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Abstract. Data mining is a broad area that integrates research efforts from several fields with the aim of processing large vol-
umes of data into knowledge bases for better decision making. Since numerical and nominal data are equally important in prac-
tical data mining applications, dealing with different types of data items are among the most important problems in data mining 
research and development. This paper introduces a new fuzzy rule induction algorithm, able to deal properly with either nu-
merical or nominal attributes, for the creation of classification and predictive models. To better handle numerical data, fuzzy 
sets are used to represent intervals in the domains of numerical attributes. Experimental results have shown that the proposed 
algorithm produces robust and general models that can be used for prediction as well as for classification.  
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1.  Introduction 

Recent advances in information technology have 
made it easy to collect and store enormous amounts of 
data. The new research field of data mining [1] offers 
new intelligent tools for discovering knowledge from 
such data. There are many different types of data min-
ing algorithms. These algorithms allow the creation of 
different models that describe the patterns found in 
the data. The obtained models can then be used to 
clarify these particular patterns or as predictive mod-
els. 

This paper focuses on a particular type of data 
mining algorithms, namely, rule induction algorithms. 
An important feature of rule induction algorithms is 
that their model structure (in the form of if-then rules) 
is readily understood by humans. Because of this 
structure, rule induction became popular for classifi-
cation problems. However, rule induction algorithms 
are still weak at handling numerical values and in 
particular when dealing with numerical outputs. Other 
learning methods, such as regression and neural net-
works, are widely used to develop models for this 
type of application. However, their more complex 
mathematical structure makes them difficult to interp-
ret, whilst in many applications experts might need to 
be able easily to verify a decision given by a model. 

Few fuzzy rule induction methods have been de-
veloped for handling attributes with numerical val-
ues. Reference [2] proposed a fuzzy rule induction 
method that can generate fuzzy rules from numerical 
data. However, this method is computationally ex-
pensive and creates complex fuzzy rule sets. Refer-
ence [3] introduced another method called RULES-F 
Plus. When the data is noisy, this method generates 
large number of rules with low predictive accuracy. 
Reference [4] presented FuzzySRI-II that can effec-
tively handle noise in the data. 

The principal aim of this paper is to propose a new 
fuzzy rule induction algorithm called FuzzyRULES-
II, able to deal properly with either numerical or no-
minal attributes, for the creation of predictive and 
classification models. FuzzyRULES-II employs a 
different learning and search strategy from that of 
FuzzySRI-II. Also, it introduces new discretisation 
methods for deriving fuzzy intervals for classification 
learning problems and for handling numerical outputs. 
This results in the efficient extraction of accurate and 
compact fuzzy rules from large and noisy data. 

The paper is organised as follows. Section 2 re-
views the existing discretisation methods. Section 3 
describes the new FuzzyRULES-II algorithm. The 



performance of the proposed algorithm is evaluated 
in section 4. Section 5 concludes the paper and dis-
cusses further research. 

2.  Discretisation methods 

Discretisation of a numerical attribute in the con-
text of rule induction involves partitioning the domain 
of that attribute into a certain number of intervals.  An 
important aspect of discretisation is to find an appro-
priate set of cutting points to set up interval borders.  

Current discretisation methods are categorised 
based on predefined properties, such as supervised vs. 
unsupervised, multivariate vs. univariate, off-line vs. 
on-line, and parametric vs. non-parametric [5]. Equal-
width interval discretisation [6] is possibly the sim-
plest unsupervised discretisation procedure. In this 
method, the range of a numerical attribute is divided 
into a number of equal intervals. A problem with the 
equal-width method is that it does not take the rela-
tionship between the class label and the numerical 
attribute, which results in possible loss of classifica-
tion information. Reference [7] presented a simple 
supervised discretisation method called 1R Discretis-
er. This method divides the values of a numerical 
attribute into several disjoint intervals each containing 
a strong majority of one particular class with the con-
straint that each interval must include at least a pre-
specified number of examples in the same class. Ref-
erence [8] developed a recursive entropy-based dis-
cretisation method that is motivated by the C4.5 deci-
sion tree induction algorithm [9]. To improve the dis-
cretisation efficiency, the method examines only the 
boundary points of each numerical attribute rather 
than all its distinct values. It also uses the minimum 
description length (MDL) principle to control the 
number of intervals produced over the search space. 
Reference [10] introduced an optimal discretisation 
method that obtains optimal number of intervals 
through searching only the boundary points of each 
numerical attribute and selecting those points that 
optimise an MDL-based evaluation function. 

