The results from 1500 190 
runs on each arena were: 839 successes for the circle and 577 successes for the square. 191 
We extended the time for each run to 10min to test whether this would narrow the difference 192 
in the success rate between the two arena shapes. If the production of mills in 100% of the 193 
runs is a matter of waiting long enough, that would suggest that the longer perimeter only 194 
delays the formation of circular mills. Indeed, the results from 500 runs of 10min duration on 195 
each arena resulted in 461 successes in the circle and 449 success in the square. We 196 
conclude that a longer perimeter of the arena delays the formation of circular mills. 197 

Overall, our results suggest that, if anything, circular mills are more likely to form near the 198 
centre. 199 

Figure S5. Analysis of the role of the arena walls in the formation of circular mills 200 


