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Abstract. 11 

Amino acid-rich extracts derived from fish by-products were utilised to generate flavour 12 

model systems with added glucose and/or fish oil.    13 

Combination of endo and exo peptidases resulted in the most marked increased in free amino 14 

acids, particularly for leucine, lysine and glutamic acid (48.3 ± 3.4 to 1,423.4 ± 59.6, 43.3 ± 15 

1.2 to 1,485.4 ± 25.6 and 143.6 ± 21.7 to 980.9 ± 63.6 µg/g respectively).    16 

Main volatile products formed after heating the systems were 4-heptenal, 2,4-heptadienal, 17 

and some pyrazines. Increased concentrations of 1-octen-3-ol or 1-hepten-4-ol were also 18 

observed in the heated systems compared to the controls. All of these volatile compounds 19 

have been identified among the volatile profile of cooked seafood.  20 
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Conversion of low value fish derived materials such as fish powder, into more valuable 21 

products such as flavour precursors and subsequently flavour compounds might be a 22 

commercially viable proposition for the fish industry.  23 

 24 

 25 

Chemical compounds studied in this article: 26 

Glutamic acid (Pubchem CID 611); Aspartic acid (Pubchem CID: 424); Leucine (Pubchem 27 

CID: 6106); Lysine (Pubchem CID: 5962); 1-Octen-3-ol (Pubchem CID: 18827); 2,4-28 

Heptadienal (Pubchem CID: 20307); 4-Heptenal (Pubchem CID:71590); 1-Hepten-4-ol 29 

(Pubchem CID: 19040). 30 

 31 

 32 

Key words: enzymatic hydrolysis, amino acids, volatiles, fish by-products, seafood flavour. 33 
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1. Introduction 35 

Traditionally, waste from the fish industry such as small catch, flesh, viscera etc. are either 36 

disposed of or utilised as fishmeal for animal feeding. Nevertheless, over the last few 37 

decades, raised awareness on the environmental impact of products and processes has led to 38 

retailers and consumers making concerted efforts to make the best use of all resources.  39 

Nowadays, there is growing interest in using food wastes as sources of materials or 40 

ingredients that are capable of providing added value to consumer products including uses in 41 

foods.  Some examples of this are the extraction and recovery of different compounds of 42 

interest such as amino acids, peptides, collagen or omega fatty acids from fish wastes 43 

(Guerard, Dufosse, Broise, & Binet, 2001). Development of novel means of processing is 44 

required to convert the wastes and by-products into forms that are safe, marketable and 45 

acceptable to the consumer.  46 

Fish wastes have also been utilised for the production of fish powders or fish protein 47 

hydrolysates, used as nitrogen source for microbial growth and enzyme production. Autolytic 48 

process, which depends only on endogenous enzymes, is considered to be economically 49 

advantageous; however, exogenous commercial enzymes are sometimes preferred since they 50 

allow controlled hydrolysis, hence control over the properties of the resulting products. Many 51 

enzymes have attracted interest for the hydrolysis of fish proteins (e.g., papain, alcalase, 52 

neutrase, Flavourzyme®, Protamex®). Characteristics of the final hydrolysate will depend on 53 

the enzyme(s) added, but also on the substrate, which plays an important role in the 54 

hydrolysis (Annadurai, Sadeeshkumar, Vijayalaksmi, & Pirithiviraj, 2012; Aspmo, Horn, & 55 

H. Eijsink, 2005; Ghorbel et al., 2005; Souissi, Bougatef, Triki-ellouz, & Nasri, 2007).  56 

Flavour is an important factor to determine the quality of fish and fish derived products as 57 

well as consumer acceptance. Fishy flavour often makes products derived from fish less 58 

acceptable (Ganeko et al., 2008). This characteristic aroma is influenced by the species but 59 
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also by the conditions used for its post-harvest handling, storage and cooking. Some fish such 60 

as salmon or trout, have a strong flavour while might have a relatively mild smell before 61 

cooking that becomes strong and pleasant after heating (Ganeko et al., 2008; Whitfield, 62 

Freeman, Last, Bannister, & Kennett, 1982; Whitfield, Last, Shaw, & Tindale, 1988). 63 

Important aroma compounds, characteristic of fresh fish, are lipid derived volatile 64 

compounds generated mainly by oxidative enzymatic reactions and autoxidation of lipids 65 

such as aldehydes and ketones. However, compounds derived from Maillard reaction such as 66 

pyrazines and furans, also make important contributions to the flavour and aroma of fish 67 

products after frying or grilling (Giri, Osako, & Ohshima, 2010). 68 

The aim of this study was to demonstrate the use of by-products of the fish industry (fish 69 

powder) for the generation of fish flavour formulations after protease biocatalysis and 70 

subsequent heating in the presence of glucose and/or fish oil. 71 

 72 

2. Material and Methods 73 

2.1. Chemicals 74 

Proteases (Biocatalysts Ltd, UK), fish oil and fish powder (Croda International plc, UK), as 75 

well as glucose and glycerol, (Sigma-Aldrich Company Ltd, Poole, UK) used to produce the 76 

model systems were all food grade. Chemicals used for analytical determinations: disodium 77 

tetraborate decahydrate, sodium dodecyl sulphate (SDS), o-phthaldialdehyde (OPA), 78 

dithiothreitol (DTT), serine, hydrochloric acid, iso-octane, C7 - C30 saturated alkanes 79 

(1,000 µg/mL each component in hexane) were all analytical grade purchased form Sigma-80 

