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This paper seeks to compare encoded features from both 2D and 3D face images in order to achieve automatic gender recognition with 
high accuracy and robustness. The Fisher Vector encoding method is employed to produce 2D, 3D and fused features with escalated 
discriminative power. For 3D face analysis, a two-source Photometric Stereo (PS) method is introduced that enables 3D surface 
reconstructions with accurate details as well as desirable efficiency. Moreover, a 2D+3D imaging device, taking the two-source PS method 
as its core, has been developed that can simultaneously gather colour images for 2D evaluations and PS images for 3D analysis. This system 
inherits the superior reconstruction accuracy from the standard (3 or more light) PS method, but simplifies the reconstruction algorithm as 
well as the hardware design by only requiring two light sources. It also offers great potential for facilitating human computer interaction by 
being accurate, cheap, efficient and non-intrusive.  

10 types of low-level 2D and 3D features have been experimented with and encoded for Fisher Vector gender recognition. Evaluations of 
the Fisher Vector encoding method have been performed on the FERET database, Colour FERET database, LFW database and FRGCv2 
database, yielding 97.7%, 98.0%, 92.5% and 96.7% accuracy, respectively. In addition, the comparison of 2D and 3D features has been 
drawn from a self-collected dataset, which is constructed with the aid of the 2D+3D imaging device in a series of data capture experiments. 
With a variety of experiments and evaluations, it can be proved that the Fisher Vector encoding method outperforms most state-of-the-art 
gender recognition methods. It has also been observed that 3D features reconstructed by the two-source PS method are able to further 
boost the Fisher Vector gender recognition performance, i.e. up to a 6% increase on the self-collected database.  

OCIS codes: (100.5010) Pattern recognition; (110.2960) Image analysis; (100.3010) Image reconstruction techniques; (100.6890) Three-
dimensional image processing; (110.6880) Three-dimensional image acquisition. 

1. INTRODUCTION 
Gender has long been considered more than a matter of different 

biological or physical characteristics. It is also linked to certain social 
attributes and behavioural patterns in nature [1]. Being able to 
automatically recognise gender from facial images has become one of 
the main focuses in the field of Human Computer Interaction (HCI). Its 
significance is also justified by its contribution to other areas such as 
visual surveillance [2], data retrieval [3], directed advertising and 
marketing by providing demographic statistics.  

Since a few decades ago, a variety of 2D facial features have been 
extracted, fused or encoded to achieve automatic gender recognition, 
but only recent years have witnessed the emergence of 3D imaging 
systems that are intended to obtain 3D facial features to better fulfil the 
recognition task [4]. As far as gender recognition is concerned, most 
techniques can be broadly classified into geometric [5] or appearance 
[6] based methods. The former aims to characterise anthropometric 
measures such as face width and length, distance between the eyes, or 
face boundaries extracted by the Active Shape Model (ASM) [7], while 
the latter describes the textures of facial skin where wrinkles, bulges, 
and furrows are present. While 2D features continue to draw extensive 
attention from researchers and lead to a wide range of applications, 
their inherent limitations are inevitable and are deemed volatile due to 
dynamic environmental and experimental factors such as illumination 
condition and head pose. These limitations should be resolved before 
gender recognition could become well suited for real-world 
implementations. A viable solution is facilitated by the increased 
availability and easier accessibility of 3D imaging devices. 3D facial 
features have reportedly contributed to higher accuracy and/or 
robustness in automatic face recognition, gesture recognition, facial 

expression recognition and gender recognition. These features can be 
extracted from 3D faces obtained via various means including 
structured-light [8] 3D scanning, laser scanning [9], stereoscopic 
systems, photometric systems, etc. While some 3D imaging systems 
are mechanically complex and expensive and other are 
computationally expensive, photometric vision systems manifest 
better feasibility for real-world applications in that 1) they require only 
inexpensive and simple settings, 2) they are capable of performing 
real-time 3D reconstruction [10] and that 3) they provide superior 
reconstruction results that reveal 3D textures. Photometric stereo 

methods are the core of photometric vision systems, which recover 
surface normals and albedos of a surface from three or more images 
where illumination directions vary but viewpoint remains fixed.  

In this paper, we propose to encode low-level facial features as 
Fisher Vectors (FVs) for gender recognition and draw a comparison 
between utilising a number of 2D and 3D feature types. We first prove 
with two sets of experiments that by encoding 2D features, our method 
exhibits high accuracy and robustness in both controlled and 
uncontrolled environments. We then introduce a variation of PS that 
requires only two light sources to recover a 3D surface and present our 
2D+3D imaging system based on this approach. Finally, we prove with 
the data gathered by our imaging system that 3D facial features can 
provide a further boost to the proposed method.   

In summary, the main contribution of this paper is threefold. 
1) A gender recognition method utilising the FV encoding approach 

– a generic method that can encode almost any type of features but still 
maintains low complexity in implementation. It also proves to have 
high accuracy and robustness against head poses. To the best of our 
knowledge, this is the first time that FVs have been employed for 
gender recognition. 
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2) A two-source PS method that can be applied to real-world 
scenarios for 3D surface reconstruction and a 2D+3D imaging system. 
This method lowers the complexity of conventional PS methods by 
reducing the number of light sources (i.e. images per reconstruction). 
This will largely reduce the mechanical complexity in designing 3D 
imaging systems while improving real-time performance. 

3) A comprehensive comparison of utilising 2D and 3D facial 
features for gender recognition by evaluating 10 types of encoded 
low-level features. The superiority of our method and 3D features is 
manifested by our experiments on 4 publicly available databases 
and a self-collected database. 

2. RELATED WORK 
We review in this section a number of 2D and 3D methods for 

gender recognition. In addition, 12 gender recognition approaches are 
further summarised in Table 1 with a detailed comparison to our 
method in terms of features/classifiers, recognition accuracy, database, 
validation method and limitation(s).  

Gender recognition from facial images, i.e. gender classification, is a 
challenging task in that a face exhibits a wide range of intra-class 
variations due to diverse facial attributes or dynamic environmental 
factors. The former type of complication mainly includes age, ethnicity 
and makeup while the latter includes illumination condition, head pose, 
facial occlusion and camera quality.  

Most high-performance gender recognition methods involve 
machine learning and follow four stages: face detection, facial image 
pre-processing, feature extraction and classification [11]. 

