Accepted Manuscript

Production of seafood flavour formulations from enzymatic hydrolysates of fish by-products

I. Peinado, G. Koutsidis, J. Ames

PII: S0023-6438(15)30196-1

DOI: 10.1016/j.lwt.2015.09.025

Reference: YFSTL 4973

To appear in: LWT - Food Science and Technology

Received Date: 14 June 2015

Revised Date: 7 September 2015 Accepted Date: 13 September 2015

Please cite this article as: Peinado, I., Koutsidis, G., Ames, J., Production of seafood flavour formulations from enzymatic hydrolysates of fish by-products, *LWT - Food Science and Technology* (2015), doi: 10.1016/j.lwt.2015.09.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Production of seafood flavour formulations from enzymatic hydrolysates of fish
2	by-products.
3	Peinado, I. 1*; Koutsidis, G. 1 & Ames, J. 2
4	
5	¹ Department of Biology, Food and Nutrition, Health and Life Sciences. Northumbria
6	University. Newcastle City Campus, Ellison Place, Newcastle Upon Tyne, NE1 8ST, UK.
7	² Centre for Research in Biosciences, Faculty of Health and Applied Sciences, The University
8	of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
9	* Corresponding author: Irene Peinado-Pardo
10	E-mail address: irene.peinadopardo@unibz.it
11	Abstract.
12	Amino acid-rich extracts derived from fish by-products were utilised to generate flavour
13	model systems with added glucose and/or fish oil.
14	Combination of endo and exo peptidases resulted in the most marked increased in free amino
15	acids, particularly for leucine, lysine and glutamic acid (48.3 \pm 3.4 to 1,423.4 \pm 59.6, 43.3 \pm
16	1.2 to 1,485.4 \pm 25.6 and 143.6 \pm 21.7 to 980.9 \pm 63.6 $\mu g/g$ respectively).
17	Main volatile products formed after heating the systems were 4-heptenal, 2,4-heptadienal,
18	and some pyrazines. Increased concentrations of 1-octen-3-ol or 1-hepten-4-ol were also
19	observed in the heated systems compared to the controls. All of these volatile compounds
20	have been identified among the volatile profile of cooked seafood.

* Corresponding author permanent address:

Irene Peinado-Pardo Faculty of Science and Technology Piazza Università, 5 I - 39100 Bozen-Bolzano

21	Conversion of low value fish derived materials such as fish powder, into more valuable
22	products such as flavour precursors and subsequently flavour compounds might be a
23	commercially viable proposition for the fish industry.
24	
25	
26	Chemical compounds studied in this article:
27	Glutamic acid (Pubchem CID 611); Aspartic acid (Pubchem CID: 424); Leucine (Pubchem
28	CID: 6106); Lysine (Pubchem CID: 5962); 1-Octen-3-ol (Pubchem CID: 18827); 2,4-
29	Heptadienal (Pubchem CID: 20307); 4-Heptenal (Pubchem CID:71590); 1-Hepten-4-ol
30	(Pubchem CID: 19040).
31	
32	
33	Key words: enzymatic hydrolysis, amino acids, volatiles, fish by-products, seafood flavour.
34	

1. Introduction

35

36	Traditionally, waste from the fish industry such as small catch, flesh, viscera etc. are either
37	disposed of or utilised as fishmeal for animal feeding. Nevertheless, over the last few
38	decades, raised awareness on the environmental impact of products and processes has led to
39	retailers and consumers making concerted efforts to make the best use of all resources.
40	Nowadays, there is growing interest in using food wastes as sources of materials or
41	ingredients that are capable of providing added value to consumer products including uses in
42	foods. Some examples of this are the extraction and recovery of different compounds of
43	interest such as amino acids, peptides, collagen or omega fatty acids from fish wastes
44	(Guerard, Dufosse, Broise, & Binet, 2001). Development of novel means of processing is
45	required to convert the wastes and by-products into forms that are safe, marketable and
46	acceptable to the consumer.
47	Fish wastes have also been utilised for the production of fish powders or fish protein
48	hydrolysates, used as nitrogen source for microbial growth and enzyme production. Autolytic
49	process, which depends only on endogenous enzymes, is considered to be economically
50	advantageous; however, exogenous commercial enzymes are sometimes preferred since they
51	allow controlled hydrolysis, hence control over the properties of the resulting products. Many
52	enzymes have attracted interest for the hydrolysis of fish proteins (e.g., papain, alcalase,
53	neutrase, Flavourzyme [®] , Protamex [®]). Characteristics of the final hydrolysate will depend on
54	the enzyme(s) added, but also on the substrate, which plays an important role in the
55	hydrolysis (Annadurai, Sadeeshkumar, Vijayalaksmi, & Pirithiviraj, 2012; Aspmo, Horn, &
56	H. Eijsink, 2005; Ghorbel et al., 2005; Souissi, Bougatef, Triki-ellouz, & Nasri, 2007).
57	Flavour is an important factor to determine the quality of fish and fish derived products as
58	well as consumer acceptance. Fishy flavour often makes products derived from fish less
59	acceptable (Ganeko et al., 2008). This characteristic aroma is influenced by the species but

also by the conditions used for its post-harvest handling, storage and cooking. Some fish such
as salmon or trout, have a strong flavour while might have a relatively mild smell before
cooking that becomes strong and pleasant after heating (Ganeko et al., 2008; Whitfield,
Freeman, Last, Bannister, & Kennett, 1982; Whitfield, Last, Shaw, & Tindale, 1988).
Important aroma compounds, characteristic of fresh fish, are lipid derived volatile
compounds generated mainly by oxidative enzymatic reactions and autoxidation of lipids
such as aldehydes and ketones. However, compounds derived from Maillard reaction such as
pyrazines and furans, also make important contributions to the flavour and aroma of fish
products after frying or grilling (Giri, Osako, & Ohshima, 2010).
The aim of this study was to demonstrate the use of by-products of the fish industry (fish
powder) for the generation of fish flavour formulations after protease biocatalysis and
subsequent heating in the presence of glucose and/or fish oil.

72

73

2. Material and Methods

74 **2.1. Chemicals**

- Proteases (Biocatalysts Ltd, UK), fish oil and fish powder (Croda International plc, UK), as well as glucose and glycerol, (Sigma-Aldrich Company Ltd, Poole, UK) used to produce the
- 77 model systems were all food grade. Chemicals used for analytical determinations: disodium
- 78 tetraborate decahydrate, sodium dodecyl sulphate (SDS), o-phthaldialdehyde (OPA),
- 79 dithiothreitol (DTT), serine, hydrochloric acid, iso-octane, C7 C30 saturated alkanes
- 80 $(1,000\,\mu\text{g/mL}\ \text{each component in hexane})$ were all analytical grade purchased form Sigma-
- 81 Aldrich.

