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Analytical solution of two-phase spherical Stefan problem by
heat polynomials and integral error functions

Stanislav N. Kharin∗,†, Merey M. Sarsengeldin∗,† and Hassan Nouri∗

∗Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan
†Kazakh-British Technical University, Almaty, Kazakhstan

Abstract. On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution,
which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is
obtained from integral error function and its properties which are represented in the form of series whose coefficients have to
be determined. Convergence of solution series is proved.

Keywords: Thomson effect, Symmetric and asymmetric contacts
PACS: 51.30.+i, 64.70.dj

INTRODUCTION

In most electric contacts with small contact surface (b < 10−4) and low electric current it is sufficient to use Holm’s
ideal sphere [1] for investigation of diverse thermo-physical phenomena in electric contacts. Such processes like
arcing and bridging are so fleeting (nana second range) that their experimental study is very difficult or sometimes
impossible and the need of modeling is due not only to the need to optimize the planning experiment, but also
due to the impossibility to use a different approach. So called Stefan type problems which take in account phase
transformations, agree with experimental data [2] and can serve as a model for afore mentioned processes [3–5].
From theoretical point of view, these problems are among the most challenging problems in the theory of non-linear
parabolic equations, which along with the desired solution an unknown moving boundary has to be found. In some
specific cases it is possible to construct Heat potentials for which, boundary value problems can be reduced to integral
equations [3, 4, 6]. However, in the case of domains that degenerate at the initial time, there are additional difficulties
because of the singularity of integral equations, which belong to the class of pseudo - Volterra equations which are
unsolvable in the general case. First attempts to solve Stefan problem by proposed method are given in [7, 8]. This
study is devoted to suggest analytical solution for two phase spherical Stefan problem with one free boundary which
is based on the use of integral error functions and their properties.

TWO PHASE SPHERICAL STEFAN PROBLEM

Preliminaries

1. Complementary error function is represented as following:

iner f cx =
2√
π

1
n!

∫ ∞

x
(ν − x)nexp(−ν2)dν. (1)

Lemma 1 By L’Hopital’s rule it is not difficult to show that

lim
x→∞

iner f c(−x)
xn =

2
n!
,

and

lim
t→0

(2a
√

t)niner f c
(
− x

2a
√

t

)
=

2
n!

xn. (2)
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Analytical solution

Let’s consider two-phase Stephan Problem, which enables to describe heat transfer in electrical contacts. The heat
flux P(t) entering in the sphere of the radius b melts contact material (liquid zone b < r < α(t)) and passes further
through the solid zone α(t)< r < ∞.

FIGURE 1. Temperature distribution in electric contact. Holm hemisphere

The heat equations for each zone are as follows:

∂θ1

∂ t
= a2

1

(
∂ 2θ1

∂ r2 +
2
r

∂θ1

θr

)
, b < r < α(t), (3)

∂θ2

∂ t
= a2

2

(
∂ 2θ2

∂ r2 +
2
r

∂θ2

θr

)
, α(t)< r < ∞, (4)

θ1(b,0) = Tm, (5)
θ2(r,0) = f (r), (6)

f (b) = Tm, α(0) = b, f (∞) = 0, (7)

r = b : −λ1 =
∂θ1(b, t)

∂ r
= P(t), (8)

r = α(t) : θ1(α(t), t) = Tm, (9)
θ2(α(t),0) = Tm, (10)

θ2(∞, t) = 0, (11)

and the Stefan’s condition is as

−λ1 =
∂θ1(α(t), t)

∂ r
=−λ2 =

∂θ2(α(t), t)
∂ r

+Lγ
dα(t)

dt
. (12)

Here we represent α(t) as follows

α(t) = b+α1t1/2 +α2t + · · ·+αntn/2 + · · · , (13)

where α1,α2,α3, ... have to be determined.
By making substitution θ = u

r +Tm and r = x+b in (2)-(13) we reduce problem (2)-(12) to the following problem:

∂U1

∂ t
= a2

1
∂ 2U1

∂x2 , (14)

∂U2

∂ t
= a2

2
∂ 2U2

∂x2 , (15)
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U1(0,0) = 0, (16)
U2(x+b,0) =

[
f (x+b)−Tm

]
(x+b), (17)

f (0) = Tm, β (0) = 0, f (∞) = 0, (18)

x = 0 : −λ1

[
b

∂U1

∂x
−U1

]
x=0

= b2P(t), (19)

x = β (t) : U1(β (t), t) = 0, (20)
U2(β (t), t) = 0, (21)