For the face detection stage, the Viola-Jones face detector [12] has 
been widely adopted due to its ease of implementation and relatively 
high accuracy [13]. For the image pre-processing stage, normalisation, 
i.e. contrast and brightness adjustment, image resizing and face 
alignment are commonly considered useful despite their varied 
implementation details. Among them, face alignment has been 
reported to be able to guarantee an increase in classification accuracy 
by a number of studies. For example, in a research [14] evaluating a 
number of gender classification methods, it was concluded that 
Support Vector Machines (SVMs) outperformed other classification 
methods with up to 86.54% accuracy, and that higher accuracy could 
be achieved by automatic face alignment methods. Another study [15] 
illustrated that face alignment brought an increase to classification 
accuracy for various methods including use of neural networks, SVMs, 
and AdaBoost.  

For the feature extraction and selection stage, a wide range of 
features have been experimented with and evaluated in the literature. 
The need for higher robustness and discriminability has led to data 
capture that is 2D or 3D, and densely extracted or sparsely detected. 
Features include intensity values from greyscale images [16], Local 
Binary Patterns (LBP) [17,18], facial strips [19], Haar-like features [13], 
Scale Invariant Feature Transform (SIFT) features [20], etc. Depending 
on the type of features extracted, one or more face descriptors per 
image are obtained. These descriptors are commonly drawn to 
characterise facial texture, geometry or topology whose 
representations seek to obtain high robustness to intra-class variations 
(e.g. facial expression, head pose, illumination, etc.). For the 
classification stage, SVMs and neural networks have been the most 
popular classifiers. SVMs with different kernels were investigated in 
[16] and convolutional neural networks (CNNs) were adopted by [21] 
and [22] as gender classifiers.  

Following the 4 major stages, a number of approaches have 
reported relatively high classification rates on publicly available 
datasets. A decision-fusion based method was presented by [23] that 
utilised multiple SVMs to classify greyscale values, LBP and histograms 
of edge directions as features. Then all classification results were 
integrated to make the final decision by means of majority voting, 
leading to 99.07% accuracy. However this result was obtained from a 
small subset of the Grey FERET database and their validation method 
was not sophisticated enough to reflect the performance of their 

approach objectively. Similarly, [19] employed 10 regression functions 
to conduct region-based classifications and then fed the vector of 
classification results into an SVM to generate the final decision. Despite 
the 98.8% accuracy on the Grey FERET database they reported, they 
did not illustrate their evaluation method and the split of training and 
testing data. The reappearance of the same subject(s) in both training 
and testing sets may account for the high accuracy they obtained. A 
face alignment scheme is compulsory to their approach, the absence of 
which leads to a 6% drop in the classification rate, bringing 98.8% 
down to 92.8%. [24] proposed a fusion-based method for gender 
recognition by integrating different facial regions using the ‘matcher 
weighing fusion’ method. The facial landmarks for segmenting the face 
into its sub-regions were detected by a profile-based method and a 
curvature based method. Interestingly they proved experimentally 
that the fusion of multiple facial sub-regions was superior to the 
complete face region alone and that the upper face contained more 
discrimination power regarding gender classification. Another type of 
facial feature, i.e. two-directional Principal Component Analysis on real 
Gabor space, was explored by Rai and Khanna [25,26] and achieved up 
to 98.4% gender classification rate on the Colour FERET database. 

While features obtained from colour or greyscale images are still 
attracting huge research focus, the trend has now been directed 
toward the study of 3D face features, mainly including 3D appearance 
features and 3D geometric features. In [27], two types of appearance 
features, i.e. the LBP features and the shape index features, were fused 
to characterise facial textures and shapes. The resulting classification 
rate on the FRGCv2 dataset was up to 93.7%. As for the utilisation of 
geometric features, [28] performed the Random Forest algorithm on 
3D morphological features and used the votes to represent the 
magnitude of sexual dimorphism. 97.18% accuracy was achieved on 
the FRGCv2 dataset. Similarly, [29] investigated ‘gender strength’, 
which was aimed at replacing the conventional binary gender labels by 
introducing a continuous gender class variable. Another study [24] 
achieved high accuracy by integrating multiple facial regions 
segmented by a selection of facial landmarks. 3D features extracted 
from these regions were then classified by a SVM. This study evaluated 
the contributions of individual facial regions and concluded that the 
upper facial region contained the highest gender discriminability. Since 
3D features have shown promising results, they have also been 
combined with 2D features such that the merits from both types of 
features can be inherited. [30] introduced a type of LBP based feature 
descriptor to encode 3D facial features for gender classification. A 
combination scheme making use of both depth images and greyscale 
images was proposed, which showed enhanced classification accuracy 
on both high and low resolution data. [31] also proposed a fusion 
method for gender recognition that combined the shape and texture 
features extracted from 3D meshes and greyscale images. The fused 
features proved to outperform individual types.  

With individual works reviewed, we draw conclusions from the 
literature regarding the preferences and trends in gender classification. 
1) SVMs and neural networks are the most popular classifiers. 2) LBP 
and its variations are the most popular features. 3) Most studies use 
the FERET database as the standard evaluation database. 4) Most 
works are carried out under a well-controlled environment while real-
world implementation and evaluation lack exploitation. 5) Most works 
incorporate facial landmark detection and face alignment in the pre-
processing stage. 6) Most works employ the 5-fold cross validation for 
accuracy estimation. 7) Although 3D features have received an 
increasing amount of study, the corresponding 3D imaging systems 
and implementations are not keeping the pace with the algorithms. 
Therefore, the mainstream for gender recognition continues to be 2D 
methods. 

3. FISHER VECTOR FOR GENDER RECOGNITION 
As seen from the literature, most methods regarding gender 

recognition lack robustness and suffer from various limitations in real-
world scenarios. To bridge these gaps, we explore novel methods that 



can boost the discriminative power of facial features while overcoming 
challenging environmental variations. In this section, we introduce a 
gender recognition method that utilises FVs as encoded features. 

A. Fisher Vector principle 

A Fisher Vector (FV) is an encoded vector that applies Fisher kernels 
on visual vocabularies where the visual words are represented by 
means of a Gaussian Mixture Model (GMM). The Fisher kernel function 
is derived from a generative probability model, and provides a generic 
mechanism that combines the advantages of generative and 
discriminative approaches. As a core component of a FV, a GMM is a 
parametric probability density function represented as a weighted 
sum of Gaussian component densities as given by Eq. (1) [32] 

 

𝑝(𝒙|𝜆) =  ∑𝜔𝑖  𝑔(𝒙|𝝁𝒊, 𝝈𝒊)

𝑁

𝑖=1

                         (1) 

 
where 𝒙  is a D-dimensional data vector, 𝜆 = {𝜔𝑖 , 𝝁𝒊, 𝝈𝒊, 𝑖 =
1,2,… , 𝑁} is the collective representation of the GMM parameters – 𝜔𝑖  
the mixture weights, 𝝁𝒊 the mean vector and  𝝈𝒊 the covariance matrix. 
𝑁 is the number of Gaussians. The component 𝑔(𝒙|𝝁𝒊, 𝝈𝒊) is further 
described in Eq. (2). 
 

