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Electroactive polymer actuators are important for soft robotics, but can be dif-

ficult to control because of compliance, creep and nonlinearities. Because

biological control mechanisms have evolved to deal with such problems, we

investigated whether a control scheme based on the cerebellum would be

useful for controlling a nonlinear dielectric elastomer actuator, a class of artifi-

cial muscle. The cerebellum was represented by the adaptive filter model, and

acted in parallel with a brainstem, an approximate inverse plant model. The

recurrent connections between the two allowed for direct use of sensory error

to adjust motor commands. Accurate tracking of a displacement command in

the actuator’s nonlinear range was achieved by either semi-linear basis func-

tions in the cerebellar model or semi-linear functions in the brainstem

corresponding to recruitment in biological muscle. In addition, allowing trans-

fer of training between cerebellum and brainstem as has been observed in the

vestibulo-ocular reflex prevented the steady increase in cerebellar output other-

wise required to deal with creep. The extensibility and relative simplicity of the

cerebellar-based adaptive-inverse control scheme suggests that it is a plausible

candidate for controlling this type of actuator. Moreover, its performance high-

lights important features of biological control, particularly nonlinear basis

functions, recruitment and transfer of training.
1. Introduction
Making robots ‘soft’ significantly increases the range of environments in which

they can operate, allowing them, for example, to interact safely with people (for

recent review, see [1]). However, robots made wholly or in part from materials

that change the shape when subjected to force are more difficult to control than

rigid robots [2].

This is true for compliant actuators, capable of muscle-like high strain,

which have been manufactured from a wide variety of materials including elec-

troactive polymers (EAPs) [3] that can undergo large deformations in response

to electrical stimuli. Dielectric elastomer actuators (DEAs) are an example of

compliant EAP-based actuators with high energy density, large strain capa-

bility and a relatively fast response [4]. As such, they possess many of the

desirable properties of biological muscle [5] and have attracted significant inter-

est in the field of soft robotics research. However, even with recent advances in

materials science and manufacturing processes, the precise control of DEAs

remains a non-trivial problem owing to a number of intrinsic nonlinear and

time variant characteristics as illustrated schematically in figure 1.
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Figure 1. Dielectric elastomer actuators (DEAs) are difficult to control. (a) Sketch of DEA operation. Voltage applied to the electrodes produces electrostatic pressure
that squeezes and expands the elastomeric film between them. When the voltage is switched off, the film returns to its original shape (cf. [6]). (b) Time course of
displacement response to a step change in voltage (ordinate shows voltage prior to amplification by a factor of 800). The time course can be approximated by a
single exponential, with time course in this case of approximately 100 ms [7]. The responses shown in this and the subsequent panels were obtained from DEAs
made of acrylic elastomer (3M VHB 4905) with conductive layers of carbon grease as the electrode plates [7,8] ( further details in Methods.). The schematic response
shown here is derived from the nonlinear Hammerstein model developed by Wilson et al. [7] that accounts for 96 – 98.8% of the variance in the responses of six
DEA samples to filtered white noise. (c) The top trace shows the coloured-noise voltage input ( prior to amplification, cf. panel b) over a 30 min period of stimu-
lation. The bottom trace shows the corresponding displacement response of a DEA sample. The response gradually changes (‘creeps’) over the 30 min period.
(d ) Data from panel c replotted to show displacement as a function of voltage for successive time periods as indicated by the colour scale. The displacement
response is nonlinear, displays hysteresis, and varies over time (from fig. 1e of [8]).
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When a membrane of elastomer is sandwiched between

two compliant electrodes, applying a voltage to the electro-

des causes the membrane to flatten and expand (figure 1a).

A typical time course for this response to step changes in vol-

tage is shown in figure 1b, where steady state is reached only

after a substantial delay (in this case, approx. 300 ms). With a

coloured-noise voltage input delivered for 30 s, the displace-

ment response gradually changes (figure 1c). When these

data are plotted as voltage versus displacement at different

time points (figure 1d ), it can also be seen that the response

is a nonlinear function of input voltage and shows hysteresis,

as well as increasing in amplitude with time (figure 1d ). Fur-

thermore, not shown in the figure, significant effort is

required in the manufacturing process of DEAs to reduce var-

iance in the response between individual actuators; they are

sensitive to temperature; and, when loaded, prone to failure

and, for acrylic elastomers, systematic degradation over
time. These issues and phenomena are apparent in both

dielectric- and ionic EAP-based actuators [3,9] and constitute

one of the main challenges to overcome before the technology

can be incorporated more broadly into robotic systems. There

is ongoing research into improving the material properties of

DEAs, such as by using silicone, to address these challenges.

However, this research focuses on control.

The similarities between DEAs and biological muscles

referred to above extend to these control problems, which

also characterize biological muscles. The question therefore

arises of whether biological control strategies, which have

evolved to deal with compliant materials, might show promise

for the control of DEA-based actuators. These strategies are

probably best understood for the extraocular muscles

(EOMs) that control the eye, because for these muscles, the

poorly understood effects of proprioception are less prominent

than for skeletal muscles, and their neural control machinery

http://rsif.royalsocietypublishing.org/
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Figure 2. (a) Cerebellar microcircuit as an adaptive filter. (a) Highly simplified diagram of cerebellar cortical microcircuit. Details in text. Not shown are Golgi cells,
which receive input from mossy and parallel fibres and send inhibitory projections back to the synapses between mossy fibres and granule cells. This recurrent
inhibitory network contributes to the recoding of mossy fibre inputs by granule cells (Discussion). (b) Interpretation of cerebellar microcircuit as an adaptive
linear filter. Details in text. (c) Alpha function basis. Normalized impulse responses of alpha basis functions. (Online version in colour.)
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Figure 3. Basic architecture for motor plant compensation. (a) Linearized model of the horizontal VOR, the reflex that stabilizes images on the retina by reducing
retinal slip. The vestibular system (not shown) generates a head velocity signal vh. Retinal slip (error, e) is zero when the eye velocity ve exactly opposes the head
velocity vh. Control of the oculomotor plant (P) is provided by a combination of a brainstem filter (B) and recurrently connected adaptive cerebellar filter (C).
(b) Architecture for position control of a nonlinear DEA plant using a control scheme based on the VOR. Here, compensation is again provided by a combination
of B and C; however, the position as opposed to velocity is controlled, a reference model (M) is included such that a filtered version of the reference input is tracked,
and the elements represented in the diagram are not necessary linear filters. (Online version in colour.)
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does not involve the very complex organization of the spinal

cord [10]. In broad terms, it appears that eye-movement-

related neurons in the brainstem implement an approximate

inverse model of the oculomotor plant, i.e. the EOMs and orbi-

tal tissue [11,12]. This approximate model is calibrated by the

cerebellum, which is thought to ensure eye-movement accu-

racy by using a form of supervised learning, in which

information about movement inaccuracy adjusts weights in a

specialized neural network [13]. The combination of brainstem

model and continual cerebellar calibration appears able to

cope with the kinds of control problems illustrated in

figure 1, as manifested by the oculomotor plant.

