
 

In-Flight Wing Deformation Measurements 
on a Glider 
 
Jerzy Bakunowicz    
bakun@prz.edu.pl     

Aviation Training Centre 
Rzeszow University of Technology 
al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland 
 
Ralf Meyer    
ralf.meyer@dlr.de    

Institute of Aerodynamics and Flow Technology, Dept. Experimental Methods 
German Aerospace Center (DLR) 
Bunsenstr. 10, 37073 Goettingen, Germany 
 

 

ABSTRACT 
Flight testing is both vital in terms of collecting data for aeronautic research and at the same 

time fascinating for its contributors. Taking a glider as a versatile test bed example, this 

paper presents a transnational measurement campaign within the framework of a 

collaborative project funded by the European Commission. This project Advanced In-Flight 

Measurement Techniques 2 (AIM²) is a follow-up of Advanced In-Flight Measurement 

Techniques (AIM) and dedicated to developing and enhancing promising optical metrology 

for various flight test applications up to an industrial level. 

The Image Pattern Correlation Technique (IPCT) and the Infrared Thermography (IRT) are 

two of these modern non-intrusive measurement methods that were further developed and 

applied to the glider test bed within the scope of AIM². Focusing on optical deformation 

measurements with IPCT the experimental setup, the flight testing and results are 

summarily discussed. Gliders are no commonly used flight test platforms. That is why this 

contribution is topped off with some lessons learned in general and especially related to the 

presented application. The experience to be shared with the flight testing community 

addresses equipment preparation, data collection and processing as well as how to meet 

official requirements and perform test flight operations in a dense controlled airspace. 

 
NOMENCLATURE 
AIM 
AIM² 
ARC 

Advanced In-Flight Measurement Techniques 
Advanced In-Flight Measurement Techniques 2 
Airworthiness Certificate 

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. 
DMU Digital Mock-Up 
EASA European Aviation Safety Agency 
FCL Flight Crew Licensing 
FEM Finite Element Method 
IPCT Image Pattern Correlation Technique 
PIV Particle Image Velocimetry 
 

mailto:bakun@prz.edu.pl
mailto:ralf.meyer@dlr.de


 

 
1.0 INTRODUCTION 

Since decades aircraft design is divided into fixed, well established phases and development 

steps. They still stand the time passing by with continuous advancement of tools. For 

example intense flight testing of all new aircraft models is of major importance. However, 

to keep up with the time the goals, scope and methodology have changed a lot although the 

general purpose of airworthiness approval is indispensable(1). Contemporary design 

processes are strictly connected with economic factors such as environmental awareness, 

fuel efficiency and durability of the airframe as well as shareholders benefits. Therefore the 

demand for an increasing payload to basic mass ratio is still crucial. New strength and 

structural solutions allow a better utilisation of material properties which results in an 

optimized gross weight as well as in improved stability and reliability at the same time(2). 

Associating both statements one may presume that flight testing of an aeroplane verifies 

structure and mass design amongst many other features(3). 

Indeed experimental verification of structural solutions is essential during the certification 

process in general. Therefore the quantities measured, the measurement method, its 

accuracy, explicitness and their mutuality during the experiment determine the final 

success. Concerning structure assessment an important group of parameters measured are 

deformations that provide information about the stiffness directly and about the stress state 

by using the constitutive model of the structure. 

Deformations can be measured as: 

 Displacement of certain points in defined directions; 

 Displacement of the plane or surface; 

 Strain in certain points or as a field of strain; 

 Acceleration of certain points in defined directions. 

Modern measurement techniques, the capability of gathering bulk data, transferring and 

processing on-line enable in-flight studies of phenomena or aircraft behaviours that were 

barely possible or strongly limited by weak hardware performance in former times. The 

stress state analysis under flight loads mentioned above is one example. The most common 

tool applied for many years have been strain gauges or accelerometers(4). The diagnostics of 

laminar composites introduced optical fibre gauges(5). Nevertheless none of these methods 

was able to identify extensive structural stress fields. This disadvantage could be overcome 

by the analysis methods based on digital image processing. Industrial applications of 3D 

scanners for surface shape or deformation measurements became a useful and popular tool 

also especially for quasi-static investigations. As one of the first attempts of in-flight 

application may be considered a method called Image Pattern Correlation Technique 

(IPCT), introduced by Klinge et al.(6, 7) of DLR Germany. 

