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Abstract

Slime mould Physarum polycephalum is a single cell visible by an un-
aided eye. The slime mould optimises its network of protoplasmic tubes
in gradients of attractants and repellents. This behaviour is interpreted
as computation. Several prototypes of the slime mould computers were
designed to solve problems of computation geometry, graphs, transport
networks and to implement universal computing circuits. Being a living
substrate the slime mould does not halt its behaviour when a task is solved
but often continues foraging the space thus masking the solution found.
We propose to use temporal changes in compressibility of the slime mould
patterns as indicators of the halting of the computation. Compressibil-
ity of a pattern characterises the pattern’s morphological diversity, i.e. a
number of different local configurations. At the beginning of computation
the slime explores the space thus generating less compressible patterns.
After gradients of attractants and repellents are detected the slime spans
data sites with its protoplasmic network and retracts scouting branches,
thus generating more compressible patterns. We analyse the feasibility
of the approach on results of laboratory experiments and computer mod-
elling. Keywords: Compressibility, slime mould, computation

1 Introduction

Slime mould Physarum polycephalum belongs to the species of order Physar-
ales, subclass Myxogastromycetidae, class Myxomycetes, division Myxostelida.
The slime mould is commonly found in its vegetative form, a single cell with a
myriad of diploid nuclei – the plasmodium. The plasmodium behaves and moves
as a giant amoeba. It feeds on bacteria, spores and other microbial creatures
and micro-particles [27]. During its foraging behaviour the plasmodium spans
scattered sources of nutrients with a network of protoplasmic tubes. The plas-
modium optimises its protoplasmic network that covers all sources of nutrients
and guarantees robust and quick distribution of nutrients in the plasmodium’s
body. Plasmodium’s foraging behaviour can be interpreted as a computation:
data are represented by the spatial pattern of attractants and repellents, and
results are represented by the structure of the protoplasmic network [20, 3].
Plasmodium can solve computational problems with natural parallelism, e.g.
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related to shortest path and hierarchies of planar proximity graphs, execution
of logical computing schemes and natural implementation of spatial logic and
process algebra [3].

We developed a concept and designed a series of experimental laboratory
prototypes of computing devices — Physarum machines [3] — based on P. poly-
cephalum. A Physarum machine is a programmable amorphous biological com-
puting device experimentally implemented in plasmodium of P. polycephalum.
A Physarum machine is programmed by configurations of repelling and attract-
ing gradients. See detailed analysis of Physarum machines in [3]. A mechanics
of Physarum machines is based on the following unique features of P. poly-
cephalum. Physarum is a reaction-diffusion excitable medium encapsulates in
an elastic growing membrane (excitation is triggered by chemical, physical and
mechanical stimuli). Physarum may be regarded as a living micro-manipulation
and micro-fluidic transport device. Physarum represents results of computation
by configuration of its body: topology of the Physarum network is mediated
by its environment, the distribution and gradients of chemo-attractants and re-
pellents. Physarum is sensitive to illumination and therefore allows for parallel
input of information.

Physarum machines are proved to be most successful biological substrates in
solving problems of computation geometry, optimisation and logic. Their only
‘faults’ are that the machines are slow and never stop. Speed of the Physarum
machines can not be improved cause it is limited by speeds of bio-chemical
and physiological processes. However, the halting of computation by the slime
mould machines can be dealt with. Physarum machines, as most unconven-
tional do, represent results of the computation by changing their morphology.
Changes of the morphology can be detected by using one of the complexity
measures. Potential compexity measures to employ could be Shannon entropy,
Simpson index, morphological diversity, generative complexity or Derrida coeffi-
cients [12, 26, 4, 8]. These measures are proved to be useful when characterising
behaviour of cellular automata (spatially expended non-linear discrete systems)
and selecting cell-state transition rules responsible for generation of travelling
quanta of information (gliders) [7, 4]. However, calculating these measures on
images of P. polycephalum could be a time consuming process, which might not
match requirements of experimental laboratory setups.

