
 Journal’s Title, Volume X, Issue X, Year

__

 1

Uncertain Information Combination for Decision Making in Smart Grid

BDI Agent Systems

Sarah Calderwood, Kevin McAreavey, Weiru Liu, Jun Hong

School of Electronics, Electrical Engineering and Computer Science,

Queen’s University Belfast, United Kingdom

{scalderwood02, kevin.mcareavey, w.liu, j.hong} @ qub.ac.uk

Abstract

In a smart grid SCADA (supervisory control and

data acquisition) system, sensor information (e.g.

temperature, voltage, frequency, etc.) from

heterogeneous sources can be used to reason about

the true system state (e.g. faults, attacks, etc.). Before

this is possible, it is necessary to combine

information in a consistent way. However,

information may be uncertain or incomplete while

the sensors may be unreliable or conflicting. To

address these issues, we apply Dempster-Shafer (DS)

theory to model the information from each source as

a mass function. Each mass function is then

discounted to reflect the reliability of the source.

Finally, relevant mass functions (after evidence

propagation) are combined using a context-

dependent combination rule to produce a single

combined mass function used for reasoning. We

model a smart grid SCADA system in the belief-

desire-intention (BDI) multi-agent framework to

demonstrate how our approach can be used to

handle the combined uncertain sensor information.

In particular, the combined mass function is

transformed into a probability distribution for

decision-making. Based on this result, the agent can

determine which state is most plausible and insert a

corresponding AgentSpeak belief atom into its belief

base. These beliefs about the environment affect the

selection of predefined plans, which in turn

determine how the agent will behave. We also

identify conditions when a combination should occur

to ensure the reactiveness of the agent.

Keywords-Dempster-Shafer theory; information

fusion, context-dependent combination; BDI;

AgentSpeak; uncertain beliefs.

1. Introduction

Supervisory control and data acquisition

(SCADA) systems [1] are deployed in a variety of

environments including power [2] and water

treatment [3]. Such systems monitor and control

machinery and devices through gathering and

analysing real time sensor information. In a power

setting, sensors independently gather information

about the environment such as temperature, voltage,

frequency, wind speed/direction, etc. to help pinpoint

faults, perform network modelling, simulate power

operation and preempt outages. Complex SCADA

systems can be modelled using the Belief-Desire-

Intention (BDI) multi-agent framework [8] for

programming intelligent agents. Each agent in the

BDI framework is modelled by its (B)eliefs (its

current belief state), (D)esires (what it wants to

achieve) and (I)ntentions (desires it has chosen to act

upon). However, BDI implementations cannot deal

with information which is uncertain or incomplete

(e.g. due to noisy measurements) while the sensor

themselves may be unreliable or conflicting (e.g. due

to malfunctions). As such, it is important to

accurately model and combine this information to

ensure higher-level decision making in an uncertain

dynamic environment.

In this work, we design and implement a

prototype using a smart grid scenario in AgentSpeak

[9,10]. AgentSpeak is an agent-oriented

programming language for specifying agents within

the BDI framework where an agent is encoded with a

set of predefined plans used to respond to new event-

goals. To address the issues surrounding uncertain

sensor information in an environment such as the

smart grid, we extend the BDI framework with a

sensor preprocessor which models and combines

uncertain sensor information before deriving a

suitable AgentSpeak belief atom for revising the

agent’s belief base. Specifically, we apply Dempster-

Shafer (DS) theory [4] to model uncertain sensor

information as mass functions. In this step, if a

sensor is unreliable, the information is discounted

and then treated as fully reliable [5]. Relevant mass

functions (after applying evidence propagation) are

combined using a context-dependent combination

rule which was based originally on a context-

dependent combination rule from possibility theory

[6]. This combination rule determines the context for

when to use Dempster's rule of combination and then

resort to an alternative (e.g. Dubois and Prade's

disjunctive consensus rule [7]). After transforming

the combination result into a probability distribution,

an agent’s belief base is revised with a suitable

AgentSpeak belief atom. This ensures the agent is

informed about the current state of the environment

and selecting an applicable plan.

 Journal’s Title, Volume X, Issue X, Year

__

 2

The remainder of our work is organized as

follows. In Section 2, we introduce the preliminaries

on DS theory and AgentSpeak. In Section 3, we

provide a smart grid scenario and discuss how

uncertain information can be modelled. In Section 4,

we provide an outline of a context-dependent

combination rule and in Section 5 we discuss how to

handle uncertain beliefs in AgentSpeak. Section 6

provides details of our implementation in

AgentSpeak. In Section 7, we discuss related work.

Finally, in Section 8 we draw our conclusions.

2. Preliminaries

In this section, we begin by introducing the

preliminaries on Dempster-Shafter theory [4]

followed by the preliminaries on the AgentSpeak

framework [9] for BDI agents.

2.1. Dempster-Shafer theory

Dempster-Shafer (DS) theory is capable of

dealing with incomplete and uncertain information.

The frame of discernment Ω = {ω1,…,ωn} is defined

as a mutually exclusive and exhaustive set of

possible hypotheses where one is true at a particular

time. A mass function is a mapping m : 2Ω → [0,1]
that satisfies the conditions m(∅) = 0 and ΣA⊆Ω m(A)
= 1. Intuitively, m(A) defines the proportion of

evidence that supports A, but none of its strict

subsets.