We therefore investigated how far a similar scheme could

be used to control DEA [7] by employing a modified version

of a simplified model of the cerebellum and brainstem circui-

try, previously developed in the context of oculomotor plant

compensation [14,15]. In this model (figures 2 and 3: details

in following sections), the cerebellum is represented by an
adaptive filter [16,17] whose input is an efference copy of

the commands sent to the plant. A measure of movement

inaccuracy (retinal slip in the case of the oculomotor

system) is sent to the adaptive filter as an error signal.

The standard least mean square (LMS) learning rule is then

used to adjust the adaptive-filter weights, so that the error

is reduced, an example of adaptive-inverse control [18].

Application of this recurrent-architecture scheme to DEAs

within their linear range of operation (figure 1d ) produced

accurate control of displacement despite variation in

dynamics between actuators, and within an actuator as a

function of time (figure 1c,d).

Here, we seek to extend these findings to the nonlinear

range of DEA operation (figure 1d ), by altering the linear

model in three ways. First, the adaptive filter model is

expanded to allow it to produce nonlinear outputs, using a

thresholding scheme similar to that described by Spanne &

Jörntell [19] which is based on the properties of neural

http://rsif.royalsocietypublishing.org/
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processing in the granular layer of the cerebellum. Second,

the brainstem model is also expanded to allow the pro-

duction of nonlinear outputs, in this case by mimicking the

effects of recruitment. Biological muscles are composed of

motor units arranged in parallel, with each unit controlled

by its own motoneuron (for most muscles). To increase the

force exerted by the muscle, the control signal sent to the

motoneuron pool changes its firing in two ways. One is an

increase in the number of motoneurons firing (recruitment),

the other is an increase in the firing rate of those motoneurons

already recruited [20]. Because later recruited units are typi-

cally more powerful than those with lower thresholds for

both skeletal muscles [21] and probably EOMs [22], a non-

linearity of the kind shown in figure 1d could, in principle,

be accommodated by appropriate recruitment. Finally, an

additional learning mechanism is introduced that allows cer-

ebellar output to ‘teach’ the brainstem, thereby allowing the

transfer of large gains from the cerebellum to the brainstem.

Transfer of this kind has been observed in the oculomotor

system (references in [23]).

Evaluating this bioinspired control scheme for DEAs has

implications not only for the control of DEA-based actuators,

but also for understanding cerebellar function. Webb [24]

explains the general usefulness of robotics for clarifying and

evaluating hypotheses in neuroscience: here, the specific

hypotheses concern the competencies of the adaptive filter

model of the cerebellum and the recurrent architecture for

the control of compliant actuators.

The paper is structured as follows. Methods section

describes first the components of the algorithm that is the

adaptive filter model of the cerebellar microcircuit and the

recurrent architecture for plant compensation. It then out-

lines the changes made to the algorithm to deal with DEA

nonlinearities, resulting in three new control schemes, and

in the final section describes the experimental set-up. The

Results section shows the effects of applying the new control

schemes compared with conventional PID control, and the

Discussion section considers their limits and significance.

Finally, appendix A provides the mathematical details of

the control algorithms.
2. Methods
2.1. Cerebellum: the adaptive filter model
The cerebellar cortical microcircuit can be modelled as an adaptive

filter [16,17]. The main features of the microcircuit are shown sche-

matically in figure 2a, and translated into adaptive-filter form in

figure 2b. In this model, the main cerebellar inputs carried by

mossy fibres (figure 2a) are represented by u. These are recoded

by a bank of fixed filters G1 . . . GN corresponding to processing

in the granular layer, giving rise to outputs p1 . . . pN that corre-

spond to signals in parallel-fibres. The parallel-fibre signals are

weighted (w1 . . . wN, corresponding to synapses between parallel

fibres and Purkinje cells) and summed linearly (by Purkinje

cells) to give the filter output z. The Purkinje cells also receive

input via a single climbing fibre. This input acts as a teaching

signal (in the simulations presented here the teaching signal is

the tracking error e, that is the difference between actual and

desired actuator position). The Purkinje cell synaptic weights are

modified over time according to the covariance learning rule

dwi ¼ �bkepil, which corresponds to the LMS learning rule [25].

Much of the power of the adaptive filter depends on how far

the basis filters G1, . . . , Gn provide a rich recoding of the input,
allowing synthesis of a large range of desired outputs. In engin-

eering applications, the basis is often taken to be a bank of

tapped delay lines. However, a very large number of delay

lines may be required to represent the long time-constant beha-

viours characteristic of biological systems. We therefore use an

alternative basis better adapted to biological control, namely a

set of alpha functions [7] in which the average delay increases

logarithmically (figure 2c). These cover a large range of time

constants very economically, although filter width increases pro-

portionally to delay giving less accurate time-location at

increasing delay.

Both log-spaced alpha functions (and tapped delay lines)

have highly correlated outputs that drastically affect the speed

of learning. For learning rates to be maximized, the basis filter

outputs must be mutually uncorrelated and have equal power

[26]. It is thought that unsupervised plasticity mechanisms

within the granular layer may reduce correlations between gran-

ule cell outputs [27]. We model these decorrelation processes by

applying a further processing stage to the filter outputs, rep-

resented by the unmixing matrix Q in figure 2b. This matrix is

estimated using singular value decomposition based on a batch

of filter outputs to provide uncorrelated, unit power, parallel

fibre signals [7].

Although the cerebellum is involved in a very wide variety of

tasks, the microcircuit itself is relatively homogeneous over the

entire cortex [13]. This implies that the same adaptive filter

model underlies many different processing tasks, so a funda-

mental design rule for our biomimetic control scheme is that

the basic filter design should not be modified in ad hoc ways

for different control applications. Instead, task-specific proces-

sing is obtained by embedding the adaptive filter in a range of

different connectivities [12].

2.2. Recurrent architecture
In the linear case embedding, the cerebellar learning element in a

recurrent architecture (figure 3a) simplifies the adaptive control

problem [14,15]. In this architecture, inspired by the organization

of the cerebellar flocculus and oculomotor brainstem to maintain

stability of eye gaze, referred to as the vestibulo-ocular reflex

(VOR), the controller has two main parts.

(1) The fixed brainstem part of the controller B converts a

signal representing head velocity vh into a control signal u
which is sent to the oculomotor plant P. In the VOR, the

task is to move the eyes in the opposite direction to the

head, so that eye velocity ve is equal to 2vh, thereby stabiliz-

ing the image on the retina. The brainstem constitutes an

approximate inverse of the plant (P21).

(2) The adaptive part of the controller C receives an efferent

copy of the motor commands u generated by the brainstem.

If these commands are inaccurate, then the resultant eye

movements will not match the head movements, and the

image will move across the retina generating a retinal slip-

error signal e. This signal drives learning in C, which adjusts

its output z to the brainstem so as to reduce e. When learning

is complete the combined controller approximates the

inverse of the plant transfer function [18], and the cerebellum

has learnt an incremental plant model C ¼ B21 – P.

