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ABSTRACT 

The analytical representation of dynamic soil reaction to a laterally-loaded pile using 3D continuum 

modelling is revisited. The governing elastodynamic Navier equations are simplified by setting the 

dynamic vertical normal stresses in the soil equal to zero, which uncouples the equilibrium in vertical and 

horizontal directions and allows a closed-form solution to be obtained. This physically motivated 

approximation, correctly conforming to the existence of a free surface, was not exploited in earlier studies 

by Tajimi, Nogami and Novak and leads to a weaker dependence of soil response to Poisson’s ratio which 

is in agreement with numerical solutions found in literature. The stress and displacement fields in the soil 

and the associated reaction to an arbitrary harmonic pile displacement are derived analytically using 

pertinent displacement potentials and eigenvalue expansions over the vertical coordinate. Both infinitely 

long piles and piles of finite length are considered. Results are presented in terms of dimensionless 

parameters and graphs that highlight salient aspects of the problem. A detailed discussion on wave 

propagation and cutoff frequencies based on the analytical findings is provided. A new dimensionless 

frequency parameter is introduced to demonstrate that the popular plane-strain model yields realistic 

values for soil reaction only at high frequencies and low Poisson’s ratios. 
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1. Introduction 

The degree of accuracy in predicting the lateral response of a pile subject to dynamic loading is strongly 

dependent on the reaction of the surrounding soil to the pile motion. Given its simplicity and versatility, 

the most well-known model capturing the soil reaction is described in the pioneering work of Baranov [1] 

and revisited by Novak [2]. The basic model assumes no variation in response along the vertical 

coordinate, hence treating the soil medium around the pile as a series of uncoupled incompressible 

horizontal slices in the analysis. Consequently, the Baranov-Novak model can be viewed as a plane strain 

case. Although this model yields soil reactions in closed form, it has been shown that reliable predictions 

are only obtained in the high frequency range. 

To address the limitation identified above, the current study seeks to provide a solution that builds upon 

the work of Tajimi [3], Nogami and Novak [4], and Saitoh and Watanabe [5] which handle the problem in 

three dimensions. Our pile is considered a vertical cylinder and the soil is modelled as a continuum, 

taking into account all three components of soil displacement under the assumption of zero dynamic 

vertical normal stresses. A similar assumption was adopted in earlier studies [6] [7], however, proposed 

solutions were limited to the kinematic response of laterally loaded piles. This physically motivated 

simplification is particularly attractive, as it respects the boundary condition associated with the presence 

of a stress – free soil surface and reduces the number of governing equations to two – instead of three as 

found in the classical elastodynamic theory ( [8], [9]). Contrary to early studies where the vertical soil 

displacement was set equal to zero ( [10], [3], [4]), in this work the assumption will be less restrictive: 

vertical soil displacement is small, yet not zero. As shown in the following, this approach overcomes the 

singularities of earlier models in the important case of incompressible soil. 

The equations of motion in the soil medium are then solved analytically through pertinent  

eigen-expansions. Closed-form solutions as a function of pile displacement amplitude are obtained for the 

displacement field in the soil and the soil reaction to lateral pile motion. The soil reaction is expressed in 

terms of a dimensionless soil reaction factor (𝑅∗) which depends on pile slenderness, soil material 

damping, Poisson’s ratio and excitation frequency. The effect of these parameters on the reaction factor 

are explored analytically and presented in dimensionless graphs. In the dynamic regime, the real part of 

the reaction factor describes the stiffness of the soil layer and the imaginary part describes the 

corresponding damping. The reaction of the soil layer can be directly employed in the solution of the soil-

pile interaction problems based on the boundary conditions at the pile head and tip, and can be easily 

calculated for any given pile displacement profile [11]. Soil-pile interaction analysis has also been 

undertaken and will be presented in a companion study. Empirical expressions for dynamic soil reaction 

to lateral pile motion have been proposed, among others, by Roesset [12], Dobry et al. [13], Gazetas and 
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Dobry [14] [15], and Mylonakis [16]. Summaries of available information are provided in Tajimi [17], 

Pender [18], Gazetas and Mylonakis [19], Syngros [20], Guo [21] and more recently by Saitoh and 

Watanabe [5] and Shadlou and Bhattacharya [22]. Additional information on the Tajimi model is 

provided by Akiyoshi [23], Veletsos and Younan [6], Chau and Yang [24], and Latini et al. [25]. 

The scope of this paper is multi-fold: (i) to review the plane strain model of Baranov – Novak and discuss 

under which conditions its predictions are realistic; (ii) to derive an improved three-dimensional 

elastodynamic solution with an emphasis on the performance at high values of soil Poisson’s ratio; (iii) to 

explain the wave propagation mechanisms that develop in soil under the influence of harmonic lateral pile 

oscillations; (iv) to extend the solution to the important case of an infinitely long pile; (v) to provide novel 

normalization schemes for soil reaction that lead to results approaching a single master curve, as well as 

simplified formulae that can be used in applications. Upon successful derivation, the improved model will 

be used in a follow-up paper to analyze the lateral harmonic oscillations of a single pile. 

 

 

2. Problem Definition 

The soil – pile system considered in this study is described in cylindrical coordinates as shown in Fig. 1: a 

vertical cylindrical pile is embedded in a homogeneous soil layer overlying a rigid bedrock and is 

subjected to a harmonic lateral movement 𝑤(𝑧, 𝑡) = 𝑤(𝑧, 𝜔) 𝑒𝑖𝜔𝑡  , where 𝑡 is the time variable, 𝜔 is the 

cyclic excitation frequency and 𝑖 is the imaginary number (𝑖 =  √−1). The soil layer of thickness 𝐻 is 

treated as a continuum and is described by its Young’s modulus 𝐸𝑠, mass density 𝜌𝑠 and Poisson’s ratio 

𝜈𝑠. In dynamic analyses the soil is treated as a dissipative material with hysteretic damping 𝛽𝑠 expressed 

through a  

complex – valued Young’s modulus 𝐸𝑠
∗ = 𝐸𝑠 (1 + 2𝑖𝛽𝑠). Note that for the problem at hand a perfectly  

bounded interface between pile and soil is assumed, although this assumption can be  

relaxed [26]. 

 

 

3. Model Development 

The equilibrium of forces acting on an arbitrary soil element along the radial and tangential direction is 

expressed in terms of Cauchy stresses as: 
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where 𝑢𝑟 =  𝑢𝑟(𝑟, 𝜃, 𝑧, 𝑡) and 𝑢𝜃 =  𝑢𝜗(𝑟, 𝜃, 𝑧, 𝑡) are the horizontal and tangential soil displacements,  

𝜎𝑟 =  𝜎𝑟(𝑟, 𝜃, 𝑧, 𝑡) and 𝜎𝜃 =  𝜎𝜃(𝑟, 𝜃, 𝑧, 𝑡) are the normal stresses acting along 𝑟 and 𝜃, respectively;  

𝜏𝑟𝑧 =  𝜏𝑟𝑧(𝑟, 𝜃, 𝑧, 𝑡) is the shear stress along 𝑧 and perpendicular to 𝑟; 𝜏𝑟𝜃 =  𝜏𝑟𝜃(𝑟, 𝜃, 𝑧, 𝑡) is the shear 

stress along 𝜃 and perpendicular to 𝑟; and 𝜏𝜃𝑧 =  𝜏𝜃𝑧(𝑟, 𝜃, 𝑧, 𝑡) is the shear stress along 𝑧 and 

perpendicular to 𝜃. Note that the last term in each equation associated with the soil mass density 𝜌𝑠 is 

accounting for the inertia of the soil in radial and tangential direction under dynamic excitation. 