Aldrich.  81 

2.2. Hydrolysis and formation of aromas 82 

Table 1 summarizes the characteristics of the commercial proteases as well as the 83 

composition of the fish powder used as starting materials to produce fish-like aromas. Fish 84 
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powder (100 g/L in water) was hydrolysed for15 h at constant stirring, under controlled 85 

conditions of temperature and pH (60ºC at pH 6). The reaction was terminated by heating the 86 

mixture at 95ºC for 20 min in a water bath. Each protease used was added so all mixtures had 87 

the same enzymatic activity per gram of sample. The conditions of pH, temperature and time 88 

of reaction, as well as the enzymes and their combinations were selected based on the 89 

combination of those parameters that resulted in the higher concentration of free amino acids 90 

in a preliminary experiment (data not shown). The resulting slurries were centrifuged at 8,000 91 

x g for 20 min and aliquots were analysed to determine the degree of hydrolysis (DH) and 92 

amounts of free amino acids. 93 

Subsequent reactions to generate aroma compounds were carried out with selected slurries of 94 

the fish powder hydrolysates (FPHs) based on the degree of hydrolysis and free amino acid 95 

content. Aliquots of FPHs (0.2 mL) were mixed, homogenised with a glucose solution (0.05 96 

mL, 80 µmol/mL) in glass reaction vials and freeze-dried. Glycerol (500 µL) was added to 97 

each freeze-dried sample to facilitate homogenisation while fish oil (1.5 g/100 g) was added 98 

to some of the samples according to the experimental design (Table 2). All samples in closed 99 

vials were then homogenised at 60ºC for 10 min and subsequently heated at 110ºC for 30 min 100 

to promote flavour formation. Fish powder hydrolysates without addition of fish oil and 101 

before heating were used as control. All samples were prepared and analysed in triplicate.  102 

2.3. Analyses 103 

2.3.1. Chemical analyses. Composition of fish powder and fish oil. 104 

The moisture, ash and extractable fat content of the fish powder were calculated according to 105 

the Association of Official Analytical Chemists (AOAC, 2000). Total protein was determined 106 

by the Kjeldahl method using a nitrogen conversion factor of 6.25 (Ortiz et al., 2006; Yaich 107 

et al., 2011).  108 
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The fatty acid composition was analysed by GC-FID after transesterification to methyl esters 109 

(FAMEs) with a mixture BF3 methanol at 20°C according to the IUPAC standard method  110 

(IUPAC, 1992; Peinado, Girón, Koutsidis, & Ames, 2014; Yaich et al., 2011). Analysis of 111 

FAMEs was carried out with a DANI Master GC equipped with an auto sampler, a DANI 112 

FID detector (DANI Instruments S.p.A, Italy) and an Agilent DB-23 (60 m × 0.25 mm, 0.25 113 

µm) capillary column (Agilent Technologies, Cheshire, UK). The oven temperature was 114 

programmed from 90°C to 240°C at 4ºC/min and the injector and detector temperatures were 115 

set at 250°C. The carrier gas was helium at 1.0 mL/min constant flow (split ratio 10:1). Data 116 

analysis, identification and quantification of FAMEs was accomplished by comparing the 117 

retention times and areas of the peaks with those of pure standards (Supelco® 37 Component 118 

FAMEMix, Sigma-Aldrich, Poole, UK) and analysed under the same conditions. The results 119 

were expressed as a g of each fatty acid/100 g of the lipid fraction. 120 

2.3.2. Degree of hydrolysis, DH 121 

The Degree of Hydrolysis (DH) was estimated following a modified OPA spectrophotometric 122 

method using aqueous serine, (0.1 g/L) as the reference standard (Church, Porter, Catignani, 123 

& Swaisgood, 1985; Nielsen, Petersen, & Dambmann, 2001). For the OPA reagent, disodium 124 

tetraborate decahydrate (7.620 g) and sodium dodecyl sulphate (SDS; 200 mg) were 125 

dissolved in 150 mL deionized water followed by the addition of 4 mL of o-phthaldialdehyde  126 

(160 mg) in ethanol and dithiothreitol (176 mg, 99 %, DTT). The final solution was made up 127 

to 200 mL with deionized water. For the analysis, aliquots of FPH or serine standard solution 128 

(50 µL) were placed in the wells of a 98-well micro-plate containing 150 µL of OPA-reagent 129 

and the absorbance was read at 340 nm. The DH was calculated using equations 1,2 and 3 130 

(Church et al., 1985; Nielsen et al., 2001). 131 

�� = �

����
∙ 100%                                                                                                   (Equation 1) 132 
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3
∙ 4                                 (Equation 3) 134 

Where htot depends on the specific raw material, and for the present study was estimated as 135 

htot = 8.6; h = meqv serine / g protein; serine-NH2= meqv serine-NH2 / g protein; a and b 136 

depend on the specific raw material, and for the present study they were estimated as a = 137 

1.00, b = 0.4; X = g sample; P = protein % in the sample; 0.1 is the sample volume  (L) 138 

(Nielsen et al., 2001). 139 

2.3.3. Free amino acids 140 

The free amino acid content was calculated following the same method as Elmore, Koutsidis, 141 

Dodson, Mottram, & Wedzicha, (2005). Aliquots of the FPHs (500 µL) were mixed with HCl 142 

(500 µL, 0.01mol/L) and centrifuged at 7,200 x g for 15 min. Centrifuged supernatant (100 143 

µL) was derivatized using the EZ-Faast amino acid kit (Phenomenex, Cheshire, UK), and 144 

analysed by (GC-MS). The derivatized amino acids were extracted into iso-octane (100 µL) 145 

and analysed in electronic ionization mode at 70 eV using a 6890 GC coupled to a 5973 MSD 146 

instrument (Agilent, Palo Alto, CA).  Derivatized amino acid solution (1 µL) was injected at 147 

250 °C in split mode (10:1) onto a 10 m × 0.25 mm × 0.25 µm Zebron ZB-AAA capillary 148 

column (film composition 50% phenyl 50% dimethyl polysiloxane) (Phenomenex, Cheshire, 149 

UK). The oven temperature was 110°C for 1 min, then increased at 30°C/min to 320°C, and 150 

held at 320°C for 2 min. The transfer line was held at 320°C, and the carrier gas was helium 151 

at a constant flow rate of 1.1 mL/min. The ion source was maintained at 320°C. Standard mix 152 

stock solution (200 µmol/L each) of 15 non-basic amino acids (Ala, Asp, Glu, Gly, His, Ile, 153 