IPCT is an optical, non-intrusive measurement technique based on photogrammetry in 

combination with modern correlation algorithms developed for the Particle Image 

Velocimetry (PIV). The simplest IPCT set-up consists of one monochrome camera 

observing an object covered with a random dot pattern. Using image pairs of the randomly 

patterned object acquired by a stereoscopic camera system, its 3D position and shape can 

directly be measured. The significant advantages of the stereoscopic approach are that the 

3D position can directly be triangulated (no constraints and models are needed) and the 

images of both cameras taken at the same instant of time are dewarped and correlated. 

Thus, a rotation of the pattern (e.g. caused by aileron deflection) will not cause any problem 



 

because the pattern has the same orientation in both images. An Example of two 

installations for different wing areas of a large airliner is shown in Figure 1 (8). 

 

 
Figure 1. Application example of two stereoscopic IPCT camera sets placed in the fuselage of a large 

airliner for wing deformation measurements 

 
Figure 2. IPCT processing flow 

The functionality of the stereoscopic IPCT approach for 3D surface shape registration is 

shown in Figure 2. The surface to be investigated with a random dot pattern is recorded by 

two cameras at the same instant of time. Both cameras cover at best a congruent area of 

interest with similar fields of view but under a different viewing angle. The images of both 

cameras are dewarped in a way that both cameras seem to look from the same point of 

view. Then a cross correlation algorithm identifies the image coordinates of areas with 

matching dot pattern in the images of camera 1 (coordinates x1, y1) and camera 2 

(coordinates x2, y2). With known intrinsic parameters (e.g. focal length, distortion, principal 

point) and extrinsic parameters (position and orientation) of both cameras the real 3D 

coordinates of the processed dot pattern area are determined by means of central projection 

and triangulation. Applying this procedure to all pattern sections in the stereo image pair 



 

depicting the same dot pattern region on the surface finally yields to a highly accurate 

reconstruction of the complete observed 3D surface. 

Structure deformation is calculated using the IPCT tool in two subsequent time steps as 

described above. The deformation form is obtained by comparing the digital surface of the 

deformed state to a reference state (undeformed or not). Examplary measurement results of 

the wing deformation for the application illustrated in Figure 1 is presented in Figure 3. 

 

 
Figure 3. Wing tip displacement of a large airliner in different flight conditions 

The development of IPCT with multiple application examples mainly took place within the 

framework of the two subsequent research projects co-funded by European Commission – 

Advanced In-Flight Measurement Techniques (AIM) and Advanced In-Flight Measurement 

Techniques 2 (AIM²) coordinated by the German Aerospace Center DLR(9). Before the first 

AIM project the method matured from laboratory to first ground and in-flight applications. 

Within the projects and several supplementary tasks the measurement scenarios covered 

topics such as wing and aileron deflection of a glider, a commuter class aircraft and large 

airliners, wing vibration and flutter, main rotor blade deformation of a helicopter and 

propeller blade deformation. During more than ten years of continuous progress an own 

software dedicated to the specific in-flight conditions has been developed covering also 

procedures for hardware selection (cameras, lenses, etc.), installation issues, digital marker 

and pattern design as well as investigations about illumination conditions. Finally, the IPCT 

measurement method has been proven to be an off-the-shelf ready tool for engineering 

purposes in an industrial environment. 

 

One of the scientific tasks within AIM² was to create a feedback between real measured in-

flight structure deformations of an aircraft and corresponding numerical stress and strain 

calculations received during the preliminary design phase. In the following step the 

necessity and usefulness of such feedback had to be assessed. In this certain research 

program the tools used for structure deformation measurements in flight conditions was the 

image based method of IPCT and for numerical structure design the finite element method 

(FEM) was used. 