82 2.2. Hydrolysis and formation of aromas

- 83 Table 1 summarizes the characteristics of the commercial proteases as well as the
- 84 composition of the fish powder used as starting materials to produce fish-like aromas. Fish

85 powder (100 g/L in water) was hydrolysed for 15 h at constant stirring, under controlled conditions of temperature and pH (60°C at pH 6). The reaction was terminated by heating the 86 mixture at 95°C for 20 min in a water bath. Each protease used was added so all mixtures had 87 88 the same enzymatic activity per gram of sample. The conditions of pH, temperature and time of reaction, as well as the enzymes and their combinations were selected based on the 89 combination of those parameters that resulted in the higher concentration of free amino acids 90 in a preliminary experiment (data not shown). The resulting slurries were centrifuged at 8,000 91 x g for 20 min and aliquots were analysed to determine the degree of hydrolysis (DH) and 92 93 amounts of free amino acids. 94 Subsequent reactions to generate aroma compounds were carried out with selected slurries of 95 the fish powder hydrolysates (FPHs) based on the degree of hydrolysis and free amino acid content. Aliquots of FPHs (0.2 mL) were mixed, homogenised with a glucose solution (0.05 96 97 mL, 80 µmol/mL) in glass reaction vials and freeze-dried. Glycerol (500 µL) was added to 98 each freeze-dried sample to facilitate homogenisation while fish oil (1.5 g/100 g) was added 99 to some of the samples according to the experimental design (Table 2). All samples in closed 100 vials were then homogenised at 60°C for 10 min and subsequently heated at 110°C for 30 min 101 to promote flavour formation. Fish powder hydrolysates without addition of fish oil and before heating were used as control. All samples were prepared and analysed in triplicate. 102

103 **2.3.** *Analyses*

- 2.3.1. Chemical analyses. Composition of fish powder and fish oil.
- The moisture, ash and extractable fat content of the fish powder were calculated according to the Association of Official Analytical Chemists (AOAC, 2000). Total protein was determined by the Kjeldahl method using a nitrogen conversion factor of 6.25 (Ortiz et al., 2006; Yaich et al., 2011).

109 The fatty acid composition was analysed by GC-FID after transesterification to methyl esters 110 (FAMEs) with a mixture BF₃ methanol at 20°C according to the IUPAC standard method 111 (IUPAC, 1992; Peinado, Girón, Koutsidis, & Ames, 2014; Yaich et al., 2011). Analysis of 112 FAMEs was carried out with a DANI Master GC equipped with an auto sampler, a DANI FID detector (DANI Instruments S.p.A, Italy) and an Agilent DB-23 (60 m × 0.25 mm, 0.25 113 um) capillary column (Agilent Technologies, Cheshire, UK). The oven temperature was 114 programmed from 90°C to 240°C at 4°C/min and the injector and detector temperatures were 115 116 set at 250°C. The carrier gas was helium at 1.0 mL/min constant flow (split ratio 10:1). Data analysis, identification and quantification of FAMEs was accomplished by comparing the 117 118 retention times and areas of the peaks with those of pure standards (Supelco® 37 Component 119 FAMEMix, Sigma-Aldrich, Poole, UK) and analysed under the same conditions. The results were expressed as a g of each fatty acid/100 g of the lipid fraction. 120

121 <u>2.3.2. Degree of hydrolysis, DH</u>

The Degree of Hydrolysis (DH) was estimated following a modified OPA spectrophotometric 122 method using aqueous serine, (0.1 g/L) as the reference standard (Church, Porter, Catignani, 123 124 & Swaisgood, 1985; Nielsen, Petersen, & Dambmann, 2001). For the OPA reagent, disodium tetraborate decahydrate (7.620 g) and sodium dodecyl sulphate (SDS; 200 mg) were 125 dissolved in 150 mL deionized water followed by the addition of 4 mL of o-phthaldialdehyde 126 127 (160 mg) in ethanol and dithiothreitol (176 mg, 99 %, DTT). The final solution was made up to 200 mL with deionized water. For the analysis, aliquots of FPH or serine standard solution 128 129 (50 µL) were placed in the wells of a 98-well micro-plate containing 150 µL of OPA-reagent 130 and the absorbance was read at 340 nm. The DH was calculated using equations 1,2 and 3 (Church et al., 1985; Nielsen et al., 2001). 131

$$132 DH = \frac{h}{h_{tot}} \cdot 100\% (Equation 1)$$

$$133 h = \frac{(serine - NH_2) - b}{a} (Equation 2)$$

134
$$Serine - NH_2 = \frac{Abs_{sample} - Abs_{blank}}{Abs_{standard} - Abs_{blank}} \cdot 0.9516 \cdot 0.1 \cdot \frac{100}{X} \cdot P$$
 (Equation 3)

- Where h_{tot} depends on the specific raw material, and for the present study was estimated as
- 136 $h_{tot} = 8.6$; h = meqv serine / g protein; serine-NH₂= meqv serine-NH₂ / g protein; a and b
- depend on the specific raw material, and for the present study they were estimated as a =
- 138 1.00, b = 0.4; X = g sample; P = protein % in the sample; 0.1 is the sample volume (L)
- 139 (Nielsen et al., 2001).
- 140 2.3.3. Free amino acids
- 141 The free amino acid content was calculated following the same method as Elmore, Koutsidis,
- Dodson, Mottram, & Wedzicha, (2005). Aliquots of the FPHs (500 μL) were mixed with HCl
- 143 (500 μL, 0.01mol/L) and centrifuged at 7,200 x g for 15 min. Centrifuged supernatant (100
- 144 µL) was derivatized using the EZ-Faast amino acid kit (Phenomenex, Cheshire, UK), and
- analysed by (GC-MS). The derivatized amino acids were extracted into iso-octane (100 µL)
- and analysed in electronic ionization mode at 70 eV using a 6890 GC coupled to a 5973 MSD
- instrument (Agilent, Palo Alto, CA). Derivatized amino acid solution (1 µL) was injected at
- 148 250 °C in split mode (10:1) onto a 10 m × 0.25 mm × 0.25 µm Zebron ZB-AAA capillary
- 149 column (film composition 50% phenyl 50% dimethyl polysiloxane) (Phenomenex, Cheshire,
- 150 UK). The oven temperature was 110°C for 1 min, then increased at 30°C/min to 320°C, and
- held at 320°C for 2 min. The transfer line was held at 320°C, and the carrier gas was helium
- at a constant flow rate of 1.1 mL/min. The ion source was maintained at 320°C. Standard mix
- stock solution (200 µmol/L each) of 15 non-basic amino acids (Ala, Asp, Glu, Gly, His, Ile,
- Leu, Lys, Met, Orn, Phe, Pro, Ser, Thr, Val) in hydrochloric acid (0.1 mol/L) and 2 basic
- amino acids (Asn, and Gln,) in water were prepared; different dilutions (10 to 150 µmol /L)
- were derivatized, and calibration curves were plotted for each amino acid (effect of food

157	matrix composition was studied by spiking samples). Norvaline (100 μL (0.2 mmol/L)) was
158	used as the internal standard.
159	2.3.4. Volatiles analysis
160	GC/MS analyses were performed using an Agilent 7890A gas chromatograph equipped with
161	a DB-WAX capillary column (60m x 0.25mm i.d. x 0.25 μ m FT) and coupled to a BenchToF
162	Time of Flight Mass Spectrometer (Markes International Ltd, Llantrisant UK) and a CTC
163	CombiPal autosampler (CTC Analytics AG, Zwingen, Switzerland). HS-SPME was
164	performed on aqueous extracts (200 $\mu L)$ in 2 mL of saturated NaCl solution. Samples were
165	incubated at 40°C for 40 min followed by a 1 min extraction using a CAR/PDMS/DVB
166	SPME fibre (Supelco, Sigma-Aldrich Company Ltd, UK) and desorption at 260°C for 5 min.
167	The oven temperature was 40°C (held for 5min), 40-200°C at 4°C/min, then to 250°C at
168	8°C/min, held for 5 min. Helium was used as the carrier gas at a flow rate of 1 mL/min.
169	The volatile compounds were identified by comparing their mass spectra with spectral data
170	from the National Institute of Standards and Technology 2008 library as well as retention
171	indices published in the literature (Ganeko et al., 2008; Giri et al., 2010; pherobase. org).
172	Relative retention indices were determined by injection into the column of a solution
173	containing a series of <i>n</i> -alkanes (C7–C30, saturated alkanes (1,000 μg/mL in hexane) Sigma-
174	Aldrich Company Ltd, UK) in the same temperature programmed run as described above.
175	Quantification of selected compounds was carried out using external calibration curves.
176	2.4. Sensory Evaluation
177	Consumers' preferences were assessed by the Friedman Pairwise ranking analysis (Escriche,
178	Fernández-Segovia, Serra, Andrés, & Barat, 2001; González-Tomás, Carbonell, & Costell,
179	2004; Peinado, Rosa, Heredia, Escriche, & Andrés, 2012). This test is used with a non-trained
180	panel, to evaluate sets of three to six samples, considering a single attribute each time.
181	Twenty-seven subjects constituted the panel. The samples selected were presented to each of