Taking into account stress – strain relations in cylindrical coordinates (see Appendix A) and considering 

harmonic soil response of the form 𝑢𝑟 =  𝑢𝑟(𝑟, 𝜃, 𝑧, 𝜔) 𝑒𝑖𝜔𝑡 and 𝑢𝜃 =  𝑢𝜃(𝑟, 𝜃, 𝑧, 𝜔) 𝑒𝑖𝜔𝑡, Eqs (1) can be 

rewritten in terms of displacements in the following form: 
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where 𝑉𝑠
∗ = 𝑉𝑠 √1 + 2𝑖𝛽𝑠 is the complex – valued shear wave propagation velocity in the soil. 

In the above equations 𝜂𝑠 is a dimensionless compressibility coefficient which is solely a function of soil 

Poisson’s ratio and is associated with the effect of vertical soil displacement on stresses. It is noted that 

unlike the vertical response mode where a number of stress-displacement terms are set equal to zero in a 

corresponding formulation [27], in the solution at hand setting 𝜎𝑧 equal to zero is the only approximation 

involved. It is also worth mentioning that due to this approximation shear stress 𝜏𝑟𝑧 ceases to be zero at 

the soil surface, yet this violation typically has a minor effect on the solution [6], [7], [11]. Additional 

discussion is provided in the ensuing. 

Following Graff [8], a degenerate Helmholtz decomposition scheme is applied to uncouple the above set 

of partial differential equations. To this end, horizontal and tangential displacements are expressed in 

terms of two potential functions 𝚽 and 𝚿 as shown below: 
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Substituting Eqs (3) in (2) leads to the following new set of uncoupled differential equations 
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is the Laplacian operator. The solution to the above equations can 

be obtained using the method of separation of variables which allows the transformation of the partial 

differential equations into a set of ordinary differential equations which are easier to handle. In the realm 

of this approach, potential functions 𝚽 and 𝚿 can be expressed as products of three modular functions 

i.e., 𝚽(𝑟, 𝜃, 𝑧) = 𝑅1(𝑟) Θ1(𝜃) 𝑍1(𝑧) and 𝚿(𝑟, 𝜃, 𝑧) = 𝑅2(𝑟) Θ2(𝜃) 𝑍2(𝑧), which yield the following 

equations: 
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The above mathematical representation leads to the decomposition of the partial differential equations 

into three ordinary differential equations in 𝑟, 𝜃 and 𝑧: 
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𝑎 and 𝑛 being positive real numbers; 𝑞 has dimensions of 1 / Length and can be viewed as an attenuation 

parameter (wavenumber) for radially propagating waves. Upon obtaining the general solutions to the 

above equations ( [28]), the potential functions are written as follows: 
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where 𝐼𝑛( ) and 𝐾𝑛( ) are the modified Bessel functions of the n-th order and the first and second kind, 

respectively. 𝐴𝑖, 𝐵𝑖 (𝑖 = 1, 2, 3, … , 6) are constants to be determined from the boundary conditions of the 

problem. 

To ensure bounded response at large radial distances from the pile (𝑟 → ∞), constants 𝐴1 and 𝐴4 

associated with the modified Bessel functions 𝐼𝑛( ) must vanish. Considering the direction of pile loading 

to be along 𝜃 =  0, constants 𝐴2 and 𝐵5 must vanish as well to satisfy the conditions of zero radial and 

tangential displacement components , 𝑢𝑟 and 𝑢𝜃, at 𝜃 =  𝜋 2⁄  and 𝜃 =  0, respectively. This eliminates 

the trigonometric functions sin( ) and cos( ) in Eqs (8a) and (8b), respectively. This is in accordance with 

a positive displacement 𝑢𝑟 (𝑢𝑟 > 0) in the range − 𝜋 2⁄ ≤ 𝜃 ≤ 𝜋 2⁄  and a negative displacement (𝑢𝑟 <

0) in the range 𝜋 2⁄ ≤ 𝜃 ≤ 3𝜋 2⁄ . Likewise, the tangential displacement is positive (𝑢𝜃 > 0) in the range 

0 ≤ 𝜃 ≤ 𝜋 and negative (𝑢𝜃 < 0) in the range 𝜋 ≤ 𝜃 ≤ 2𝜋. The above are valid for 𝑛 = 1. 

The additional conditions of zero soil displacements at the base of the soil layer and stress-free soil 

surface (𝜏𝑟𝜃 = 0) enforce 𝐴3 = 𝐴6 = 0 and cos 𝑎𝐻 = 0 which, in turn, yields 
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where 𝑎𝑚 are the eigenvalues of the system with 𝑎1 < 𝑎2 < 𝑎3 … < 𝑎𝑁 (𝑁 being the total number of 

modes employed in the analysis).  

In light of the above, Eqs (8) simplify to 
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The differential equation with respect to 𝑧 (Eq. 6c) is recognized as a Sturm – Liouville (S-L) equation 

with constant coefficients. Since parameter 𝑎 is not specified, finding the values for which nontrivial 

solutions exist is part of the S-L theory. Such values are called the eigenvalues of the boundary-value 

problem and the corresponding solutions for function 𝑍(𝑧) are the eigenfunctions (i.e., the "soil modes"). 

It is important to note that these modes are not necessarily associated with dynamic soil response (i.e., 

they are merely an orthogonal set of functions) and exist even in the static case. Corresponding to each 

eigenvalue 𝑎𝑚 a unique eigenfunction Φ𝑚(𝑧) exists which is called the m-th fundamental solution. For 

the current problem the trigonometric functions sin 𝑎𝑚𝑧 are the normal modes (eigenfunctions) 

  sinm mz a z    (11) 

which satisfy the ordinary differential equation (Eq. 6c) with respect to the spatial variable 𝑧 and the 

boundary conditions of the problem. The first five modes of vibration are depicted in Fig. 2, where the 

points of zero displacement are the nodes of vibration and the points of maximum vibration are the 

corresponding antinodes. 

The normal modes have the important property of orthogonality which is described mathematically as 

follows 
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It is anticipated that the solution should be obtained by the superposition of all particular solutions 

(modes). Thus soil displacement components 𝑢𝑟 and 𝑢𝜃 should be expressed as an infinite sum of Fourier 

terms including the soil modes Φ𝑚 and a term 𝑈𝑟,𝜃 𝑚 associated with the spatial variable 𝑟. Accordingly,  
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The solution will be obtained as a superposition of the particular solutions (“modes”, Eqs 15). Since soil 

modes form an orthogonal set, pile displacement 𝑤 can be expressed through a normal-mode expansion 

similar to soil response (Eq. 13) 
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where the frequency – varying coefficients 𝑊𝑚 are measured in units of length. Substituting Eq. (10)  

into (3), imposing compatibility of displacements in horizontal and tangential direction  
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i.e., 𝑢𝑟(𝑑 2⁄ , 0, 𝑧, 𝜔) = 𝑤(𝑧, 𝜔) and 𝑢𝜃(𝑑/2, 𝜋 2⁄ , 𝑧, 𝜔) = − 𝑤(𝑧, 𝜔) and taking into account the 

orthogonality of soil modes, displacement components 𝑢𝑟, 𝑢𝜃 are obtained as 
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which satisfy the symmetry conditions 𝑢𝑟(𝑟, − 𝜋 2⁄ , 𝑧) =  𝑢𝑟(𝑟, 𝜋 2⁄ , 𝑧) and 𝑢𝑟(𝑟, 0, 𝑧) =  𝑢𝑟(𝑟, 𝜋, 𝑧), 
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𝐴𝑚 and 𝐵𝑚 being the dimensionless constants 
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where 𝑠𝑚 =  𝑞𝑚  𝑑 2⁄  (Eq. 7) is a dimensionless parameter. 