U2(∞, t) = 0,

subject to the Stefan’s condition

−λ1

[
β (t)

∂U1

∂x
−U1

]
x=β (t)

=−λ2

[
β (t)

∂U2

∂x
−U2

]
x=β (t)

+β 2(t)
dβ (t)

dt
Lγ, (22)

where

β (t) = α(t)−b = α1t1/2 +α2t + ...+αntn/2 + ...=
∞

∑
n=0

αn+1t(n+1)/2. (23)

We represent solution in the form

U1(x, t) =
∞

∑
n=0

A2n(2a1t)n
[

i2ner f c
−x

2a1
√

t
+ i2ner f c

x
2a1

√
t

]
+

∞

∑
n=0

A2n+1(2a1t)
2n+1

2

[
i2n+1er f c

−x
2a1

√
t
− i2n+1er f c

x
2a1

√
t

]
, (24)

U2(x, t) =
∞

∑
n=1

Bn(2a2t)n/2
[

iner f c
−x

2a2
√

t

]
+

∞

∑
n=1

Cn(2a2t)n/2
[

iner f c
x

2a2
√

t

]
. (25)

Here coefficients A2n,A2n+1,Bn,Cn have to be found. Moreover, it is necessary to find unknown moving β (t). Using
Hermite polynomials like in [7] we represent (24) in the form of heat polynomials:

U1(x, t) =
∞

∑
n=0

A2n

n

∑
m=0

x2n−2mtmβ2n,m +
∞

∑
n=0

A2n+1

n

∑
m=0

x2n−2m+1tmβ2n+1,m, (26)

A2n+1 = A2n
β2n,n

bβ2n+1,n
− b

λ1β2n+1,n

P(n)(0)
n!

. (27)

To find A2n we use multinomial coefficients of Newton’s Polynomials. Thus to derive recurrent formula for A2n, we
take both sides of (19) 2k times derivative at τ = 0 and get following expressions:

0(4l) =
l

∑
n=1

A2n

n−1

∑
m=0

C2n,m[4l]+
2l−1

∑
n=l+1

A2n

2l−n−1

∑
m=0

C2n,m+2(n−l)+A4lβ4l,2l (28)

+
l

∑
n=1

A2n+1

n−1

∑
m=0

C2n−1,m[4l]β2n−1,m

+
2l

∑
n=l+1

A2n−1

2l−n

∑
m=0

C2n−1,m+2(n−l−1)[4l]β2n−1,m+2(n−l)−1,

where l = 1,2, ... and A0 = 0.

0(2(2l−1)) =
l−1

∑
n=1

A2n

n−1

∑
m=0

C2n,m[2(2l −1)]β2n,m

+
2l−1

∑
n=l

A2n

2l−n−1

∑
m=1

C2n,m+2(n−l)[2(2l −1)]β2n,m+2(n−l)+A4l−2β4l−2,2l−1[2(2l −1)]

020031-3



+
l−1

∑
n=0

A2n+1

n

∑
m=0

C2n+1,m[2(2l −1)]β2n+1,m

+
2l−1

∑
n=l

A2n+1

2l−n−1

∑
m=1

C2n+1,m+2(n−l)+1[2(2l −1)]β2n+1,m+2(n−l)+1 (29)

Thus A2n, coefficients can be explicitly expressed from (28) and (29) where Ci, j[4l] or Ci, j[4l − 2] multinomial
coefficients or sums of coefficients at βi, j.

By Lemma 1 and condition (16) we get following theorem.

Theorem 2 For b ≈ 0, g(x)⊂C∞ we have

Bn =
1
2

g(n)(0), (30)

where
g(x) = [ f (x)−Tm

]
x. (31)

In similar manner in (20) we use Leibniz’s formula, Faa Di Bruno’s formula and Bell polynomials to calculate Cn
and get

k

∑
n=0

g(n)(0)
n!

µ1 +
k

∑
n=0

Cnµ2 = 0, (32)

µ1,2 = (2)1/2 k!
(k−n)!

k−n

∑
m=1

(±1)m Γ
( n−m+1

2

)
(n−m)!

√
π ∑ (k−n)!

j1! j2!... jk−n−m+l!
β j1

1 β j2
2 ...β j−k−n−m+l

k−n−m+1 .