- the subjects in all possible paired combinations. The selection of the sensory attributes was
- based on the characteristic criteria of the samples as well as some previous experiments on
- similar products (Ganeko et al., 2008; Giri et al., 2010). Panellists were asked which of the
- two samples presented they would assess as: "stale" (smell of fish cooked for too long),
- 186 "fried" (smell of fish cooked in fat or oil, usually over direct heat), "grilled" (typical fish
- 187 cooked in a grill), and their overall preference.
- 188 Significant differences between the samples were established by the statistical function T-
- Friedman and compared with the tabulated $X^2=7.81$ ($\alpha=0.05$) with (t-1) degrees of freedom
- 190 (Meilgaard, Civille, & Carr, 1999).
- 191 Afterwards, Tukey's honestly significant difference (HSD) was calculated to establish
- between which samples these differences lay (equation 4), (Meilgaard et al., 1999):

193
$$HSD = q_{\alpha,t,\infty} (p \cdot t/4)^{\frac{1}{2}}$$
 (Equation 4)

- where $q_{a,t,\infty}$ is a tabulated value, p is the number of panellists and t the number of samples
- 195 (*t*=4), (Meilgaard et al., 1999).
- 196 **2.5. Statistics**
- 197 Analysis of variance (ANOVA) and the Friedman test (p-value < 0.05) were carried out using
- 198 SPSS to estimate the differences in amino acid composition of the FPHs. Principal
- 199 Component Analysis, PCA, (SPSS) was applied to differentiate the FPHs based on their
- volatile compound.
- 201 Furthermore, a correspondence analysis was performed to establish whether the selected
- samples and the evaluated sensory attributes map. This tool establishes the association
- between categorical variables (Beh, Lombardo, & Simonetti, 2011; Guerrero et al., 2010).

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

3. Results and discussion

3.1. Hydrolysis of fish powder

Degree of hydrolysis (DH): the OPA method to determine the DH is based on the specific reaction between the OPA-reagent and primary amino groups, in the presence of a thiol to form 1-alkylthio-2-alkyl-substituted isoindoles that can be quantified spectrophotometrically at 340 nm (Medina-Hernández et al, 1990). The DH is presented in table 2; All proteases produced a high DH compared to the control FP. Individual proteases, "A" (endo and exo peptidase activities) and "B" (exopeptidase activity) showed high degrees of hydrolysis (30.5 \pm 1.2% and 46.0 \pm 0.7% respectively). The fact that the DH was higher with enzyme "B" indicates that having dual enzymatic activity within one enzyme does not necessarily increase the DH. The same conclusion could be achieved when enzyme "B" was combined with enzymes "C" or "D" (endopeptidases). However, the combination "B+E" produced the highest DH (57.4 \pm 0.9%). It is not easy to compare the hydrolysates prepared using the different proteases because they have optimal working conditions and specificities. The individual free amino acid content of the FPHs is illustrated in table 2 together with the changes in the concentrations for the amino acids in the FPHs compared to the control (ΔC %). 17 amino acids were identified and quantified in the different FPHs. Lysine, leucine, glutamic acid and alanine, were the most abundant in most of the FPHs (235-1,484 µg/g), reaching their highest concentrations for the combination "B+C" (Lys [1,484 \pm 43 μ g/g], Leu $[1,423 \pm 48 \,\mu\text{g/g}]$, Glu $[981 \pm 142 \,\mu\text{g/g}]$ and Ala $[939 \pm 135 \,\mu\text{g/g}]$). His, Ile, Phe, Ser and Thr, were in the range of 178-742 µg/g, also with their highest concentrations for the combination "B+C"; while Gly, Pro, Asp, Met, His, Tyr and Trp, were found in smaller concentrations. Depending on the enzymes/combination of enzymes, there were significant differences in the concentration of the amino acids within the FPHs; some amino acids, such

229	as Ala, Gly or Pro, increased their concentration, up to 3-6 fold compared to the control-FPH
230	(regardless of their initial concentration) while some others such as Lys, Met or Leu
231	increased their concentrations up to 23-35 fold compared to the control-FPH (Table 2).
232	3.2. Development of aromas
233	A total of 32 volatile compounds were identified in the heated fish powder hydrolysates (H-
234	FPHs) (Table 3). Most of the compounds identified in the control sample (heated without the
235	addition of external enzymes), were also identified in the H-FPHs heated with glucose with
236	or without fish oil (Table 4).
237	Aldehydes significantly contribute to the overall aroma of cooked fish/seafood due to their
238	low threshold values (Table 3). In the present study, the concentration of aldehydes increased
239	in the H-FPHs, being higher in those samples containing fish oil (Table 4). This increase in
240	samples containing oil might be expected, as some aldehydes might be generated from lipid
241	oxidation, e.g., hexanal, present in much higher concentrations in the H-FPHs containing fish
242	oil, derives mainly from the oxidation of linoleic acid. Moreover, some other aldehydes, such
243	as 2-methylpropanal, 4-heptenal and 2,4-heptadienal, not found in the control, were abundant
244	in the H-FPHs. 2,4-Heptadienal, which is a degradation product of linolenic acid (Decker,
245	Elias, & McClements, 2010), was only found in samples containing fish oil (Table 4). Some
246	branched short chain aldehydes could result from deamination of amino acids. The major
247	aldehyde in the H-FPHs, regardless of the incorporation of fish oil, was 3-methyl-butanal,
248	which presence was attributed to the high concentration of leucine in the FPHs. While in
249	some other cases aldehydes can originate from the Strecker degradation of amino acids, for
250	instance, 2-methylbutanal, which was also in considerable concentrations in the H-FPHs, may
251	be derived from isoleucine. Due to their low threshold values, the Strecker aldehydes
252	including 2-methylpropanal, 2-methylbutanal and 3-methylbutanal, might impart nutty/malty
253	nuances to the product while, some others aldehydes such as heptanal, octanal or nonanal