𝑔(𝒙|𝝁𝒊, 𝝈𝒊) =  
𝑒{−

1
2
(𝒙−𝝁𝒊)′𝝈𝒊

−𝟏(𝒙−𝝁𝒊)}

(2𝜋)𝐷/2|𝝈𝒊|
1/2

                       (2) 

 

The mixture weights are subject to the constraint in Eq. (3). 
 

∑𝜔𝑖

𝑁

1

= 1                                         (3) 

 
The covariance matrices are assumed to be diagonal since any 

distribution can be decomposed into a number of weighted Gaussians 
with diagonal covariances. Let 𝑿 = {𝒙𝒕, 𝑡 = 1,2,… , 𝑇} be the set of 
descriptors of low-level features extracted from an image, and it is 
assumed that all the descriptors are independent.  Eq. (4) can be found: 

 

log 𝑝(𝑿|𝜆) =  ∑log 𝑝(𝒙𝒕|𝜆)

𝑇

1

                   (4) 

 
The descriptors 𝑿 can be described by the gradient vector: 
 

𝜓𝜆
𝑿 = 

∇𝜆 𝑙𝑜𝑔𝑝(𝑿|𝜆)

𝑇
                            (5) 

 
A natural kernel on these gradients is: 
 

𝜘(𝑿,𝒀) =   𝜓𝜆
𝑿′ ℱ𝜆

−1 𝜓𝜆
𝒀                         (6) 

 
where ℱ𝜆 = ℒ𝜆′ℒ𝜆 is the Fisher information matrix and 

Ψ𝜆
𝑿 = ℒ𝜆 𝜓𝜆

𝑿 is referred to as the Fisher Vector of 𝑿. Let  𝛾𝑡(𝑖) denote 
the soft assignment of descriptor  𝒙𝒕 to the Gaussian component 𝑖: 

 

𝛾𝑡(𝑖) = 𝑝(𝑖|𝒙𝒕, 𝜆) =  
𝜔𝑖𝑔(𝒙𝒕|𝝁𝒊, 𝝈𝒊)

∑ 𝜔𝑗
𝑁
𝑗=1 𝑔(𝒙𝒕|𝝁𝒋, 𝝈𝒋)

         (7) 

 
The gradients of Gaussian component 𝑖  with respect to the 

mean 𝝁𝒊 and the covariance 𝝈𝒊 respectively are: 
 

Ψ𝜇,𝑖
𝑿 = 

1

𝑇√𝜔𝑖
∑𝛾𝑡(𝑖)

𝑇

1

(
𝒙𝒕 − 𝝁𝒊
𝝈𝒊

)                (8) 

Ψ𝜎,𝑖
𝑿 =  

1

𝑇√2𝜔𝑖
∑𝛾𝑡(𝑖)

𝑇

1

[
(𝒙𝒕 − 𝝁𝒊)

𝟐

𝝈𝒊
𝟐

− 1]               (9) 

 
Finally a FV is represented as: 
 

Φ = {Ψ𝜇,1
𝑿 , Ψ𝜎,1

𝑿 , … ,Ψ𝜇,𝑁
𝑿 , Ψ𝜎,𝑁

𝑿 }                     (10) 

 
A FV is derived from GMM parameters by comparing the Gaussian 

distribution of one image with that of the entire training data, and then 
capturing the variation. As a result, a FV as a feature vector is provided 
with contextual definition and enhanced saliency for classification. 

B. Fisher Vector encoding for gender recognition 

FVs have been used for face recognition and have proved to be an 
excellent encoding method [33]. The FV encoding approach consists of 
5 main stages:  

1. Face pre-processing 

The techniques experimented at this stage include face detection, 
image resizing, histogram equalisation and face alignment. In the 
proposed method, the Viola-Jones face detector [12] is used to obtain a 
face region in the first place. We then reshape the face region obtained 
by the face detector so that it incorporates the hair region and the chin. 
All the face regions obtained are further resized to a uniform size in the 
next step. We have also experimented with face alignment (using eye 
centres) and histogram equalisation so as to evaluate their impacts. 

2. Low-level feature and face descriptor computation 

We extract dense descriptors at every pixel location. Firstly, we 
segment a face image into a number of overlapping patches of the 
same size. Specifically, these patches are obtained by sliding a 𝑝𝑠 ×
𝑝𝑠 window across an image horizontally and vertically by a predefined 
sampling step 𝑠𝑠 (𝑠𝑠 ∈ ℤ). One descriptor per patch rather than one 
descriptor per image is calculated.  

3. Dimension reduction and feature selection.  

As one image produces multiple descriptors, linearly increasing the 
total number of observations as opposed to conventional methods, 
dimension reduction is essential in that it cuts down memory 
consumption and that it potentially compresses raw features into 
more discriminative representations. We employ Principal Component 
Analysis (PCA) to reduce the dimensionality to 64 features per 
descriptor (see Fig. 7 for the impact of PCA). The centre position of a 
patch, after being scaled to [0.5, 0.5], is then appended to the end of the 
corresponding descriptor in the form of a 2D vector [33], increasing 
the dimensionality from 64 to 66. 

4. FV encoding 

The aggregate of all descriptors from training images trains a GMM 
and yields model parameters which, according to Eq. (8) – (10), lead to 
FVs as encoded features. In the experiments, we utilised a publicly 
available toolbox [34] for GMM training and SIFT feature extraction. In 
this stage, the decomposed patches are reunited to characterise a 
complete image, in the form of derivatives of all the Gaussian 
components. For computation of FVs, ℓ2 normalisation and power 
normalisation are applied to the vectors since they have been reported 
to bring improved classification performance [35]. 

5. Classifier training 

The proposed algorithm learns a SVM classifier from all training FVs. 
In our experiments, a linear SVM and a SVM with the Radial Basis 
Function (RBF) kernel were trained individually for predicting image 
labels. The reason for this is to demonstrate that the proposed 
algorithm only requires a linear SVM to achieve high accuracy. 



4. TWO-SOURCE PHOTOMETRIC STEREO FOR 3D FACE 
RECONSTRUCTION 

This section introduces a 3D face reconstruction method such that 
3D features can be utilised by the proposed FV encoding method for 
higher accuracy and robustness. 3D facial features reveal facial 
topology by providing geodesic distances and surface curvatures. They 
have thus shown promise for bringing higher accuracy to face 
recognition; and improved robustness to practical applications where 
scenes are complex and dynamic. However, the exploitation of 3D 
vision is not currently sufficient to enable a wide array of 3D vision 
based applications. This is mainly due to 3D reconstruction techniques 
being isolated from 3D imaging systems which are commonly seen in 
bulky and expensive setups. Consequently, many algorithms struggle 
to find their way into real-world scenarios. In this section, we introduce 
a two-source variation of the photometric stereo (PS) method and, for 
the first time, apply it to various types of realistic data. Our aim is to 
provide a 3D reconstruction algorithm, together with a stereo imaging 
system, suitable but not restricted to the gender recognition task. 