To reflect the reliability of a source we apply a

discounting factor α 𝜖 [0,1] using Shafer’s

discounting technique [4] for a mass function m over
Ω. A discounted mass function mα is defined for each

A⊆Ω as:

where α = 0 represents a totally reliable source

and α = 1 represents a totally unreliable source.

Once a mass function has been discounted it can then

be treated as fully reliable.

When considering a set of independent and

reliable sources, several ways of combining mass

functions have been proposed. One of the best

known rules to combine mass functions is

Dempster’s rule of combination [4], denoted mi ⨁
mj, which is defined as:

with c a normalization constant, given by c =
1/1-K(mi, mj) with K(mi, mj) = ΣB⋂C=∅ mi(B)mj(C).
The effect of the normalization constant c, with

K(mi, mj) the degree of conflict between mi and mj,

is to redistribute the mass value assigned to the

empty set. As such, Dempster’s rule is not well

suited to combine mass functions with a high degree

of conflict. In this paper, we use the K(mi, mj) value

as a conflict measure to determine the context for

using Dempster’s rule. Dubois and Prade’s

disjunctive consensus rule [7], on the other hand,

denoted mi ⨂ mj, is defined as:

Notably, the disjunctive rule omits normalisation

and incorporates all conflict. As such, this rule is

suitable to combine mass functions with a high

degree of conflict.

The ultimate goal of representing and reasoning

about uncertain information is to draw conclusions

from it. Smet’s pignistic model [11] allows decisions

to be made on individual hypotheses. A mass

function m on Ω is transformed into a pignistic

probability distribution such that:

To ensure compatible sources will return strictly

compatible mass functions (i.e. mass functions

defined over the same frame), we use evidential

mapping [12] on frames Ωe and Ωh where Γ : Ωe x 2Ωh

→ [0,1] is an evidential mapping from Ωe and Ωh that

satisfies the conditions ω ϵ Ωe, Γ(ωe, ∅) = 0 and

ΣH⊆Ωh Γ(ωe, H) = 1. Furthermore, if we have frames

Ωe and Ωh, with me a mass function over Ωe and Γ an

evidential mapping from Ωe to Ωh, then a mass

function mh over Ωh is an evidence propagated mass

function from me with respect to Γ and is defined for

each H ⊆ Ωh in [12] as:

where:

Γ∗(E,H) =

{

 ∑

Γ(ωe, H)

|E|
,

ωe∈E

𝑖𝑓 𝐻 ≠⋃HE and ∀ωe ∈ E, Γ(ωe, H) > 0,

1 − ∑ Γ∗(E,H′)
H′∈ HE

,

if H =⋃HE and ∃ωe ∈ E, Γ(ωe, H) = 0,

1 − ∑ Γ∗(E,H′) +∑
Γ(ωe, H)

|E|ωe∈EH′∈ HE

,

if H = ⋃
HE and ∀ωe ∈ E, Γ(ωe, H) > 0,

0, otherwise

such that HE = {H’⊆ Ωh | ωe ∈ E, Γ(ωe, H’) > 0}
and ⋃ HE = { ωh ∈ H’ | H’ ∈ HE}.

(mi⊗mj)(A) = ∑ mi(B)mj(C)

B∪C=A

m∝(A) = {
(1−∝) ∙ m(A), if A ⊂ Ω,

α + (1 − α) ∙ m(A), if A = Ω

BetPm(ω) = ∑
m(A)

|A|
A⊆ Ω,ωϵA

mh(H) = ∑ me(E)Γ
∗(E, H)

E⊆ Ωe

(mi⊕mj)(A)

= {
 𝑐 ∑ mi(B)mj(C), if A ≠ 0,

B∩C=A

0, otherwise,

 Journal’s Title, Volume X, Issue X, Year

__

 3

2.2. AgentSpeak

We use S to denote a finite set of symbols for

predicates, actions, and constants, and V to denote a

set of variables. Following convention, elements

from S and V are written using lowercase letters and

uppercase letters, respectively. We use the standard

first-order logic definition of a term and t as a

compact notation for t1,…,tn. From [9], the syntax of

the AgentSpeak language is defined as follows:

Definition 1 If b is a n-ary predicate symbol then

b(t) is a belief atom.

Definition 2 If b(t) and c(s) are belief atoms, then

b(t), ¬b(t) and b(t)∧c(s) are beliefs. If g(t) is a

belief atom, then !g(t) and ?g(t) are goals with !g(t)

an achievement goal and ?g(t) a test goal.

Definition 3 If b(t) is a belief atom and !g(t) and

?g(t) are goals, then +b(t), -b(t), +!g(t), -!g(t),
+?g(t) and -?g(t) are triggering events where + and

– denote addition and deletion events, respectively.

Definition 4 If a is an action symbol and t are terms,

then a(t) is an action.

Definition 5 If e is a triggering event, l1,…,lm are

belief literals and h1,…,hn are goals or actions, then e:
l1 ∧…∧ lm ← h1,…,hn is a plan where l1 ∧…∧ lm is the

context and h1,…,hn is the body such that ; denotes

sequencing.