254	might impart a more characteristic fishy flavour (Caprino et al., 2008; Giri et al., 2010; Selli
255	& Cayhan, 2009).
256	Alcohols are mainly formed by an enzymic peroxidation of the n-3 and n-6 polyunsaturated
257	fatty acids, present in fish tissue. 1-Penten-3-ol, significantly increased in samples containing
258	fish oil (Table 4). Although not all alcohols are likely to have an important contribution to
259	odour, due to their relatively high odour threshold values (Table 3), unsaturated alcohols such
260	as 1-octen-3-ol, with generally much lower threshold values than the saturated counterparts,
261	might have a greater impact on the overall aroma (Kawai & Sakaguchi, 1996; Selli &
262	Cayhan, 2009).
263	Amongst the ketones identified, 2-heptanone, 2-octanone, 2-nonanone and undecanone,
264	slightly increased in the H-FPHs, regardless the addition of fish oil. However, 1-penten-3-
265	one, not present in the control, appeared in all H-FPHs, with a significant increase in those H-
266	FPHs containing fish oil. Due to its low odour threshold value (Table 3), this compound,
267	which might result as a degradation product of linolenic acid, is likely to contribute pungent
268	and fish-like notes to the aroma (Decker et al., 2010; Giri et al., 2010). Ketones are mainly
269	produced a result of lipid-autoxidation and/or amino acid degradation due to the Strecker
270	reaction, and are associated with off-flavour (Selli & Cayhan, 2009)
271	Acids such as acetic acid, propanoic acid, 2-methyl propanoic acid, butanoic acid and 3-
272	methyl butanoic acid with relatively low threshold values (Table 3), have been reported to
273	result from fermentation in several fish products (Giri et al., 2010). In the present study acetic
274	acid was identified but its concentration did not differ significantly when compared to the
275	control. These acids can derive either from lipolysis or from amino acid metabolism
276	(deamination) (Montel, Masson, & Talon, 1998).
277	Sulphur-containing compounds dimethyl disulphide, (cooked cabbage aroma), and
278	dimethyl trisulphide, (meaty and cooked onion aroma), increased considerably. These

279	compounds, usually associated with deterioration of seafood, have a very strong effect on the
280	overall food aroma even at low concentrations because of their low threshold values (Table 3)
281	(Le Guen, Prost, & Demaimay, 2001; Selli & Cayhan, 2009). They are known to originate
282	from the free, peptidic and proteinic sulphur amino acids, such as methionine, which
283	concentration increased considerably after enzymatic hydrolysis (Table 2).
284	Furans: Amongst the heterocyclic compounds identified, furans, which possess low odour
285	threshold values, were present in much higher concentrations in the H-FPHs containing fish
286	oil. They can be formed from amino acids by the Amadori rearrangement pathway, but also
287	by the oxidation of fatty acids, i.e. the formation of 2-pentylfuran, which is one of the
288	resulting products from the oxidation of linoleic acid (Giri et al., 2010; Taylor & Mottram,
289	1990; Whistler & Daniel, 1985).
290	Pyrazines, characteristic compounds derived from the Maillard reaction imparting amongst
291	other roasted and nutty flavour (Fox & Wallace, 1997; Giri et al., 2010), importantly
292	increased in the H-FPHs. However, the fact that there were no significant differences in their
293	concentration in the model systems with added fish oil compared to those without fish oil
294	demonstrates that the addition of lipo-oxidation products did not contribute to the pool of
295	carbohydrates. This might have been due to carbohydrates being in excess in the model
296	systems (i.e. added glucose).
297	Figure 1 illustrates the PCA conducted to evaluate the differences in the volatile composition
298	of the different samples. The first three components explain 88.1% of the total variability.
299	The first two principal components (PC1: 39.9% and PC2: 31.6%) differenciate between the
300	H-FPHs containing additional fish oil from those without it. In the same way some of the
301	volatile compounds such as hexanal, heptanal, 4-heptanal, 2,4,-heptadienal, 1-penten-3-ol or
302	1-octen-3-ol, derived from fatty acids such as linoleic and linolenic acids, are located on the
303	right side of the plot together with the H-FPHs containing fish oil. The two H-FPHs controls

(with and without fish oil) are separated from the compounds that illustrated a higher increase as a result of the addition of enzymes. These compounds include 2-methylbutanal, 3-methylbutanal, 1-hepten-4-ol and the sulphur compounds, which have also been found in the volatile profile of cooked fish or meals containing seafood (Ganeko et al., 2008; Giri et al., 2010; Selli & Cayhan, 2009), The addition of fish oil, however, did not have a significant impact on the formation of these compounds or pyrazines. The use of enzymes did produce a high DH with different concentrations of the free amino acids in the FPHs that would have been expected to have a high impact on the formation of the volatile compounds. However, the differences due to the use of these various enzymes were not significant in terms of concentrations of the Maillard reaction products including pyrazines, sulphur compounds and some aldehydes.

3.3 Sensory evaluation

Only enzyme B with increased amounts of fish oil was selected to carry out the sensory evaluation (Figure 2). The selection of enzyme B was based on its high release of free amino acids. Different concentrations of fish oil (0, 1.5 and 3 g/100g) were investigated to establish the role of fish oil on the formation of aroma, as well as its influence on sensory perception. Panellists evaluated a total of six pairs of samples, corresponding to all the possible cominations. The statistic of Friedman test for each sample was compared with the statistic of chi-square (X^2) with 3 degrees of freedom (7.82, $\alpha = 0.05$). A significant difference was observed for all the attributes in the samples evaluated. Friedman test was followed by specific comparisons using Tukey's Honestly Significant Difference (HSD) multiple comparison post-hoc statistical test (Meilgaard et al., 1999). The value of q tabulated for 3 degrees of freedom ($\alpha = 0.05$), was 3.63 and the HSD value obtained by equation 4 was 18.85. The rank sums (addition of twice the sum of the

frequencies of the columns to the sum of the frequencies of the rows for each sample

(Peinado et al., 2012)) were calculated, a table of rank sum differences was prepared and the
differences were compared with the value of HSD being significant when this value was
exceeded (Figure 2).
Panellist did not find significant differences between the H-FPHs samples regardless the
concentration of added fish oil (0, 1.5 and 3 $g/100g$) for all the attributes. However, panellists
found significant differences for "stale" when "100% FO" was compared to H-FPHs without
addition of fish oil. For "fried" aroma, significant differences were found when "100% FO"
was compared with H-FPHS with 0 and 1.5 g/100g of fish oil. Finally for "grilled" aroma,
panellists found significant differences between "100% FO" and all the H-FPHs regardless
the addition of fish oil. For the global preference the three H-FPHs had similar scores.
Furthermore, figure 2 illustrates the two-dimensional plot of the sample scores and compound
loadings obtained by the correspondence analysis. The first two dimensions explained
99.99% of the total variance (dimension 1, 97.4%; dimension 2, 2.6%). H-FPHs with
different concentrations of fish oil were preferred by the panellists. "Fried" and "grilled"
contributed the most to the global preference while "stale" contributed negatively to the global
preference of the product. There were no differences between the three H-FPHs in terms
global preference.

4. Conclusions

Heating FPHs (as a source of amino acids), a source of sugar and fish oil successfully produced volatiles at a laboratory scale. Enzyme "B" (exopeptidase) on its own or in combination with endopeptidases is suggested as the starting point to liberate amino acids from fish protein while the dual activity enzyme "A" produced a lower amount of free amino acids.

The use of various enzymes produced different amounts of amino acids in the FPHs with
important amounts of lysine, leucine, glutamic acid and alanine being released. These
increased on free amino acids will have an influence on the characteristic compounds derived
from the Maillard reaction, such as pyrazines, sulphur compounds or some aldehydes. Fish
oil had a great impact on the volatile compounds associated with fish aroma; its addition
enhanced the concentration of some lipid oxidation products such as hexanal, heptanal, 4-
heptanal, 2,4,-hetadienal, 1-penten-3-ol or 1-octen-3-ol, characteristic impact compounds in
seafood, that have been previously identified in the volatile profile of cooked fish or meals
containing seafood. "Grilled" and "fried" aromas, characteristics of FPHs heated with fish
oil, were preferred by panellists, while fish oil on its own produced unpleasant aromas.
Future work involving different types and concentrations of fish oil together with sensory
evaluation is suggested to investigate the acceptability of seafood-derived fish-like flavouring
formulations based on such approaches.