 

Compressibility coefficient 

Mention has already been made to the study of Nogami and Novak [4] where the vertical soil 

displacement 𝑢𝑧 was set equal to zero and, thus, the corresponding normal strain was 𝜀𝑧 = 0. This 

assumption leads to the following expression for the compressibility factor 
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which expresses the square root of the ratio of the constrained modulus 𝑀 (P-wave modulus) to the shear 

modulus of the soil material (i.e., 𝜂𝑠 = √𝑀 𝐺𝑠⁄ ). A problem arising from the use of this equation is the 

sensitivity to Poisson's ratio, as 𝜂𝑠 becomes infinitely large when 𝜈𝑠 approaches 0.5. This behavior is 



 

9 

 

spurious (e.g. leads to zero values of wavenumber q in Eq. 7) and has not been observed in rigorous 

numerical solutions of such problems, e.g., [29], [30], [6]. It is important to note that despite that 𝑢𝑧 is 

assumed to be zero, the specific solution is still three dimensional (i.e. not plane strain) as the variation of 

the response with respect to the vertical coordinate (𝑧) is finite – due to the shear coupling among the 

various slices. 

The alternative assumption of 𝜎𝑧 = 0, [11], which complies with a stress-free soil surface leads to finite 

vertical displacement which yields: 

2
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s
s

s










  (19) 

Equations (18) and (19) are compared graphically in Fig. 3. Except where specifically indicated 

otherwise, the solutions presented hereafter are based on Eq. (19). 

 

 

4. Soil Reaction 

At the soil-pile interface, the amplitude of horizontal soil reaction 𝑝(𝑧, 𝜔) resulting from the pile motion 

is expressed as [4], [6], [26] 

   
2

,0 ,0

0

cos sin 2, r rp z dd



          (20) 

where 𝜎𝑟,0 = 𝜎𝑟(𝑑 2⁄ , 𝜃, 𝑧, 𝜔) and 𝜏𝑟𝜃,0 = 𝜏𝑟𝜃(𝑑 2⁄ , 𝜃, 𝑧, 𝜔) are the maximum radial normal stress and 

shear stress, respectively, acting at the periphery of the pile 

 
     

*

,0

1

2
cos

2

s
r m m m

m

z
G

S W
d

  




    (21) 

and 

 
     

*

,0

1

2
sin

2

s
r m m m

m

z
G

T W
d

   




    (22) 

where the dimensionless coefficients 𝑆𝑚 and 𝑇𝑚 are given by the following expressions: 

         
2 2

0 1 1 0 12 2
2

m
m m m m m m m m s m s m s

s
S B s K s K s K s A s K s K s   

 
      

 
    (23a) 
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         
2 2

0 1 0 1 12 2
2

m s
m m m m m m m s m s m s m s

s
T B s K s K s A s K s K s K s


   

 
     

 
  (23b) 

Substituting the above expressions into Eq. (20) and noting that ∫ cos2 𝜃
2𝜋

0
 𝑑𝜃 =  ∫ sin2 𝜃

2𝜋

0
 𝑑𝜃 =  𝜋, 

the horizontal soil reaction can be written in the alternative form 

       * *

1

, s m m m

m

zp z G R W  




    (24) 

where 𝑅𝑚
∗  is a complex valued soil reaction factor associated with the m-th soil mode: 

       

         

2 2

1 0 1 1 0 1* 2

0 1 0 0 1

2 ( ) 2 ( )m s m s m s m s m m m m s

m m

m m m s m s m s m m m

K s s K s K s K s s K s K s
R s

s K s K s s K s s K s K s

     

  

       


   
 (25) 

 in Eq. (25) is denoted the secondary compressibility coefficient and is expressed as:  

2

1 s







  (26) 

Note that Eq. (26) corresponds to the compressibility factor 𝜂𝑠 adopted by Anoyatis and Mylonakis [27] 

for the axially-load problem. It is also important to note that in the alternative solution of  

Nogami and Novak [4] the reaction factor 𝑅𝑚
∗  is obtained from the above expression using 𝜂𝜎 = 𝜂𝑠, 

where 𝜂𝑠 is given from Eq. (18). In both solutions the soil reaction factor depends mainly on soil 

parameters  

(i.e., 𝜈𝑠, 𝛽𝑠, 𝑉𝑠, 𝐺𝑠), the excitation frequency 𝜔 and on only one pile parameter, which is the diameter 𝑑. 

In the dynamic regime, the complex-valued soil reaction factor can be cast in the following equivalent 

forms 

       * * *Real Imaginary 1 2m m m m mR R i R R i      (27) 

where 𝑅𝑚(𝜔) = 𝑅𝑒𝑎𝑙(𝑅𝑚
∗ ) is the dynamic storage stiffness and 2𝛽𝑚𝑅𝑚(𝜔) = 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑅𝑚

∗ ) is the 

corresponding loss stiffness. The dimensionless parameter 𝛽𝑚 = 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑅𝑚
∗ )  2𝑅𝑒𝑎𝑙(𝑅𝑚

∗ )⁄  defines 

an equivalent damping ratio, which is analogous to percentage of critical damping in a simple oscillator 

(Clough and Penzien [31]). 𝑅𝑚(𝜔) can be interpreted as a frequency dependent spring and 

2𝛽𝑚𝑅𝑚(𝜔) 𝜔⁄  as a dashpot attached in parallel to the spring. Note that the damping ratio 𝛽𝑚 is different 

from the soil material damping 𝛽𝑠, and can be alternatively expressed as 𝛽𝑚 = 𝛽𝑠 + (𝛽𝑟)𝑚, where (𝛽𝑟)𝑚, 
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is the radiation damping ratio associated with the m-th propagating mode. 𝛽𝑚 ≈ 𝛽𝑠 is a special case which 

is valid only for frequencies in the range 0 < 𝜔 < 𝜔𝑚. 

 

Recalling Eq. (25) soil reaction is expressed as 𝑝(𝑧, 𝜔) = 𝜋 ∑ 𝑅𝑚 𝐺𝑠 𝑤(𝑧). This shows that 𝑅𝑚 can be 

viewed as a dimensionless factor which modifies the soil stiffness 𝐺𝑠 due to the presence of the pile. In 

addition, it is clear that 𝑅𝑚 is mode-dependent which indicates that each mode has a different influence 

on the soil stiffness. Expressing the soil reaction in the simple form 𝑝 = 𝑘 𝑤 [𝑘 can be viewed as a 

Winkler modulus (in units of force per length square)] allows us to write 𝑘 = (𝜋 𝑅𝑚) 𝐺𝑠, which shows 

that an average depth-independent Winkle modulus multiplied by the profile of displacement at the soil-

pile interface yields the soil reaction profile. 