An AgentSpeak agent A can now be represented

as a tuple (Bb, Pl, E, A, I)1 where respectively we can

specify an agent by its belief base (a set of belief

atoms), plan library (a set of plans to describe how

the agent can react to events based on their current

beliefs), event set, action set (the primitive actions to

which the agent has access) and intention set.

3. Smart grid Scenario

In this section, we introduce a smart grid SCADA

system (focusing on solar and wind renewable

energy sources) to illustrate our approach. Our

scenario consists of six agents: a solar park, a wind

farm, a battery storage plant, a distribution

substation, a distribution transformer and a house (as

shown in Figure 1). The solar park will generate and

distribute electric power through high voltage

transmission lines to a distribution substation. Here,

a transformer will reduce high voltage electric power

to low voltage electric power to be distributed across

low level distribution lines. A distribution

1 For simplicity, we omit three selection functions SE, SO and SI.

transformer will then convert electric power to lower

levels to serve residential loads. However, if a fault

or an attack occurs within the solar park or the solar

park cannot supply enough electric power to meet

demand, electric power will be generated and

distributed from a nearby wind farm or provided

from a battery storage plant. Each agent also contains

a number of sources with various levels of

granularity to monitor the overall health of the grid.

In the subsection that follows we discuss in further

detail the information that may be collected from

sources and how it will be modelled.

Figure 1. A smart grid scenario using solar and wind

energy sources.

3.1 Modelling uncertain sensor information

In a smart grid SCADA system, sensor

information such as temperature, voltage and

frequency etc. is obtained from heterogeneous

sources to represent the current state of the

environment. Notably, given this type of scenario,

sensor information will be used to determine if the

state of the environment is normal i.e. fully

operational or if a fault (with a sensor or component)

or security attack is likely to occur. Considering the

latter, cyber-attacks can have a negative impact on

secure, reliable smart grid SCADA systems, causing

blackout and brownouts, issues with instability and

unreliability etc. As a result it becomes necessary to

identify potential attacks on the system e.g. sensor

information may be violated through tampering

which leads to disruption in power generation or

distribution. As such, we first need to properly model

information. For the purpose of illustration, we

provide numerical information collected from

temperature sensors from the set Ωs = {0,…,40}. In

addition, we obtain general estimations from experts

such that we have Ωe = {normal, abnormal} to

represent normal or abnormal temperature levels.

Unfortunately, information from these types of

sources may be uncertain due to noisy sensor

measurements or experts may not be competent in

giving estimations.

Given the situation where multiple sources of

information are available (e.g. collecting temperature

related data from both sensors and experts), we

define evidential mappings from Ωs and Ωe to a set of

AgentSpeak belief atoms Ωh = {temp(c), temp(n),
temp(h)} to represent the temperature classifications

of cold, normal and hot. These mappings allow us

to combine information from different sources to

derive suitable belief atoms for revising an agent’s

 Journal’s Title, Volume X, Issue X, Year

__

 4

belief base. Table 1 provides the evidential mappings

we consider for Ωs and Ωe to Ωh.

Table 1: Evidential mappings from Ωs and Ωe to Ωh.
(a) Sensor frame Ωs

oC {c} {c,n} {n} {n,h} {h}
0,1
2
3
4
5,…,26
27
28
29
30,…,40

1
0.25
0
0
0
0
0
0
0

0
0.75
1
0.25
0
0
0
0
0

0
0
0
0.75
1
0.75
0
0
0

0
0
0
0
0
0.25
1
0.75
0

0
0
0
0
0
0
0
0.25
1

(b) Expert frame Ωe

 {temp(c)} {temp(n)} {temp(h)}
normal
abnormal

0
0.5

1
0

0
0.5

Once information has been obtained it will be

modelled as mass functions. Since sources may be

unreliable a discounting factor will be applied to

derive discounted mass functions that can then be

treated as fully reliable.

Example 1. Consider two independent sources S1
and S2 that are located within the solar park and an

expert estimation S3. These sources are 85%, 70%

and 60% reliable, respectively. Information has been

obtained such that S1:[30oC], S2:[26oC, 28oC] and

S3:[normal (70% certain)]. By modelling the

(uncertain) information as mass functions we have

m1({30}) = 1, m2({26,…,28}) = 1 and

m3({abnormal}) = 0.7, m3(Ω) = 0.3. By applying

the discount factors (i.e. α = 0.15, 0.3 and 0.4

respectively) for S1, S2 and S3 we have the following

discounted mass functions:

m
1
0.15({30}) = 0.85, m

1
0.15(Ω) = 0.15,

m
2
0.3({26,…,28}) = 0.7, m

2
0.3(Ω) = 0.3,

m
23
0.4({abnormal}) = 0.42, m

23
0.4(Ω) = 0.58.

We now obtain the following evidence

propagated mass functions from the discounted mass

functions considering the evidential mappings in

Table 1.