An important feature of the recurrent architecture shown in

figure 3a is that it can use sensory errors to drive adaptation

directly, rather than needing to estimate what the required

motor command should have been [12,28]. In particular, it guar-

antees that the teaching signal required for stability and

convergence is simply the tracking error rather than a more

complex teaching signal [15].

Figure 3b shows how the basic recurrent architecture was

altered for control of a DEA in its linear operating range, using

http://rsif.royalsocietypublishing.org/
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a biohybrid approach that incorporates model reference control

[7]. After learning, the behaviour of the controlled plant matches

that of the reference model M (i.e. it tracks y which is a filtered

version of r) which specifies a realistic response for the control-

led plant; the use of a reference model also ensures that the

estimated controller is proper. Using model reference, adaptive

control is a technical solution that enables the cerebellar

algorithm to function independently of the plant order.

2.3. Dealing with nonlinearity
Nonlinear plants do not have transfer functions, but the same

concept of plant compensation (inverse control) holds if the

plant has an inverse that is stable [29]. We assume here that

the DEA plant has an inverse that is stable (i.e. bounded

output implies bounded plant input), a reasonable assumption

given that the input signal must always be kept small enough

to avoid damage. For the DEAs used in this study, the plant

can be represented by a Hammerstein model [7], that is as a

static nonlinearity (SNL) followed by a linear dynamic system

(LDS; figure 4a). Such a plant can be perfectly compensated if

the controller contains an LDS equal to the inverse of the plant
LDS followed by an SNL equal to the inverse of the plant SNL

(figure 4b).

Here, we use a series of piecewise linear elements to approxi-

mate the continuous nonlinear function that constitutes the SNL,

as shown figure 4c (equation (A 9) in appendix A). Two methods

were tried, both of them bioinspired and consistent with the basic

circuitry of the adaptive filter and the recurrent architecture.

(1) One of the features of recurrent inhibition in the granular

layer is that it can provide a natural thresholding mechanism

for granule cell responses. Spanne & Jörntell [19] have

argued that the resulting threshold-linear processing

elements may be useful for nonlinear control problems. We

therefore incorporated a bank of threshold-linear elements

with varying threshold as a pre-processing stage (see

figure 4d and equations (A 6) and (A 7) in appendix A)

providing a flexible set of nonlinear basis filters.

(2) Threshold nonlinear elements are also found in the brain-

stem. Oculomotor neurons have a wide range of thresholds

[30], and it has been suggested that recruitment can be

used to linearize nonlinear plants [31]. We therefore investi-

gated whether a bank of threshold linear units in the

http://rsif.royalsocietypublishing.org/
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brainstem (figure 4e) could compensate for the DEA

plant nonlinearity.

The final control scheme to be examined included an

additional site of plasticity in the brainstem (equation (A 10) in

appendix A), inspired by the existence of such a site in the ves-

tibular nuclei that allows the cerebellar input to drive

brainstem learning during VOR adaptation [32]. This mechanism

can be used to transfer models learnt in the cerebellum to the

brainstem [23], and predicts a heterosynaptic learning rule

using correlations between the brainstem input and the inhibi-

tory cerebellar input drive that has been verified

experimentally [33]. An advantage of learning transfer is that it

limits the amount of gain that is required to be stored in the cer-

ebellar loop, improving loop stability if the plant is subject to

large changes over time.
2.4. Experimental set-up
The experimental set-up was the same as that described pre-

viously in Wilson et al. [7]. The control task was to drive the 1

degree of freedom displacement response of the DEA to track a

filtered coloured-noise reference signal y such that the controlled

actuator behaved as specified by the reference model M

(figure 3b). Each DEA consisted of a thin, passive elastomeric

film, sandwiched between two compliant electrodes (figure 5a).

Voltage applied to the electrodes squeezed the film and

expanded it biaxially. To constrain the controlled variable to 1

degree of freedom, a spherical load was placed at the centre of

a circular DEA and its motion in the vertical plane (i.e. vertical

displacement) was measured (figure 5a,b).

The DEAs were made of acrylic elastomer (3M VHB 4905)

with an initial thickness of 0.5 mm. This material was chosen

owing to its low cost, availability, robustness and adhesive prop-

erties that were exploited in the assembly process. The elastomer

was pre-stretched biaxially by 350% (where 100% was the

unstretched length) to a thickness of approximately 41 mm

(unmeasured) prior to being fixed on a rigid Perspex frame
with inner and outer diameters of 80 and 120 mm, respectively.

A conductive layer of carbon grease (MG chemicals) formed

the electrodes that were brushed on both sides of the VHB mem-

brane as circles with a diameter of approximately 35 mm.

The load used during experiments was a sphere weighing 3 g.

The control algorithm (table 1) was implemented in LAB-

VIEW and from there embodied in a CompactRio (CRIO-9014,

National Instruments) platform, with input module NI-9144

(National Instruments) and output module NI-9264 (National

Instruments) used in combination with a host laptop computer.

LABVIEW was run on the host laptop computer, with communi-

cation between the host laptop and CompactRio (CRio) carried

out, using the LABVIEW shared variable engine. In all exper-

iments, all signals were sampled simultaneously with a

sampling frequency of 50 Hz.

A laser displacement sensor (Keyence LK-G152, repeatability—

0.02 mm) was used to measure the vertical movement of the mass

sitting on the circular DEA. This signal was supplied to the input

module of the CRio. From the output module of the CRio, voltages

were passed through a potentiometer (HA-151A HD Hokuto

Denko) and amplified (EMCO F-121 high-voltage module) with a

ratio of 15 V : 12 kV and applied to the DEA.
2.5. Control schemes
Six control schemes were applied to the DEA shown in figure 5.

In each case, the actuator was required to track for 900 s a

low-pass filtered (1 Hz cut-off ) white-noise voltage input, with

a range of desired displacement amplitudes of 0.1–1.8 mm.

This amplitude range corresponds to average motor commands

(voltage inputs to the DEA) of the order of 3 V prior to ampli-

fication. These inputs excite the full nonlinear dynamics of

the DEA.

Five schemes used a model brainstem and recurrently con-

nected cerebellar adaptive filter to compensate for the DEA

dynamics, an arrangement previously suggested for compen-

sation of the oculomotor plant in animals and humans.