The aforementioned discretisation methods parti-
tion the ranges of numerical attributes into “crisp” 
intervals, where a numerical attribute value must 
belong to only one interval. This causes substantial 
information loss. To overcome this problem, this 
paper uses the techniques of fuzzy sets to construct 
“fuzzy” intervals. This allows overlapping in the ad-
jacent intervals, and thus attribute values can belong 
to more than one interval.  

3. Description of the proposed FuzzyRULES-II 
algorithm 

FuzzyRULES-II is based on the learning strategy 
employed in the FuzzyRULES classification rule 
induction algorithm [11]. This section describes the 
proposed FuzzyRULES-II algorithm and highlights 
its distinctive features. 

3.1. Representation 

FuzzyRULES-II creates fuzzy if-then rules di-
rectly from a set of examples called the training set T. 
Each example E is described by a vector of an  input 

attributes ( ani AAA ...,,..,,1 ) and an output attrib-

ute oA . Each input attribute value i
Ev  and the output 

attribute value o
Ev  in example E are either nominal or 

numerical. An example E can thus be formally de-
scribed as follows: 

 1A  1
Ev  iA  i

Ev  anA  an
Ev 

o
EvClass  

A fuzzy rule R is described by a conjunction of 
conditions on each input attribute ( i

RCond ) and an 

output condition ( o
RCond ) of the class to be learned. 

It can be defined as follows: 

 R  1
RCond  i

RCond  an
RCond 

o
RCond 

      For the ith input attribute iA , a fuzzy condition 

has the form [ iA is i
RL ], where i

RL  is the linguistic 
value of the ith attribute in rule R. Similarly, the out-
put fuzzy condition has the form [ oA is i

RL ], where 
o
RL  is the linguistic value of the output attribute in 

rule R. Each linguistic value represents a fuzzy set 
for which every example in the training set has a cor-
responding membership value. For numerical attrib-
utes, linguistic values can be obtained by defining 
membership functions on the domains of the attrib-
utes. Typical shapes of membership functions are 
triangular, trapezoidal, and bell-shaped. Fuz-
zyRULES-II adopts triangular forms in this study as 



they are simple and often used in fuzzy sets. A trian-
gular membership function can be described as 
Tr(a,b,c), where ac is the base of the triangle and b 
the location of its apex. The values of nominal attrib-
utes can be converted to linguistic values by assign-
ing crisp functions with membership degrees of ei-
ther 0 or 1. A rule set is a disjunction of a number of 
rules },...,,...,,{ 1 rnl RRR and it is defined as 

}.......{ 1 rnl RRRRS   

3.2. Handling numerical input attributes 

When there are both numerical and nominal 
attributes in a data set, most rule induction techniques 
discretise numerical attributes into intervals and the 
discretised intervals are treated similarly to nominal 
values during induction. In the crisp case, discretisa-
tion results in “crisp” intervals and an attribute value 
either belongs to a certain interval or not. In the fuzzy 
case, however, an attribute value belongs to an inter-
val to a certain degree. Discretised crisp intervals, 
therefore, should be fuzzily interpreted.  

The FuzzyRULES algorithm uses an intuitive way 
to obtain fuzzy intervals for numerical attributes. 
First, it discretises the domain of each attribute into 
several crisp intervals using an efficient off-line dis-
cretisation method. Second, it derives fuzzy intervals 
from the crisp ones by defining membership functions 
on the domains of the attributes. 