 

 

5. Wave Propagation 

When a pile oscillates energy is transmitted to the soil. Part of this energy is stored in the soil in the form 

of dynamic deformations and the remaining part is lost, e.g., being transformed into heat (material 

damping) or radiating to infinity in the form of stress waves (radiation damping). An initial discussion 

presented below treats the vertical and horizontal direction separately – investigating the contribution of 

each mode to the wave propagation, followed by a presentation of the combined wave effect. 

5.1 Vertical direction 

In vertical direction wave propagation is associated with the term sin 𝑎𝑚𝑧 𝑒𝑖𝜔𝑡. This term describes an 

oscillating motion of the m-th mode, which is of a stationary nature in space (i.e., along the vertical axis 

𝑧) and varies with time 𝑡.  Using trivial mathematical procedures, the above term may be rewritten in the 

alternative form 𝑖(𝑒−𝑖(𝑎𝑚𝑧−𝜔𝑡) − 𝑒𝑖(𝑎𝑚𝑧+𝜔𝑡))/2. This equivalent representation shows that each exponent 

represents a disturbance propagating in the vertical direction. The first exponent describes a wave 

travelling from the soil surface to the base, while the second term is associated with a wave that follows 

the reverse path. Using the principle of superposition these two opposite directional waves which have the 

same frequency 𝜔, wavenumber 𝑎𝑚 and amplitude form a standing wave. This wave does not travel 

vertically, but stands still and oscillates horizontally. Hereby each mode m forms a vertically varying 

disturbance (dynamic deformation) which varies with time. This not a travelling wave, thus no loss of 

energy in terms of radiation damping occurs. 
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It can be easily deduced that at depths 𝑍𝑚,𝑘 = 2𝐻(𝑘 − 1) (2𝑚 − 1)⁄  the amplitude of the motion is 

always zero for the mode examined and these points are called the nodes. Note that the index 𝑚 refers to 

the m-th mode and the index 𝑘 to the number of nodes which appear in length 𝐻 of the same mode. 

Evidently, only one node exists at 𝑧 = 0 for the 1-st mode (𝑚 = 1) whereas for the 2-nd mode (𝑚 = 2), 

two nodes appear at 𝑧 = 0 and 𝑧 = 2𝐻 3⁄ , and so on (Fig. 2). Due to the boundary condition at the base, 

the location 𝑧 = 0 represents a node in all modes. 

Analogously, depths described by 𝑍𝑚,𝑘 = 𝐻(2𝑘 − 1)/(2𝑚 − 1) are called antinodes and the wave 

amplitude is maximum. The distance between two successive nodes or antinodes is equal to the 

wavelength 2𝜋 𝑎𝑚⁄  or 4𝐻 (2𝑚 − 1)⁄  for each mode. Note that when rewriting the superscript of the 

exponential functions as 𝑖𝑎𝑚(𝑧 + 𝑉𝑚𝑡) or −𝑖𝑎𝑚(𝑧 − 𝑉𝑚𝑡), the term 𝑉𝑚 = 𝜔 𝑎𝑚⁄  with dimensions of 

velocity arises, which stands for the phase velocity of the wave associated with a given mode m. This 

indicates that for a given frequency 𝜔 each harmonic wave propagates with a mode-specific velocity 

which is different for each mode. This reveals the development of a distortion mechanism called modal 

dispersion as the propagation velocity is not the same for all modes. 

In conclusion, at each depth in the soil layer influx and efflux of energy occurs due to upward and 

downward travelling waves. For each mode these opposite directional waves form a standing wave, which 

is characterized by nodes and anti-nodes. At the nodes influx and efflux of kinetic energy is balanced, 

hence no motion occurs. Nevertheless, strain still develops and changes with time. The response of the 

soil is computed by superposition of N modes (or a superposition of N standing waves). Consequently 

motion develops at all depths. 

 

5.2 Horizontal direction 

In the horizontal direction the wave propagation is associated with the term 𝑈𝑟,𝜃 𝑚 (Eqs 13, 15) and is 

mathematically represented through the Bessel functions 𝐾0( ) and 𝐾1( ) and their argument 𝑞𝑚 (Eq. 7). 

The variation of 𝑞𝑚 with frequency is schematically illustrated in Figs 4 and 5 for an undamped (𝛽𝑠 = 0) 

and a damped (𝛽𝑠 0) medium. 

In absence of soil material damping (i.e., for an undamped medium as shown in Fig. 4a), Eq. (7) may be 

rewritten as 

2 21
m m

s s

q
V

 


    (28) 
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where 𝜔𝑚 = (2𝑚 − 1) 𝜔1 and 𝜔1 = 𝜋𝑉𝑠 2𝐻⁄  are the m-th and 1-st resonant frequencies of the system, 

respectively. 

For 𝜔 < 𝜔𝑚, 𝑞𝑚 is real valued and decreases with increasing frequency. At 𝜔 = 𝜔𝑚, 𝑞𝑚 drops to zero 

and a further increase in frequency (𝜔 > 𝜔𝑚) yields purely imaginary wavenumbers 𝑞𝑚 = 𝑖 𝑞̅𝑚, which 

increase with increasing frequency (𝑞̅𝑚 being a real number). 𝜔𝑚 represent the transition from 

propagation to non-propagation and is called the cutoff frequency of the m-th mode or m-th resonant 

frequent of the system. Note that 𝜔1 coincides with the natural frequency of the deposit in shearing 

oscillations. No wave propagation (i.e., radiation of energy) is observed for lower frequencies. As shown 

later, 𝜔1 is associated with a significant drop in stiffness and an increase in damping due to the 

emergence of travelling waves. For 𝜔 < 𝜔𝑚, 𝑈𝑟,𝜃 𝑚 (Eqs 13, 15) is responsible for a monotonic decrease 

in soil response with increasing horizontal distance from the pile axis and is not associated with wave 

propagation in the medium. For 𝜔 > 𝜔𝑚, stress waves associated with the m-th mode emerge from the 

soil-pile interface and propagate horizontally in the soil medium. At 𝜔 = 𝜔𝑚, 𝑞𝑚 = 0 and yields an 

infinite wavelength 𝜆 (= 2𝜋 𝑞𝑚)⁄  which for a finite frequency 𝜔𝑚 yields an infinite phase velocity 𝑉 

(= 𝜔 𝑞𝑚)⁄ . This indicates that at any resonant frequency 𝜔𝑚 there is no spatial variation in motion in 𝑟 

direction for the m-th mode. Since 𝑈𝑟,𝜃 𝑚(𝜔 = 𝜔𝑚) = 1 (Eqs 15), the system undergoes harmonic 

motions and the contribution of the m-th mode to the soil vibration can be expressed using the following 

simplified equation: 

       
, cos , sin

m mm

i t

r m zWu e 

        (29) 

In presence of material damping 𝛽𝑠, in the soil (i.e., damped medium as shown in Fig. 4b), Eq. (7) may be 

approximated as follows: 

 2 2

"
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"
"

1
2m m s

s s imaginary
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V
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

     (30) 

Contrary to the undamped medium, the above equation yields non-real-valued wavenumbers 𝑞𝑚, even in 

the frequency range of 𝜔 < 𝜔𝑚. Complex valued wavenumbers for damped soils cause a monotonic 

reduction in soil displacement with radial distance, which is found to be stronger than in an undamped 

medium. At 𝜔 ≈ 𝜔𝑚, 𝑅𝑒𝑎𝑙(𝑞𝑚) drops to a minimum (non-zero) value. For 𝜔 > 𝜔𝑚 the trend is reversed 

and 𝑅𝑒𝑎𝑙(𝑞𝑚) increases with frequency. On the other hand, 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑞𝑚) always increases with 

frequency. As in the case of an undamped medium, for 𝜔 > 𝜔𝑚 waves associated with the m-th mode 
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start to emerge from the soil-pile interface and propagate horizontally in the soil medium, while 𝑞𝑚 is 

complex valued instead of purely imaginary. 