All were tested in simulation, and the fifth also applied

http://rsif.royalsocietypublishing.org/


Table 1. Plant compensation control algorithm. Algorithm used to control the response of a DEA. The timing was done using a National Instruments Compact
Rio with LABVIEW software. Read/write used a read-write National Instruments FPGA module (see Methods). The delay between steps 8 – 9 was 0.0001 s.

control algorithm for each time step, k

1 yk ¼ M(q, t)rk filter input signal through reference model

2 qk ¼ f2(uk21) nonlinear transformation of ( previous) motor command

3 for i ¼ 1 : nf do

gi,k ¼ Gi(q, Ti)qk

end for

filter transformed motor commands

through bank of alpha filters

4 pk ¼ Qgk transform filter outputs into a faster learning basis

5 zk ¼ wT
k pk calculate adaptive filter output

6 vk ¼ BL(q, g)(rk þ zk) filter adaptive filter output and input signal through linear brainstem filter

7 uk ¼ vogo þ . . .
Pm

j¼1ðvk � rjÞHðvk � rjÞgj calculate output of piecewise linear, nonlinear brainstem element

8 WRITE uk use motor command to drive DEAP

9 READ xk measure response of DEAP

10 ek ¼ xk2yk calculate error between desired and actual response

11 �pk ¼ Mðq, tÞpk filter parallel fibre signals through reference model

12 wkþ1 ¼ wk � bek�pk update adaptive filter weights

14 for j ¼ 1 : m do

if j , 2

gj,k þ 1 ¼ gj,k þ zzkmj,k

otherwise

gj,k þ 1 ¼ gj,k þ zmkvj,k2zzkmj21,k

end for

update gains of piecewise linear brainstem element
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experimentally. In addition, a PID-based control scheme was

tested in simulation for comparison.
3. Results
The first control scheme applied to the DEA (see Methods)

used the linear brainstem and cerebellar models (figure 6a)

previously applied to both simulated and experimental

control of the DEA in its linear range [7]. The performance

of the fixed linear brainstem (defined in table 2) before and

after learning is shown in figure 6b,c. As expected, the

linear control scheme cannot fully compensate for the non-

linear plant dynamics, having particular trouble tracking

larger peaks in the desired displacement response. Its use,

here as a reference condition, gives an indication of the pro-

blems caused by the nonlinearity, with its steady-state RMS

error (figure 6d ) being 0.04 mm. For comparison, the linear

control scheme gives steady-state RMS errors of 0.011 mm

when the DEA is excited over a reduced range (i.e. reference

signal reduced to a maximum of 1 mm), such that the

dynamics can be approximated as linear [7]).

The performance of the second control scheme, in which

a nonlinear adaptive cerebellum replaces the linear adaptive

cerebellum of the first scheme, is also shown in figure 6.

It learns to compensate well for the nonlinear plant, and

the desired displacement response is accurately tracked over

the full range of displacements, including larger peaks

(figure 6b,c). This improvement is reflected in lower RMS

errors (figure 6d: 0.019 mm). The number of nonlinear
cerebellar elements required to achieve this reduction in

error is approximately 5 (figure 6e).

Finally, the PID controller initially performed better than

either adaptive scheme (figure 6d ). As learning proceeded,

the linear adaptive scheme came to perform similarly as indi-

cated by RMS error, whereas the nonlinear scheme did

slightly better.

The fourth control scheme to be investigated used a linear

adaptive cerebellum as in the first scheme, but combined it

with a nonlinear brainstem intended to capture the effects

of motor unit recruitment in skeletal and EOMs (figure 7a).

Its eventual performance was slightly worse than that of

the second scheme (figure 7b; average final RMS errors of

0.030 mm), and learning was somewhat slower.

In the fifth and sixth control schemes, both the brainstem

and cerebellum were nonlinear, but whereas in the fifth

scheme, the brainstem remained fixed, in the sixth it was

adaptive (figure 7a) with learning driven by changes in

cerebellar output, as can occur in VOR adaptation. Both

schemes produced good learning (steady-state RMS errors

0.015 and 0.011 mm, respectively), a value for the sixth

scheme that matches the steady-state RMS errors when con-

trolling the DEA over a reduced linear range, using a linear

control scheme. In addition, the fifth scheme’s method of

achieving this level of performance was different. Figure 7c
shows how cerebellar output varies over time for each of

the three nonlinear schemes. If there is no transfer of learning

between cerebellum and brainstem (schemes two to four),

then this output gradually increases to cope with the slow

‘creep’ of plant properties (figure 1c). Such continual increase

is undesirable, especially when the cerebellum is connected in

http://rsif.royalsocietypublishing.org/
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a recurrent loop, so that large cerebellar outputs are effec-

tively large gains in a feedback loop and can thus cause

instabilities. However, when a nonlinear adaptive brainstem

element is used and learning is transferred from the
cerebellum to the brainstem the cerebellum output no

longer increases continually over time (figure 7c). These

differences between the control schemes are also reflected

in the evolution of cerebellar weights as learning proceeds

http://rsif.royalsocietypublishing.org/


Table 2. Parameters for experiments. Parameters used to control the response of a DEA. The third experiment was linear PID control for which control
parameters are provided in appendix A.

parameter experiment value

number of piecewise linear brainstem terms first m ¼ 1

second m ¼ 1

fourth m ¼ 8

fifth m ¼ 8

sixth m ¼ 8

thresholds for brainstem piecewise linear terms first r1 ¼ 0

second r1 ¼ 0

fourth r128 ¼ [0 0.255 0.51 0.765 1.02 1.275 1.53 1.785]

fifth r128 ¼ [0 0.255 0.51 0.765 1.02 1.275 1.53 1.785]

sixth r128 ¼ [0 0.255 0.51 0.765 1.02 1.275 1.53 1.785]

initial brainstem gains first g021 ¼ [2.1 0.9]

second g021 ¼ [2.1 0.9]

fourth g028 ¼ [0.92 2.38 1.07 21.92 20.78 20.11 20.12 20.045 0]

fifth g028 ¼ [0.92 2.38 1.07 21.92 20.78 20.11 20.12 20.045 0]

sixth g021 ¼ [2.1 0.9 0 0 0 0 0 0 0]

rate of learning brainstem gains first z ¼ 0

second z ¼ 0

fourth z ¼ 0

fifth z ¼ 0

sixth z ¼ 0.01

number of nonlinear cerebellar elements first n ¼ 0

second n ¼ 5

fourth n ¼ 0

fifth n ¼ 5

sixth n ¼ 5

thresholds for nonlinear cerebellar elements first n.a.

second s125 ¼ [2.18 2.48 2.78 3.08 3.38]

fourth n.a.

fifth s125 ¼ [2.18 2.48 2.78 3.08 3.38]

sixth s125 ¼ [2.18 2.48 2.78 3.08 3.38]

discrete alpha basis filters all Giðq, TiÞ ¼
dt2=T 2

i

1þ ð2dt=Ti � 2Þq�1 þ ðdt2=T 2
i � 2dt=Ti þ 1Þq�2

number of alpha filters all nf ¼ 4

time constants of alpha filters all log-spaced from T1 ¼ 0.1 to T4 ¼ 0.5

fixed cerebellar bias all e ¼ 0:01

rate of error learning all b ¼ 8

discrete linear brainstem filter all BL(q, g) ¼ 0.6620.48q21/120.82q21

discrete linear reference filter all M(q, t) ¼ 0.18/120.82q21
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(figure 7d ). In particular, weight change is very much

reduced and stabilized when transfer to the brainstem is

allowed (figure 7d, right-most panel).

Finally, the sixth control scheme was applied to displace-

ment control of the real-world DEA system, and the resulting

performance compared with that seen in the simulation

(figure 8a). After learning, both the simulated and real-

world systems track the desired displacement response
accurately. It appears that the model of the DEA used in

the simulations provides a reasonable description of its

dynamics, and that the control algorithm works as expected

on a real-world system. RMS error is shown in figure 8b,

and cerebellar output in figure 8c.