There is a complexity measures which can be calculated quickly on two-
dimensional images yet grasps all feature of space-time dynamics detected by
the measures discussed above. This is compressibility. Typically Lempel-Ziv
complexity is used to measure of compressibility, this is a classical and now
widespread data compression algorithm [28, 12, 23]. In previous studies in cel-
lular automaton complexity we found that the compressibility performs similarly
well as Shannon entropy, Simpson index and morphological diversity in detect-
ing when spatially extended non-linear system undergoes substantial changes
in its evolution [26, 7, 4, 8]. For example, in cellular automata we can detect
formation of travelling localisations, propagating patterns, stable states and cy-
cles [7, 23]. The compressibility was also well used in analysis of living systems,
e.g. EEG signals [11, 1] and DNA sequences [25], and classification of spike
trains [10]. Thus we can propose that the compressibility will work well in
predictive analysis of the slime mould behaviour.
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2 Method

2.1 Experimental

Experiments analysed in presented were previous described in details in [2, 2, 5],
thus we only mention key facts. Plasmodium of P. polycephalum was cultivated
in large (20 × 30 cm) plastic boxes and fed with oat flakes. Experiments on
approximation of spanning trees, transport network and maze solving were un-
dertaken on non-nutrient substrate: 2% agar (Select Agar, Sigma Aldrich).
Experiments on approximation of a Voronoi diagram were done on nutrient
substrate: 2% cornmeal agar (Fluka Analytical). In experiments with Voronoi
diagram all data points were represented by oat flakes colonised the slime mould.
In all other experiments discussed here all but one data points were virgin oat
flakes, and the single data point was a site of inoculation. In experiments with
maze solving we used plastic mazes (Tesco’s Toy Mazes, Tesco Plc), 70 mm
diameter with 4 mm wide and 3 mm deep channels. Experimental containers
were scanned with Epson Perfection 4490.

2.2 Modelling

For the computational modelling of slime mould compressibility we employ the
multi-agent model introduced in [15]. An overview of the approach can be found
in [16]. In the multi-agent approach the Physarum plasmodium is approximated
by a population of simple mobile particles. Each particle corresponds to a hy-
pothetical unit of gel/sol structure within the Physarum plasmodium. Particles
sense and deposit a generic chemo-attractant substance within a 2D diffusive
lattice. The current pattern of the particle population represents both the
structure and flux within the plasmodium. Particles orient themselves towards
the locally strongest source of attractant, as sampled by its three offset sen-
sors. Each particle attempts a movement forwards in its current orientation
and deposits attractant at the new site if the movement is successful. The offset
sensors effect an indirect and local coupling of the particles and the movement
of a particle attracts nearby particles, forming an auto-catalytic process where
self-organised networks spontaneously form and minimise in shape. The model
is notable for its quasi-physical emergent behaviours including network adapta-
tion and minimisation. The architecture of a single particle is given in Fig. 1.
Particle parameters Sensor Angle (SA), Rotation Angle (RA) generate a com-
plex range of Turing-type patterns [14] and the Sensor Offset distance (SO) acts
as a pattern scaling parameter.

For the Voronoi diagram experiments we used the procedure described in
[17]. For the spanning tree experiments we set SA and RA to 45◦ and RA◦

with SO 13. Attractants were projected onto the diffusive lattice at 25.5 units
(arbitrary) per step. To reproduce the suppression of diffusion from nutrient
sites on engulfment by the model plasmodium we reduced projection to 0.255
if there were agent particles within a 7 × 7 region of nutrient sites. Diffusion
of nutrient stimuli was implemented by a mean filter kernel of size 7 × 7 and
diffusion was weakly damped by multiplying the mean kernel result by 0.99 per
scheduler step. Agent particles deposited 0.8 units per successful movement
step. Diffusion of particle trails was implemented by a simple mean filter of
kernel size 3 × 3 and diffusion distance of particle trails was strongly damped
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Figure 1: Single agent particle. (a) agent morphology showing position ‘C’ and
three forward biased sensors ‘FL’, ‘F’ and ‘FR’, (b) agent sensory algorithm
governing orientation.

by multiplying by 0.9 per scheduler step.
Growth and shrinkage of the particle population is implemented as follows.