Figure 5 presents the frequency spectrum for the first five modes for an undamped medium and 

 a medium with soil damping 𝛽𝑠 = 0. 05. Assuming that the complex valued 𝑞𝑚 can be written  

as 𝑞𝑚 + 𝑖 𝑞̅𝑚, it becomes evident that for a given frequency 𝑞1 < 𝑞2 < ⋯ < 𝑞5 and  

𝑞̅1 > 𝑞̅2 > ⋯ > 𝑞̅5 , for both, an undamped (𝛽𝑠 = 0) and a damped (𝛽𝑠 = 0.05) medium. 

Undamped medium (Fig. 5): At 𝜔 = 𝜔1, 𝑞1 = 0 while all 𝑞1+𝑚 pertaining to higher modes attain  

positive real values. Further increase in frequency (𝜔1 < 𝜔 < 𝜔2) yields a purely imaginary 𝑞1 = 𝑖 𝑞̅1, 

whereas the rest of wavenumbers 𝑞1+𝑚 remain real valued. Now the Bessel functions 𝐾( ) of complex 

argument represent travelling waves in the radial direction – with an in-phase component 𝑅𝑒[𝐾( )] and an 

out-of-phase, 𝐼𝑚[𝐾( )] – which emanate from the pile periphery and radiate to infinity with continuously 

decreasing amplitude. These waves control radiation damping. The first resonance influences exclusively 

the first mode, while the higher modes contribute only to a monotonic attenuation of soil response with 

radial distance. An additional increase in frequency (𝜔2 < 𝜔 < 𝜔3) yields 𝑞2 = 𝑖 𝑞̅2, which indicates that 

the second mode contributes additionally to the loss of energy through radiation. Likewise, with 

increasing frequency higher modes contribute gradually to wave propagation (𝑞𝑚 gradually becomes 

purely imaginary). The total effect is a superposition of all these waves. 

Damped medium (Fig. 5): All curves follow the trend described in Fig. 4 (b). Note that the largest 

deviation among the damped and the undamped curve for each mode is observed close to the resonant 

frequency 𝜔𝑚, and is becoming more significant at higher modes. For 𝜔 < 𝜔𝑚 the effect of material 

damping is minor and the curves practically coincide. 

 

Based on Eq. (13) and considering the variation in time the soil response can be expressed as  

𝑢𝑟,𝜃 𝑚 ∝ ∑ 𝑈𝑟,𝜃 𝑚(𝑟, 𝜔) 𝛷(𝑧) 𝑒𝑖𝜔𝑡. For an undamped soil layer (𝛽𝑠 = 0) the following cases may be 

examined: 

a) for 𝜔 < 𝜔𝑚, the term 𝑈𝑟,𝜃 𝑚 is real valued 

b) at 𝜔 = 𝜔𝑚 (resonances), 𝑈𝑟,𝜃 𝑚 = 1 

c) for 𝜔 > 𝜔𝑚, the term 𝑈𝑟,𝜃 𝑚 is complex valued 

Case (a): When 𝜔 < 𝜔𝑚, the energy transmitted from pile oscillations to the soil is stored in terms of 

dynamic deformations. 
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Case (b): At resonant frequency 𝜔 = 𝜔𝑚, no spatial variation in motion in 𝑟 direction for the m-th mode 

exists. Since 𝑈𝑟,𝜃 𝑚(𝜔 = 𝜔𝑚) = 1, the system undergoes only harmonic motions (i.e., standing waves in 

the form of 𝛷𝑚(𝑧) 𝑒𝑖𝜔𝑡) and the contribution of the m-th mode to the soil vibration can be expressed 

using the simplified expression provided in Eq. (29). 

Case (c): When 𝜔 > 𝜔𝑚, travelling waves develop in the soil and loss of energy occurs (radiation 

damping). 

Note that in presence of soil material damping (𝛽𝑠 ≠ 0) and for frequencies 𝜔 < 𝜔𝑚 loss of energy is due 

to soil material damping. 

 

 

6. Plane strain model 

The basic assumption of the plane strain model is that all derivatives with respect to the vertical 

coordinate are zero, thus no vertical and shear strains develop on the plane perpendicular to the pile axis 

and only an incompressible horizontal soil slice of the soil medium is considered in the analysis [1]. This 

model can be viewed as mathematically accurate for an infinitely-long pile embedded in a half space and 

subjected to uniform lateral displacement along its whole length [32]. 

The Baranov-Novak soil restraining action can be expressed through a complex valued reaction 

factor 𝑅∗ [32]: 

       
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where 𝑠 and 𝑞 are dimensionless frequency parameters 

0a
and
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i s
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i 
 


  (32a,b) 

and a0 = 𝜔𝑑 𝑉𝑠⁄  is a dimensionless frequency and 𝜂𝑠 is obtained from Eq. (18). 

Parameter 𝑅∗ is constant with depth and independent of the conditions at the boundaries of the soil layer. 

Therefore, it cannot capture the layer resonances and exhibits an asymptotic behavior for 𝜔 → 0 (Fig. 8). 

In the low-frequency range the soil reaction factor decreases rapidly with decreasing frequency and 

becomes zero at 𝜔 = 0. Accordingly, the model cannot capture static stiffness. This deficiency has been 

identified in earlier studies [4], [16]. 
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Evidently, this is not the case for a pile of finite length embedded in a soil stratum overlying a stiff base. 

In this study, the soil reaction varies with depth and its variation depends on the boundary conditions at 

the two ends of the pile. Furthermore, it is sensitive to the natural frequencies of the soil layer. The profile 

of soil reaction in terms of dynamic stiffness and damping will be examined in a companion paper. Note 

that the present solution can be reduced to the plane strain model [4] by eliminating the variation of soil 

displacement components in the vertical direction (i.e., setting 𝑎 = 0 in Eqs 6c and 7). 

Despite its simplicity, the plane strain model yields realistic predictions for frequencies beyond cutoff 

(see ensuing discussion). Thus, it can be viewed as a special case of the proposed more complete solution, 

restricted to frequencies beyond cutoff. This is an inherent weakness of the plane strain model, its 

assumptions being valid only after wave propagation initiates in the medium (a0 > a𝑐𝑢𝑡𝑜𝑓𝑓). 