Leu, Lys, Met, Orn, Phe, Pro, Ser, Thr, Val) in hydrochloric acid (0.1 mol/L) and 2 basic 154 

amino acids (Asn, and Gln,) in water were prepared; different dilutions (10 to 150 µmol /L) 155 

were derivatized, and calibration curves were plotted for each amino acid (effect of food 156 
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matrix composition was studied by spiking samples). Norvaline (100 µL (0.2 mmol/L)) was 157 

used as the internal standard. 158 

2.3.4. Volatiles analysis 159 

GC/MS analyses were performed using an Agilent 7890A gas chromatograph equipped with 160 

a DB-WAX capillary column (60m x 0.25mm i.d. x 0.25µm FT) and coupled to a BenchToF 161 

Time of Flight Mass Spectrometer (Markes International Ltd, Llantrisant UK) and a CTC 162 

CombiPal autosampler (CTC Analytics AG, Zwingen, Switzerland). HS-SPME was 163 

performed on aqueous extracts (200 µL) in 2 mL of saturated NaCl solution. Samples were 164 

incubated at 40ºC for 40 min followed by a 1 min extraction using a CAR/PDMS/DVB 165 

SPME fibre (Supelco, Sigma-Aldrich Company Ltd, UK) and desorption at 260ºC for 5 min. 166 

The oven temperature was 40ºC (held for 5min), 40-200ºC at 4ºC/min, then to 250ºC at 167 

8ºC/min, held for 5 min. Helium was used as the carrier gas at a flow rate of 1 mL/min.  168 

The volatile compounds were identified by comparing their mass spectra with spectral data 169 

from the National Institute of Standards and Technology 2008 library as well as retention 170 

indices published in the literature (Ganeko et al., 2008; Giri et al., 2010; pherobase. org). 171 

Relative retention indices were determined by injection into the column of a solution 172 

containing a series of n-alkanes (C7–C30, saturated alkanes (1,000 µg/mL in hexane) Sigma-173 

Aldrich Company Ltd, UK) in the same temperature programmed run as described above. 174 

Quantification of selected compounds was carried out using external calibration curves. 175 

2.4. Sensory Evaluation 176 

Consumers’ preferences were assessed by the Friedman Pairwise ranking analysis (Escriche, 177 

Fernández-Segovia, Serra, Andrés, & Barat, 2001; González-Tomás, Carbonell, & Costell, 178 

2004; Peinado, Rosa, Heredia, Escriche, & Andrés, 2012). This test is used with a non-trained 179 

panel, to evaluate sets of three to six samples, considering a single attribute each time. 180 

Twenty-seven subjects constituted the panel. The samples selected were presented to each of 181 
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the subjects in all possible paired combinations. The selection of the sensory attributes was 182 

based on the characteristic criteria of the samples as well as some previous experiments on 183 

similar products (Ganeko et al., 2008; Giri et al., 2010). Panellists were asked which of the 184 

two samples presented they would assess as: “stale” (smell of fish cooked for too long), 185 

“fried” (smell of fish cooked in fat or oil, usually over direct heat), “grilled” (typical fish 186 

cooked in a grill), and their overall preference. 187 

Significant differences between the samples were established by the statistical function T-188 

Friedman and compared with the tabulated Х
2=7.81 (α = 0.05) with (t−1) degrees of freedom 189 

(Meilgaard, Civille, & Carr, 1999).  190 

Afterwards, Tukey’s honestly significant difference (HSD) was calculated to establish 191 

between which samples these differences lay (equation 4), (Meilgaard et al., 1999): 192 

��� = 56,8,9:; ∙ <
4> ?

@
�                                                                                            (Equation 4) 193 

where qα,t,∞ is a tabulated value, p is the number of panellists and t the number of samples 194 

(t=4), (Meilgaard et al., 1999). 195 

2.5. Statistics 196 

Analysis of variance (ANOVA) and the Friedman test (p-value < 0.05) were carried out using 197 

SPSS to estimate the differences in amino acid composition of the FPHs. Principal 198 

Component Analysis, PCA, (SPSS) was applied to differentiate the FPHs based on their 199 

volatile compound.  200 

Furthermore, a correspondence analysis was performed to establish whether the selected 201 

samples and the evaluated sensory attributes map. This tool establishes the association 202 

between categorical variables (Beh, Lombardo, & Simonetti, 2011; Guerrero et al., 2010).  203 
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 204 

3. Results and discussion 205 

3.1. Hydrolysis of fish powder 206 

Degree of hydrolysis (DH): the OPA method to determine the DH is based on the specific 207 

reaction between the OPA-reagent and primary amino groups, in the presence of a thiol to 208 

form 1-alkylthio-2-alkyl-substituted isoindoles that can be quantified spectrophotometrically 209 

at 340 nm (Medina-Hernández et al, 1990). The DH is presented in table 2; All proteases 210 

produced a high DH compared to the control FP. Individual proteases, “A” (endo and exo 211 

peptidase activities) and “B” (exopeptidase activity) showed high degrees of hydrolysis (30.5 212 

± 1.2% and 46.0 ± 0.7% respectively). The fact that the DH was higher with enzyme “B” 213 

indicates that having dual enzymatic activity within one enzyme does not necessarily increase 214 

the DH. The same conclusion could be achieved when enzyme “B” was combined with 215 

enzymes “C” or “D” (endopeptidases). However, the combination “B+E” produced the 216 

highest DH (57.4 ± 0.9%). It is not easy to compare the hydrolysates prepared using the 217 

different proteases because they have optimal working conditions and specificities.  218 

The individual free amino acid content of the FPHs is illustrated in table 2 together with the 219 

changes in the concentrations for the amino acids in the FPHs compared to the control (ΔC 220 

%). 17 amino acids were identified and quantified in the different FPHs. Lysine, leucine, 221 

glutamic acid and alanine, were the most abundant in most of the FPHs (235-1,484 µg/g), 222 

reaching their highest concentrations for the combination “B+C” (Lys [1,484 ± 43 µg/g], Leu 223 