This paper presents the outcomes of a flight test campaign in AIM² concerning application 

of IPCT for wing deformation measurements on a composite training glider as a source of 

numerical data for FEM calculations. All previous IPCT flight tests were performed with 

motorized and more or less spacious aircraft providing additional power supply for 

experimental installations. Moreover the airworthiness of the vessels obeyed special 

regulations for prototypes making the certification easier in most cases. The main purpose 

of the glider testing presented in this contribution laid in proving IPCT under conditions 



 

never tried before with limited space and power on an aircraft taken straight from the 

hangar. Furthermore the preparation of this experiment was supposed to be a representative 

example of an engineering application scenario. 

 

The next paragraph describes the test aircraft and the measurement installation. The 

following one concentrates on the flight test campaign, the certification and operational 

issues. Several measurement examples are presented in chapter 4. The last chapters are 

focused on the future work and lessons learned from this research program. 

2.0 PW-6U FLYING TEST BED 

2.1 The airframe 

Initially it was planned to use the research aircraft AOS-71 electric glider when the AIM² 

project proposal was submitted. This carbon-epoxy aircraft is a joint project of Rzeszów 

and Warsaw Universities of Technology. Moreover, the electric glider AOS-71 was 

intended to be used as a multipurpose flying test-bed because already in its original factory 

configuration it is equipped with special joints for external installations. Due to a 

continuously increasing delay in the AOS-71 program schedule, that possibly interferes the 

progress of the AIM² project, the test bed was replaced by the PW-6U two-seated training 

glider. This aircraft which is basically identical to the AOS-71 electric glider but 

unpowered was designed as flying test-bed as well and is equipped with special joints for 

additional external installations.  

The research glider PW-6U was modified to carry additional equipment for measurement 

and recording. The cameras for IPCT imaging, for example, were elevated over the centre 

line of the fuselage and installed in a specially designed housing attached to the fuselage by 

a vertical pod, as presented in Figure 4 (right). 

 

 
Figure 4. Electric glider AOS-71 (left) and finally used unpowered glider PW-6U with dorsal camera pod 

(right) 

2.2 IPCT measurement installation 

Aiming for a global wing deformation measurement to match and compare the results with 

FEM calculations, a stereoscopic IPCT installation was chosen. Special boundary 

conditions linked to the use of a glider as a test bed strongly influenced the IPCT setup 

design in terms of miniaturization, simplicity and power management. 

 



 

A digital mock-up (DMU) and accuracy estimations according to Kraus(10) were used for a 

virtual predefinition of all relevant camera system parameters such as type, lenses, position 

and alignment. Therefore boundaries like physical aptitude, availability and structural limits 

had to be taken into account. Also the random dot pattern was designed virtually using the 

DMU model. Before printing, the measurement setup was tested in virtual reality(11). All 

relevant design parameters of the PW-6U IPCT installation are presented in Table 1. 

 
Table 1 

Feature summary of the stereoscopic IPCT installation for the PW-6U glider 

Field of view 1100 mm x  5500 mm 

Object speed Slow – static deformation measurement 

Imaging Internal trigger generator  14.5 frames per second 

Illumination natural 

Camera resolution 1620 x 1220 pixels² (JAI/HS CV-A2) 

Focal length 2x 12.5 mm 

Distance to object 4400 mm 

Designed accuracy dz = 1.5…7 mm 

max. deformation / movement ~ +1 m, -0.5 m 

 

The image recording installation was placed in two locations inside the airframe. Both 

cameras were housed in a fairing on top of the pod derived from the geometry of the optical 

system defined by DMU studies. The camera control and recording computer and the 

separate power supply were attached to the wooden rig in the rear cabin with the pilot seat 

removed. Electric and data transfer wiring were passed inside the pod. 

Measurement of structure deformation based on comparison of subsequent airframe 

positions requires dedicated surface preparation. This IPCT pattern consists of two 

components. There is the random dot matrix, defined by dot size and their perspective 

stretch factor as well as the distribution density. This dot pattern is supplemented with a 

grid of 20 to 50 checkerboard markers of which the grid and marker dimension properties 

have to be acquired. Figure 5 (left) shows the applied IPCT pattern on the port wing of the 

test bed. Despite the loss of extensive surface information the a marker grid could also be 

used as a stand-alone target method as it is well known for common 3D position detection. 