If there are 1 to 20 particles in a 9 × 9 neighbourhood of a particle, and the
particle has moved forwards successfully, the particle attempts to spawn a new
particle if there is a space available at a randomly selected empty location in the
immediate 3 × 3 neighbourhood surrounding the particle. The dependence on
successful movement ensures that population growth occurs only in response to
the presence of nutrient stimuli. When all nutrients have been discovered, their
projection of attractants is suppressed, causing the population to automatically
shrink in size using the following test. If there are 0 to 24 particles in a 5 × 5
neighbourhood of a particle the particle survives, otherwise it is deleted. Dele-
tion of a particle leaves a vacant space at this location which is filled by nearby
particles, causing the collective to shrink slightly. As the process continues the
population shrinks and adapts its morphology to the configuration of stimuli.
The frequency of testing for particle division and particle removal was every 3
scheduler steps.

2.3 Expressing compressibility

We express compressibility s(t) of a system as a ratio of the size f(mt) of the
compressed image mt of the system to the compressed size f(m1) of the start
image m1 taken at the beginning, t = 1 of experiment: s(t) = f(mt)/f(m1).
Typical compression utilities, like UNIX utility GZIP work well to represent the
measures of compressibility [18, 19, 9].

3 Results

We illustrate our approach on three problems: Voronoi diagram, spanning tree
and path in a maze. The Voronoi diagram problem demonstrates who com-
pressibility changes when almost the whole space is covered by the slime mould.
The spanning problem illustrates formation of the graph and associated changes
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Figure 2: Physarum approximate Voronoi diagram [2]. (a–e) Photographs of
the experimental setup taken in 12 h intervals. See details of setup in [2].
(f) Dynamic of compressibility s(t).

in complexity. The path in a maze problem shows how compressibility reflects
formation of scouting branches.

3.1 Voronoi diagram

Let P be a nonempty finite set of planar points. A planar Voronoi diagram
of the set P is a partition of the plane into such regions, that for any element
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of P, a region corresponding to a unique point p contains all those points of
the plane which are closer to p than to any other node of P. A unique region
vor(p) = {z ∈ R2 : d(p, z) < d(p,m)∀m ∈ R2, m 6= z} assigned to point
p is called a Voronoi cell of the point p. The boundary of the Voronoi cell of
point p is built of segments of bisectors separating pairs of geographically closest
points of the given planar set P. A union of all boundaries of the Voronoi cells
determines the planar Voronoi diagram: V D(P) = ∪p∈P∂vor(p) [13].

Planar data points P are represented by oat flakes colonised by Physarum.
Physarum approximates the Voronoi diagram on a nutrient agar. Therefore it
propagates as omnidirectional disc from each site of its inoculation (Fig. 2a).
When two waves, originated from geographically neighbouring sites of inocu-
lation, meet with each other they stop propagation (Fig. 2b). Thus loci of
substrate unoccupied by Physarum represent edges of the Voronoi diagram. By
calculation s(t) of the experimental images (Fig. 2f) we found that sizes of im-
ages grow initially. They reach their maximum values by 36 h of experiment,
when majority of the bisectors are formed (Fig. 2c). Then the sizes of im-
ages start declining (Fig. 2d). They reach their minimum size by 60 h when
Physarum halts it propagation (Fig. 2e).