The learnt brainstem nonlinearity (from an initially linear

estimate) was compared with the estimated inverse of the

plant nonlinearity for both the simulated and real-world
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systems (figure 8d ). The specific form of the plant nonlinear-

ity differs between the real-world and simulated systems

owing to variations in the characteristics of individual actua-

tors [8], though the general form of the nonlinearity is similar.

In both simulated and the real-world systems, the learnt

brainstem nonlinearity reasonably approximates the inverse
of the plant nonlinearity (for ideal compensation, the two

should be equal). The approximation is less good for large

and small displacements, probably because there are fewer

data available to learn over these ranges.

For the results shown in figure 8, the transfer of learning

from the cerebellum to brainstem was calculated using a
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learning rule in which previous gains are taken into account

(equation (A 10) in appendix A) to provide some decorrela-

tion of the signals being weighted. A simpler learning rule

that does not include the effect of previous gains was also

tested on the simulated system and gave very similar

performance to that shown in figure 8 (results not shown).
4. Discussion
These results show that a bioinspired control scheme, based

on cerebellar calibration of the VOR, is capable of compensat-

ing for the plant nonlinearities of a DEA-based actuator.

Good performance was obtained with either an adaptive

(cerebellar) filter using nonlinear basis functions, or a fixed

brainstem nonlinearity based on recruitment of EOM. In

addition, a biologically based arrangement, in which the

adaptive filter teaches the brainstem model of the inverse

plant, allowed the amplitude of cerebellar output to remain

relatively stationary even though plant properties gradually

changed with time.
We consider the implications of these findings first for

EAP control, then for understanding biological control.

Finally, we discuss possibilities for future work.
4.1. Electroactive polymer control
A wide variety of control schemes have been proposed for

both ionic and dielectric EAs [9,34–40] and, at present,

there appears to be no consensus about which of them is

most suitable.

The schemes particularly relevant to this study are

those involving inverse control. Some use non-adaptive

methods, deriving a plant model by system identification tech-

niques then inverting it (with appropriate safeguards)

[34,36,37,39]. Of the studies that do involve adaptive methods,

Hao & Li [35] use on online LMS algorithm to identify hyster-

esis parameters online, and a separate offline identification

algorithm to obtain creep parameters. Sarban & Jones [38]

derive a physical-based electromechanical model of the

DEA, and estimate values for its 14 parameters. Druitt &

Alici [9] argue that the problems of explicit modelling can

http://rsif.royalsocietypublishing.org/
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be avoided by using intelligent controllers such as those based

on fuzzy logic or neural networks, and demonstrate the utility

of a neurofuzzy adaptive neural fuzzy inference system.

Our approach also seeks to reduce the need for offline

system identification by using only a relatively crude

inverse model in the ‘brainstem’, and in addition employs

an adaptive filter as the intelligent part of the control

system rather than a complex adaptive neural fuzzy infer-

ence system. Moreover, the brainstem model can be

taught, which both reduces dependence on a priori esti-

mates, and is also particularly suitable for tracking slow

changes in performance (‘creep’) without long-term

increases in adaptive-controller output. Finally, the basic

structure of the control scheme suggests immediate possibi-

lities for compensating for temperature effects or poor

manufacturing tolerances, for implementing impedance

control in agonist–antagonist EAPs, and for augmenting

feedback in mixed feedback–feedforward control schemes

(discussed further in §4.3.).
0547
4.2. Biological control
The importance of using robots to test hypotheses about

neural function is well recognized [24,41], and previous

work has explored how cerebellar-inspired control schemes

could be applied to robots [42–45]. The success of the adap-

tive-filter model embedded in the recurrent architecture in

controlling DEAs in their linear range [7] prompted its exten-

sion here to the nonlinear range. The results have three

implications for understanding neural function.

The first concerns the adaptive filter model of the cerebel-

lar microcircuit. How granular layer processing could

generate the equivalent of basis filters is not well understood,

although current approaches using insights from reservoir

computing are attracting interest [46,47]. These treat the gran-

ular layer as a recurrent inhibitory network, in which granule

cells project to inhibitory Golgi cells which, in turn, project

back to the synapses between mossy fibres and granule

cells (figure 2a). If the recurrent inhibition is allowed to

change rapidly, then the resultant dynamics are very rich

and can generate a wide variety of basis functions [47]. How-

ever, some of the Golgi cell inhibition appears to change very

slowly, which has led to the suggestion that the granular

layer generates piecewise linear approximations of nonlinear

functions [19]. The present results indicate that such basis

functions can be used, in practice, to compensate for certain

kinds of nonlinear plant.

Second, it appears that a distributed representation of the

approximate inverse model in the brainstem [12] can also

help to compensate for the same kind of nonlinearity. In

the oculomotor system, the agonist force needed to maintain

eccentric eye-position increases supralinearly with position,

yet the firing rate of individual ocular motoneurons

(OMNs) varies linearly with position. However, OMN

thresholds (and slopes) vary over a wide range. It has been

proposed that such recruitment can help to linearize the ocu-

lomotor plant (references in [48]). Results here suggest that

this putative mechanism can work in practice.

Finally, the results indicate that transferring learning from

cerebellum to brainstem allows the system to compensate for

creep with little increase in cerebellar output (figure 7c). In

the case of VOR adaptation, where there is good evidence

that in particular circumstances a similar transfer occurs
[32], modelling indicates that the brainstem can learn new

values of VOR gain that allow the system to operate at high

frequencies (up to 25 Hz) despite a substantially delayed

retinal-slip error signal (approx. 100 ms) [23]. The results

here suggest learning transfer may have more generic

benefits in stabilizing adaptive control output by ensuring

large cerebellar outputs do not affect the stability of the recur-

rent loop. They provide further computational evidence as to

why a powerful computational device such as the adaptive

filter model of the cerebellum requires an additional site of

plasticity and agree with previous computational predic-

tions that learning occurs first in the cerebellar cortex,

before transferring to the brainstem [23].

4.3. Future work
We need to understand how to control DEAs arranged in

agonist–antagonist pairs [3,49]. Analysis of the oculomotor

system suggests that small changes in conjugate eye-position

in the horizontal plane are maintained by the minimum

possible change in motor commands (the minimum-norm

rule) [22]. It is therefore possible that the control scheme

investigated here, which is based on the oculomotor

system, could be extended to the optimal control of ago-

nist–antagonist DEA pairs. If so it could be applied

generally, and would be of special relevance to the use of

EAPs as neuroprostheses [50,51] and as eye muscles for an

android robot [52].
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Appendix A. Details of control algorithms
The control algorithms are described here using discrete time

notation, where k denotes the time step. Filters are described

in discrete time using the notation D(q, g), where D(q, g) is a

linear discrete time filter, q the shift operator (quk ¼ ukþ1) and

g a vector of filter parameters.
A.1. Linear control
The plant being controlled is described as

xk ¼ fo(vk, uk), ðA 1Þ

where vk¼ [ yk, yk�1, . . . , yk�nþ1, uk�1, . . . uk�nþ1], xk is

the measured output, uk the measured input, n the system

order and fo a continuous nonlinear function. We assume

that there exists a unique, continuous function inverse F,

such that

uk ¼ F (vk, xk), ðA 2Þ

where F is the inverse mapping of fo and describes a one-

to-one mapping from x! u.