Note that soil reaction derived from the Baranov-Novak plane strain model is expressed as 𝑝(𝜔) =

𝜋 𝐺𝑠
∗ 𝑅∗. This is essentially the complex Winkler modulus (dynamic Winkler spring stiffness and dashpot) 

for laterally loaded piles, and will be investigated in a follow up paper. 

 

 

7. Numerical Results 

7.1 Static conditions 

The effects of pile length, or equivalently the soil layer thickness, and the selected soil mode on the static 

soil reaction factor are investigated in Fig. 6. It is shown that for a given 𝐿/𝑑, higher values of 𝑅𝑚 

correspond to higher modes. This trend is more pronounced for short piles (𝐿/𝑑 < 10) where the reaction 

factor pertaining to the 10-th mode is approximately five times higher than the value for the 1-st mode. 

Comparison with the early solution of Nogami and Novak [4] shows that the results of that study are 

always higher than those obtained from the proposed model. The deviation is stronger with decreasing 

pile length and higher modes – the maximum deviation being observed for 𝐿/𝑑 = 5 and 𝑚 = 10. 

In Fig. 7 the effect of Poisson’s ratio on the static reaction factor is investigated for two selected modes. It 

is shown that higher values of 𝑣𝑠 always correspond to higher 𝑅𝑚 for the range of pile lengths considered. 

As anticipated, the lower the Poisson’s ratio the better the agreement with the predictions of the earlier 

study ( [4]). 

 

7.2 Dynamic regime 
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Results for the soil reaction factor in the dynamic regime obtained from the proposed solution are 

presented in Figs 8 – 14. The solution of Nogami and Novak [4] is added for comparison. Different 

representations of the soil reaction factor and frequency are employed, which shed light into the physics 

of the problem. Some general trends are observed: For each mode 𝑚, the dynamic soil reaction factor 

(i.e., real part of soil reaction) decreases with increasing frequency up to the m-th resonance, while for the 

same frequency range, damping (i.e., imaginary part of soil reaction) is practically unaffected by 

frequency and depends solely on the soil material damping (since only “weak” travelling waves 

associated with the m-th mode develop in the medium). At m-th resonance the dynamic reaction 𝑅𝑚 

attains a local minimum, which is associated with a distinct jump in damping due to energy radiation, as 

horizontally travelling waves emerge in the soil medium. 

The variation of the real and the imaginary part of dynamic soil reaction with frequency for the first five 

modes pertaining to a long pile is shown in Fig. 8. The frequency is normalized by the first resonant 

frequency of the system, 𝜔1. A strong dependence of stiffness (i.e., real part of soil reaction) on the 

oscillation mode is observed below the resonant frequency, while at the same frequency range the 

damping (i.e., imaginary part of soil reaction) is practically unaffected by frequency and is controlled by 

soil material damping. With increasing frequency the dynamic reaction factor becomes gradually 

independent of soil mode, with all curves practically converging to a single curve at high frequencies. As 

anticipated, results from the study of Nogami and Novak [4] are always higher than those of the proposed 

model. 

An alternative representation of the results presented in Fig. 8 is shown in Fig. 9, where the dynamic soil 

reaction factor is normalized by its static value (𝜔 = 0), and the loss of energy (imaginary part) is 

normalized by twice the real part. It is observed that this type of representation cannot capture the 

difference between Nogami and Novak [4] and the proposed solution. This indicates that the dynamic 

modifier expressed by the ratio 𝑅𝑚(𝜔) / 𝑅𝑚(𝜔 = 0) is essentially identical in the two solutions and thus 

independent of the compressibility of the soil medium in the vertical direction controlled by  

coefficient 𝜂𝑠. 

A perhaps better representation for frequencies in the range 0 < 𝜔 < 𝜔𝑚 is illustrated in Fig. 10, where 

the frequency is normalized by a different value for each mode, namely, the m-th resonant frequency for 

the m-th propagating mode. It is shown that for dynamic soil reaction all results collapse to a single curve. 

Also, damping is practically constant and controlled by soil material damping. 

The combined effect of soil material damping, pile length (layer thickness) and mode of vibration is 

investigated in Fig. 11. For a given 𝐿/𝑑 higher values of soil material damping correspond to higher 

values of the dynamic soil reaction factor 𝑅. This trend is reversed for damping since 𝛽 is not a dashpot 
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coefficient but a dimensionless performance index expressed as the ratio of the imaginary part of the 

complex stiffness [𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑅∗)] divided by twice its real part (2 𝑅) (Eq. 27). Considering that the 

imaginary part of the stiffness is practically unaffected by soil material damping for a given pile or soil 

thickness (i.e., constant 𝐿/𝑑  or 𝐻/𝑑), the behavior of 𝛽 is governed by the dynamic stiffness 𝑅 in the 

denominator. Thus, higher dynamic stiffness curves correspond to lower damping ratios. In addition, the 

effect of damping is stronger for short piles (𝐿/𝑑 = 5) in the high frequency range and for higher modes 

(e.g., 𝑚 = 3). At resonance (𝜔 = 𝜔1 for the 1-st mode, 𝜔 = 5𝜔1 for the 3-rd mode) the dynamic reaction 

𝑅𝑚 attains a minimum value, with the stronger drop pertaining to the lowest material damping. Note that 

for the extreme case of zero material damping the drop is maximum and 𝑅𝑚 would reach zero. 

The effect of mode number on dynamic soil reaction and damping for a short (𝐿 𝑑⁄ = 10) and a long  

(𝐿 𝑑⁄ = 50) pile in an undamped soil medium is presented in Fig. 12 (a) and (d). Note that different 

normalization parameters are used for the frequency below and beyond resonance: a0 = 𝜔𝑑/𝑉𝑠 being the 

familiar dimensionless frequency parameter and a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚 = 𝜔𝑚𝑑/𝑉𝑠 being the cutoff frequency of each 

mode or m-th resonance. For frequencies below m-th resonance all curves in Fig. 12 (a) start from unity, 

as the dynamic stiffness is normalized with its static value (𝜔 = 0), and decreases monotonically with 

frequency. It is shown that higher modes are associated with a higher decrease in stiffness. This effect is 

more pronounced for short piles. Over the same frequency range, damping is independent of frequency 

(Fig. 12b) and practically equals the soil material damping, i.e., all damping curves converge to a single 

curve before resonance. Beyond the cut-off frequency, waves start to propagate in the medium resulting 

in a sudden increase in damping (Fig. 12b). It is shown that the dynamic stiffness becomes insensitive to 

the soil thickness 𝐻 (Fig. 12a). This is an anticipated behavior, since the waves emitted from the 

periphery of the oscillating pile tend to spread out in a horizontal manner without regard for the vertical 

dimension ( [19], [16]). This wave radiation pattern explains the very good agreement observed between 

the plane strain model and the more rigorous solution. 