Using the model plasmodium we repeated the procedure described in [17]
where oat flakes representing planar data points were inoculated with particles
(Fig. 3, white regions) and nutrient-rich background substrate was represented
by grey colour. The model population propagates outwards in an omnidirec-
tional disc pattern (Fig. 3b-c), attracted by the stimulus from the background
substrate. The Voronoi bisectors in the model population are represented by
dense regions of particle occupancy (Fig. 3e). The graph in Fig. 3g of s(t)
indicates that the filesize increases as the individual inoculation sites grow. As
the Voronoi bisectors begin to emerge (Fig. 3d), the curve begins to flatten out
and the filesize then reduces as the bisectors form completely and ultimately
merge. This suggests that the plateau in growth of the population (and file-
size) may indicate the time when the computation of the Voronoi diagram is
approximated.

3.2 Spanning trees

The Euclidean minimum spanning tree [21] is a connected acyclic graph which
has minimum possible sum of edges’ lengths. Physarum computes spanning
tree on a non-nutrient substrate (Fig. 4). Planar points of the data set are
represented by virgin oat flakes, not colonised by the slime mould. One of the
data point is assigned to be a root, it is represented by oat flake colonised by
the Physarum. In 12 h after inoculation the slime mould propagates along
gradients of chemo-atractants towards virgin oat flake closest to the site of
Physarum inoculation (Fig. 4a). Then the slime mould continues colonising
oat flakes until all data points are spanned by protoplasmic tubes (Fig. 4b–e).
Formation of densely branching active growing zones is reflected in increase of
image size (Fig. 4b). The more oat flakes (data points) become spanned the
less active growing zone emerge and thus sizes of compressed Physarum pattern
decrease (Fig. 4f). Complexity of graph constructed increases almost linearly
(Fig. 4f).

In this example with the model plasmodium, see Fig. 5, compressibility of the
patterns (Fig. 5e) changes proportionally to (Fig. 5f) to edge-wise complexity
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Figure 3: Approximation of Voronoi diagram by model plasmodium. (a) inocu-
lation of seperate model plasmodia (yellow) on simulated oat flakes on nutrient-
rich background (grey), (b-c) Radial growth of model plasmodium, (d-e) Growth
is temporarily inhibited at regions where other model plasmodia are occupied,
These dense regions indicates bisectors of Voronoi diagram, (f) bisectors fade
with continued adaptation, (g) dynamics of compressibility s(t).
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Figure 4: Physarum approximate spanning tree. (a–e) Photographs of the ex-
perimental setup taken in 12 h intervals. See details of setup in [2]. (f) Dynamic
of compressibility s(t). (g) Number of edges in the graph constructed.
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Figure 5: Modelling Physarum approximation of spanning tree. (a–e) Snapshots
of the computer experiments. (f) Dynamic of compressibility s(t). (g) Number
of edges in the graph constructed.
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of the graph. We also investigated the behaviour of the model in response
to more complex datasets. We randomly generated 20 points (corresponding
to oat flakes) on a 300 × 300 lattice and inoculated the model plasmodium
on a randomly chosen point (Fig. 6a, circled). We recorded images of the
configuration of the model every ten steps and ran each experiment for 5,000
steps. A typical pattern of growth and adaptation is shown in Fig. 6a-f. From its
inoculation site the model plasmodium extended pseudopodium-like processes
to migrate towards and engulf each nutrient source. When all the nutrients were
covered the resultant reduction in stimuli caused the shape of the population
to adapt and minimise to conform to the shape of the points. We recorded the
filesizes over ten experiments and the plot of dynamics of average s(t) is shown
in Fig. 6g (thick line is aerage, standard deviation error bars indicated by
shaded regions). The plot shows an increase in s until all nodes are discovered
(typically t=500-600 steps). The adaptation phase is indicated by the downward
slope (600-1000 steps) of s and the stable configuration then continues and is
represented by the relatively stable s value.