The cerebellar element C in figure 3b is modelled as an

adaptive filter (figure 2), where the output (zk) is given as a
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weighted sum of filtered and optimized input signals. Thus,

for time step k

zk ¼ wT
k pk, ðA 3Þ

where wk¼ [w1,k , . . . , wnw ,k]T wi,k denotes the ith weight at

time step k, and pk ¼ [ p1,k , . . . , pnw ,k]T pi,k denotes the ith par-

allel fibre at time step k. These weights are adjusted by

the error signal e (corresponding to climbing fibre input)

according to the LMS learning rule [25].

wkþ1 ¼ wk � bekpk, ðA 4Þ

where pk ¼M(q, t) pk denotes the parallel fibre signals being

filtered through reference model filter (see table 2 for the dis-

crete time reference filter definition), and ek is the sensory

error signal, or difference between desired and actual

system output ek ¼ xk � yk.

In the present model, the basis functions implemented by the

filters G1 . . . GN are alpha functions (second-order low pass fil-

ters with a repeated root), described by a single parameter

g ¼ Ti, where Ti is the time constant of the ith fixed filter

(see table 2 for the discrete time alpha filter approximation).

These basis functions replace the most commonly used tapped

delay line FIR filter and greatly reduce the number of adaptable

weights required [53,54]. The output of these filters is denoted gk.

To speed learning, the outputs of these filters gk are transformed

by the fixed matrix Q to give parallel fibre signals pk

pk ¼ Qgk, ðA 5Þ

where Q[Rnw�nw and is designed offline to exactlyorthonorma-

lize the brainstem output when there is no cerebellar

contribution, i.e. zk ¼ 0 (for further details on the design of Q,

see [7]).
A.2. Nonlinear control-adaptive filter
In the nonlinear adaptive filter, the signals being weighted

are nonlinear functions of the input signal, and the output

is a linear-in-weights combination of these signals. For the

linear case, the vector gk is the output of a bank of fixed,

linear filters (figure 3b). Here, we extend this to nonlinear

case (figure 4d ) and express gk as

gk ¼ f1([G1(q, g)f2(uk), . . . , Gnf
(q, g)f2(uk), e]T), ðA 6Þ

where f1 is a nonlinear function of filter outputs, and f2 is a

nonlinear function of filter inputs, nf is the number of filters

and Gi(q, g) is a fixed discrete time filter, where g is vector

of filter parameters and we call the bank of fixed filters

‘basis functions’, e is a discrete bias term. For the case

f1(u)¼u and f2(u)¼u, equation (A 6) reduces to a linear adap-

tive filter. Here, we do not transform the filter outputs, so

trivially f1(u) ¼ u. We construct nonlinear basis by threshold-

ing inputs to the linear basis filters such that only motor

commands above a certain threshold are input—a range of

threshold values as well as the original motor command

signal were used (inspired by the suggestion that the granular

layer generates threshold-linear processing elements). This

nonlinear transformation of inputs can be expressed as

f2(uk)¼ [uk, (uk�s1)H (uk� s1), . . . , (uk� sh)H(uk� sh)]T:

ðA 7Þ

The input uk is transformed into a vector that contains uk as

well as thresholded versions of uk. H is the heaviside step
function, h is the number of thresholded terms and

[s1, . . . ,sh] is a vector of threshold cut of values. Equation

(A 7) can be described compactly as qk ¼ f2(uk), where qk is

a vector of thresholded signals.
A.3. Nonlinear control-brainstem
Figure 4a shows a general Hammerstein model of a plant,

and figure 4b shows its nonlinear inverse controller

which consists of an LDS (i.e. a fixed linear filter BL(q, g))

followed by an SNL. The output vk of the fixed linear filter

is given as

vk ¼ BL(q, g)(rk þ zk): ðA 8Þ

The SNL of the brainstem is designed to compensate for the

plant nonlinearity (denoted fp(�)), assuming there exists a

unique, continuous function F p(�), that gives the inverse

mapping of fp(�) (see above). Perfect compensation of the

nonlinearity is achieved if the SNL in the brainstem equals

F p(�), and so the brainstem nonlinearity is designed to

approximate F p(�). Here, we use a series of piecewise linear

elements to approximate a continuous nonlinear function

(as shown figure 4e and inspired by threshold elements

found in the brainstem)

uk ¼ g0,k þ
Xm

j¼1

(vk � rj)H(vk � rj)g j,k , ðA 9Þ

where m is the number of thresholded, piecewise linear

terms, [r1, . . . , rm] a vector of threshold cut-off values and

gj,k is the gain of the jth piecewise linear element.
A.4. Linear proportional-integral-derivative control
A linear proportional-integral-derivative controller (PID con-

troller) was also applied to the simulated DEA (see section

Control evaluation in appendix). The discrete time PID

controller is

KPID(q,g) ¼ Kp þ Ki
Ts

1� q�1
þ Kd

1

Td þ
Ts

1� q�1

� � , ðA 10Þ

where Kp, Ki, Kd are the controller gains, Td a term used to

limit the high-frequency gain of the controller and Ts the

sampling period (0.02). The controller parameters (Kp ¼ 1.3,

Ki ¼ 3, Kd ¼ 5.3, Td ¼ 4.7) were estimated as the parameters

that minimized the total squared errors over time when

controlling the simulated DEA.
A.5. Learning in the brainstem
The gains of the piecewise linear elements can be learnt

online, by transferring learning from the cerebellum back to

the brainstem. This is done using a Hebbian learning rule,

where the gain of the jth piecewise linear element at time

step k þ 1 for j ¼ 0 : m is given as

g j,kþ1 ¼
g j,k þ zzkm j,k ðif j , 2Þ
g j,k þ zzkm j,k � zzkm j�1,k ðif j � 2Þ ,

�
ðA 11Þ

where z is the learning rate and m j,k represents the jth piece-

wise linear element at time k, i.e. m j,k¼ (vk � rj)H(vk � rj).

The additional term at the end of the expression for cases
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when j � 2 removes the effect of changes in gains at lower

thresholds on the gain at higher thresholds.
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A.6. Parameters
The algorithm requires the following parameters to be speci-

fied parameters before implementation: rate of error learning

(b); rate of brainstem learning (z); linear brainstem filter

(BL(q, g)); time constant of reference model filter (t);

number of thresholded terms in the cerebellum (h) and the

corresponding cut-off values ([s1, . . . , sh]); number of

alpha filters (nf ), and corresponding time constants

(T1 � Tnf); number of piecewise linear terms in the brainstem

(m), and corresponding cut-off values ([r1, . . . , rm]); scale of

cerebellar bias (e).