Figures 12 (c) and (d) depict the dimensionless soil reaction impedances and suggest that: (i) below cut-

off (𝜔 < 𝜔𝑚) spring and dashpot are best represented in the forms 𝑅𝑚(𝜔) 𝑅𝑚(𝜔 = 0)⁄  and 𝛽, as 

functions of a0 a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚⁄ ; (ii) beyond cut-off (𝜔 > 𝜔𝑚), stiffness is best represented in the form 𝑅𝑚(𝜔) 

and both parameters as a function of the dimensionless frequency function (a0
2 − a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚

2 )
1/2

. Note that 

the latter parameter has been successfully employed in the representation of the vertical soil reaction in 

high frequencies for the case of an axially-loaded pile in a homogeneous stratum [27], but has not been 

explored in the lateral mode.  
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The effect of pile slenderness – or soil layer thickness – on soil reaction factor of a damped medium is 

presented in Fig. 13. The numerical results are based on the dimensionless frequencies introduced in  

Fig. 12. Only the first mode is taken into account. For frequencies below cutoff, longer piles or thicker 

strata always correspond to higher values of dynamic soil reaction factor; whereas for the damping 

coefficient all curves practically converge. For frequencies beyond cutoff all curves converge into a single 

curve and the soil reaction can be well captured by the plane strain model. 

The effect of Poisson’s ratio on dynamic soil reaction and damping ratio in the dynamic regime is 

investigated in terms of the 1st mode for a short and a long pile and shown in Fig. 14. For frequencies 

below cutoff, variations in Poisson’s ratio do not affect stiffness and damping (Figs. 14 a1, b1, c1). For 

frequencies beyond cutoff, a minor effect of Poisson’s ratio on damping is observed at high frequencies 

(Fig. 14 c2). On the other hand, the results in Fig. 14 (a2) indicate that the effect is strong on dynamic soil 

reaction, with higher values of 𝑣𝑠 resulting in higher stiffness. However, an alternative representation of 

soil reaction shown in Fig. 14 (b2) (dynamic soil reaction is normalized by static value) shows that the 

influence of Poisson’s ratio on “pure” dynamic stiffness is observed only in the high frequency range and 

can be considered negligible. The strong variations depicted in Fig. 14 (a2) are attributed to the effect of 

Poisson’s ratio on the static soil reaction. 

 

 

8. Simplified expression for R
*
(ω) 

Results obtained from the proposed model as shown in Fig. 14 (a2) are plotted against predictions from 

the plane strain model in Fig. 15 (a). Evidently, the plane strain model yields unrealistic results for the 

incompressible case, the parabolic-like decreasing trend can be attributed to a "trapped mass" effect 

which is not exhibited in the 3D model [33]. This is an inherent weakness of the simpler model and it is 

suggested to use results obtained from Eq. (31) only for Poisson’s ratios less than 0.4. 

In this study, a simplified expression for the soil reaction factor is presented. Taking the limit 𝜈𝑠 → 0.5 

Eq. (31) attains the asymptotic form 

 

 
1*

0

( ) 4
K s

R s s
K s


 

   
 

  (33) 

which does not yield realistic results (Fig. 15a). Herein, the above expression is modified to account for 

Poisson’s ratio. This can be achieved by introducing a new semi empirical expression for the parameter 𝑠 
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

 



  (34) 

which encompasses the compressibility parameter 𝜂𝑠 and the empirical parameter 𝜒 which is a function of 

the Poisson’s ratio only (Table 1). Results from Eqs (34) and (35) are compared with those obtained from 

the proposed model in Fig. 15 (b). The very good agreement in the range 0.1 < 𝜈𝑠 < 0.4 and the 

improved performance over the plane strain model for 𝜈𝑠 = 0.5 can hardly be overstated. 

 

9. Infinitely – long pile 

The above solution can be readily extended to model an infinitely-long pile embedded in a half space. 

Although idealized, this limit case is useful since the solution for infinitely long piles is independent of 

the thickness of the soil layer (H/d) and covers all flexible piles (actual pile length > active length). In this 

light, one may assume that the solution for piles of finite length is useful only for low values of pile 

slenderness L/d. A discussion on active pile length is provided in Randolph [34], Velez et al. [35] and 

Syngros [20]. 

For an infinitely long pile no distinct eigenmodes exist. Instead, the solution for soil displacements and 

stresses is obtained by integrating over all possible values of α. The soil reaction may be written as 

follows: 

       * *

0

, s zp z G R W da   


    (35) 

where 𝑅𝛼
∗  is the complex valued soil reaction factor (Eq. 25) 
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    

   
 (36) 

where 𝑠 = 𝑞𝑑/2, and 𝑞 obtained from Eq. (7). As for the case of a soil layer 𝑅𝑎(𝜔) = 𝑅𝑒𝑎𝑙(𝑅𝑎
∗ ) is the 

dynamic storage stiffness and 𝛽𝑎 = 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑅𝑎
∗ )  2𝑅𝑒𝑎𝑙(𝑅𝑎

∗ )⁄  defines an equivalent damping ratio. 

A three-dimensional representation of the dynamic soil reaction and damping ratio as a function of the 

excitation frequency and the parameter 𝛼 is shown in Figs 16 and 17. Note that each curve corresponds to 

a soil layer of finite length that is characterized by a fictitious natural frequency, yet these natural 

frequencies are suppressed upon integration in terms of Eq. (35). In both graphs all natural frequencies are 

placed on a straight line for which 𝑎 𝑑 = 𝜔 𝑑/𝑉𝑠.  



 

21 

 

 

 

10. Conclusions 

An approximate three – dimensional solution is developed for the dynamic reaction of a homogeneous 

half space and a soil layer over a rigid base to the laterally oscillating pile. Contrary to the classical 

elastodynamic equations which cannot be solved analytically, the proposed approach allows a closed form 

solution to be obtained both for an infinitely long pile and a pile of finite length. 

The main findings of this study can be summarized as follows: 

a) The main assumption adopted in this study is that the vertical dynamic normal stress 𝜎𝑧 is zero. 

This approximation is compatible with the presence of a free surface and leads to a small, yet 

finite vertical soil displacement. This overcomes the sensitivity of earlier models to Poisson’s 

ratio for nearly incompressible media. 

b) From the interference of upward and downward traveling disturbances associated with each mode 

m in the soil layer a standing wave emerges. The total response is a superposition of m-th 

standing waves, which is a spatially varying (stands still and oscillates left and right), but not 

propagating disturbance (not a travelling), and naturally no loss of energy in terms of radiation 

damping occurs. The drop in dynamic soil reaction and sudden increase in damping are 

associated with the natural frequencies of the soil layer and the emergence of travelling waves in 

the horizontal direction. The wave propagation phenomenon was thoroughly discussed in this 

study and was investigated by means of a frequency spectrum using the first five modes. 

c) A new dimensionless incremental frequency parameter (a0
2 − a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚

2 )
1/2

 was introduced for 

describing the soil reaction in the high frequency range (a𝑚 > a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚). It was shown that this 

representation allows the reaction factor to exhibit the same behavior regardless of actual soil 

layer thickness (or pile length), value of Poisson’s ratio, soil material damping and oscillation 

mode. 

d) It was found that the dynamic soil reaction factor below cutoff frequency is best normalized by 

the corresponding static stiffness (𝜔 = 0) as a function of dimensionless frequency ratio 

a0 a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚⁄ . Beyond the cutoff frequency, the dynamic stiffness can be best normalized by the 

soil’s shear modulus (no special scheme is needed) and is best expressed as a function of 

incremental frequency (a0
2 − a𝑐𝑢𝑡𝑜𝑓𝑓,𝑚

2 )
1/2

(Fig. 12). The only exception exists when 

investigating the effect of 𝑣𝑠 on dynamic soil reaction, where a normalization with the static value 
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is required over the whole range of frequencies (Fig. 14). These properties stem from the 

dependence of the solution on the cutoff frequency of each mode and the gradual transformation 

of the wave field emitted from the pile with increasing frequency beyond resonance, from three-

dimensional to two-dimensional (plane strain). 

e) It was also observed that with increasing frequency the plane strain solution converges to the 

more rigorous solution. However, significant discrepancies in stiffness appear, especially for 

short piles, for frequencies below cutoff and for the particular case of 𝑣𝑠 = 0.5 in the high 

frequency range. 

f) A simple, improved expression for determining dynamic soil reaction based on an asymptotic 

form of the classic plane strain solution which takes into account the compressibility of the soil 

was presented in Eqs (33) and (34). 

g) A solution for the dynamic soil reaction factor and the corresponding damping ratio were derived 

for the case of an infinitely long pile in a half space. This is achieved by expressing the soil 

response in terms of integrals instead of Fourier series, as in the case of piles of finite length (Eq. 