The installation was supplied by a dedicated flight data recorder and remote control panel 

for the test pilot(12). In Figure 5 (right) the cabin installation with control computer, power 

supply, flight data recorder and wiring is shown. 

 

 
Figure 5. Dot pattern and markers on the wing (left) and recording hardware stored 

in the rear cabin (right) 



 

 

3.0 FLIGHT TESTING – CERTIFICATION AND OPERATIONS 

3.1 Initial preparations 

Prior to the first flight test the modified glider underwent a series of ground tests to prove 

the reliability and strength of the proposed solution. Figure 6 depicts the test bed during a 

static (left) and a wind tunnel test (right). 

The static ground test of the camera pod included five critical load cases identified as 

boundaries of the reduced flight envelope according to CS-22 requirements for gliders(13). 

The main objective of the test was a deformation measurement of the pod structure and an 

overall reliability assessment. The results demonstrated that there were no significant or 

unexpected deformations. Moreover no damage to the structure was identified. 

Aerodynamic ground tests were performed in the wind tunnel T-3 (5m) of the Institute of 

Aviation in Warsaw, Poland (ILOT). The main goals were to find force and moment 

changes on the glider fuselage and to quantify the influence of the pod on the directional 

stability. The fuselage with the pod had to stand a series of tests with different airflow 

velocities, angles of attack, angles of sideslip and rudder deflection angles. The range of the 

airflow velocity varied from 34 m/s to 40 m/s. All relevant forces and moments were 

recorded by a strain gauge based aerodynamic weighing device for five components. The 

angle of attack varied from =-2 to +15 (1° step). During the tests no behaviour occurred 

that may disqualify the modified glider to be airworthy. 

Before the first flight the ready equipped glider including the pod and all installations on-

board was submitted to several ground rolls towed by a car up to lift-off speed. 

 

 
Figure 6. Static test (left) and wind tunnel test (right) performed to prove the stiffness, strength and 

stability of the camera pod 

3.2 Airworthiness 

The PW-6U glider type designated as a test bed belongs to an organisation that performs 

certified training. The type certificate is recognized by the Polish national aviation 

authorities under local regulations. Although the structure has been produced according to 

the prototype documentation with all additional reinforcement for external installations the 

scope of an Airworthiness Certificate (ARC) does not allow using them without permission. 

Therefore the glider was temporarily moved to the category Specjalny (this means “special” 

in Polish, a category for the aircraft with no type certificate, maintained by the owner only 



 

which is very common for rare or vintage models). Since then all modifications were 

allowed and supervised by a local authority inspector. What is more the category change 

process turned out to be reversible. With minor structure repairs the glider regained its 

initial type certificate after the flight test campaign. So far this is the only known certificate 

recovery in Poland because usually a type certificate once lost is irrecoverable. 

3.3 Crew requirements 

The selection of an appropriate and approved test pilot was one of the most time-consuming 

issues during this presented research program and caused almost two years of delay in the 

project schedule. In total three fatalities happened which were not directly connected with 

the project. 

During the project duration European countries which are members of EASA were working 

on a transition of requirements in the field of flight crew licensing. The final date of this 

PART-FCL implementation in Poland was fixed to April, 8th 2014 which became vital for 

the successful project finalization. Prior to this date all flights planned in the project could 

only be performed by a glider test pilot. 

All preparations for flight testing including the proof of airworthiness, the authorization of 

the test program and the crew selection were accomplished by May-June 2013. 

Unfortunately, the test pilot dedicated to this campaign died in a fatal accident while testing 

another airplane in mid of June 2013. A subsequent test pilot was engaged in the AIM² 

project for PW-6U testing. First assessment flights were scheduled for mid-August 2013. 