Acknowledgments

The authors would like to thank Frutarom (UK) Ltd, Biocatalysts (UK) and the Technology Strategy Board (TSB), (UK) for the financial support given to this investigation.

371	References
372	
373	Annadurai, D., Sadeeshkumar, R., Vijayalaksmi, M., & Pirithiviraj, N. (2012). Studies on
374	Growth of Marine Bacteria Using Marine Fish Waste Medium. International Journal
375	of Pharmaceutical & Biological Archives 3(4), 910–913. doi:ISSN: 0976 – 3333
376	Aspmo, S. I., Horn, S. J., & H. Eijsink, V. G. (2005). Enzymatic hydrolysis of Atlantic cod
377	(Gadus morhua L.) viscera. Process Biochemistry, 40(5), 1957–1966.
378	doi:10.1016/j.procbio.2004.07.011
379	Beh, E. J., Lombardo, R., & Simonetti, B. (2011). A European perception of food using two
380	methods of correspondence analysis. Food Quality and Preference, 22(2), 226-231
381	doi:10.1016/j.foodqual.2010.10.001
382	Caprino, F., Moretti, V. M., Bellagamba, F., Turchini, G. M., Busetto, M. L., Giani, I.,
383	Pazzaglia, M. (2008). Fatty acid composition and volatile compounds of caviar from
384	farmed white sturgeon (Acipenser transmontanus). Analytica Chimica Acta, 617(1-2).
385	139–47. doi:10.1016/j.aca.2008.02.005
386	Church, F. C., Porter, D. H., Catignani, G. L., & Swaisgood, H. E. (1985). An o-
387	phthalaldehyde spectrophotometric assay for proteinases. Analytical Biochemistry,
388	146(2), 343–8. doi:10.1016/0003-2697(85)90549-4
389	Decker, E., Elias, R., & McClements, D. J. (2010). Oxidation in Foods and Beverages and
390	Antioxidant Applications: Management in Different Industry Sectors. Woodhead
391	Publishing. Retrieved from https://www.elsevier.com/books/oxidation-in-foods-and-
392	beverages-and-antioxidant-applications/decker/978-1-84569-983-3
393	Elmore, J. S., Koutsidis, G., Dodson, A. T., Mottram, D. S., & Wedzicha, B. L. (2005).
394	Measurement of acrylamide and its precursors in potato, wheat, and rye model

395	systems. Journal of Agricultural and Food Chemistry, 53(4), 1286–93.
396	doi:10.1021/jf048557b
397	Escriche, I., Fernández-Segovia, I., Serra, J. A., Andrés, A., & Barat, J. M. (2001).
398	Evaluación sensorial del bacalao desalado, pretratado térmicamente listo para cocinar.
399	Alimentaria: Revista de Tecnología E Higiene de Los Alimentos, 322, 51-54.
400	doi:ISSN 0300-5755
401	Fox, P. F., & Wallace, J. M. (1997). Formation of Flavor Compounds in Cheese. In Advances
402	in Applied Microbiology (Vol. 45, pp. 17–85). doi:10.1016/S0065-2164(08)70261-2
403	Ganeko, N., Shoda, M., Hirohara, I., Bhadra, A., Ishida, T., Matsuda, H., Matoba, T.
404	(2008a). Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by
405	solid phase microextraction. Journal of Food Science, 73(1), S83-8.
406	doi:10.1111/j.1750-3841.2007.00608.x
407	Ghorbel, S., Souissi, N., Triki-Ellouz, Y., Dufosse, L., Guerard, F., & Nasri, M. (2005).
408	Preparation and testing of Sardinella protein hydrolysates as nitrogen source for
409	extracellular lipase production by Rhizopus oryzae. World Journal of Microbiology
410	and Biotechnology, 21(1), 33–38. doi:10.1007/s11274-004-1556-2
411	Giri, A., Osako, K., & Ohshima, T. (2010). Identification and characterisation of headspace
412	volatiles of fish miso, a Japanese fish meat based fermented paste, with special
413	emphasis on effect of fish species and meat washing. Food Chemistry, 120(2), 621-
414	631. doi:10.1016/j.foodchem.2009.10.036
415	González-Tomás, L., Carbonell, I., & Costell, E. (2004). Influence of type, concentration and
416	flow behaviour of hydrocolloid solutions on aroma perception. European Food
417	Research and Technology, 218(3), 248–252. doi:10.1007/s00217-003-0852-7

418	Guerard, F., Dufosse, L., Broise, D. D. La, & Binet, A. (2001). Enzymatic hydrolysis of
419	proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of
420	Molecular Catalysis B: Enzymatic 11, 1051–1059. doi:1381-1177/01
421	Guerrero, L., Claret, A., Verbeke, W., Enderli, G., Zakowska-Biemans, S., Vanhonacker, F.,
422	Hersleth, M. (2010). Perception of traditional food products in six European
423	regions using free word association. Food Quality and Preference, 21(2), 225-233.
424	doi:10.1016/j.foodqual.2009.06.003
425	Kawai, T., & Sakaguchi, M. (1996). Fish flavour. Critical Reviews in Food Science and
426	Nutrition, 36(3), 257–298. doi:10.1080/10408399609527725
427	Leffingwell.com: http://www.leffingwell.com/odorthre.htm (last accessed: 12/01/2015)
428	Le Guen, S., Prost, C., & Demaimay, M. (2001). Evaluation of the Representativeness of the
429	Odoe of Cooked Mussel Extracts and the Relationship between Sensory Descriptors
430	and Potent Odorants. J. Agric. Food Chem., 49, 1321–1327. doi:10.1021/jf000781n
431	Medina Hernández, M. J., Villanueva Camañas, R. M., Monfort Cuenca, E., & García
432	Alvarez-Coque, M. C. (1990). Determination of the protein and free amino acid
433	content in a sample using o-phthalaldehyde and N-acetyl-L-cysteine. The Analyst,
434	115(8), 1125–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2256555
435	Meilgaard, M., Civille, G. V., & Carr, B. T. (1999). Attribute difference test III. Pairwise
436	ranking test: Friedman analysis. In Sensory evaluation techniques, 3rd ed (3rd ed., pp.
437	103–106). CRC Press, Taylor & Francis Group. Retrieved from http://goo.gl/wvAjSK
438	Montel, M. C., Masson, F., & Talon, R. (1998). Bacterial role in flavour development. Meat
439	Science, 49, S111-S123. doi:10.1016/S0309-1740(98)90042-0
440	Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved Method for Determining
441	Food Protein Degree of Hydrolysis. Food Chemistry and Toxicology, 66(5), 642-646.
442	doi:10.1111/j.1365-2621.2001.tb04614.x