A. Photometric Stereo Principles 

PS allows estimation of surface normals from reflectance maps 
obtained from images of the same object captured under different 
illumination directions. It was first introduced by [36] which illustrates 
that three views are sufficient to uniquely determine surface normal as 
well as albedo at each image point, provided that the directions of 
incident illumination are not collinear in azimuth. Other works employ 
four views for improved reconstruction performance. PS techniques 
are superior in capturing detailed high-frequency 3D textures and are 
less affected by image noise compared to triangulation based 
techniques [37]. In addition, PS methods normally require only one 
camera for image capture, simplifying the calibration process and 
allowing for high efficiency. In contrast, binocular stereo, for example, 
recovers depth of surface rather than surface orientations, which 
would likely introduce noise and artefacts. 

Let 𝐼1(𝑥, 𝑦), 𝐼2(𝑥, 𝑦) and  𝐼3(𝑥, 𝑦) be three images captured under 
varied illumination directions. By varying the illumination direction, 
the reflectance map is changed accordingly, giving Eq. (11): 

 

{

𝐼1(𝑥, 𝑦) = 𝑅1(𝑝, 𝑞)

𝐼2(𝑥, 𝑦) = 𝑅2(𝑝, 𝑞)

𝐼3(𝑥, 𝑦) = 𝑅3(𝑝, 𝑞)

                                             (11) 

 
A general reflectance map in gradient representation of the surface 

orientation and illumination direction is expressed in Eq. (12). 
 

𝑅(𝑝, 𝑞) =  
𝜚(1 + 𝑝𝑝𝑠 + 𝑞𝑞𝑠)

√1 + 𝑝2 + 𝑞2√1 + 𝑝𝑠
2 + 𝑞𝑠

2
               (12) 

 

where 𝜚 is the albedo, 𝑵⃗⃗ =  [−𝑝,−𝑞, 1] defines the surface normal 

vector, and 𝑳⃗⃗ =  [−𝑝𝑠 , −𝑞𝑠, 1] defines the illumination direction. Let 
the surface be 𝑧 =  𝑓(𝑥, 𝑦), the gradients in the 𝑥 and 𝑦 directions 
become: 
 

{
 

 𝑝 =  −
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥

𝑞 =  −
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦

                             (13) 

 
These equations are derived under the assumptions that 1) the 

object size is small relative to the viewing distance; 2) the surface is 
Lambertian; and 3) the surface is exempt from cast-shadows or self-
shadows. To simplify the expression, the light vector is further 

normalised to a unit vector 𝑳𝒏⃗⃗ ⃗⃗ = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧] . The relationship 

between a greyscale image and a reflectance map can also be written 
as: 

 

𝐼(𝑥, 𝑦) =  
𝜚 ∙ < 𝑵⃗⃗ , 𝑳𝒏 ⃗⃗ ⃗⃗  ⃗ >

|𝑵⃗⃗ |
=  𝜚 ∙

−𝑝𝑎𝑥 − 𝑞𝑎𝑦 + 𝑎𝑧

√1 + 𝑝2 + 𝑞2
           (14) 

 
From Eq. (11) to Eq. (14), it is known that with three greyscale 

images 𝐼1(𝑥, 𝑦), 𝐼2(𝑥, 𝑦) and 𝐼3(𝑥, 𝑦), along with three known light 

vectors 𝑳𝒏𝟏
⃗⃗⃗⃗⃗⃗  ⃗, 𝑳𝒏𝟐

⃗⃗⃗⃗⃗⃗  ⃗ and 𝑳𝒏𝟑
⃗⃗⃗⃗⃗⃗  ⃗ pointing in the directions of their respective 

light source, the surface normal and albedo at each image point can be 
uniquely determined.  

B. A two-source PS method 

Although the standard 4-source PS method is highly accurate and 
relatively efficient in recovering 3D surface normals, it is however not 
ideal for facilitating real-world applications. Generally, its 
implementation is prohibited by the need for capturing at least 3 (or 
more commonly 4) images at high frame rate for every reconstruction. 
Another limitation is posed by the complex structure of data capture 
system where a large set of light sources need to be deployed, which 
are likely to lead to an inconvenient and hazardous system in some 
cases. We propose to simplify both data capture and hardware design 
by employing a two-source PS variation where only two light sources 
are required and therefore only two images need to be captured per 
reconstruction.  In general, the equations in (11) are nonlinear, and 
therefore the two-source PS problem is not well posed. This ambiguity 
problem is illustrated in Fig. 1. 

 

 

Fig. 1.  An illustration of PS ambiguity 

 
When only one light source is concerned, the surface normal vectors 

that produce a specific intensity value at point 𝑂 form a cone with apex 

at this point and axis in the direction of illumination 𝑳𝒏𝟏
⃗⃗⃗⃗⃗⃗  ⃗. In the case of 

two illuminators, the surface normals should belong to two such cones 
and therefore exist at the intersections of the two cones. Two cones 
with the same apex either have two intersections or one intersection 
(the case of no intersection does not occur for PS images). These two 
scenarios corresponding to ambiguous solutions and a unique solution 
respectively are shown in Fig. 1(a) and Fig. 1(b) 

where  𝑂𝐴⃗⃗ ⃗⃗  ⃗ and  𝑂𝐵⃗⃗ ⃗⃗  ⃗ represent the ambiguous solutions 

and 𝑂𝐶⃗⃗⃗⃗  ⃗ represents the unique solution. This can be mathematically 
explained by deriving a pair of equations as in the general form of Eq. 