Table 2: Evidence propagated mass functions.
 m1 m2 m3
m({temp(c)})
m({temp(n),temp(h)})
m({temp(h)})
m(Ω)

0
0
0.85
0.15

0
0.7
0
0.3

0.21
0
0.21
0.58

4. Context-dependent combination

Within the literature we have found existing

combination rules are either too restrictive (losing

valuable information) or too permissive (resulting in

ignorance). To exploit the benefits of different

combination approaches, we use a context-dependent

combination rule from [13] to combine a set of mass

functions in DS theory. This combination rule

determines the context for when we should use

Dempster's rule and then resort to Dubois and Prade's

rule for a set of relevant mass functions. In

particular, we identify a partition of a set of mass

functions using a conflict measure in DS theory. This

ensures we find subsets with a low degree of

conflict. Each element in this partition is called a

largely partially maximal consistent subset (LPMCS)

and identifies a subset to be combined using

Dempster's rule. Once the set of LPMCSes are

created and each LPMCS has been combined using

Dempster's rule, we then combine the set of highly

conflicting LPMCSes using Dubois and Prade's rule.

Furthermore, we firstly use heuristics on the

quality and similarity of mass functions to ensure

LPMCSes are based on high quality information.

Specially, we identify the highest quality mass

function (using these heuristics) as a reference mass

function. Secondly, using the reference mass

function we then find the mass function that is

closest (i.e. agreement) based on a similarity

(distance) measure. Thirdly, the most similar mass

function is combined with the reference mass

function using Dempster’s rule. Fourthly, the second

and third steps are repeated where the combined

mass function (the new reference mass function) is

combined with its most similar mass function until a

threshold level of the conflict measure (i.e. K(mi, mj)
where mi may be m1⨁m2, a reference mass
function and mj is m3, its closest mass function) in

DS theory has been exceeded. An LPMCS will

therefore contain those mass functions that can be

combined before exceeding the threshold.

Example 2. Given the evidence propagated mass

functions from Table 2 and a conflict threshold of

0.15, we combine them using the context-dependent

combination rule. We obtain the set of LPMCSes

{{m1}, {m2, m3}} where m1 ⨂ (m2 ⨁ m3) results in
m({temp(c), temp(h)}) = 0.063,
m({temp(n),temp(h)})=0.405, m(Ω) = 0.323,
m({temp(h)})=0.209.

5. Handling uncertain beliefs in BDI

In AgentSpeak we manage the smart grid scenario

as a number of BDI agents encoded in AgentSpeak.

A sensor preprocessor is incorporated into an

AgentSpeak agent (as shown in Figure 2) to perform

the following steps: (i) discount a set of mass

functions using their discounting factor, (ii) apply

evidence propagation using evidential mappings to

derive compatible mass functions for combination

defined over AgentSpeak belief atoms (iii) combine

relevant mass functions using the context-dependent

combination rule (iv) derive a belief atom from the

 Journal’s Title, Volume X, Issue X, Year

__

 5

combination that will be added to the agent’s belief

base.

Figure 2. A revised reasoning cycle of an

AgentSpeak agent.

Classical AgentSpeak is not capable of modelling

and reasoning with uncertain information. As such, it

becomes necessary to reduce the uncertain

information modelled by a mass function to a

classical belief atom which can be modelled in the

agent’s belief base.

After executing our context-dependent

combination rule to obtain a combined mass function

and then transforming it into a pignistic probability

distribution, the sensor preprocessor of an agent can

determine which state is the most plausible by

checking if a state exceeds a specified pignistic

probability threshold.

Example 3. Assume a pignistic probability

threshold of 0.5. After applying pignistic

transformation to the result in Example 2, we obtain

the following: P(temp(n))=0.31,
P(temp(c))=0.139, P(temp(h))=0.551. The solar

park agent believes it is more plausible that the

temperature is classified as hot than cold or normal
as P(temp(h)) > 0.5. This means the AgentSpeak

agent’s belief base is revised with this new belief

atom (i.e. temp(h)) and an applicable plan will be

selected for this state.
To minimize the computational cost associated

with combination we have a condition where the

combination rule will only be applied when

information obtained from any source has changed

significantly (using a distance measure) from a

previous reading. However, if no change occurs we

also find it necessary to combine and revise

information after some specified interval of time.

6. Implementation

In this section we focus specifically on the solar

park agent to illustrate how the result of the context-

dependent combination rule from Section 4 will aid

plan selection. We use Jason [10], an open-source

implementation of the AgentSpeak interpreter to

implement the scenario as it implements

AgentSpeak’s operational semantics and provides a

suitable platform for the development of multi-agent

systems.

Example 4. Consider a solar park agent A within

the smart grid. Assume the solar park contains four

solar panels and a single combiner and inverter. Four

solar panels will capture the sun’s energy using

photovoltaic cells. The stronger the sunlight the more

electric power is produced. The direct current travels

along wires connecting the solar panels. The current

from all panels is collected via a combiner box. An

inverter will convert the direct current power of the

four solar panels to alternating current to run the AC

loads at household levels. Various sensors are

distributed within the solar park to record

temperature (e.g. ambient, internal combiner, solar

panel temperature), frequency, current, and voltage

for monitoring and decision-making purposes.