To calculate coefficients of β (τ) we use Stefan’s condition (22).
By making substitution

√
t = τ and taking both sides of (21) k-times derivative at τ = 0 we reduce (22) to the

following

λ2

[
∂ k[U2x(β (τ),τ)σ−1(τ)]

∂τk

]∣∣∣∣
τ=0

−λ1

[
∂ k[U1x(β (τ),τ)σ−1(τ)]

∂τk

]∣∣∣∣
τ=0

= βkΛ, (33)

where σ(τ) = α1 +α2τ +α3τ2 + ... and Lγ = Λ,

Uix(β (τ),τ) =
∂Uix

∂x

∣∣∣∣
x=β (τ)

,

where i = 1,2. Finally we get following recurrent formula from (34)

βk =
λ2

Λ

k

∑
p=0

(
k

p

){ ∞

∑
n=0

2n/2(k− p)!
(k− p−n)!

[
(−1)nBn

(
k−p−n

∑
m=1

in−mer f cα1 (34)

∑
(k− p)!β j1

1 β j2
2 ...β jk−p−n−m+1

k−p−n−m+1

j1! j2!... jk−p−n−m+1!

)
+Cn

k−p−n

∑
m=1

in−mer f c(−α1)

∑
(k− p)!β j1

1 β j2
2 ...β jk−p−n−m+1

k−p−n−m+1

j1! j2!... jk−p−n−m+1!

)]}{ n

∑
m=1

(−1)m 1
σm+1 ∑

n!β j1
1 β j2

2 ...β jn−m+1
n−m+1

j1! j2!... jn−m+1!

}

−λ1

Λ

[
∂ k[U1x(β (τ),τ)σ−1(τ)]

∂τk

]∣∣∣∣
τ=0

.
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Convergence

Convergence of (24) and (25) can be proved as follows: Let β (t0) = µ0 for any time t = t0. Then the series

U1(x, t) =
∞

∑
n=0

A2n(2t)n
[

i2ner f c
−µ0

2
√

t
+ i2ner f c

µ0

2
√

t

]
+

∞

∑
n=0

A2n+1(2t)
2n+1

2

[
i2n+1er f c

−µ0

2
√

t
− i2n+1er f c

µ0

2
√

t

]
,

U2(x, t) =
∞

∑
n=1

Bn(2t)n/2
[

iner f c
−µ0

2
√

t

]
+

∞

∑
n=1

Cn(2t)n/2
[

iner f c
µ0

2
√

t

]
should be convergent, because u1 = u2 = 0 on the interface. Therefore there exist some constants C1,C2, independent
of n, such that

| A2n |<C1/(2t0)n

[
i2ner f c

−µ0

2
√

t0
+ i2ner f c

µ0

2
√

t0

]
. (35)

Since A2n are bounded and expressed in terms of A2n+1, then A2n+1 is also bounded.

Multiplying both sides of (35) by (2t)n

[
i2ner f c (−β (t))

2
√

t + i2ner f c β (t)
2
√

t

]
and taking sum we obtain that

∞

∑
n=0

A2n(2t)n

[
i2ner f c

(−β (t))
2
√

t
+ i2ner f c

β (t)
2
√

t

]
< C1

∞

∑
n=0

(2t)n

[
i2ner f c (−β (t))

2
√

t + i2ner f c β (t)
2
√

t

]

(2t0)n

[
i2ner f c −µ0

2
√

t0
+ i2ner f c µ0

2
√

t0

]

< C1

∞

∑
n=0

(
t
t0

)n

.

In the same manner

| Cn |<C2/(2t0)ni2ner f c
µ0

2
√

t0
,

∞

∑
n=0

Cn(2t)n

[
i2ner f c

β (t)
2
√

t

]
< C2

∞

∑
n=0

(2t)n

[
i2ner f c β (t)

2
√

t

]

(2t0)n

[
i2ner f c µ0

2
√

t0

] <C2

∞

∑
n=0

(
t
t0

)n

.

These are geometric series and the series for u1(x, t) converges for all x < µ0, while the series for u2(x, t) converges
for all x > µ0 and t < t0. The series β (t) can be estimated similarly from the equation (35).

CONCLUSION

To summarize, the coefficients A2n+1,A2n,Bn and Cn are obtained from (27), (28), (29) ,(32), (33) and coefficients of
free boundary β (t) obtained from (35), and also convergence proved.
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