[1,423 ± 48 µg/g], Glu [981 ± 142 µg/g] and Ala [939 ± 135 µg/g]). His, Ile, Phe, Ser and 224 

Thr, were in the range of 178-742 µg/g, also with their highest concentrations for the 225 

combination “B+C”; while Gly, Pro, Asp, Met, His, Tyr and Trp, were found in smaller 226 

concentrations. Depending on the enzymes/combination of enzymes, there were significant 227 

differences in the concentration of the amino acids within the FPHs; some amino acids, such 228 
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as Ala, Gly or Pro, increased their concentration, up to 3-6 fold compared to the control-FPH 229 

(regardless of their initial concentration) while some others such as Lys, Met or Leu 230 

increased their concentrations up to 23-35 fold compared to the control-FPH (Table 2).  231 

3.2. Development of aromas  232 

A total of 32 volatile compounds were identified in the heated fish powder hydrolysates (H-233 

FPHs) (Table 3). Most of the compounds identified in the control sample (heated without the 234 

addition of external enzymes), were also identified in the H-FPHs heated with glucose with 235 

or without fish oil (Table 4).  236 

Aldehydes significantly contribute to the overall aroma of cooked fish/seafood due to their 237 

low threshold values (Table 3). In the present study, the concentration of aldehydes increased 238 

in the H-FPHs, being higher in those samples containing fish oil (Table 4). This increase in 239 

samples containing oil might be expected, as some aldehydes might be generated from lipid 240 

oxidation, e.g., hexanal, present in much higher concentrations in the H-FPHs containing fish 241 

oil, derives mainly from the oxidation of linoleic acid. Moreover, some other aldehydes, such 242 

as 2-methylpropanal, 4-heptenal and 2,4-heptadienal, not found in the control, were abundant 243 

in the H-FPHs. 2,4-Heptadienal, which is a degradation product of linolenic acid (Decker, 244 

Elias, & McClements, 2010), was only found in samples containing fish oil (Table 4). Some 245 

branched short chain aldehydes could result from deamination of amino acids. The major 246 

aldehyde in the H-FPHs, regardless of the incorporation of fish oil, was 3-methyl-butanal, 247 

which presence was attributed to the high concentration of leucine in the FPHs. While in 248 

some other cases aldehydes can originate from the Strecker degradation of amino acids, for 249 

instance, 2-methylbutanal, which was also in considerable concentrations in the H-FPHs, may 250 

be derived from isoleucine. Due to their low threshold values, the Strecker aldehydes 251 

including 2-methylpropanal, 2-methylbutanal and 3-methylbutanal, might impart nutty/malty 252 

nuances to the product while, some others aldehydes such as heptanal, octanal or nonanal 253 
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might impart a more characteristic fishy flavour (Caprino et al., 2008; Giri et al., 2010; Selli 254 

& Cayhan, 2009).  255 

Alcohols are mainly formed by an enzymic peroxidation of the n-3 and n-6 polyunsaturated 256 

fatty acids, present in fish tissue. 1-Penten-3-ol, significantly increased in samples containing 257 

fish oil (Table 4). Although not all alcohols are likely to have an important contribution to 258 

odour, due to their relatively high odour threshold values (Table 3), unsaturated alcohols such 259 

as 1-octen-3-ol, with generally much lower threshold values than the saturated counterparts, 260 

might have a greater impact on the overall aroma (Kawai & Sakaguchi, 1996; Selli & 261 

Cayhan, 2009) . 262 

Amongst the ketones identified, 2-heptanone, 2-octanone, 2-nonanone and undecanone, 263 

slightly increased in the H-FPHs, regardless the addition of fish oil. However, 1-penten-3-264 

one, not present in the control, appeared in all H-FPHs, with a significant increase in those H-265 

FPHs containing fish oil. Due to its low odour threshold value (Table 3), this compound, 266 

which might result as a degradation product of linolenic acid, is likely to contribute pungent 267 

and fish-like notes to the aroma (Decker et al., 2010; Giri et al., 2010). Ketones are mainly 268 

produced a result of lipid-autoxidation and/or amino acid degradation due to the Strecker 269 

reaction, and are associated with off-flavour (Selli & Cayhan, 2009) 270 

Acids such as acetic acid, propanoic acid, 2-methyl propanoic acid, butanoic acid and 3-271 

methyl butanoic acid with relatively low threshold values (Table 3), have been reported to 272 

result from fermentation in several fish products (Giri et al., 2010). In the present study acetic 273 

acid was identified but its concentration did not differ significantly when compared to the 274 

control. These acids can derive either from lipolysis or from amino acid metabolism 275 

(deamination) (Montel, Masson, & Talon, 1998). 276 

Sulphur-containing compounds dimethyl disulphide, (cooked cabbage aroma), and 277 

dimethyl trisulphide, (meaty and cooked onion aroma), increased considerably. These 278 
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compounds, usually associated with deterioration of seafood, have a very strong effect on the 279 

overall food aroma even at low concentrations because of their low threshold values (Table 3) 280 

(Le Guen, Prost, & Demaimay, 2001; Selli & Cayhan, 2009). They are known to originate 281 

from the free, peptidic and proteinic sulphur amino acids, such as methionine, which 282 

concentration increased considerably after enzymatic hydrolysis (Table 2).  283 

Furans: Amongst the heterocyclic compounds identified, furans, which possess low odour 284 

threshold values, were present in much higher concentrations in the H-FPHs containing fish 285 

oil. They can be formed from amino acids by the Amadori rearrangement pathway, but also 286 

by the oxidation of fatty acids, i.e. the formation of 2-pentylfuran, which is one of the 287 

resulting products from the oxidation of linoleic acid (Giri et al., 2010; Taylor & Mottram, 288 