Various studies [12] have pointed out that the se-
lection of a discretisation method depends on both the 
learning algorithm and on the data to be discretised. 
Therefore, an empirical evaluation was carried on a 
large number of data sets to assess the four discretisa-
tion methods mentioned in section 2 when used with 
the FuzzyRULES-II algorithm. Each of the discretisa-
tion methods was first employed to create crisp inter-
vals for all the numerical attributes. The fuzzification 
method of the FuzzyRULES algorithm was then em-
ployed to fuzzify these intervals. The fuzzy intervals 
were finally used to generate fuzzy classification rules 
by the FuzzyRULES-II algorithm. The results (see 
section 4) demonstrated that the performance of the 
FuzzyRULES-II algorithm considerably improved 
when the entropy method was used to discretise the 
numerical attributes. Thus, this discretisation method 
is employed by FuzzyRULES-II. 

3.3. Handling numerical output attributes 

The rule forming process of the FuzzyRULES al-
gorithm is mainly designed to handle examples with 

nominal classes. Therefore, to enable the use of this 
process, the numerical output values of all examples 
in the training set T need to be fuzzified. It is pro-
posed to split the numerical output range of each ex-
ample ( ovmin , ovmax ) into a user-defined number ( ln ) 

of linguistic values, where ovmin  and ovmax are respec-
tively the minimum and maximum known values for 
the output attribute. 

Given the numerical output attribute range and the 
number ln  of required linguistic values, the Fuz-
zyRULES-II algorithm decomposes the output range 
into ln  triangular linguistic values ( oL1 , .. , o

kL , .. , 
o
nl

L ) defined as: o
kL  ))(),(),(( kckbkaTr , where k 

is an integer included in [1, ln ], 

),1(1)].-[()( /() - minmax  knvvkb l
oo  

and1),-()()( /() - minmax l
oo nvvkbka   

1)-()()( /() - minmax l
oo nvvkbkc  . 

Based on this decomposition, there could be two 
possible linguistic values with respect to which the 
output attribute value ( o

Ev ) in a given example E can 
be assigned. The output linguistic value will be the 
value o

kL  where the membership degree  o
EL vo

k
  is 

maximum,     2/)()(,2/)()( kbkckakbvo
E  , 

and   5.0o
EL vo

k
 . In the particular case where the 

membership degree of o
Ev  is equal for two linguistic 

values ( o
kL  and o

kL 1 ), i.e. 

    2/)()(2/)1()1( kbkckakbvo
E  , and 

  5.0o
EL vo

k
 , one is selected randomly. 

Now that the output linguistic values are defined, 
FuzzyRULES-II can select an example with its corre-
sponding output linguistic value to form a fuzzy rule. 
The rule forming process of FuzzyRULES is then 
used unchanged. At the end of the rule formation 
process, a rule R is obtained to cover as many positive 
examples and as few negative examples as possible. 

FuzzyRULES-II adopts the following defuzzifica-
tion strategy to predict the output value of a particular 
example E. First, the membership degree of the ex-
ample E with each rule R, ),(ER is computed, 
namely: 



 


a i
i
R

n

i
ELR vE

1
)()(  

where )( i
i
R

EL v  is the membership degree of each 

attribute value ( i
Ev ) in the example E with regard to 

the corresponding linguistic value i
RL in the rule R. 

Then, the weighted average method [13] is used to 
compute the defuzzified output: 

  


r

l

r

l

n

l
R

n

l
outR ECEoutput

11
)(/)(  

where E is the new example, outC  the centre of the 
output fuzzy set of the rule being considered and 

rn the total number of rules.  

4. Experimental results 

A series of tests was conducted to assess the per-
formance of four different well-known off-line dis-
cretisation methods when used in the FuzzyRULES-
II algorithm. Then, the performance of the Fuz-
zyRULES-II algorithm with the best performing dis-
cretisation method was compared against that of 
RULES-F Plus [3]. 