(14). If constant albedo is assumed for simplicity, and let 𝑳𝒏𝟏
⃗⃗⃗⃗⃗⃗  ⃗ =

[𝑎𝑥, 𝑎𝑦, 𝑎𝑧], 𝑳𝒏𝟐
⃗⃗⃗⃗⃗⃗  ⃗ = [𝑏𝑥 , 𝑏𝑦, 𝑏𝑧], two PS images yield: 

 

{
 
 

 
 𝐼1 = 

−𝑝𝑎𝑥 − 𝑞𝑎𝑦 + 𝑎𝑧

√1 + 𝑝2 + 𝑞2

𝐼2 = 
−𝑝𝑏𝑥 − 𝑞𝑏𝑦 + 𝑏𝑧

√1 + 𝑝2 + 𝑞2

                        (15) 

 
The solutions for 𝑝 and 𝑞 are produced in a similar way to [38]. Let  
 

𝑇 ≜ √1 + 𝑝2 + 𝑞2                                       (16) 
 
Rearranging Eq. (16) yields 
 



{
 𝑝𝑎𝑥 + 𝑞𝑎𝑦 = 𝑎𝑧 − 𝐼1𝑇 

 
𝑝𝑏𝑥 + 𝑞𝑏𝑦 = 𝑏𝑧 − 𝐼2𝑇

                         (17) 

 
Solving Eq. (17) for 𝑝 and 𝑞 in terms of  𝑇 produces equations of the 

form 
 

{
𝑝 =  𝜀1𝑇 + 𝜀2
𝑞 =  𝜀3𝑇 + 𝜀4

                               (18) 

 
where 𝜀1, 𝜀2, 𝜀3, 𝜀4 are functions of known values  𝐼1, 𝐼2, 𝑎𝑥, 𝑎𝑦 , 𝑎𝑧, 𝑏𝑥 , 

𝑏𝑦 and 𝑏𝑧. Combining Eq. (16) and (18) provides a quadratic equation 

for 𝑇 of the form 
 

𝜆2𝑇
2 + 𝜆1𝑇 + 𝜆0 = 0                      (19) 

 
where 𝜆0, 𝜆1 and 𝜆2 can be calculated as functions of known values  𝐼1, 
𝐼2, 𝑎𝑥, 𝑎𝑦 , 𝑎𝑧, 𝑏𝑥 , 𝑏𝑦 and 𝑏𝑧. Solving this quadratic equation (𝜆2 ≠ 0 in 

this case) gives: 
 

𝑇1,2 =  
−𝜆1 ± √𝜆1

2 − 4𝜆2𝜆0

2𝜆2
                       (20) 

 
The two pairs of derivatives then become: 
 

{
 
 

 
 𝑝1,2 =

𝑎𝑧𝑏𝑦 − 𝑏𝑧𝑎𝑦 + 𝐼2𝑇1,2𝑎𝑦 − 𝐼1𝑇1,2𝑏𝑦

𝑎𝑥𝑏𝑦 − 𝑏𝑥𝑎𝑦
 

𝑞1,2 =  
𝑎𝑥𝑏𝑧 − 𝑎𝑧𝑏𝑥 + 𝐼1𝑇1,2𝑏𝑥 − 𝐼2𝑇1,2𝑎𝑥

𝑎𝑥𝑏𝑦 − 𝑏𝑥𝑎𝑦

         (21) 

 

It should be noted that 𝑎𝑥𝑏𝑦 − 𝑏𝑥𝑎𝑦 ≠ 0, in order to produce 

meaningful solutions. To remove the ambiguity, we follow [38] and 
enforce integrability and continuity properties of a surface, assuming 
that the surface normals are continuous and that the surface height is 
twice differentiable. According to the continuity property of a surface, 
this study suggests that an arbitrary surface can be divided into 
connected regions 𝑅𝑐 (𝑐 ∈ ℤ), where there exists either a unique 
solution for 𝑇 or a pair of solutions.  On the other hand, integrability 
provides Eq. (22): 

 

∫ (
𝜕𝑝1,2
𝜕𝑦

−
𝜕𝑞1,2
𝜕𝑥

)
2

 

(𝑥,𝑦)∈𝑅𝑐

=  0                         (22) 

 
The pairs of  𝑝 and 𝑞 that agree with this equation are the true 

gradients and therefore correspond to the true surface normals. It is 
worth noting that when a unique solution can be found, the surface 
normal lies on the plane defined by the two lighting vectors 
(illumination directions).  In the case of two ambiguous solutions, the 
surface normals lie on the different sides of this plane. We combine this 
with Eq. (22) so that the false solution can be discarded and the 
ambiguity can be removed.  

5. Experiments and Results 

A. 3D reconstruction results 

We demonstrate the accuracy of the two-source PS method by 
applying this algorithm to a series of image sets from the Photoface 
database [39]. The accuracy is then compared to that of the standard 
(4-source) PS method by evaluating the ℓ2-norm error for surface 
normals and the root-mean-square (RMS) error for surface depth.   

The Photoface database is one of the few databases containing 
images captured under PS settings. It is deemed a suitable 
representation for realistic data as the data capture device was placed 

at the entrance to a workplace to ensure casual usage.  We firstly show 
an example of 3D face reconstruction by applying the two-source PS 
method to the image set of the first subject in this database (Fig. 2).  

 

 

Fig. 2.  A sample PS image set from the Photoface database 

Note that the proposed two-source PS method only employs the 
two images illuminated from the top (Fig. 2(b) and (c)) while the 
standard PS method uses all the four images for reconstruction. It has 
been experimentally observed that illuminating from the top-left and 
the top-right directions creates relatively fewer self-cast shadows. The 
recovered 𝑥 gradient image and the depth image are compared with 
those from the standard PS in Fig. 3. The recovery of depth images in 
this paper is based on the algorithm introduced in [40]. 

 

 

Fig. 3.  A comparison of a 3D face reconstructions between the two-
source PS and the 4-source PS. (a) and (b) are the 𝑥 gradient images 
from 2-source PS and 4-source PS, respectively. (c) and (d) are the 
corresponding depth images. 

The difference between a pair of reconstructions by the two-source 
and four-source PS method is more likely to be seen in facial regions 
that are less continuous (e.g. eye regions). Possible causes include 
sharp changes in face depth, non-Lambertian reflectance and shadows. 
Overall, comparable reconstruction results can be reflected by this 
example in this particular visualisation form. We further provide a 
comparison of the reconstructed depth images (Fig. 4) for 4 other 
subjects (subject 1002 to 1005) from the Photoface database.  
  

 

Fig. 4. 3D face reconstructions for 4 subjects from the Photoface 
database using the two-source PS and the standard 4-source PS 
methods. Top to bottom: one of the PS images, reconstructions by the 
two-source PS and reconstructions by the standard PS. 



While the 𝑥 gradient images and the depth images offer a visual 
comparison, a statistical analysis follows, which evaluates the surface 
normals and the depth images by measuring the ℓ2-norm and the RMS 
errors for the first 100 subjects. As [41] has already calculated the 
errors between the standard PS and the ground truth obtained by a 
3dMD projected pattern range finder [42], we are able to set the 
standard PS method as a reference for our evaluation. We followed [41] 
and cropped all reconstructions to 160 × 200 regions centred on the 
nose tip in order that the evaluations are consistent. While [41] 
measured the ℓ2-norm and the RMS errors for 8 subjects from the 
Photoface database, we calculated the errors for the first 100 subjects 
for a more objective evaluation. These results can be seen in Fig. 5. 