To what extent does the increase in population size affect changing com-
pressibility? It is possible to argue that the increase and decrease in file size
(and subsequent decrease and increase in compressibility) is merely due to the
increase and decrease in population and that the re-distribution of the plas-
modium (real and virtual) does not affect compressibility. Using the model it is
possible to have a ‘fixed size’ plasmodium which does not differ in the number of
its components throughout an experimental run. Therefore any changes in com-
pressibility must arise as a consequence of the self-organised network formation
and adaptation. An example can be shown in Fig.7 in which we use a fixed pop-
ulation size of 4000 particles inoculated within a circular arena on a 200× 200
lattice containing 50 nutrient sources. The population is initialised at random
locations within the arena. Particle sensor parameters were SA 45 and RA 45
and SO was 7. Because growth and shrinkage of the population was disabled
we reduced the concentration of the stimuli to 2.5 units per scheduler step and
increased particle deposition to 5 units per step. This adjustment is necessary
to prevent defects forming in the material from very high concentration stimuli.

Fig. 7 shows significant events in the evolution of the fixed sized model
plasmodium. Initially there is no network (Fig. 7a) but a network composed
of particles connecting the nutrient sources spontaneously forms (Fig. 7). This
network undergoes minimisation over time, reducing the number of edges and
cycles. The associated graph does not show the initial increase in s(t) as the
population size is fixed. Instead s(t) decreases rapidly as the network forms
and minimises. The evolution of s(t) then stabilises over time, falling only at
significant events in the network evolution (for example, when some remaining
cycles are minimised, Fig. 7e,f,g and h). This result demonstrates that the
changes in compressibility cannot be due only to changes in population size but
also represent the inherent ordering of the networks over time.

3.3 Maze

A typical experiment is illustrated in Fig. 8, see details in [5]. We placed an
oat flake in the central chamber and inoculated plasmodium of Physarum in
a peripheral channels (Fig. 8a). The plasmodium started exploring its vicinity
and at first generated two active zones propagating clock- and contra-clockwise
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(a) t=50 (b) t=130 (c) t=240
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Figure 6: Dynamics of s during construction and adaptation of spanning trees
in the model plasmodium. (a) model plasmodium is inoculated on a randomly
chosen site (circled) on a randomly generated 300×300 lattice of 20 data points,
(b-f) Example evolution pattern of model plasmodium as it migrates towards
sites, engulf sites and adapts to attractant profile, (g) plot of average dynamics
of s over 10 experiments (thick line) with standard deviation error bars indicated
by shaded regions.
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(a) t=1 (b) t=30 (c) t=400 (d) t=1000

(e) t=5000 (f) t=20000 (g) t=27650 (h) t=35000 (i)

Figure 7: Dynamics of s during formation and adaptation of proximity graph in
the model plasmodium. (a) model plasmodium of 4000 particles is inoculated
at random sites within a 200×200 lattice of 50 data points, (b-h) Self-organised
network formation and adaptation of model plasmodium as it adapts its shape
to locations of attractants, (i) plot of dynamics of s over experiment, initial
rapid fall is followed by a long stable periods, punctuated only by removal of
cycles within the network.

(Fig. 8bcd). By the time diffusing chemo-attractants reached distant channels
one of the active zone already became dominant and suppressed another ac-
tive zone (Fig. 8efg). In example shown active zone travelling contra-clockwise
dominated and ’extinguished’ active zone propagating clockwise. The dominat-
ing active zone then followed gradient of chemo-attractants inside the maze,
navigated along intersections of the maze’s channels and solved the maze by
entering its central chamber (Fig. 8hij). Spatio-temporal dynamic of space ex-
ploration by Physarum is well reflected in the dynamics of compressibility shown
in Fig. 8k. Thus formation of branching active zones, or scouting branches at
10 h and 12 h of experiment, is reflected by peaks of compressibility s. When
competition between active zones exploring various pathways ends in favour of
one of the active growing zone, losers retract. These events lead to drops in
compressibility, as e.g. in 12 h and 16 h of experimenting. When the Physarum
finds the central chamber all scouting branches retract, or become abandoned,
and the compressibility drops to its lowest level, indicating that the solution is
found.