Each agent’s belief base contains dynamic

information such as the result of the combination

rule and static information such as that agent’s

location. The solar park agent’s belief base may

contain the following belief atoms:

(i) temp(n): the temperature is normal (as a

result of combining relevant mass functions

from temperature sensors);

(ii) freq(n): the frequency is normal (as a result

of combining relevant mass functions from

frequency sensors);

(iii) solar_park_loc(A,500): agent A’s own

location within the smart grid

The solar park agent can perform the following

primitive actions:

(i) supply_power: the power is being

supplied to the smart grid;
(ii) convert_power: the power is converted

from direct DC to AC by the inverter.

Each agent has their own individual goals that

they strive to achieve individually depending on their

state as well as an overall system goal. In the solar

park setting, the goal of this agent is to achieve a safe

and efficient supply of electrical power to meet

consumer demand. The solar park agent also requires

communication with other agents to ensure they

fulfil their overall goal. This might involve sub-goals

such as running the combiner to distribute power

when we obtain a normal temperature reading or

stopping a combiner and generating an alert when

the temperature is classified as e.g. cold or hot. The

following AgentSpeak plans are a selection from the

solar park agents plan library:

P1: +!prepare_to_start_solar_park_ : true ←
calibrate_inverter; calibrate_combiner;
!start_solar_park.

environment

Percepts

External

events

Pre-

processor

Belief

Base

Event

Set
Applicable

Plans

Plan

Library

Intentions

Internal events

actions

unify

 Journal’s Title, Volume X, Issue X, Year

__

 6

P2: +!start_solar_park : not supplying_smart_grid
& calibrated_combiner & calibrated_inverter ←
!run_combiner; !run_solar_panel_1;
!run_solar_panel_2, !run_solar_panel_3;
!run_solar_panel_4.

P3: +!run_solar_panel_1 : temp(n) ←
collect_protons; !run_combiner; …

P4: +temp(h) : true ← !generate_alert;
!stop_combiner; !stop_inverter; !run_windfarm;…

The initial goal of the solar park agent is

!prepare_to_start_solar_park. As such, the context

within plan P1 is believed to be true and the agent

takes the primitive actions to calibrate the

components (i.e. inverter and combiner) and execute

a new sub-goal !start_solar_park. The plan P2

should be taken when the agent obtains the goal

!start_solar_park and believes that each of the

components have been calibrated and power is not

being supplied to the smart grid. These steps include

new sub-goals such as !run_inverter,
!run_combiner and !run_solar_panel_1. The plan

P3 should be taken if the agent obtains the goal

!run_solar_panel_1 and believes that the current

temperature level is normal. These steps involve a

new sub-goal !run_combiner and a primitive action

collect_protons. Plan P4 should be taken when the

agent obtains the belief that the current temperature

level is high. In this situation, the steps involve new

sub-goals !generate_alert, !stop_combiner,
!stop_inverter and !run_wind_farm with the aim of

supplying power from the wind farm.

These plans can be further refined to account for

the real complexity in a working smart grid e.g.

considering other combined sensor information

results, status of other components and further

primitive actions to be taken. Further plans for the

solar park agent and a selection of plans for the other

agents can be found in the Appendix.

Within Jason we extend the environment class

and customize it to handle the actions of each of the

agents of the smart grid SCADA system. The

environment class revises an agent’s belief base as a

result of an action that has been taken and/or

communication with other agents.

Within the system, we implement our approach

from Section 3 and Section 4, where we initially

handle uncertain sensor information through

discounting mass functions in relation to their

reliability factor then applying evidence propagation

using evidential mappings to derive compatible mass

functions. After applying the context-dependent

combination rule to the set of compatible mass

functions, a belief atom is derived and is added into

that agent’s belief base. The most applicable

AgentSpeak plan that meets the context of the

agent’s actions is then selected.

In the customized environment class, there is a

GUI showing the entire smart grid scenario (as

shown in Figure 3). All six agents have control over

their own area and are connected through power

lines that distribute electric power from one location

to another until it reaches the consumer. The belief

base of each agent is shown in the belief base panel

(located on bottom panel). The user selects from a

choice of buttons which agent’s belief base to

display at any one time. The environment also

receives input from the buttons on the power control

panel (located on bottom panel). Here, the user can

introduce a fault into a component within an agent so

that it can react to this type of event e.g. introduce a

fault within the combiner of the solar park agent.

This helps to stimulate the real faults that may occur

and ensures the appropriate actions are taken for e.g.

recovery, stopping a component etc. The user

selection (sensor information) panel (located on the

bottom panel) contains a number of sensors for each

agent in a user selection tab. The user can select the

number of sensors it would like for an agent before

generating the smart grid and a number of tabs, each

relating to an agent. Each tab contains two tables.

The first table shows all the sources evidence i.e.

source id, source type, reliability and value. The

second table shows the evidence propagated mass

function that has been obtained based on the

evidential mappings held within the system. In

Figure 3, it shows the solar park agent handles three

temperature sensors. As the value of temperature

changes this will update the mass functions in the

second table, thus updating the result of the context-

dependent combination rule if the conditions stated

in Section 5 have been met. Below these tables, the

result of both the context-dependent combination

rule and its resulting pignistic probability distribution

is stated, alongside the single result used for deriving

the belief atom. For example, the frequency is

normal therefore a belief atom temp(n) is inserted

into the belief base (as shown in Figure 3).