 

 

Fig. 5.  (a) The ℓ2-norm errors for surface normals and (b) the RMS 
errors for surface depth, for the first 100 subjects in the Photoface 
database, when the two-source PS method and the standard PS 
method are used for reconstructions. 

 
Note that the ℓ2-norm error for subject No. 1061 is relatively large 

due to the extreme head pose and the large background area. The 
average ℓ2-norm and the RMS errors for the 100 subjects are 0.3163 
and 4.8757, respectively. Consider a Cartesian coordinate system with 
x, y and z axes, a ℓ2-norm error is caused by a unit vector deviating in 
the x and/or y directions. This is similarly to angular deviations in a 
spherical coordinate system represented by radial distance, azimuthal 
angle, and polar angle. ℓ2-norm error of 0.3163 corresponds to an 
error of only 5.74 degrees when a unit surface normal vector [x, y, z] 
deviates in either the x direction or the y direction. On the other hand, 
The RMS error of 4.8757 pixels corresponds to only 1.12% of the 
average length of the 100 face images (i.e. 420 pixels). Therefore, both 
the 3D face visualisation and the statistical study can validate that, 
when realistic data are concerned, the two-source PS method has 
achieved comparable results to those from the standard PS method.  

B. Gender recognition evaluations on public databases 

In order to evaluate the performance of the proposed gender 
recognition algorithm under controlled environments and real-world 
conditions, the Grey FERET database [43], the Colour FERET database 
[44], the FRGCv2 database [45] and the Labelled Face in the Wild (LFW) 
database [46] are employed. The Grey FERET database (referred to as 
the FERET database in the rest of the paper) and the Colour FERET 
database consist of images of 1762 subjects in greyscale and 1199 
subjects in colour, respectively. Although captured under controlled 
environment, they still pose great challenge as they accommodate 
different ethnicities, facial expressions, facial accessories, facial makeup 
and illumination conditions. The FRGCv2 database includes 4007 
depth images belonging to 466 subjects. These data also include 
different ethnicities and age groups. The LFW database is considered 
one of the most challenging databases and has become the evaluation 
benchmark for face recognition under unconstrained environments. It 

contains 13233 colour facial images of 5749 subjects collected from 
the web in inconsistent image quality.  

Different evaluation methods were employed in our experiments, 
such as 5-fold cross validation and 2-fold cross validation, detailed in 
Table 1. We also evaluated different types of features including the 
greyscales, LBP (extracted using the circularly symmetric neighbour 
sets with 8 neighbouring pixels and radius of 1 [47]), LBP histogram 
with uniform pattern and SIFT. Their respective performances on the 
FERET database are summarised in Fig. 6. 

 

 

Fig. 6.  Gender classification rates for various feature types, tested on 
the FERET fa partition. Results were obtained by a linear SVM. 

 
In the evaluation experiments, we investigated various parametric 

settings and identified the parameters that gave the highest accuracy. 
Four groups of experiments were conducted to inspect image size, 
sampling window size, sampling step and Gaussian component 
number. Note that only one parameter varied in each group of 
experiments, where the parameter that yielded the highest 
classification rate was selected to form the optimal parametric setting. 
This was found to be 1) image size: 160 × 120 pixels (the largest we 
experimented with for the FERET database), 2) sampling window size: 
24 × 24  pixels, 3) sampling steps: 4 pixels, and 4) Gaussian 
component number: 512.  

The impact of PCA was also explored by reducing the original facial 
descriptors to dimensionality of 32, 64 and 96, respectively. It can be 
shown in Fig. 7 that when the first 64 principal components are 
employed, the highest classification rate can be achieved. 

 

 
Fig. 7. Impact of PCA on gender classification, tested on the FERET fa 
partition. Results were obtained by a linear SVM. 
 

As SIFT features yielded the highest classification accuracy, it was 
further tested on the other databases with the optimal parametric 
setting. Note that our SIFT features were only extracted at one scale 
since we did not observe any improvement when multiple scales are 
used. In addition, we only employ a linear SVM since the RBF kernel in 
the experiments did not contribute to higher classification rate. The 
classification rates for aligned and misaligned images in the LFW 
database are 92.5% and 92.3%, respectively. The classification rates 
for misaligned images in the Colour FERET database and the FRGCv2 
database are 98.0% and 96.7%, respectively. To further validate the 
proposed method, we compare these results to 12 other gender 
recognition studies in the literature, detailed in Table 1. 
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Table 1.  A comparison of the proposed method with other gender 
recognition methods on public databases a 

 

Method Description Database 
Validation 

method 
Accuracy Limitation 

the 
proposed 
method 

FV encoding 

FERET fa 1762 5-CV 97.7% 

slow at 
training 

stage 

FERET fa 1762 50%/50% 96.9% 

FERET fa 1762 50%/50%* 97.9% 

FERET fa+fb 900 (u) 5-CV 96.1% 

FERET fa+fb 2400 50%/50% 98.3% 

FERET fa+fb 2400 50%/50%* 99.5% 

Colour FERET 700 2-CV* 98.0% 

LFW all (u) 5-CV 92.5% 
FRGCv2 depth 

all 466 subjects (u) 
5-CV 96.7% 

[14] 
classifier 

fusion 
FERET fa+fb 900 (u) 5-CV 92.9% 

6 classifiers 
needed 

[16] RBF-SVM 
FERET 

thumbnail1855 
5-CV* 96.6% * 

[17] refined LBP LFW 7443 selected 5-CV 94.8% 
manual data 

selection 

[18] 
LBP, wavelet 

transform 
FERET fa+fb 2400 50%/50%* 99.3% 

manual data 
selection 

[19] facial strips FERET fa 1763 not specified 98.8% 
slow & need 
alignment 

[21] CNN FERET fa 1762 5-CV* 97.2% * 

[22] CNN FERET fa 1762 5-CV* 96.4% * 

[48] 
geometric 

facial features 
Indian face 

trained with 
40 subjects 

95.6% 
database of 
small size 

[25] 
2DPCA 

Gabor space   
Colour FERET 700 2-CV* 98.4% 

* 
LFW all 2-CV* 89.1% 

[26] 
2DPCA 

Gabor space   
Colour FERET 2-CV* 98.2% 

* 
LFW all 2-CV* 88.3% 

[27] 
LBP, 

shape index 
FRGCv2 depth 
all 466 subjects 

5-CV* 93.7% * 

[28] 
Random 

Forest votes 
FRGCv2 depth 
all 466 subjects 

leave-one-out 
CV 

97.2% / 

a The ‘*’ notation indicates that training data and testing data may contain 
different images of the same subject(s); ‘(u)’ represents unique subjects; ‘5-
CV’ and ‘2-CV’ represent five-fold and two-fold cross validation, 
respectively; ‘50%/50%’ represents half the data for training and the other 
half for testing.  