1990; Whistler & Daniel, 1985).  289 

Pyrazines, characteristic compounds derived from the Maillard reaction imparting amongst 290 

other roasted and nutty flavour (Fox & Wallace, 1997; Giri et al., 2010), importantly 291 

increased in the H-FPHs. However, the fact that there were no significant differences in their 292 

concentration in the model systems with added fish oil compared to those without fish oil 293 

demonstrates that the addition of lipo-oxidation products did not contribute to the pool of 294 

carbohydrates. This might have been due to carbohydrates being in excess in the model 295 

systems (i.e. added glucose).  296 

Figure 1 illustrates the PCA conducted to evaluate the differences in the volatile composition 297 

of the different samples. The first three components explain 88.1% of the total variability. 298 

The first two principal components (PC1: 39.9% and PC2: 31.6%) differenciate between the 299 

H-FPHs containing additional fish oil from those without it. In the same way some of the 300 

volatile compounds such as hexanal, heptanal, 4-heptanal, 2,4,-heptadienal, 1-penten-3-ol or 301 

1-octen-3-ol, derived from fatty acids such as linoleic and linolenic acids, are located on the 302 

right side of the plot together with the H-FPHs containing fish oil. The two H-FPHs controls 303 
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(with and without fish oil) are separated from the compounds that illustrated a higher increase 304 

as a result of the addition of enzymes. These compounds include 2-methylbutanal, 3-305 

methylbutanal, 1-hepten-4-ol and the sulphur compounds, which have also been found in the 306 

volatile profile of cooked fish or meals containing seafood (Ganeko et al., 2008; Giri et al., 307 

2010; Selli & Cayhan, 2009), The addition of fish oil, however, did not have a significant 308 

impact on the formation of these compounds or pyrazines. The use of enzymes did produce a 309 

high DH with different concentrations of the free amino acids in the FPHs that would have 310 

been expected to have a high impact on the formation of the volatile compounds. However, 311 

the differences due to the use of these various enzymes were not significant in terms of 312 

concentrations of the Maillard reaction products including pyrazines, sulphur compounds and 313 

some aldehydes.   314 

3.3 Sensory evaluation 315 

Only enzyme B with increased amounts of fish oil was selected to carry out the sensory 316 

evaluation (Figure 2). The selection of enzyme B was based on its high release of free amino 317 

acids. Different concentrations of fish oil (0, 1.5 and 3 g/100g) were investigated to establish 318 

the role of fish oil on the formation of aroma, as well as its influence on sensory perception.  319 

Panellists evaluated a total of six pairs of samples, corresponding to all the possible 320 

cominations. The statistic of Friedman test for each sample was compared with the statistic of 321 

chi-square (X2) with 3 degrees of freedom (7.82, α = 0.05). A significant difference was 322 

observed for all the attributes in the samples evaluated.  323 

Friedman test was followed by specific comparisons using Tukey’s Honestly Significant 324 

Difference (HSD) multiple comparison post-hoc statistical test (Meilgaard et al., 1999). The 325 

value of q tabulated for 3 degrees of freedom (α = 0.05), was 3.63 and the HSD value 326 

obtained by equation 4 was 18.85. The rank sums (addition of twice the sum of the 327 

frequencies of the columns to the sum of the frequencies of the rows for each sample 328 
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(Peinado et al., 2012)) were calculated, a table of rank sum differences was prepared and the 329 

differences were compared with the value of HSD being significant when this value was 330 

exceeded (Figure 2).  331 

Panellist did not find significant differences between the H-FPHs samples regardless the 332 

concentration of added fish oil (0, 1.5 and 3 g/100g) for all the attributes. However, panellists 333 

found significant differences for “stale” when “100% FO” was compared to H-FPHs without 334 

addition of fish oil. For “fried” aroma, significant differences were found when “100% FO” 335 

was compared with H-FPHS with 0 and 1.5 g/100g of fish oil. Finally for “grilled” aroma, 336 

panellists found significant differences between “100% FO” and all the H-FPHs regardless 337 

the addition of fish oil. For the global preference the three H-FPHs had similar scores. 338 

Furthermore, figure 2 illustrates the two-dimensional plot of the sample scores and compound 339 

loadings obtained by the correspondence analysis. The first two dimensions explained 340 

99.99% of the total variance (dimension 1, 97.4%; dimension 2, 2.6%). H-FPHs with 341 

different concentrations of fish oil were preferred by the panellists. “Fried” and “grilled” 342 

contributed the most to the global preference while“stale” contributed negatively to the global 343 

preference of the product. There were no differences between the three H-FPHs in terms 344 

global preference.  345 

 346 

4. Conclusions 347 

Heating FPHs (as a source of amino acids), a source of sugar and fish oil successfully 348 

produced volatiles at a laboratory scale. Enzyme “B” (exopeptidase) on its own or in 349 

combination with endopeptidases is suggested as the starting point to liberate amino acids 350 

from fish protein while the dual activity enzyme “A” produced a lower amount of free amino 351 

acids. 352 
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The use of various enzymes produced different amounts of amino acids in the FPHs with 353 

important amounts of lysine, leucine, glutamic acid and alanine being released. These 354 

increased on free amino acids will have an influence on the characteristic compounds derived 355 

from the Maillard reaction, such as pyrazines, sulphur compounds or some aldehydes. Fish 356 

oil had a great impact on the volatile compounds associated with fish aroma; its addition 357 

enhanced the concentration of some lipid oxidation products such as hexanal, heptanal, 4-358 

heptanal, 2,4,-hetadienal, 1-penten-3-ol or 1-octen-3-ol, characteristic impact compounds in 359 

seafood, that have been previously identified in the volatile profile of cooked fish or meals 360 

containing seafood. “Grilled” and “fried” aromas, characteristics of FPHs heated with fish 361 

oil, were preferred by panellists, while fish oil on its own produced unpleasant aromas. 362 

Future work involving different types and concentrations of fish oil together with sensory 363 

evaluation is suggested to investigate the acceptability of seafood-derived fish-like flavouring 364 

formulations based on such approaches. 365 
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Figure Caption 477 