6.1 Testing Scenarios

The following behaviours can be seen within the

implementation to replicate the behaviour of a real-

life smart grid.

Electric power will run continuously through the

smart grid until a fault or attack occurs. When the

solar park is working in a normal state (i.e. all

components are fully operational, all sensor readings

associated with the solar park are within their

acceptable range etc.) then electric power is

distributed along a high voltage transmission line to

a distribution substation which in turn distributes

electric power to distribution transformer and then to

a house (where other sensors are controlled by their

respective agents) as shown in Figure 3.

 Journal’s Title, Volume X, Issue X, Year

__

 7

Assume the solar park is working in a normal

state. A cyber-attack (tampering sensor information

from frequency sources) has caused a number of

sensors to record outside of their acceptable ranges

for normal operation. As a result, the context-

dependent combination rule has been executed and a

new belief atom has been derived and used to revise

its belief base. The solar park will cease to generate

and distribute electric power until the issue has been

resolved. The wind farm can instead generate and

distribute electric power to the grid (as shown in

Figure 4).

Figure 4. The smart grid scenario acquiring power

from the wind farm.

The sensors will continually update temperature

measurements and the context-dependent

combination rule will execute when required on a set

of compatible mass functions. The belief base will be

revised accordingly when a newly derived belief

atom differs from that currently held.

For the solar park agent, we assume that sensor

measurements relating to solar panel temperature,

internal combiner temperature, frequency, voltage

and current are being combined and their

corresponding belief atoms are inserted into the

belief base (i.e. solar_panel_temp(n),
internal_combiner_temp(n), volt(n), freq(n) and

curr(n) respectively).

7. Related Work

In the literature, several approaches consider

uncertainty modelling and reasoning within a BDI

multi-agent setting. In [14], an agent collects

(uncertain) percepts which are fed into a probabilistic

graphical model (PGM). An agent’s epistemic state

is revised after uncertainty propagation. The classical

belief base is revised with belief atoms derived from

using a threshold. In [15], the authors use the BDI

architecture CanPlan to consider an uncertain belief

base where an agent reasons about uncertainty on its

own. Specifically, the beliefs of an agent are

modelled as a set of epistemic states with a Global

Uncertain Belief Set (GUB) allowing the agent to

reason about different forms of uncertainty. Contrary

to those approaches, our work focuses on modelling

and combining uncertain sensor information which is

not considered in [14,15]. Furthermore, our work

addresses the problem of handling multiple sources

of (possibly heterogeneous) information which are

often describing the same subject, i.e. different

viewpoints. In [15], the authors solely model and

reason about uncertain beliefs.

8. Conclusion

This paper presents a prototype of a smart grid

SCADA system in AgentSpeak to handle uncertain

sensor information obtained from heterogeneous

sources. In particular, a sensor preprocessor models

uncertain sensor information before combining their

mass functions using a context-dependent

combination rule (which considers the context for

Figure 3. The prototype of the smart grid scenario (top panel: solar and wind smart grid simulation, bottom

panel l-r: power control, events, belief base, user selection (sensor information for each agent).

 Journal’s Title, Volume X, Issue X, Year

__

 8

when to use Dempster's rule of combination and

when to resort to Dubois and Prade's disjunctive

rule). An AgentSpeak belief atom is then derived to

revise the belief base of the agent. In conclusion, we

have found it is important to model and combine

uncertain sensor information correctly to reflect the

true state of the environment as this aids decision

making as appropriate plans can be selected. Not

only is this work advantageous to the smart grid

SCADA system, it can be similarly applied to other

SCADA applications dealing with uncertain sensor

information and needing to reach a meaningful

conclusion.

References

[1] S. Boyer, “SCADA: supervisory control and data

acquisition,” International Society Of Automation,
2009.

[2] N. Arghira, D. Hossu, I. Fagarasan, S.S. Iliesc and
D.R. Costianu, “Modern SCADA philosophy in
power system operation – A survey” UPB Scientific
Bulletin, Series C: Electrical Engineering, 73(2):153-
166, 2011.

[3] C. Daneels and W. Salter, “What is SCADA?”, In
Proceedings of the 7th International Confererence on
Accelator and Large Experimental Physical Control
Systems, pages 339-343, 1999.

[4] G. Shafer, “A mathematical theory of evidence,”
Princeton University Press, 1976.

[5] J. Ma, W. Liu and P. Miller, “Event modelling and
reasoning with uncertain information for distributed
sensor networks” In Proceedings of the 4th
International Conference on Scalable Uncertainty
Management, pages 236-249, 2010.

[6] A. Hunter and W. Liu, “A context-dependent
algorithm for merging uncertain information in
possibility theory,” IEEE Transactions On Systems,
Man and Cybernetics, vol. 38, no. 6, pp 1385-1397,
2008.

[7] D. Dubois and H. Prade, “On the combination of
evidence in various mathematical frameworks,”
Reliability data collection and analysis, pp. 213-241,
1992.

[8] M. Bratman, “Intention, plans and practical reason,”
Harvard University Press, 1987.

[9] A.S. Rao, “AgentSpeak(L): BDI agents speak out in a
logical computable language” In Proceedings of the
7th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, pages 42-55, 1996.