 
With a number of evaluation methods implemented on different 

databases and database partitions, it can be seen from Table 1 that the 
proposed gender recognition algorithm outperforms most studies in 
comparison under the same experimental settings. Although its 
classification rate evaluated on the Colour FERET database is 0.4% 
lower than the 2DPCA based methods [25,26], the results on 
unconstrained data (i.e. the LFW database) are 3.4% higher under 
cross-validation evaluations. In the following subsection, we illustrate 
how the proposed gender recognition method can be further boosted 
by the utilisation of reconstructed 3D facial data. 

C. Gender recognition evaluations on 3D reconstructions from PS 

In the preceding subsection, we demonstrated that even with 
greyscale images, the proposed FV encoding method can achieve 
excellent gender classification rates comparable to state-of-the-art 
studies. As much as this gives promising reliability, the inherent 
limitation of utilising greyscale or colour images is mainly posed by 
dynamic lighting conditions. This cannot be resolved by designing 
classifiers with higher discriminative power, but can be tackled by 
seeking light-independent features – the 3D facial features.  

In this subsection, we draw a comparison between utilising 2D facial 
features and 3D features for FV gender recognition. For 2D facial 
features, we evaluated the SIFT features as a reference, which had 
gained the highest classification rate in our previous experiments. For 

3D facial features, we firstly performed 3D reconstructions by 
employing the two-source PS method and then extracted 1) the 𝑥 
gradient features, 2) depth features, 3) SIFT features extracted from 
the 𝑥 gradient images (gradient-SIFT), 4) SIFT features extracted from 
the depth images (depth-SIFT), 5) LBP features extracted from the 𝑥 
gradient images (gradient-LBP) and 6) LBP features extracted from the 
depth images (depth-LBP). 

Currently, we have not discovered any public databases that contain 
both PS image sets and the corresponding greyscale/colour images 
which, at the same time, have a suitable male-female ratio. Therefore 
we developed a 2D+3D data capture system that could gather both PS 
images and colour images at high frame rate.  These data were then 
employed for our gender recognition evaluations. 

1. Development of a 2D+3D data capture system and data capture 
experiments 

We developed a 2D+3D data capture system, shown in Fig. 8, 
intended to gather PS facial data as well as colour images in real-world 
environments. The design of this system consists of 1) a high-definition 
(HD) 47-inch display, 2) a webcam (referred to as camera 1 in the rest 
of the paper) operating at 640×480 resolution, 3) two near-infrared 
(NIR) LEDs (SFH4232 with 850 nm wavelength) for PS illumination, 4) 
a Point Grey GS3-U3-41C6NIR-C camera (referred to as camera 2 in 
the rest of the paper) operating at 2048×800 resolution, with a 850nm 
+/-5nm NIR band pass filter 5) a PC in the cabinet for data storage and 
processing, and 6) a control unit that synchronises NIR LEDs with the 
cameras. The cameras are 2.1 metres from the floor and the NIR 
illuminators are both 0.75 metres from the cameras.  

 

 

Fig. 8.  System structure for the 2D+3D imaging system 

 
The data capture process is described as follows:   
1) The data capture system was firstly placed at a university public 

kitchen area with the presence of only artificial light sources. A total 
number of 45 volunteers participated in this experiment in 2 different 
recording sessions. 

2) The system was then placed at a university library foyer where 
lighting conditions were affected by both lamps installed in the foyer 
and sunshine through the window. A total number of 127 volunteers 
participated in this experiment in 4 different recording sessions. 

3) In the overall 6 experiment sessions, every volunteer was asked 
to stand at 1 metre away from the display and look at the display (each 
face was therefore near frontal as we explored the impact of dynamic 
illumination). The two NIR LEDs then lighted up alternatingly when 
camera 1 captured colour images of the volunteer and camera 2 
captured PS image sets (two NIR images in each set) of the volunteer. It 
should be noted that since camera 2 was covered by a NIR filter, the 
ambient light posed negligible impact on camera 2 while the NIR LEDs 
had minimal impact on camera 1 due to their invisible spectrum.  

4) The overall 6 recording sessions gathered image data of 90 male 
subjects and 82 female subjects. The image data contain Caucasian, 
Asian and African faces, with an age range from 18 to 58. A few image 



sets were stripped where image frames only contained partial faces 
due to the subjects standing at improper locations while being 
recorded. In the end, we employed image data of 75 female subjects 
and an equal number of male subjects (150 faces overall) for the 
gender recognition evaluations. 

A sample image captured by camera 1 and a PS image set captured 
by camera 2 are displayed in Fig. 9. 

 

 

Fig. 9. (a) and (b) are the PS image set used for the 3D reconstruction 
in (d); (c) is the 2D colour image of the same subject captured under 
the same environmental setting, displayed in greyscale. 

Apart from these raw images, the depth image for the same subject 
is displayed in Fig. 9(d) where the reconstruction is achieved by the 
two-source PS method. Other than being able to gather data, this 
system offers significant potential in the advancement of HCI. This is 
enabled by the employment of the two-source PS method that 
facilitates the design of a system with hardware simplicity as well as 
desirable real-time performance. 

2. Gender recognition results on 2D and 3D face images 

For all the 150 subjects, we employed both the colour images 
(which are converted to greyscale images before FV encoding) and the 
PS images, and performed evaluations respectively. Various types of 
features were extracted from them and were encoded into FVs. The 
optimal parameters summarised in the preceding subsection were 
employed while the images were resized to 192 × 144  for a 
consistent aspect ratio. 

The classification rates resulted from 6 types of 3D features were 
compared with the 2D SIFT features as well as the fused features, 
illustrated by Fig. 10. 

 

 

Fig. 10.   Evaluations of 2D and 3D features for FV encoding. Results 
were obtained by a linear SVM. 

It can be seen from Fig. 10 that 3D features have generally resulted 
in superior classification accuracies over 2D features and fused 
features, except for the depth-LBP features which are most likely to 
have be interfered by image noise. The highest accuracy obtained in 
this experiment surpassed the 2D SIFT features by 6%. In this 
experiment, this increase in accuracy is reflected when the illumination 
conditions are acceptable. Therefore, it can be inferred that when the 

illumination condition worsens, 2D features will suffer more while 3D 
features are much less influenced, hence at such times greater 
superiority of 3D features is observed.  Moreover, being illumination 
independent, 3D features can tolerate variations in dynamic scenes 
which commonly render 2D features unstable and incapable of 
discriminating gender groups. However when we fused the greyscale-
SIFT features with gradient-SIFT features (the top 256 Gaussian 
components were used), we observed a decrease in accuracy. This is 
likely due to the 2D features being considered redundant and 
interfering in the new feature space and therefore lowered the overall 
discriminative power of the fused features. 