4.1. Empirical evaluation of fuzzy discretisation 
methods 

The evaluation involves the four discretisation 
methods described in section 2, namely, the equal-
width method, the 1R Discretiser, the entropy-based 
discretisation method and the “optimal” discretisa-
tion method. These methods are commonly used in 
other comparative studies. Each of the discretisation 
methods was first employed to create crisp intervals 
for numerical attributes in all the data sets. The crisp 
intervals were then fuzzified and used to generate 
classification rules by the FuzzyRULES-II algorithm. 
Three criteria were used to evaluate the quality of the 
discretisation, namely, the accuracy and complexity 
of the generated rules, as well as the time of execution 
measured by the total CPU time in seconds and the 
number of rules evaluated during the search process. 
All running times were obtained on an Intel Core i5 
computer with a 3.33 GHz processor, 4 GB of mem-
ory and the Windows NT 4.0 operating system. 

Table 1 summarises the data sets used in this ex-
periment [14]. The test method of FuzzyRULES was 

used [11]. FuzzyRULES-II and discretisation methods 
each has a number of parameters whose values deter-
mine the quality of their induced rule sets. For Fuz-
zyRULES-II, the default parameters of FuzzyRULES 
were used [11]. For the equal-width discretisation 
method, the number of intervals was set to 6. For the 
1R Discretiser, the number of examples in one inter-
val was set to 6 for large data sets, while the number 
was set to 3 for small data sets as recommended in 
[7]. 

Table 2 gives the results of the considered discre-
tisation methods when used in FuzzyRULES-II. As 
can be seen in the table, the entropy-based discretisa-
tion method obtained total accuracy higher than that 
achieved with the other methods. In addition, it pro-
duced notably fewer rules in total than the other dis-
cretisation methods. Also, the total CPU time and the 
number of rules explored by the entropy-based 
method were much better compared to the other 
methods. It could therefore be concluded that the en-
tropy-based discretisation method outperforms the 
four methods tested. Consequently, this method is 
utilised by FuzzyRULES-II. 

4.2. Comparison with RULES-F Plus 

FuzzyRULES-II is compared with RULES-F Plus 
using two practical problems that aim to develop 
models for the control of a robotic arm and a truck.  

 

Table 1 

Summary of the data sets used in the experiments  

Data Set Name
No. of 

Instances
No. of               

Nominal Attributes
No. of               

Numerical Attributes
No. of 

Classes
Abalone 4177 1 7 29
Adult 48842 8 6 2
Anneal 898 32 6 6
Australian 690 8 6 2
Auto 205 10 15 6
Balance-scale 625 0 4 3
Breast 699 0 10 2
Cleve 303 7 6 2
Crx 690 9 6 2
Diabetes 768 0 8 2
German 1000 13 7 2
German-organisation 1000 12 12 2
Glass 214 0 9 7
Glass2 163 0 9 2
Heart-disease 270 0 13 2
Heart-Hungarian 294 5 8 2
Hepatitis 155 13 6 2
Horse-colic 368 15 7 2
Hypothyroid 3163 18 7 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Letter 20000 0 16 26
Lymphography 148 15 3 4
Satimage 6435 0 36 6
Segment 2310 0 19 7
Shuttle 58000 0 9 7
Sick-euthyroid 3163 18 7 2
Sonar 208 0 60 2
Tokyo 961 0 46 2
Vehicle 699 0 18 4  
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Table 2 

Performance of discretisation methods when used in Fuzzy-
RULES-II  

                                 Entropy                 Optimal                  1RD              Equal-width

Data Set Name
Acc. 
(%)

   #  
Rules

# Rules 
explored

Time 
(s)

Acc. 
(%)

   #  
Rules

# Rules 
explored

Time 
(s)

Acc. 
(%)

   #  
Rules

# Rules 
explored

Time 
(s)

Acc. 
(%)

   #  
Rules

# Rules 
explored

Time 
(s)