Some parameters differed between particular control con-

ditions, whereas others were fixed for all experiments.

Parameter values and the initial conditions for each control

condition are described in Control evaluation section.
547
A.7. Control evaluation
The control algorithm was implemented both online in

the real system (as described above), and in simulation.

In simulation, a previously identified model of the DEA

plant was used instead of the physical DEA (details of

the model and parameter estimation are provided in [7]).

The plant model used to transform an input uk into an

output xk is described in equations (A 12)–(A 14) (see also
figure 4a).

xk ¼ PL(q, g)hk, ðA 12Þ

hk ¼
bkuk þ ck ðif u , eÞ
bkuk þ ck þ dk(uk � ek)2 otherwise

�
ðA 13Þ

and PL(q, g) ¼ 0:26

1� 0:74 q�1
: ðA 14Þ

The model parameters (bk ¼ 0.3, ck ¼ 20.4, dk ¼ 0.5, ek ¼ 2.2)

were set to produce similar behaviour to the actual actuator,

and adapted each time step (by db ¼ 7 � 1028, dc ¼ 7 � 1026,

dd ¼ 1.3 � 1026, de ¼ 2.3 � 1026).

The control algorithm was tested under different con-

ditions by varying the control parameters. The following

conditions were tested: linear control with a linear brainstem

and linear cerebellum (first scheme); nonlinear control with a

linear brainstem and nonlinear cerebellum (second scheme); a

PID-based linear controller (third scheme); nonlinear control

with a fixed brainstem nonlinearity and linear cerebellum

(fourth scheme); nonlinear control with a fixed brainstem

nonlinearity and nonlinear cerebellum (fifth scheme); non-

linear control using a nonlinear brainstem with adaptive

piecewise linear gains and a nonlinear cerebellum (sixth

scheme); all conditions were tested in simulation, and the

first and last were also tested on the physical actuator.

Details of the parameters and initial conditions for each

experimental case are provided in table 2. In each control

experiment, the reference signal rk was low-pass filtered

white noise with frequency range 0–1 Hz.
References
1. Rus D, Tolley MT. 2015 Design, fabrication and
control of soft robots. Nature 521, 467 – 475.
(doi:10.1038/nature14543)

2. Kim S, Laschi C, Trimmer B. 2013 Soft robotics: a
bioinspired evolution in robotics. Trends Biotechnol.
31, 23 – 30. (doi:10.1016/j.tibtech.2013.03.002)

3. Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius
EP. 2012 Multi-functional dielectric elastomer
artificial muscles for soft and smart machines.
J. Appl. Phys. 112, 041101. (doi:10.1063/1.4740023)

4. O’Halloran A, O’Malley F, McHugh P. 2008 A review
on dielectric elastomer actuators, technology,
applications, and challenges. J. Appl. Phys. 104,
071101. (doi:10.1063/1.2981642)

5. Carpi F, Kornbluh R, Sommer-Larsen P, Alici G. 2011
Electroactive polymer actuators as artificial muscles:
are they ready for bioinspired applications? Bioinsp.
Biomim. 6, 045006. (doi:10.1088/1748-3182/6/4/
045006)

6. Wissler M, Mazza E. 2005 Modeling of a pre-
strained circular actuator made of dielectric
elastomers. Sensors Actuat. A Phys. 120, 184 – 192.
(doi:10.1016/j.sna.2004.11.015)

7. Wilson ED, Assaf T, Pearson MJ, Rossiter JM, Dean P,
Anderson SR, Porrill J. 2015 Biohybrid control of
general linear systems using the adaptive filter
model of cerebellum. Front. Neurorobot. 9, 5.
(doi:10.3389/fnbot.2015.00005)
8. Jacobs WR, Wilson ED, Assaf T, Rossiter J, Dodd
TJ, Porrill J, Anderson SR. 2015 Control-focused,
nonlinear and time-varying modelling of
dielectric elastomer actuators with
frequency response analysis. Smart Mater.
Struct. 24, 055002. (doi:10.1088/0964-1726/24/5/
055002)

9. Druitt CM, Alici G. 2014 Intelligent control
of electroactive polymer actuators based on fuzzy
and neurofuzzy methodologies. IEEE/ASME Trans.
Mechatronics 19, 1951 – 1962. (doi:10.1109/tmech.
2013.2293774)

10. Carpenter RHS. 1988 Movements of the eyes,
2nd edn. London, UK: Pion.

11. Skavenski AA, Robinson DA. 1973 Role of abducens
neurons in vestibuloocular reflex. J. Neurophysiol.
36, 724 – 738.

12. Porrill J, Dean P, Anderson SR. 2013 Adaptive filters
and internal models: multilevel description of
cerebellar function. Neural Netw. 47, 134 – 149.
(doi:10.1016/j.neunet.2012.12.005)

13. Ito M. 1984 The cerebellum and neural control.
New York, NY: Raven Press.

14. Dean P, Porrill J, Stone JV. 2002 Decorrelation
control by the cerebellum achieves oculomotor
plant compensation in simulated vestibulo-ocular
reflex. Proc. R. Soc. Lond. B 269, 1895 – 1904.
(doi:10.1098/rspb.2002.2103)
15. Porrill J, Dean P, Stone JV. 2004 Recurrent cerebellar
architecture solves the motor error problem. Proc. R.
Soc. Lond. B 271, 789 – 796. (doi:10.1098/rspb.
2003.2658)

16. Fujita M. 1982 Adaptive filter model of the
cerebellum. Biol. Cybern. 45, 195 – 206. (doi:10.
1007/BF00336192)

17. Dean P, Porrill J, Ekerot CF, Jörntell H. 2010
The cerebellar microcircuit as an adaptive filter:
experimental and computational evidence. Nat.
Rev. Neurosci. 11, 30 – 43. (doi:10.1038/nrn2756)

18. Widrow B, Walach E. 2008 Adaptive inverse control,
reissue edition: a signal processing approach.
London, UK: John Wiley & Sons.

19. Spanne A, Jorntell H. 2013 Processing of multi-
dimensional sensorimotor information in the spinal
and cerebellar neuronal circuitry: a new hypothesis.
PLoS Comput. Biol. 9, e1002979. (doi:10.1371/
journal.pcbi.100297)

20. Ghez C, Hening W, Gordon J. 1991 Organization
of voluntary movement. Curr. Opin. Neurobiol. 1,
664 – 671. (doi:10.1016/S0959-4388(05)80046-7)

21. Henneman E, Mendell LM. 1981 Functional
organization of motoneuron pool and its inputs. In
Handbook of physiology, the nervous system, motor
control, vol. II, sect. I, part 1 (ed. VB Brooks),
pp. 423 – 507. Bethesda, MD: American
Physiological Society.