Figure 1. Biplot for the different heated fish powder hydrolysates generated with the 478 

different enzymes (Control: fish powder heated without addition of enzymes; A: H-FPH-479 

Flavopro Umami 852; B: H-FPH-Flavopro 750; B+C: H-FPH- Flavopro 750+Promod439; 480 

B+D: H-FPH-Flavopro 750+Promod671; B+E: H-FPH-Flavopro 750+Promod144; _O stands 481 

for addition of fish oil (1.5 g/100g)) and the volatile compounds obtained by the PCA. (PC1: 482 

39.9 %, PC2: 31.6 %) 483 

 484 

Figure 2: Two-dimensional correspondence plot (99.9 % of the total variance: dimension 1, 485 

97.4 %; dimension 2, 2.6 %) obtained from performing the correspondence analysis for the 486 

four selected samples considering the fish powder hydrolysate obtained with enzyme A and 487 

increasing concentrations of fish oil (0, 1.5, 3 g/100g and pure fish oil heated under the same 488 

conditions). Rank sum for the different attributes obtained by Friedman test. a, b and c Values 489 

in the same row with significant differences (95 %). 490 

 491 
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Table 1: Description of commercial enzymes used for the fish powder hydrolysis.  
Characterization of fish powder (ash, moisture, fat, protein, carbohydrates (g/100g)). Composition 
of fish oil (n=3). 

Enzymes characteristics* 

Enzyme Activity 

Optimum 

pH 

Optimum 

Tª 

A Flavopro Umami F825MDP Leucine aminopeptidase  5.5-7.5 45-55 

B Flavopro 750P Casein peptidase 5.5-7.5 45-55 

C Promod 144 Papain  5.0-7.6 50-70 

D Promod 439 Casein Protease 6.0-9.0 45-60 

E Promod 671 Casein Protease 5.5-8.0 30-50 

Fish powder composition (%) 

xw ash protein fata carbohydrates 

4.67 ± 0.16 22.4 ± 0.3 60.3 ± 0.6 1.5 ± 0.4 11.1 ± 0.70 

     

Fat composition (g/100g total fat) 

 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 C20:5 C22:6 

Fish powder 
fata 

4.3 ± 0.5 47.0 ± 1.3 16.3 ± 0.5 15.3 ± 0.6 0.40 ± 0.03 - 0.67 ± 0.09 0.55 ± 0.02 

Fish oil 10.4 ± 0.3 29.1 ± 0.8 16.7 ± 1.8 8.2 ± 0.5 2.8 ± 0.3 3.8 ± 0.6 11.2 ± 0.7 6.5 ± 0.3 

*Biocatalysts, Ltd. 
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Table 2. Fish powder hydrolysates obtained with individual enzymes or combination of enzymes. 

Degree of Hydrolysis (DH %) and concentration of individual free amino acids (µg / g). Changes in 

the concentration of the individual free amino acids compared to the control (ΔC)*. (n=3). 

 
 Fish 

powder 
FPH 

  Control A B B+C B+D B+E 

DH (%) 7 ± 2 31 ± 1 46 ± 1 23 ± 1 21 ± 6 57 ± 5 

Alanine 
µg / g 235 ± 8 365 ± 4 829 ± 40 938 ± 33 655 ± 34 677 ± 19 
∆C (%)  55 ± 2 252 ± 17 299 ± 14 178 ± 14 188 ± 8 

Glycine 
µg / g 155 ± 5 114 ± 3 322 ± 10 315 ± 10 371 ±26 247 ± 6 
∆C (%)  -27 ± 2 107 ± 6 103 ± 7 139 ± 17 59 ± 4 

Valine 
µg / g 47 ± 3 224 ± 15 661 ± 50 726 ± 59 448 ± 47 541 ± 16 
∆C (%)  374 ± 31 1,297 ± 106 1,435 ± 123 848 ± 97 1,045 ± 33 

Leucine 
µg / g 48 ± 3 675 ± 15 1.113 ± 51 1.423 ± 59 929 ± 47 1.025 ± 16 
∆C (%)  12,989 ± 31 2,205 ± 105 2,848 ± 123 1,825 ± 98 2,022 ± 33 

Isoleucine 
µg / g 29 ± 3 227 ± 5 613 ± 50 683 ± 14 412 ± 8 522 ± 9 
∆C (%)  670 ± 16 1,981 ± 170 2,218 ± 47 1,299 ± 27 1,674 ± 32 

Threonine 
µg / g 54 ± 6 194 ± 21 604 ± 29 742 ± 48 473 ± 18 541 ± 72 
∆C (%)  260 ± 39 1,023 ± 53 1,280 ± 88 778 ± 33 906 ± 135 

Serine 
µg / g 60 ± 8 178 ± 42 616 ± 20 652 ± 34 429 ± 51 454 ± 99 
∆C (%)  198 ± 70 927 ± 33 988 ± 57 616 ± 85 658 ± 166 

Proline 
µg / g 50 ± 2 60 ± 3 174 ± 2 154 ± 6 116 ± 5 130 ± 14 
∆C (%)  19 ± 6 247 ± 5 207 ± 13 130 ± 10 158 ± 27 

Aspartic acid 
µg / g 51 ± 6 84 ± 2 260 ± 33 274 ± 36 181 ± 6 160 ± 13 
∆C (%)  68 ± 4 421 ± 66 450 ± 72 262 ± 12 222 ± 25 

Methionine 
µg / g 11 ± 3 125 ± 8 298 ± 26 346 ± 23 239 ± 17 263 ± 6 
∆C (%)  997 ± 63 2,511 ± 224 2,932 ± 204 1,997 ± 147 2,202 ± 54 

Glutamic acid 
µg / g 144 ± 23 470 ± 31 880 ± 7 981 ± 64 573 ± 86 431 ± 25 
∆C (%)  227 ± 21 513 ± 5 583 ± 44 299 ± 60 200 ± 17 