143	Ortiz, J., Romero, N., Robert, P., Araya, J., López-Hernández, J., Bozzo, C., Rios, A.
144	(2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible
145	seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99, 98-104.
146	doi:10.1016/j.foodchem.2005.07.027
147	pherobase.com: http://goo.gl/DjyL0B (last accessed: 10/02/2015)
148	Peinado, I., Girón, J., Koutsidis, G., & Ames, J. (2014). Chemical composition, antioxidant
149	activity and sensory evaluation of five different species of brown edible seaweeds.
450	Food Research International, 66, 36-44. doi:10.1016/j.foodres.2014.08.035
451	Peinado, I., Rosa, E., Heredia, A., Escriche, I., & Andrés, A. (2012). Optical, Mechanical and
452	Sensorial Properties of Strawberry Spreadable Products Formulated with
453	Isomaltulose. Food and Bioprocess Technology, 6(9), 2353–2364.
454	doi:10.1007/s11947-012-0970-y
455	Selli, S., & Cayhan, G. G. (2009). Analysis of volatile compounds of wild gilthead sea bream
456	(Sparus aurata) by simultaneous distillation-extraction (SDE) and GC-MS.
457	Microchemical Journal, 93(2), 232–235. doi:10.1016/j.microc.2009.07.010
458	Souissi, N., Bougatef, A., Triki-ellouz, Y., & Nasri, M. (2007). Biochemical and Functional
159	Properties of Sardinella (Sardinella aurita) By-Product Hydrolysates, 45(2), 187–194.
460	doi:ISSN: 1330-9862
461	Taylor, A. J., & Mottram, D. S. (1990). Composition and odour of volatiles from autoxidised
462	methyl arachidonate. Journal of the Science of Food and Agriculture, 50(3), 407-417.
463	doi:10.1002/jsfa.2740500313
164	Whistler, R. L., & Daniel, J. R. (1985). Carbohydrates. In Food Chemistry (pp. 248–339). O.
465	Fennema (Ed.). doi:10.1007/978-3-540-69934-7
466	Whitfield, F. B., Freeman, D. J., Last, J. H., Bannister, P. A., & Kennett, B. H. (1982). Oct-1-
167	en-3-ol and (5Z)-Octa-1,5-dien-3-ol, compounds important in the flavour of prawns

468	and sand-lobsters. Australian Journal of Chemistry, 35(2), 373–383.
469	doi:10.1071/CH9820373
470	Whitfield, F. B., Last, J. H., Shaw, K. J., & Tindale, C. R. (1988). 2,6-Dibromophenol: The
471	cause of an iodoform-like off-flavour in some Australian crustacea. Journal of the
472	Science of Food and Agriculture, 46(1), 29–42. doi:10.1002/jsfa.2740460104
473	Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., & Attia, H. (2011). Chemical
474	composition and functional properties of Ulva lactuca seaweed collected in Tunisia.
475	Food Chemistry, 128(4), 895–901. doi:10.1016/j.foodchem.2011.03.114
476	

477	Figure Caption
478	Figure 1. Biplot for the different heated fish powder hydrolysates generated with the
479	different enzymes (Control: fish powder heated without addition of enzymes; A: H-FPH-
480	Flavopro Umami 852; B: H-FPH-Flavopro 750; B+C: H-FPH- Flavopro 750+Promod439;
481	B+D: H-FPH-Flavopro 750+Promod671; B+E: H-FPH-Flavopro 750+Promod144; _O stands
482	for addition of fish oil (1.5 g/100g)) and the volatile compounds obtained by the PCA. (PC1:
483	39.9 %, PC2: 31.6 %)
484	
485	Figure 2 : Two-dimensional correspondence plot (99.9 % of the total variance: dimension 1,
486	97.4 %; dimension 2, 2.6 %) obtained from performing the correspondence analysis for the
487	four selected samples considering the fish powder hydrolysate obtained with enzyme A and
488	increasing concentrations of fish oil (0, 1.5, 3 g/100g and pure fish oil heated under the same
489	conditions). Rank sum for the different attributes obtained by Friedman test. a, b and c Values
490	in the same row with significant differences (95 %).
491	

Table 1: Description of commercial enzymes used for the fish powder hydrolysis. Characterization of fish powder (ash, moisture, fat, protein, carbohydrates (g/100g)). Composition of fish oil (n=3).

Enzymes characteristics*											
							Optimum	Optimum			
	Enzym	e		A	ctivity		pH	$\mathbf{T}^{\mathbf{a}}$			
A]	Flavopro Un	nami F825N	MDP	Leucine a	aminopeptid	ase	5.5-7.5	45-55			
B 1	Flavopro 750)P		Casei	n peptidase		5.5-7.5	45-55			
C]	Promod 144]	Papain		5.0-7.6	50-70			
D 1	Promod 439			Case	in Protease		6.0-9.0	45-60			
E	Promod 671			Case	in Protease		5.5-8.0	30-50			
Fish powder composition (%)											
$\mathbf{x}^{\mathbf{w}}$		ash		protein fat ^a			carbohydrates				
4.67 ± 0.16	5	22.4 ± 0.3		60.3 ± 0	0.6 1	$.5 \pm 0.4$	11.1 ± 0.70				
Fat compos	ition (g/100 <u>s</u>	g total fat)									
	C14:0	C16:0	C18:0	C18:1	C18:2	C18:3	C20:5	C22:6			
Fish powder fat ^a	4.3 ± 0.5	47.0 ± 1.3	16.3 ± 0.5	15.3 ± 0.6	0.40 ± 0.03	-	0.67 ± 0.09	0.55 ± 0.02			
Fish oil	10.4 ± 0.3	29.1 ± 0.8	16.7 ± 1.8	8.2 ± 0.5	2.8 ± 0.3	3.8 ± 0.6	$5 11.2 \pm 0.7$	$6.5\ \pm0.3$			

^{*}Biocatalysts, Ltd.

Table 2. Fish powder hydrolysates obtained with individual enzymes or combination of enzymes. Degree of Hydrolysis (DH %) and concentration of individual free amino acids (μ g / g). Changes in the concentration of the individual free amino acids compared to the control (Δ C)*. (n=3).

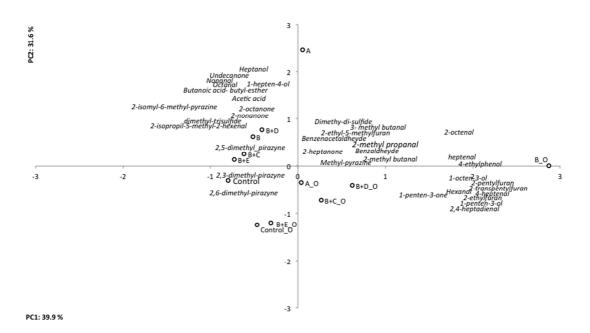
		Fish powder		FPH				
		Control	A	В	В+С	B+D	В+Е	
DH	(%)	7 ± 2	31 ± 1	46 ± 1	23 ± 1	21 ± 6	57 ± 5	
Alanine	μg / g ΔC (%)	235 ± 8	365 ± 4 55 ± 2	829 ± 40 252 ± 17	938 ± 33 299 ± 14	655 ± 34 178 ± 14	677 ± 19 188 ± 8	
Glycine	μg / g ΔC (%)	155 ± 5	114 ± 3 -27 ± 2	322 ± 10 107 ± 6	315 ± 10 103 ± 7	371 ± 26 139 ± 17	247 ± 6 59 ± 4	
Valine	$\mu g / g$ $\Delta C (\%)$	47 ± 3	224 ± 15 374 ± 31	661 ± 50 $1,297 \pm 106$	726 ± 59 $1,435 \pm 123$	448 ± 47 848 ± 97	541 ± 16 $1,045 \pm 33$	
Leucine	$\mu g / g$ $\Delta C (\%)$	48 ± 3	675 ± 15 $12,989 \pm 31$	$1.113 \pm 51 \\ 2,205 \pm 105$	1.423 ± 59 $2,848 \pm 123$	929 ± 47 $1,825 \pm 98$	1.025 ± 16 $2,022 \pm 33$	
Isoleucine	$\mu g / g$ $\Delta C (\%)$	29 ± 3	227 ± 5 670 ± 16	$613 \pm 50 \\ 1,981 \pm 170$	683 ± 14 $2,218 \pm 47$	412 ± 8 $1,299 \pm 27$	522 ± 9 $1,674 \pm 32$	
Threonine	$\mu g / g$ $\Delta C (\%)$	54 ± 6	194 ± 21 260 ± 39	604 ± 29 $1,023 \pm 53$	742 ± 48 $1,280 \pm 88$	473 ± 18 778 ± 33	541 ± 72 906 ± 135	
Serine	$\mu g / g$ $\Delta C (\%)$	60 ± 8	178 ± 42 198 ± 70	616 ± 20 927 ± 33	652 ± 34 988 ± 57	429 ± 51 616 ± 85	454 ± 99 658 ± 166	
Proline	$\mu g / g$ $\Delta C (\%)$	50 ± 2	60 ± 3 19 ± 6	174 ± 2 247 ± 5	154 ± 6 207 ± 13	116 ± 5 130 ± 10	130 ± 14 158 ± 27	
Aspartic acid	$\mu g / g$ $\Delta C (\%)$	51 ± 6	84 ± 2 68 ± 4	260 ± 33 421 ± 66	274 ± 36 450 ± 72	181 ± 6 262 ± 12	160 ± 13 222 ± 25	
Methionine	$\mu g / g$ $\Delta C (\%)$	11 ± 3	125 ± 8 997 ± 63	298 ± 26 $2,511 \pm 224$	346 ± 23 $2,932 \pm 204$	239 ± 17 $1,997 \pm 147$	263 ± 6 $2,202 \pm 54$	
Glutamic acid	$\mu g / g$ $\Delta C (\%)$	144 ± 23	470 ± 31 227 ± 21	880 ± 7 513 ± 5	981 ± 64 583 ± 44	573 ± 86 299 ± 60	431 ± 25 200 ± 17	
Phenylalanine	μg / g ΔC (%)	27 ± 1	255 ± 31 860 ± 115	360 ± 43 $1,256 \pm 162$	451 ± 15 $1,597 \pm 55$	292 ± 15 997 ± 55	352 ± 2 1,227 ± 6	
Lysine	μg / g ΔC (%)	43 ± 1	369 ± 80 751 ± 186	818 ± 157 $1,789 \pm 363$	1.485 ± 22 $3,332 \pm 50$	887 ± 101 $1,949 \pm 233$	836 ± 66 $1,830 \pm 152$	
Other	μg / g ΔC (%)	23 ± 2	138 ± 3 687 ± 120	187 ± 14 831 ± 206	286 ± 3 $1,273 \pm 271$	167 ± 5 760 ± 209	229 ± 3 $1,094 \pm 169$	