[10] R.H. Bordini, J.F. Hübner and M. Wooldridge,
“Programming multi-agent systems in AgentSpeak
using Jason”, volume 8, John Wiley & Sons, 2007.

[11] P. Smets, “Decision making in the TBM: the
necessity of the pignistic transformation”
International Journal on Approximate Reasoning,
38(2):133-147, 2005.

[12] W. Liu, J. Hughes and M. McTear, “Representing
heuristic knowledge in DS theory” In Proceedings of
the 8th International Conference on Uncertainty in
Artificial Intelligence, pages 182-190, 1992.

[13] S. Calderwood, K. Bauters, W. Liu and J. Hong,
“Adaptive uncertain information fusion to enhance
plan selection in BDI agent systems” In Proceedings
of the 4th International Workshop on Combinations
of Intelligent Methods and Applications, 2014.

[14] Y. Chen, J. Hong, W. Liu, L. Godo, C. Sierra,
“Incorporating PGMs into a BDI architecture” In
Proceedings of the 16th International Conference on
Principles and Practice of Multi-Agent Systems,
2013.

[15] K. Bauters, W. Liu, J. Hong, C. Sierra, “Can(Plan)+:
Extending the Operational Semantics of the BDI
Architecture to deal with Uncertain Information”, In
Proceedings of the 30th International Conference on
Uncertainty in Artifical Intelligence, 2014.

Acknowledgements

This work has been funded by EPSRC PACES

project (Ref: EP/J012149/1).

Appendix

A. Selection of agent plans

The following plans are continued from those

given for the solar park agent in Section 6.

P5: +!run_solar_panel_2 : temp(n) ←
collect_protons_2; !run_combiner; …

P6: +!run_combiner : temp(n) &
internal_combiner_temp(n) &
collecting_protons_1 & collecting_protons_2 ←
!run_inverter; combine_input; …

P7: +!run_inverter : temp(n) & freq(n) &
combining_input ← convert_power;
supply_power;

P8: +!stop_combiner : temp(h) &
internal_combiner_temp(h) & not
supplying_power ← !maintain_combiner;…

P9: +!maintain_combiner: temp(h) &
stopped_combiner ← replace_wires;
calibrate_combiner;…

P10: +! stop_inverter : temp(h) &
internal_inverter_temp(h) & not supplying_grid ←
!maintain_inverter;…

P11: +maintain_inverter : temp(h) &
internal_inverter_temp(h) & stopped_inverter ←
replace_inverter; calibrate_inverter;…

P12: +! freq(l) : collecting_protons_1 &
collecting_protons_2 combining_input &
converting_power & supplying_power ←
!run_wind_farm;…

P13: +!generate_alert : freq(l) | freq(h) ←
send_message; sound_alarm;…

P14: +!freq(h) : supplying_power ←
!run_battery_plant; supply_power;…

 Journal’s Title, Volume X, Issue X, Year

__

 9

P15: +fault_solar_panel_1: not
collecting_protons_1 & not solar_panel_temp(n)
← maintain_solar_panel_1;…

Agent: Distribution Substation

Assume the distribution substation consists of two

step-down transformers with one being used as a

replacement when needed, two incoming power

cables and sensors measuring incoming and outgoing

voltage, internal substation and internal transformer

temperature, incoming and outgoing frequency.

P16: +!prepare_to_start_distribution_substation :
true ← calibrate_step_down_transformer_1;
!start_distribution_substation;…

P17: +!start_distribution_substation: not
distributing_low_volt_power & not
obtaining_high_tran_power &
calibrated_step_down_transformer_1 ←
!run_step_down_transformer_1;…

P18: +!run_step_down_transformer_1 :
internal_substation_temp(n) &
internal_transformer_temp(n) &
incoming_volt(n) & outgoing_volt(n) &
obtaining_high_tran_power ← step_down_power;
distribute_low_volt_power;…

P19: +internal_substation_temp(h) :
step_down_power &
internal_transformer_temp(n) ←
switch_off_heater; switch_on_air_con;…

P20: +internal_substation_temp(l) :
step_down_power &
internal_transformer_temp(n) ←
switch_on_heater; switch_off_air_con;…

P21: +fault_cable_1 : true ← disconnect_cable_1;
connect_cable_2; !maintain_cable_1;…;

P22: +!maintain_cable_1 : disconnected_cable_1
← replace_cable_1;

P23: +internal_transformer_temp(h) : not
stepping_down_power & incoming_volt(n) ←
!stop_step_down_transformer_1;
calibrate_step_down_transformer_2;
!run_step_down_transformer_2

P24: +!run_step_down_transformer_2 :
calibrated_step_down_transformer_2 &
obtaining_high_tran_power ← step_down_power;
distribute_low_volt_power;…

P25: +! stop_step_down_transformer_1 :
internal_transformer_temp(h) & not
stepping_down_power ←
!maintain_step_down_transformer_1;…

P26: +!maintain_step_down_transformer_1 :
stopped_step_down_transformer_1 ←

replace_internal_component;
calibrate_step_down_transformer_1;…

P27: +fault_cable_1 : wind(h) ←
disconnect_cable_1; connect_cable_2;
!maintain_cable_1;…

Agent: Distribution Transformer

Assume the distribution transformer consists of

sensors measuring incoming and outgoing voltage,

internal transformer temperature, incoming and

outgoing frequency, oil absorbance.