Phenylalanine 
µg / g 27 ± 1 255 ± 31 360 ± 43 451 ± 15 292 ± 15 352 ± 2 
∆C (%)  860 ± 115 1,256 ± 162 1,597 ± 55 997 ± 55 1,227  ± 6 

Lysine 
µg / g 43 ± 1 369 ± 80 818 ± 157 1.485 ± 22 887 ± 101 836 ± 66 
∆C (%)  751 ± 186 1,789 ± 363 3,332 ± 50 1,949 ± 233 1,830 ± 152 

Other 
µg / g 23 ± 2 138 ± 3 187 ± 14 286 ± 3 167 ± 5 229 ± 3 
∆C (%)  687  ± 120 831 ± 206 1,273 ± 271 760 ± 209 1,094 ± 169 

Production of Fish powder hydrolysates (FPH): fish powder (100 g/L in water) + commercial enzymes ([A, B, C, D, E], 
Table 1), heated overnight (15 h) at constant stirring (pH 6, and 60 ºC, enzyme (10-20 g/L).  
*ΔC (%) = 100•[concentration of each free amino acid in the fish powder hydrolysates – concentration of each free amino 
acid in the control]/ concentration of each free amino acid in the control 
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Table 3. Retention time, retention index and odour descriptors of volatile compounds found in the different fish powder hydrolisates after 

heating them with or without fish oil (H-FPHs) (n=3). 

 RT RI 
Odour 

threshold 
Identification Odour description 

Aldehydes      

2-methyl propanal 6.03 647 0.1-2.3D MS, RI Std Green, Pungent, Burnt, Malty, Toasted, FruityC 
 

2-methyl butanal 8.42 912 1D MS, RI Std Green, Almond, Strong burnt, Malty, CocoaC 
 

3-methyl butanal 8.53 914 0.2-2D MS, RI Std Cashew, appleA , almond-like, toasted, malty, green CHerbaceous 
 

hexanal 16.54 1079 4.5-5D MS, RI Std Fishy, grassA,B,C 

heptanal 21.60 1170 3D MS, RI Std 
Citrus likeA, dry fish B  green, fatty, solvent, smoky, 
RancidC 

4-heptenal 24.14 1226 0.8-10D MS, RI Std Boiled potato, creamy, sweet, biscuit-likeA,B,C 
 

octanal 26.06 1286 0.7D MS, RI Std 
Lemon, stew-like, boiled meat-like, rancid, soapy, 
citrus, green, flower, fruit, orangeA,B,C 

nonanal 30.03 1405 1D MS, RI Std 
Gravy, green, fruity, gas, chlorine, floral, waxy, 
sweet, melon, soapy, fatty, citrus fruitA,B,C 

2-octenal 31.30 1512 3D MS, RI 
Aromatic, 
oxidized oil-
likeA , GreenC 
 

benzaldehyde 33.014 1539 350-3,500D MS, RI Bitter almondA,C,C ,Burnt sugar, WoodyC 

2,4-heptadienal 33.52 1548 15-95A MS, RI Std Fatty, fishyA,C, aromatic, oxidized oil-likeB 

Alcohols      

1-penten-3-ol 20.321 1145 350-400 A,D MS, RI Std 
Burnt, meatyA, paint like chemical likeB grassy-
greenC 

4-ethyl phenol 23.70 1213 140 D MS, RI Shoe polish, phenolic, leather, smokyA,B,C 
 

1-octen-3-ol 31.79 1519 1-1.5 A,D MS, RI Std Fishy, grassyA ,sweet earthyC 

1- heptanol 31.96 1522 3-5.4 A,D MS, RI, Std Fresh, light green, nuttyA,B,C 
 

4-hepten-1-ol 33.57 1597 - MS, RI Std Fishy C 

Ketones      
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1-penten-3-one 13.45 1020 1-1.3,D MS, RI, Std Pungent, fish-like, rotten, fruity, plastic, leatherA,B,C 

2-heptanone 21.43 1167 140-3,000,D MS, RI Std 
Cured ham-like, toasted, nutty, gas, gravy, soapy, 
Fruity,C 

2-octanone 25.86 1280 50 A,D MS, RI Std Gas, stewed, fatty, green, fruity, cheese-appleC  
 

2-nonanone 29.83 1395 5-200D MS, RI Std Fruity, soapy, fatty, green, earthy, bakedC 

undecanone 36.79 1601 5-7 A,D MS, RI Std Tallow, musty A, Fruity, musty, dusty, green,C 

Acids      

butanoic acid butyl esther 23.09 1196 100D MS, RI Fresh, Sweet, Fruity C 

acetic acid 32.13 1525 30-150D MS, RI Sour, Vinegar, Pungent C 

Sulfur compounds      

dimethyl disulfide 16.01 1069 0.16-12 A,D MS, RI 
 
Sulfur, Cabbage, Ripened cheese, Putrid A,C 

Dimethyl trisulfide 29.66 1390 0.005-0.01D MS, RI, Std 
Rotten food, Sulfury, Fishy, Cauliflower, Cabbage, 
OnionA,C 

Furans      

2-ethyl furan 10.16 950 8A,D MS, RI Rubber, Pungent, Acid, Sweet C 

2-ethyl-5-methyl furan 14.02 1031 - MS, RI  

2-pentyil furan 23.70 1213 6 A,D MS, RI, Std Buttery, Green bean-likeA,C 

Pyrazines      

Methyl pyrazine 25.01 1253 60-105,000D MS, RI, Std Nutty, Roasty, Cocoa, Chocolate C 

2,5-dimethyl pyrazine 27.24 1321 800-1,800D MS, RI, Std Cocoa, Roasted nut, Roastbeef, Woody C 

2,6-dimethyl pyrazine 24.47 1327 200-9,000D MS, RI, Std Baked potato, Nutty, Fruity C 

2,3-dimethyl pyrazine 28.18 1348 2,500-35,000D MS, RI, Std Nutty, musty C 

      
A Giri et al., 2010; B Ganeko et al., 2008; C pherobase.org; D http://www.leffingwell.com/odorthre.htm  

Odour tresholds in water (µg/L)  
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Table 4. Fish powder hydrolysates obtained with the enzymes or combination of enzymes. Volatile compounds associated with fish-like aroma in the different heated fish powder 

hydrolysates (H-FPHs) with or without addition of fish oil (1.5 g/100g) expressed as ug / mL. (n=3). 