Production of Fish powder hydrolysates (FPH): fish powder (100 g/L in water) + commercial enzymes ([A, B, C, D, E], Table 1), heated overnight (15 h) at constant stirring (pH 6, and 60 °C, enzyme (10-20 g/L).

^{*} Δ C (%) = 100•[concentration of each free amino acid in the fish powder hydrolysates – concentration of each free amino acid in the control]/ concentration of each free amino acid in the control

Table 3. Retention time, retention index and odour descriptors of volatile compounds found in the different fish powder hydrolisates after heating them with or without fish oil (H-FPHs) (n=3).

	RT	RI	Odour threshold	Identification	Odour description
Aldehydes					
2-methyl propanal	6.03	647	$0.1 2.3^{D}$	MS, RI Std	Green, Pungent, Burnt, Malty, Toasted, Fruity ^C
2-methyl butanal	8.42	912	1^{D}	MS, RI Std	Green, Almond, Strong burnt, Malty, Cocoa ^C
3-methyl butanal	8.53	914	$0.2-2^{D}$	MS, RI Std	Cashew, apple ^A , almond-like, toasted, malty, green ^C Herbac
hexanal	16.54	1079	4.5-5 ^D	MS, RI Std	Fishy, grass ^{A,B,C}
heptanal	21.60	1170	3 ^D	MS, RI Std	Citrus like ^A , dry fish ^B green, fatty, solvent, smoky, Rancid ^C
4-heptenal	24.14	1226	$0.8 10^{\mathrm{D}}$	MS, RI Std	Boiled potato, creamy, sweet, biscuit-like A,B,C
octanal	26.06	1286	0.7 ^D	MS, RI Std	Lemon, stew-like, boiled meat-like, rancid, soapy, citrus, green, flower, fruit, orange A,B,C
nonanal	30.03	1405	1 ^D	MS, RI Std	Gravy, green, fruity, gas, chlorine, floral, waxy, sweet, melon, soapy, fatty, citrus fruit ^{A,B,C}
2-octenal	31.30	1512	3 ^D	MS, RI	Aromatic, oxidized oil- like ^A , Green ^C
benzaldehyde	33.014	1539	$350-3,500^{D}$	MS, RI	Bitter almond ^{A,C,C} ,Burnt sugar, Woody ^C
2,4-heptadienal	33.52	1548	15-95 ^A	MS, RI Std	Fatty, fishy ^{A,C} , aromatic, oxidized oil-like ^B
Alcohols					
1-penten-3-ol	20.321	1145	350-400 ^{A,D}	MS, RI Std	Burnt, meaty ^A , paint like chemical like ^B grassy-green ^C
4-ethyl phenol	23.70	1213	140 ^D	MS, RI	Shoe polish, phenolic, leather, smoky ^{A,B,C}
1-octen-3-ol	31.79	1519	1-1.5 ^{A,D}	MS, RI Std	Fishy, grassy ^A , sweet earthy ^C
1- heptanol	31.96	1522	3-5.4 ^{A,D}	MS, RI, Std	Fresh, light green, nutty ^{A,B,C}
4-hepten-1-ol	33.57	1597	-	MS, RI Std	Fishy ^C
Ketones					


1-penten-3-one	13.45	1020	1-1.3 ^{,D}	MS, RI, Std	Pungent, fish-like, rotten, fruity, plastic, leather ^{A,B,C}
2-heptanone	21.43	1167	140-3,000 ^{,D}	MS, RI Std	Cured ham-like, toasted, nutty, gas, gravy, soapy, Fruity. ^C
2-octanone	25.86	1280	50 ^{A,D}	MS, RI Std	Gas, stewed, fatty, green, fruity, cheese-apple ^C
2-nonanone	29.83	1395	5-200 ^D	MS, RI Std	Fruity, soapy, fatty, green, earthy, baked ^C
undecanone	36.79	1601	5-7 ^{A,D}	MS, RI Std	Tallow, musty A. Fruity, musty, dusty, green.C
Acids					
butanoic acid butyl esther	23.09	1196	100^{D}	MS, RI	Fresh, Sweet, Fruity ^C
acetic acid	32.13	1525	$30-150^{D}$	MS, RI	Sour, Vinegar, Pungent ^C
Sulfur compounds					?
dimethyl disulfide	16.01	1069	$0.16-12^{A,D}$	MS, RI	Sulfur, Cabbage, Ripened cheese, Putrid A.C
Dimethyl trisulfide	29.66	1390	$0.005 \text{-} 0.01^{\mathrm{D}}$	MS, RI, Std	Rotten food, Sulfury, Fishy, Cauliflower, Cabbage, Onion ^{A,C}
Furans					
2-ethyl furan	10.16	950	8 ^{A,D}	MS, RI	Rubber, Pungent, Acid, Sweet ^C
2-ethyl-5-methyl furan	14.02	1031	-	MS, RI	
2-pentyil furan	23.70	1213	6 A,D	MS, RI, Std	Buttery, Green bean-like ^{A,C}
Pyrazines			No.		
Methyl pyrazine	25.01	1253	$60\text{-}105,000^{\mathrm{D}}$	MS, RI, Std	Nutty, Roasty, Cocoa, Chocolate C
2,5-dimethyl pyrazine	27.24	1321	800-1,800 ^D	MS, RI, Std	Cocoa, Roasted nut, Roastbeef, Woody ^C
2,6-dimethyl pyrazine	24.47	1327	200-9,000 ^D	MS, RI, Std	Baked potato, Nutty, Fruity C
2,3-dimethyl pyrazine	28.18	1348	2,500-35,000 ^D	MS, RI, Std	Nutty, musty ^C