P28: +!prepare_to_start_distribution_transformer
: true ← calibrate_transformer;
!start_distribution_transformer;…

P29: +!start_distribution_substation: not
distributing_lower_volt_power & not
obtaining_high_dist_power &
calibrated_transformer ← !run_transformer;…

P30: +!run_step_down_transformer :
internal_transformer_temp(n) _oil-absorbance(n)
& incoming_volt(n) & outgoing_volt(n) &
obtaining_high_dist_power ← reduce_power;
distribute_lower_volt_power;…

P31: +oil_absorbance(h) : reducing_power ←
replace_transformer;…

Agent: Wind Farm

Assume the wind farm contains three wind mills

where the wind will turn the rotor blades. The blade

will then turn a shaft inside the nacelle which is

attached to a gearbox to increase rotation speed. The

generator converts rotational energy to electrical

energy for transmission to the grid. Sensors will

measure wind speed and direction.

P32: +!prepare_to_start_wind_farm : true ←
calibrate_generator_1; calibrate_generator_2;
calibrate_generator_3; !start_wind_farm.

P33: +!start_wind_farm : not supplying_grid &
calibrated_generator_1 & calibrated_generator_2
& calibrated_generator_3 ← !run_wind_mill_1;
!run_wind_mill_2, !run_wind_mill_3;…

P34: +!run_wind_mill_1 : wind_speed(n)
wind_direction(n) ← move_blades_1;
!run_nacelle_1; rotate_tower_head_1(90);…

P35: +!run_wind_mill_2 : wind_speed(n)
wind_direction(n) ← move_blades_2;
!run_nacelle_2; rotate_tower_head_2(45);…

P36: +!run_wind_mill_3 : wind_speed(n)
wind_direction(n) ← move_blades_3;
!run_nacelle_3; rotate_tower_head_3(180);…

P37: +!run_nacelle_1 : moving_blades_1 ←
!run_gearbox_1; turns_shaft_1;…

 Journal’s Title, Volume X, Issue X, Year

__

 10

P38: +!run_nacelle2 : moving_blades_2 ←
!run_gearbox_2; turns_shaft_2;…

P39: +!run_nacelle_3 : moving_blades_3 ←
!run_gearbox_3; turns_shaft_3;…

P40: +!run_gearbox_1 : turning_shaft_1 ←
!run_generator_1; increase_rotation_speed_1;…

P41: +!run_gearbox_2 : turning_shaft_2 ←
!run_generator_1; increase_rotation_speed_2;…

P42: +!run_gearbox_3 : turning_shaft_3 ←
!run_generator_3; increase_rotation_speed_3;…

P43: +!run_generator_1 :
increased_rotation_speed_1 ←
convert_rotational_power_1; supply_grid;…

P44: +!run_generator_2 :
increased_rotation_speed_2 ←
convert_rotational_power_2; supply_grid;…

P45: +!run_generator_2 :
increased_rotation_speed_2 ←
convert_rotational_power_2; supply_grid;…

P46: +wind_speed(l) : not supplying_grid ←

!stop_wind_mill_1; !stop_wind_mill_2,
!stop_wind_mill_3; !run_solar_park;
!run_battery_storage;…

P47: +fault_blade_1: wind_speed(h) &
wind_direction(h) ← !stop_wind_mill_1;
rotate_tower_head_2; rotate_tower_head_3;…

Agent: House

Assume the house is a grid-connected residential

solar PV system that consists of a solar panel, an

inverter and a meter (measuring electric power

production and consumption). Sensors will measure

temperature, voltage and frequency.

P48: +!prepare_to_start_house_ : true ←
calibrate_inverter; calibrate_meter; !start_house.

P49: +!start_house : not supplying_grid &
calibrated_inverter & calibrated_meter ←
!run_solar_panel_1;…

P50: +!run_solar_panel_1 : temp(n) ←
collect_protons; !run_inverter; …

P51: +!run_inverter: temp(n) & freq(n) & volt(n)
& collecting_protons ← convert_power;
!run_meter;…

P52: +!run_meter: temp(n) & freq(n) & volt(n) &
converting_power ← measure_usage;
use_appliance;…;

P53: +fault_meter : not measuring_usage ←
!generate_alert;…;

P54: +volt(h) : collecting_protons &
converting_power & using_appliance ←
supply_grid;…

P55: +volt(l) : collecting_protons &
converting_power & not using_appliance ←
obtain_power_from_grid,…

P56: +fault_inverter : collecting_protons & not
converting_power ← !generate_alert;
!stop_inverter; obtain_power_from_grid;…

P57: +!stop_inverter : ← temp(h) & not
converting_power & not supplying_grid ←
!maintain_inverter;…

P58: +generate_alert : not measuring usage | not
converting_power ← send_message_home_owner;
flash_light_on_meter; send_message_utility;…

P59: +maintain_inverter : temp(h) &
stopped_inverter ← replace_inverter;
calibrate_inverter;…