 Control A + H-FPH B+ H-FPH (B+C) + H-FPH (B+D) + H-FPH (B+E) + H-FPH 

 No-FO 1.5 % FO No-FO 1.5 % FO No-FO 1.5 % FO No-FO 1.5 % FO No-FO 1.5 % FO No-FO 1.5 % FO 

Aldehydes            

2-methyl butanal 4 ± 2 35 ± 5 312 ± 6 270 ± 18 1,361 ± 78 955 ± 120 588 ± 134 681 ± 99 436 ± 171 528 ± 230 317 ± 1 618 ±13 

3-methyl butanal 9 ± 6 65 ± 18 1,073 ± 131 1,139 ± 116 1.475 ± 68 1,295 ± 94 1,275 ± 221 1,113 ± 160 1,046 ±  272 881 ± 229 769 ± 20 1,026 ± 172 

hexanal 0.323 ± 0.007 1.200 ± 0.651 0.524 ± 0.119 1.688 ± 0.641 0.441 ± 0.079 5 ±1 0.358 ± 0.109 1.609 ± 0.159 0.361 ±  0.055 1.571 ± 0.128 0.285 ± 0.062 1.758 ± 0.785 

heptanal 0.174 ± 0.029 0.262 ± 0.065 0.392 ± 0.018 0.406 ± 0.002 0.329 ± 0.035 0.572 ± 0.067 0.278 ± 0.049 0.349 ± 0.109 0.181 ± 0.019 0.279 ± 0.012 0.153 ± 0.002 0.316 ± 0.016 

4-heptenal - 0.103 ± 0.077 0.033 ± 0.012 0.239 ± 0.027 0.032 ± 0.003 0.508 ± 0.159 0.047 ± 0.028 0.211 ± 0.194 0.040 ± 0.002 0.161 ± 0.015 0.010 ± 0.005 0.240 ± 0.135 

octanal 0.017 ± 0.002 0.008 ± 0.002 0.054 ± 0.007 0.011 ± 0.005 0.038 ± 0.014 0.006 ± 0.002 0.027 ± 0.002 0.013 ± 0.009 0.024 ± 0.004 0.011 ±  0.007 0.013 ± 0.002 0.006 ± 0.001 

nonanal 3.605 ± 0.710 0.692 ± 0.140 12 ± 2 3 ± 1 8 ± 2 0.915 ± 0.088 5.192 ± 0.219 2.131 ± 1.067 3.969 ± 0.832 1.572 ± 0.999 3.371 ± 0.617 0.737 ± 0.008 

2,4-heptadienal 0 0.212 ± 0.015 0 0.215 ± 0.197 0 2 ± 1 0 0.417 ± 0.056 0 0.455 ± 0.044 0 0.501 ±0.042 

Alcohols            

1-penten-3-ol 0.052 ± 0.007 4 ± 1 0.139 ± 0.036 17 ± 3 0.729 ± 0.152 44 ± 3 0.797 ± 0.132 26 ± 3 1.010 ± 0.329 17 ± 2 0.365 ± 0.006 23 ± 2 

1-octen-3-ol 0.063 ± 0.002 0.136 ± 0.051 0.120 ± 0.004 0.367 ± 0.022 0.108 ± 0.014 0.787 ± 0.260 0.101 ± 0.005 0.289 ± 0.025 0.106 ±  0.009 0.345 ± 0.266 0.102 ± 0.014 0.420 ± 0.032 

4-hepten-1-ol 0.939 ± 0.048 0.618 ± 0.177 1.353 ± 0.061 1.005 ± 0.026 1.206 ± 0.084 1.015 ± 0.051 1.094 ± 0.118 0.965 ± 0.092 1.199 ±  0.027 0.925 ± 0.316 1.132 ± 0.125 0.881 ± 0.002 

Pyrazines            

Methyl pyrazine 1.137 ± 0.896 2.295 ± 0.340 6 ± 1 9.802 ± 0.228 8.609 ± 0.023 7.958  ± 0.356 9 ± 2 9 ± 3 7 ± 1 7.326 ± 0.614 11 ± 2 11 ± 1 

2,5-dimethyl 
pyrazine 3 ± 1 5 ± 1 40 ± 6 49 ± 3 27 ± 1 21 ± 1 48 ± 3 43 ± 8 46 ±  4 42.625 ±0.216 55 ± 9 61 ± 6 

2,6-dimethyl 
pyrazine 3 ± 1 4 ± 1 8 ± 2 12 ± 2 7.453 ± 0.015 7.104 ± 0.252 14 ± 3 15 ± 4 36 ±  4 39 ± 3 41 ± 4 69 ± 3 

2,3-dimethyl 
pyrazine 0.136 ± 0.057 0.419 ± 0.112 0.582 ± 0.140 0.944 ± 0.016 1.096 ± 0.051 0.755 ± 0.043 1.133 ± 0.088 0.965 ± 0.247 3.931 ± 0.555 3 ± 1 4 ± 2 4 ± 1 

             

Development of aroma: 1. Aliquots of FPHs (0.2 mL) mixed with a dextrose solution (0.05 mL (80 µmol/mL)) and glycerol (500 µL); 2. Addition of fish oil (1.5 g/100g); 3. Samples 

homogenised at 60 ºC for 10 minutes, followed by heating at 110 ºC for 30 minutes. 
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Highlights. 

Proteases were used to derive amino-acid-rich ingredients from by-products.  

Combinations of peptidases lead to the highest concentration in free amino acids.  

4-heptenal and 2, 4-heptadienal were the main volatile generated.  

Low-value fish materials as an alternative for the fish industry. 

 

 

 