35). Soil reaction was then derived as a superposition of modular soil reactions for all possible 

depths of soil layers to form a half space. 
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Notation   

 𝐴, 𝐵, 𝐶, 𝐷  integration constants depending on boundary conditions and type of loading 

 𝑑  pile diameter 

 𝐸𝑠  Young’s modulus of soil 

 𝐺𝑠, 𝐺𝑠
∗  real- and complex-valued shear modulus of soil 

 𝐻  thickness of soil layer 

 𝑚̃𝑠  mass of an infinitesimal soil element in cylindrical coordinates (𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 𝜌𝑠) 

 𝑝  horizontal soil reaction to pile motion 

 𝑞𝑚  soil frequency-dependent parameter 

 𝑟  radial or horizontal coordinate 

 𝑡  time variable 

𝑉𝑠, 𝑉𝑠
∗  real-valued and complex-valued soil shear wave propagation velocity 

 𝑤  lateral pile displacement 

 𝑊𝑚  pile response Fourier coefficients 

 𝑢𝑟, 𝑢𝜃  soil displacement components (radial, tangential) 

 𝑧  vertical coordinate 

   

Greek Symbols   

 𝑎, 𝑎𝑚  positive real-valued number (eigenvalues) 

 𝛽𝑠  soil material damping 

 𝛽𝑟  radiation damping 

𝜂𝑠, 𝜂𝜎  compressibility parameters 

 𝜈𝑠  soil Poisson’s ratio 

 𝜌𝑠  soil mass density 

 𝜎𝑟, 𝜎𝜃, 𝜎𝑧  normal stresses in soil 

 𝜏𝜃𝑧, 𝜏𝑧𝑟, 𝜏𝑟𝜃  shear stresses in soil 

 𝚽, 𝚿  potential functions 

 𝜔  cyclic excitation frequency 

 𝜔𝑚, 𝜔𝑛  m-th resonant and natural frequency 

   Laplacian operator 
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Appendix A 

In cylindrical coordinates, normal strains are written in terms of displacements via the well-known 

equations 
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Based on the assumption of zero normal stress 𝜎𝑧, normal strain 𝜀𝑧 is written as 

 0z rK        (A.2) 

and normal stresses 𝜎𝑟 and 𝜎𝜃 can be expressed in terms of normal strains 𝜀𝑟 and 𝜀𝜃 in the form 

 * 2 2r s rG             (A.3a) 

 * 2 2s r rG            (A.3b) 

where 𝐾0 = 𝜈𝑠 (1 − 𝜈𝑠⁄ ) is the coefficient of lateral pressure at rest for an elastic material depending 

solely on Poisson's ratio;  is also a function of Poisson's ratio, given by Eq. (26) in the present 

formulation and Eq. (18) in the work by Tajimi. 

Shear strains are written in terms of displacements as 
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Shear stresses 𝜏 in terms of shear strains 𝛾 

*
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*
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*

sr rz zG    (A.5c) 

In light of Eq. (A.2a), the derivatives 𝜕𝜏𝑟𝑧 𝜕𝑧⁄  and 𝜕𝜏𝜃𝑧 𝜕𝑧⁄  attain the alternative forms 
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  (A.6b) 

which depend solely on the horizontal displacement components 𝑢𝑟 and 𝑢𝜃. 

Substituting Eqs (A.2), (A.3), (A.6) into the equilibrium equations (1), yields the Navier equations (2). 
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Tables 

 

Table 1: Values of empirical parameter χ as function of Poisson’s ratio 

 Poisson’s ratio 𝜈𝑠 

 0.1 0.2 0.3 0.4 0.5 

χ 5 4 3 2 1 
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FIGURES 

 

 

Fig. 1: Problem considered: Harmonically excited cylindrical vertical pile embedded in soil stratum 

overlying a rigid base 

 

 

 

Fig. 2: First five modes of soil layer due to lateral pile motion 
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Fig. 3: Variation of compressibility factor with Poisson's ratio 

 

 

 

Fig. 4: Schematic representation of the frequency spectrum in the m-th mode 
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Fig. 5: Frequency spectrum for the five first modes in an undamped and a damped soil medium 
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Fig. 6: Effect of modes and pile slenderness on static soil resistance factor 
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Fig. 7: Effect of Poisson's ration on static soil resistance factor 
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Fig. 8: Variation of real and imaginary part of soil reaction with frequency for selected modes; 

Comparison with Nogami and Novak [4] and plane strain model; 𝐻 𝑑⁄ = 50, 𝛽𝑠 = 0.01 
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Fig. 9: Variation of dynamic soil reaction 𝑅𝑚(𝜔) and damping with frequency for selected modes; 

Comparison with Nogami and Novak [4]; 𝐻 𝑑⁄ = 50, 𝛽𝑠 = 0.01 
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Fig. 10: Variation of dynamic soil reaction 𝑅𝑚(𝜔) and damping with frequency for selected modes; 

Comparison with Nogami and Novak [4]; 𝐻 𝑑⁄ = 50, 𝛽𝑠 = 0.01 
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Fig. 11: Variation of dynamic soil reaction 𝑅𝑚(𝜔) and damping with frequency for selected modes, pile 

slenderness and material damping 
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Fig. 12: (a), (d) Effect of number in mode on soil reaction in dynamic regime (𝛽𝑠 = 0); 

(b), (c) Schematic representation of variation of dynamic soil reaction and damping ratio with novel 

dimensionless frequency parameters 
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Fig. 13: Effect of pile slenderness on soil reaction in dynamic regime; 𝛽𝑠 = 0.05, 𝑣𝑠 = 0.4 
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Fig. 14: Effect of Poisson’s ratio on dynamic soil reaction and damping; 𝛽𝑠 = 0.05 
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Fig. 15: Effect of Poisson’s ratio on dynamic soil reaction 𝑅(𝜔); (a) comparison with plane strain 

model; (b) comparison with simplified (improved) expression; 𝛽𝑠 = 0.05 
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Fig. 16: 3D representation of dynamic soil reaction factor 𝑅𝑎(𝜔) with frequency and (𝛼𝑑); 𝛽𝑠 = 0.01, 

𝜈𝑠 = 0.4 

 

 

 

Fig. 17: 3D representation of damping ratio 𝛽𝑎 with frequency and (𝛼𝑑); 𝛽𝑠 = 0.01, 𝜈𝑠 = 0.4 