Abalone 25.3 5 627 1 24.7 5 774 1 24.7 4 117 0 24.8 5 765 1
Adult 83.9 47 14734 290 84.2 114 42466 830 84.1 48 13600 275 79.7 44 14683 303
Anneal 97.7 9 1597 1 98.2 12 2087 1 98.1 10 1453 1 96.3 11 2315 2
Australian 87.5 5 2492 0 83.5 6 2970 0 91.5 6 1606 0 88.0 8 2739 0
Auto 62.8 6 922 0 57.0 5 430 0 59.9 7 651 0 49.7 8 714 0
Balance-scale 73.2 6 133 0 84.8 12 224 1 74.3 7 138 0 90.6 21 311 1
Breast 96.1 5 232 0 96.5 7 236 0 98.5 6 343 0 97.5 9 251 0
Cleve 79.2 5 816 0 74.1 5 749 0 79.2 6 921 0 76.9 3 436 0
Crx 83.0 9 3268 1 85.3 8 2915 1 83.5 7 1913 0 80.9 7 2216 1
Diabetes 76.6 6 315 0 70.3 7 577 0 69.9 19 937 0 73.2 21 1837 1
German 72.0 10 5472 2 70.0 12 6772 2 68.6 14 6923 3 67.3 13 9399 4
German-org. 74.7 6 4102 3 72.7 7 5153 4 74.1 7 4043 2 70.8 10 7744 6
Glass 69.4 6 208 0 65.3 8 422 0 64.6 22 773 0 64.6 20 1184 0
Glass2 83.6 4 43 0 79.7 5 67 0 78.8 11 248 0 77.8 10 380 0
Heart-disease 77.8 5 480 0 72.6 6 483 0 78.8 6 661 0 76.7 7 826 0
Heart-Hungarian 77.6 3 417 0 77.6 3 501 0 76.6 4 636 0 75.6 6 1086 0
Hepatitis 82.7 3 339 0 84.6 3 372 0 84.6 3 363 0 76.9 2 379 0
Horse-colic 85.3 7 1968 1 77.2 6 1633 1 79.1 8 1519 1 74.4 9 1937 1
Hypothyroid 98.7 11 1064 1 98.9 11 1337 2 99.8 15 1661 2 99.0 23 4486 6
Ionosphere 94.0 7 966 0 92.3 9 1155 0 93.2 12 647 0 92.3 14 1690 1
Iris 96.0 3 15 0 96.0 3 13 0 96.0 3 11 0 94.0 5 17 0
Letter 68.2 241 55965 42 61.4 346 73549 49 56.4 308 61943 56 52.2 357 81357 44
Lymphography 82.0 5 638 0 70.6 4 486 0 70.6 4 478 0 80.1 6 639 0
Satimage 82.2 69 38005 100 85.4 68 52213 152 83.7 73 42743 132 82.5 77 71218 190
Segment 91.1 27 2947 2 94.7 26 3316 2 80.9 58 2198 2 88.7 32 4616 4
Shuttle 99.6 36 1521 48 99.1 16 1147 32 94.6 18 1262 39 89.8 9 577 16
Sick-euthyroid 97.4 12 2005 2 95.8 11 2122 2 95.1 15 3668 2 90.1 16 4581 6
Sonar 75.7 4 1121 0 78.8 4 1121 0 72.9 10 3972 1 81.9 9 5622 1
Tokyo 93.3 5 3239 1 94.8 6 3234 1 90.9 7 1133 0 95.9 8 3276 1
Vehicle 67.4 15 2839 1 69.9 19 3522 1 61.1 33 2497 1 63.2 29 4682 2
Total 2434.1 582 148490 496 2395.9 754 212046 1082 2364.1 751 159058 517 2351.4 799 231963 591  

 

These two problems were previously employed to 
evaluate the RULES-F Plus algorithm [3]. Three 
measures were used to evaluate the performance of 
the tested algorithms. These are the number of rules 
produced, the maximum absolute error, max Eabs, and 
the mean absolute error, mean Eabs. 

4.2.1. Robot arm control problem 
The problem involved the building of a fuzzy 

model for the control of a PUMA 560 robot [15]. The 
training set T contains 27,825 examples, each of 
which is composed of six input attributes (the joint 
angles 1t, 2t, 3t, 1t-1, 2t-1, and 3t-1 at times t, and 
t-1) and three outputs Xt+1, Yt+1, and Zt+1 representing 
the resulting spatial positions.  