http://dx.doi.org/10.1038/nature14543
http://dx.doi.org/10.1016/j.tibtech.2013.03.002
http://dx.doi.org/10.1063/1.4740023
http://dx.doi.org/10.1063/1.2981642
http://dx.doi.org/10.1088/1748-3182/6/4/045006
http://dx.doi.org/10.1088/1748-3182/6/4/045006
http://dx.doi.org/10.1016/j.sna.2004.11.015
http://dx.doi.org/10.3389/fnbot.2015.00005
http://dx.doi.org/10.1088/0964-1726/24/5/055002
http://dx.doi.org/10.1088/0964-1726/24/5/055002
http://dx.doi.org/10.1109/tmech.2013.2293774
http://dx.doi.org/10.1109/tmech.2013.2293774
http://dx.doi.org/10.1016/j.neunet.2012.12.005
http://dx.doi.org/10.1098/rspb.2002.2103
http://dx.doi.org/10.1098/rspb.2003.2658
http://dx.doi.org/10.1098/rspb.2003.2658
http://dx.doi.org/10.1007/BF00336192
http://dx.doi.org/10.1007/BF00336192
http://dx.doi.org/10.1038/nrn2756
http://dx.doi.org/10.1371/journal.pcbi.100297
http://dx.doi.org/10.1371/journal.pcbi.100297
http://dx.doi.org/10.1016/S0959-4388(05)80046-7
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160547

15

 on November 25, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
22. Dean P, Porrill J, Warren PA. 1999 Optimality of
static force control by horizontal eye muscles: a test
of the minimum norm rule. J. Neurophysiol. 81,
735 – 757.

23. Porrill J, Dean P. 2007 Cerebellar motor learning:
when is cortical plasticity not enough? PLoS
Comput. Biol. 3, 1935 – 1950. (doi:10.1371/journal.
pcbi.0030197)

24. Webb B. 2002 Robots in invertebrate neuroscience.
Nature 417, 359 – 363. (doi:10.1038/417359a)

25. Widrow B, Stearns SD. 1985 Adaptive signal
processing. Englewood Cliffs, NJ: Prentice Hall Inc.

26. Haykin S. 2002 Adaptive filter theory, 4th edn.
Upper Saddle River, NJ: Prentice Hall.

27. Coenen OJ-MD, Arnold MP, Sejnowski TJ, Jabri MA.
2001 Parallel fiber coding in the cerebellum for life-
long learning. Auton. Robots 11, 291 – 297. (doi:10.
1023/A:1012403510221)

28. Porrill J, Dean P. 2007 Recurrent cerebellar loops
simplify adaptive control of redundant and
nonlinear motor systems. Neural Comput. 19,
170 – 193. (doi:10.1162/neco.2007.19.1.170)

29. Deng H, Li HX, Wu YH. 2008 Feedback-linearization-
based neural adaptive control for unknown
nonaffine nonlinear discrete-time systems. IEEE
Trans. Neural Netw. 19, 1615 – 1625. (doi:10.1109/
tnn.2008.2000804)

30. Fuchs AF, Scudder CA, Kaneko CRS. 1988 Discharge
patterns and recruitment order of identified
motoneurons and internuclear neurons in the
monkey abducens nucleus. J. Neurophysiol. 60,
1874 – 1895.

31. Dean P. 1996 Motor unit recruitment in a
distributed model of extraocular muscle.
J. Neurophysiol. 76, 727 – 742.

32. Boyden ES, Katoh A, Raymond JL. 2004 Cerebellum-
dependent learning: the role of multiple plasticity
mechanisms. Annu. Rev. Neurosci. 27, 581 – 609.
(doi:10.1146/annurev.neuro.27.070203.144238)

33. Menzies JRW, Porrill J, Dutia M, Dean P. 2010
Synaptic plasticity in medial vestibular nucleus
neurons: comparison with computational
requirements of VOR adaptation. PLoS ONE 5,
e13182. (doi:10.1371/journal.pone.0013182)

34. John SW, Alici G, Cook CD. 2010 Inversion-based
feedforward control of polypyrrole trilayer bender
cctuators. IEEE/ASME Trans. Mechatronics 15,
149 – 156. (doi:10.1109/tmech.2009.2020732)

35. Hao LN, Li Z. 2010 Modeling and adaptive
inverse control of hysteresis and creep in ionic polymer-
metal composite actuators. Smart Mater. Struct. 19,
025014. (doi:10.1088/0964-1726/19/2/025014)

36. Ozsecen MY, Mavroidis C. 2010 Nonlinear force
control of dielectric electroactive polymer actuators.
In Electroactive polymer actuators and devices
(ed. Y BarCohen). Proc. SPIE 7642, 76422C.
Bellingham, WA: SPIE.

37. Dong R, Tan X. 2012 Modeling and open-loop
control of IPMC actuators under changing ambient
temperature. Smart Mater. Struct. 21, 065014.
(doi:10.1088/0964-1726/21/6/065014)

38. Sarban R, Jones RW. 2012 Physical model-based
active vibration control using a dielectric elastomer
actuator. J. Intell. Mater. Syst. Struct. 23, 473 – 483.
(doi:10.1177/1045389X11435430)

39. Vunder V, Itik M, Poldsalu I, Punning A, Aabloo A.
2014 Inversion-based control of ionic polymer-metal
composite actuators with nanoporous carbon-based
electrodes. Smart Mater. Struct. 23, 025010. (doi:10.
1088/0964-1726/23/2/025010)

40. Rizzello G, Naso D, York A, Seelecke S. 2015
Modeling, identification, and control of a dielectric
electro-active polymer positioning system. IEEE
Trans. Control Syst. Technol. 23, 632 – 643. (doi:10.
1109/tcst.2014.2338356)

41. Floreano D, Ijspeert AJ, Schaal S. 2014 Robotics and
neuroscience. Curr. Biol. 24, R910 – R920. (doi:10.
1016/j.cub.2014.07.058)

42. van der Smagt P. 2000 Benchmarking cerebellar
control. Robot. Auton. Syst. 32, 237 – 251. (doi:10.
1016/S0921-8890(00)00090-7)

43. Lenz A, Anderson SR, Pipe AG, Melhuish C, Dean P,
Porrill J. 2009 Cerebellar inspired adaptive control of
a compliant robot actuated by pneumatic artificial
muscles. IEEE Trans. Syst. Man Cybern. B 39,
1420 – 1433. (doi:10.1109/TSMCB.2009.2018138)

44. Luque NR, Garrido JA, Carrillo RR, D’Angelo E, Ros E.
2014 Fast convergence of learning requires plasticity
between inferior olive and deep cerebellar nuclei in
a manipulation task: a closed-loop robotic
simulation. Front. Comput. Neurosci. 8, 97. (doi:10.
3389/fncom.2014.00097)
45. Casellato C, Antonietti A, Garrido JA, Ferrigno G,
D’Angelo E, Pedrocchi A. 2015 Distributed cerebellar
plasticity implements generalized multiple-scale
memory components in real-robot sensorimotor
tasks. Front. Comput. Neurosci. 9, 24. (doi:10.3389/
fncom.2015.00024)

46. Yamazaki T, Tanaka S. 2007 The cerebellum as a
liquid state machine. Neural Netw. 20, 290 – 297.
(doi:10.1016/j.neunet.2007.04.004)
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