3.4 Transport networks

In experiments on analog modelling of the world colonisation discussed in [6]
we represented major capitals of the world by virgin oat flakes and inoculated
Physarum in Beijing (Fig. 9a). In first hours of the experiment Physarum prop-
agates along South-East and South, colonising urban areas in India, Pakistan,
Turkey (Fig. 9bcd). The function s (Fig. 9l) exhibits peak at 6 h. This corre-
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(a) 2 h (b) 4 h (c) 6 h

(d) 8 h (e) 10 h (f) 12 h
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Figure 8: Physarum solves maze problem (a–i) Photographs of the experimen-
tal setup taken in 2 h intervals. See details of setup in [5]. (k) Dynamic of
compressibility s(t).
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Figure 9: Physarum approximation the world transport networks. (a–k) Pho-
tographs of the experimental setup taken in 2 h intervals. See details of setup
in [6]. (k) Dynamic of compressibility s(t).
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sponds to increases activity of the slime mould: it propagates simultaneously
from China to Japan and from India to Pakistan (Fig. 9c). At 10 h we can ob-
serve an scouting active zone sprouting through China to Russia (Fig. 9e); the
active zone does not succeed and detracts back by 12 h. Another peak of image
size (decrease in compressibility) is observed at 12 h (Fig. 9l). This reflects
developing of several pseudopodia spreading into Africa (Fig. 9f). The coloni-
sation of Africa completes by 16 h (Fig. 9gh) which is manifested in substantial
increase of compressibility, decrease of the image size (Fig. 9l). At 16 h also
London is colonised and Physarum propagates into the North Europe (Fig. 9h)
and we see corresponding peak in the image size: increased activity decreases
compressibility. Another attempt, this time successful, to colonise Russian terri-
tory is made at 18 h (Fig. 9i). By 20 h the slime mould reaches Moscow (Fig. 9j)
and recolonizes London again by 22 h (Fig. 9j). These activities do not change
compressibility substantially because major part of Eurasia is already colonised
by that time.

4 Discussion

Unconventional computers made of physical, chemical and living substrates
rarely halt. Even when they find a solution to the given problem, they express
their finding via morphological, chemical or electrical changes but then continue
their ’daily business’ as if nothing happened. Turing machine halts. Physarum
machines never halt. We propose to use dynamics of compressibility of a sys-
tem’s spatial configurations to detect when the system completed computation.
Compressibility of a system is inversely proportional to morphological diversity
— a number of distinct local sub-configurations — of the system. When the
system searchers for a solution of the problem it explores the space but also
explores itself thus generating a vast number of different spatial sub-states. The
patterns of the system in such states are difficult to compress. Compressibility
of a system decreases when the system is looking for a solution. When the solu-
tion space exploration is abandoned the system returns to its state of minimal
energy. Compressibility of such system increases. Thus by observing dynamics
of the system’s compressibility we can detect when the compressibility stabilised
or increased to it maximum. We can conjecture that in that moment the system
produces the solution to the problem.

Feasibility of our approach was tested on results of experimental laboratory
and computer modelling studies of the slime mould computers. We found that
when the slime mould P. polycephalum solves problems related to space filling
(Voronoi diagram) or shortest path (maze solving) the maximum level com-
pressibility indicates that solution is produced. This is somewhat analogous
to behaviour of compressibility in other spatially extended systems performing
computation:, e.g. cyclic tag systems emulated by cellular automata [24] or cel-
lular automata solving a parity problem [22]. In scenarios when the slime mould
must approximate a spanning tree or build transport networks stabilisation of
compressibility dynamics is an indicator of completion of the computation.

15



References

[1] Mateo Aboy, Roberto Hornero, Daniel Abásolo, and Daniel Álvarez. In-
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