Models were created using RULES-F Plus and 
FuzzyRULES-II. For both algorithms, the three out-
puts were decomposed into ten linguistic values. In 
addition, a training set was created for each output as 
RULES-F Plus and FuzzyRULES-II can only handle 
one output at a time. Finally, the parameters of 
RULES-F Plus and FuzzyRULES-II were set as fol-
lows. For RULES-F Plus, the PRSET_size was set to 
2 and no pruning process was employed as recom-
mended in [3]. For FuzzyRULES-II, the default pa-
rameters of FuzzyRULES were used [11].  

Results are illustrated in Table 3. Considering all 
performance measures, FuzzyRULES-II clearly out-
performs the RULES-F Plus algorithm. Fuz-
zyRULES-II produced a much smaller model than 
that generated by RULES-F Plus, with smaller max 
Eabs and mean Eabs values. To demonstrate its per-
formance, the predictions of the model created by 
FuzzyRULES-II for the first 10000 examples com-

pared with the actual outputs X, Y, and Z are shown 
in Figures 2, 3, and 4 respectively. 

 

Table 3 

Fuzzy induction results for the robot arm control problem 

Total #  
of rules

Aver 
max

Aver 
mean

# of 
rules

Max 
E abs

Mean 
E abs

# of 
rules

Max 
E abs

Mean 
E abs

# of 
rules

Max 
E abs

Mean 
E abs

RULES-F Plus 55 0.0754 0.0129 13 0.1025 0.0222 14 0.0889 0.0121 28 0.0438 0.0044
FuzzyRULES-II 37 0.0478 0.0079 8 0.0721 0.0151 10 0.0413 0.0064 19 0.0301 0.0021

Combined results X  position Y  position Z position
Robot arm control

 
 

Fig. 2. Prediction of output X. 
 

 

Fig. 3. Prediction of output Y. 
 

 

 
Fig. 4. Prediction of output Z. 



4.2.2. Truck control problem 
This problem aimed at constructing a model for 

the control of a truck reversing to a specified loading 
dock (Figure 5). The training set T contains 238 ex-
amples, each of which is composed of 2 input attrib-
utes  (the angle of the truck relative to the horizon-
tal) and x (the location of the truck on the horizontal 
axis), and one output  (the required steering angle).  

For both RULES-F Plus and FuzzyRULES-II, the 
output was decomposed into seven linguistic values. 
Two scenarios were considered when applying 
RULES-F Plus. In the first scenario, the noise level 
(NL) was set to 0.25, and in the second the IPP prun-
ing process was turned off [3]. For both cases, 
PRSET_size was set to 2. 

Results are given in Table 4. FuzzyRULES-II 
once again clearly outperforms RULES-F Plus. When 
using the IPP pruning process, RULES-F Plus created 
a more compact rule set but with a reduction in accu-
racy. However, for the case illustrated, the rule set 
created by FuzzyRULES-II was more compact and 
still more accurate than the model created by the 
RULES-F Plus algorithm. 

5. Conclusions and future work 

In the induction of classification rules from nu-
merical attributes, the key point is to generate an ap-
propriate discretisation of a numerical attribute. The 
crisp discretisation methods used in classical rule in-
duction are noise sensitive, and thus prone to misclas-
sification. This paper has presented a new fuzzy rule 
induction algorithm called FuzzyRULES-II in order 
to better handle numerical attributes. FuzzyRULES-II 
employs fuzzy sets to derive fuzzy intervals from 
those generated by four commonly used crisp discreti-
sation methods. Also, it introduces a new approach 
for handling numerical outputs. The result is a power-
ful algorithm that can be used for classification or 
prediction of numerical as well as nominal values. 

Additional tests could be performed to compare 
FuzzyRULES-II with other fuzzy algorithms. A me-
thod to automate the creation of output membership 
functions could also be considered to increase the 
robustness of the learning algorithm further.  
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Fig. 5. Truck control problem. 

 
Table 4 

Fuzzy induction results for the truck control problem 

# of 
rules

Max 
E abs

Mean 
Eabs

RULES-F Plus 46 11.4 3.46

RULES-F Plus, NL  = 0.25 12 42.3 6.24
FuzzyRULES-II 9 9.2 2.41

Truck control
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