6. Discussion 

A. The merits and limitations of the Fisher Vector encoding 
method 

FVs bring various benefits to object classification tasks. As well as 
the high discriminability they add to facial features, which results in 
superior accuracy, they offer the following advantages: 

1. Fisher vectors are of uniform length (i.e. dimensionality). This 
allows different types of low level dense features to be encoded into 
feature vectors with the same dimensionality. As a result, various 
feature types, regardless of the source they are extracted from, can be 
easily manipulated, e.g. feature fusion.  

2. This method is versatile in that it can encode almost any type of 
features. In our experiments, we have encoded and evaluated as many 
as 10 different feature types.  

3. At the classification stage, only a linear SVM is needed for the best 
accuracy. This makes the approach more efficient. The reason that 
SVMs with non-linear kernels do not offer additional benefits in our 
experiments is that “learning a kernel classifier using the kernel is 
equivalent to learning a linear classifier on the Fisher vectors” [49]. 

4. FVs are robust to head pose and therefore face alignment can be 
eliminated. This approach samples and encodes dense facial patches. 
Although features within a patch are bounded by local geometry, they 
are globally independent from facial geometry as individual patches 
are treated equally. 

However, the FVs are of high dimensionality. Therefore, at the 
training stage, it requires a large memory space for data storage. This 
also causes a prolonged offline training time. However, computers 
nowadays can be easily equipped with large memories, and as soon as 
the classifier offline training is completed, the classification can be 
achieved online in real time. 

B. Databases and evaluation method 

Four public databases have been employed to evaluate our method 
in laboratory environments as well as in real-world scenes. For 3D face 
reconstruction and 3D feature analysis, we used self-collected data 
obtained in a series of data capture experiments since public PS based 
databases (e.g. the Photoface database) either contain too few subjects 
or contain biased male-female subject ratio.  

We recommend that, in the evaluation process, the 5-fold cross 
validation technique should be adopted for strict and efficient 
evaluations. In addition, evaluations with different images of the same 
subjects in both training set and testing set should be avoided. The 
increase of accuracy (normally 1% or more) caused by this is most 
likely due to classification of gender-specific features that are already 
learnt by a classification model. Other validation methods have also 
been adopted in our evaluations, in order to provide an objective 
comparison to other gender recognition studies (see Table 1). 

The evaluation of the proposed method is two-fold. Firstly, we prove 
with 2D features that FV encoding is a superior method for automatic 
gender recognition. Subsequently, we prove that the employment of 
3D features can further boost the performance of the proposed 
method. Therefore, it can be concluded that the FV encoding method 
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when employing 2D or 3D features exhibits superior excellence in 
automatic gender recognition. 

C.  The efficiency of PS 3D reconstruction and gender recognition 

We evaluated the times spent for the first 100 reconstructions in the 
3D face reconstruction experiments. The computational times for the 
2-source PS and the 4-source PS are plotted in Fig. 11 for a comparison.  

 

 

Fig. 11.  An evaluation of 3D face reconstruction efficiency. Note that 
the times include both surface normal recovery and depth estimation. 
The mean and the standard deviation (SD) of reconstruction times are 
calculated for both the 2-source and the 4-source PS method. 

 
This test was performed with Matlab R2014a and on a computer 

with an Inter(R) Core(TM) i5-4570 CPU and 12G memory. It can be 
seen from Fig. 11 that, on average, the two-source PS method only 
consumes less than two thirds of computational time required by the 
standard PS in the 3D reconstruction stage. Note that the 
reconstruction times for the 100 subjects vary mainly due to their 
different image sizes (average size: 733 × 624 pixels). 

Moreover, in the image capture stage, the two-source PS method 
halves the time consumption by capturing only 2 images per 
reconstruction instead of the commonly required 4 images. The 
standard PS has been able to spawn real-time 3D imaging systems [10], 
the two-source PS variation should promise to boost the efficiency of 
3D imaging systems to a higher level. 

Overall, the reduced image capture time and the shortened 3D 
reconstruction time are the two main factors that can result in high 
efficiency of the two-source PS method and therefore bring huge 
application potential.  

We also evaluated the efficiency of the proposed gender recognition 
method. Under the same hardware and software setting, FV encoding 
for 1200 images took 37 seconds (0.03 seconds per image), while SVM 
gender classification took 1.19 seconds (less than 0.001 seconds per 
image). This indicates that even with a Matlab implementation, the 
proposed algorithm can gain excellent real-time performance (over 30 
images per second). This is mainly due to the fact that the FV encoding 
method only requires a linear SVM to gain high accuracy. It should be 
noted that the dimensionality of a FV is only determined by the 
number of Gaussian components in a GMM (which is normally a fixed 
value as we have identified the optional parametric setting, i.e. 512 in 
the experiments). Therefore when different types of features are 
concerned, computational time would be similar. 

D. 2D facial feature vs. 3D facial features 

3D face reconstructions from our self-collected data and the 
Photoface database show that the reconstruction accuracy 
deteriorates as the camera-subject distance increases. This is likely to 
be caused by illumination attenuation from the NIR LEDs, a reduction 
in image resolution and the change in light (NIR LEDs) positions 
relative to the subject.  

Therefore, from an applied point of view, we recommend a 
combination of 2D and 3D features for gender recognition, and design 

of an adaptive mechanism for real-world HCI system implementations. 
For example, when the camera-subject distance is within 2 metres, 3D 
features should be used for classification where possible; otherwise 2D 
features should be employed. 

7. Conclusion 
This paper employs the FV encoding method for automatic gender 

recognition and draws a comparison between 2D and 3D facial 
features by encoding up to 10 different feature types for a 
comprehensive study. A two-source PS variation is also proposed to 
achieve 3D face reconstruction with high accuracy and efficiency. 
Tested on 4 publicly available databases and a self-collected database, 
the proposed gender recognition method has proved to be highly 
accurate while the employment of 3D features has further boosted the 
classification accuracy and robustness. The 2-source PS 3D 
reconstruction method has been tested on 100 subjects from the 
Photoface database and has been compared to the standard PS method 
in terms of accuracy and efficiency. A 2D+3D imaging system has been 
developed that is capable of collecting colour images as well as PS 
image sets. This system has the potential for facilitating HCI with an 
inexpensive, simple, accurate and efficient hardware device. We 
conclude that although 3D features promise to be more discriminant 
and invariant, they should be combined with 2D features in real-world 
implementations to adapt to dynamic environments. 
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