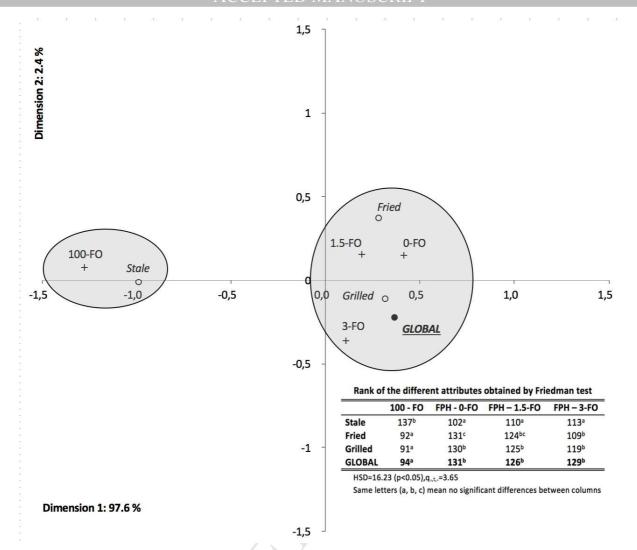

^A Giri et al., 2010; ^B Ganeko et al., 2008; ^C pherobase.org; ^D http://www.leffingwell.com/odorthre.htm Odour tresholds in water (μg/L)

Table 4. Fish powder hydrolysates obtained with the enzymes or combination of enzymes. Volatile compounds associated with fish-like aroma in the different heated fish powder hydrolysates (H-FPHs) with or without addition of fish oil (1.5 g/100g) expressed as ug / mL. (n=3).

	Control		Control A + H-FPH B+ H-FPH		(B+C) +	(B+C) + H-FPH		(B+D) + H-FPH		(B+E) + H-FPH		
	No-FO	1.5 % FO	No-FO	1.5 % FO	No-FO	1.5 % FO	No-FO	1.5 % FO	No-FO	1.5 % FO	No-FO	1.5 % FO
Aldehydes												
2-methyl butanal	4 ± 2	35 ± 5	312 ± 6	270 ± 18	$1,361 \pm 78$	955 ± 120	588 ± 134	681 ± 99	436 ± 171	528 ± 230	317 ± 1	618 ±13
3-methyl butanal	9 ± 6	65 ± 18	$1,073 \pm 131$	$1,139 \pm 116$	1.475 ± 68	$1,\!295\pm94$	1,275 ± 221	$1,113 \pm 160$	$1,046 \pm \ 272$	881 ± 229	769 ± 20	$1,\!026\pm172$
hexanal	0.323 ± 0.007	1.200 ± 0.651	0.524 ± 0.119	1.688 ± 0.641	0.441 ± 0.079	5 ±1	0.358 ± 0.109	1.609 ± 0.159	0.361 ± 0.055	1.571 ± 0.128	0.285 ± 0.062	1.758 ± 0.785
heptanal	0.174 ± 0.029	0.262 ± 0.065	0.392 ± 0.018	0.406 ± 0.002	0.329 ± 0.035	0.572 ± 0.067	0.278 ± 0.049	0.349 ± 0.109	0.181 ± 0.019	0.279 ± 0.012	0.153 ± 0.002	0.316 ± 0.016
4-heptenal	-	0.103 ± 0.077	0.033 ± 0.012	0.239 ± 0.027	0.032 ± 0.003	0.508 ± 0.159	0.047 ± 0.028	0.211 ± 0.194	0.040 ± 0.002	0.161 ± 0.015	0.010 ± 0.005	0.240 ± 0.135
octanal	0.017 ± 0.002	0.008 ± 0.002	0.054 ± 0.007	0.011 ± 0.005	0.038 ± 0.014	0.006 ± 0.002	0.027 ± 0.002	0.013 ± 0.009	0.024 ± 0.004	$0.011 \pm\ 0.007$	0.013 ± 0.002	0.006 ± 0.001
nonanal	3.605 ± 0.710	0.692 ± 0.140	12 ± 2	3 ± 1	8 ± 2	0.915 ± 0.088	5.192 ± 0.219	2.131 ± 1.067	3.969 ± 0.832	1.572 ± 0.999	3.371 ± 0.617	0.737 ± 0.008
2,4-heptadienal	0	0.212 ± 0.015	0	0.215 ± 0.197	0	2 ± 1	0	0.417 ± 0.056	0	0.455 ± 0.044	0	0.501 ± 0.042
Alcohols						A						
1-penten-3-ol	0.052 ± 0.007	4 ± 1	0.139 ± 0.036	17 ± 3	0.729 ± 0.152	44 ± 3	0.797 ± 0.132	26 ± 3	1.010 ± 0.329	17 ± 2	0.365 ± 0.006	23 ± 2
1-octen-3-ol	0.063 ± 0.002	0.136 ± 0.051	0.120 ± 0.004	0.367 ± 0.022	0.108 ± 0.014	0.787 ± 0.260	0.101 ± 0.005	0.289 ± 0.025	0.106 ± 0.009	0.345 ± 0.266	0.102 ± 0.014	0.420 ± 0.032
4-hepten-1-ol	0.939 ± 0.048	0.618 ± 0.177	1.353 ± 0.061	1.005 ± 0.026	1.206 ± 0.084	1.015 ± 0.051	1.094 ± 0.118	0.965 ± 0.092	1.199 ± 0.027	0.925 ± 0.316	1.132 ± 0.125	0.881 ± 0.002
Pyrazines					Q	/						
Methyl pyrazine	1.137 ± 0.896	2.295 ± 0.340	6 ± 1	9.802 ± 0.228	8.609 ± 0.023	7.958 ± 0.356	9 ± 2	9 ± 3	7 ± 1	7.326 ± 0.614	11 ± 2	11 ± 1
2,5-dimethyl pyrazine	3 ± 1	5 ± 1	40 ± 6	49 ± 3	27 ± 1	21 ± 1	48 ± 3	43 ± 8	46 ± 4	42.625 ±0.216	55 ± 9	61 ± 6
2,6-dimethyl pyrazine	3 ± 1	4 ± 1	8 ± 2	12 ± 2	7.453 ± 0.015	7.104 ± 0.252	14 ± 3	15 ± 4	36 ± 4	39 ± 3	41 ± 4	69 ± 3
2,3-dimethyl pyrazine	0.136 ± 0.057	0.419 ± 0.112	0.582 ± 0.140	0.944 ± 0.016	1.096 ± 0.051	0.755 ± 0.043	1.133 ± 0.088	0.965 ± 0.247	3.931 ± 0.555	3 ± 1	4 ± 2	4 ± 1

Development of aroma: 1. Aliquots of FPHs (0.2 mL) mixed with a dextrose solution (0.05 mL (80 µmol/mL)) and glycerol (500 µL); 2. Addition of fish oil (1.5 g/100g); 3. Samples homogenised at 60 °C for 10 minutes, followed by heating at 110 °C for 30 minutes.

Highlights.

Proteases were used to derive amino-acid-rich ingredients from by-products.

Combinations of peptidases lead to the highest concentration in free amino acids.

4-heptenal and 2, 4-heptadienal were the main volatile generated.

Low-value fish materials as an alternative for the fish industry.