Two days before the planned first flight another PW-6 glider crashed, killing a student and 

seriously injuring an instructor. The authority immediately grounded all gliders of this type 

and demanded special mandatory maintenance of the empennage which was suspected to 

be the reason for the crash. Hence, the completely ready flight test installation had to be 

refurbished, the glider was sent to the producer and all test activities had to be postponed 

until 2014. In between, the actual AIM² PW-6U test pilot died in a fatal crash with another 

glider in November 2013. 

Urgently, a new qualified test pilot had to be found during wintertime. Luckily the Polish 

authorities, introducing new licensing regulations, eased the respective pilot requirements 

in the meantime. According to the PART-FCL they approved an experienced glider flight 

instructor as a test pilot for the whole AIM² flight test program, except for the first flight. 

The latter had to be performed by a former glider test pilot. 

3.4 Test flights 

All flights were performed using the research aircraft PW-6U glider, reg. SP-3676 with the 

towing airplane Zlin Z-242L, reg. SP-TZZ. The pilot held a glider license with instructor 

rating and had the required experience on the PW-6 type. The first two certification flights 

were carried out by a glider test pilot. All flights took place on the EPRJ airfield with 

asphalt runway within the controlled airspace of the EPRZ international airport. 

The test program included several tasks such as checks of the flight data recorder system, 

deformation measurements in sustained gliding flight, deformation measurements in 

sustained symmetrical manoeuvres and deformation measurements in turns. The complete 

log-book is presented in Table 2. 



 

Table 2 
IPCT test flight log-book 

time Flight no Measurement 

00:42 nr 01; 1st Certification flight 

00:37 nr 02; 2nd Certification flight 

 
Wing deformation measurement in sustained turn with various bank and in 

symmetrical manoeuvre. 

 

00:22 nr 05; 1st 
4 measurement sequences in sustained gliding IAS=100 km/h and  loop entries 

IAS=140 km/h. Shutter freq 12 Hz 

00:37 nr 06; 2nd 

3 measurement sequences in sustained gliding IAS=80, 90, 110 km/h. 

3 loop entries IAS=130, 165, 170 km/h. 
7 sustained turns with various bank. 

2 sustained gliding IAS 90, 120 km/h. Shutter freq 12 Hz. 

00:32 nr 09; 2nd 
Flight program performed on July, 9th was repeated. 

11 sequences with shutter freq 14Hz. 

00:42 nr 11; 4th System malfunction. No data registered. 

00:47 nr 12; 1st 

33 measurement sequences. 
15 trials in towing flight IAS in range 90 -160 km/h. 

18 trials of loop entry with load factor nz increasing up to 2.5. 

Shutter freq 14Hz. 

 

4.0 RESULTS AND DISCUSSION  

Having a look to the raw data of the IPCT image recording reveals a promising foundation 

of all together about 75 gigabyte of high quality stereo images. A good congruence between 

virtually designed and the real field of view of the cameras indicates the sophistication of 

the holistic setup design process using the experience gained during former IPCT 

application scenarios (IPCT pattern visible in the left part of Figure 7 not in final position). 

  
Figure 7. Comparison of virtual (left) and real (right) field of view of one IPCT camera 

Tip pattern section 

Root pattern 
section 



 

Also the images recorded in flight are of good quality in terms of illumination, pattern 

reflectance and contrast which is a vital requirement for a reliable IPCT evaluation. Only 

areas in the field of view of the cameras can be processed that are: 

 prepared with the IPCT dot/marker pattern and 

 recorded by both cameras at the same instant of time. 

That is why all other parts of the image are masked out to ease the multi-pass mapping 

strategy implemented to the IPCT cross correlation software. 

For time synchronization purposes with parameters of the flight data recorder each image 

pair is logged with GPS information such as time stamp and position. This enables a 

dedicated data processing of single or a series of interesting manoeuvres. 

First of all the applied grid of integrated checkerboard markers is evaluated using a special 

edge detection algorithm which provides first local surface information and is used as 

starting point for further evaluation steps. This advances the processing of the dot pattern 

remarkably. In order to match the IPCT data with FEM calculations all evaluation results 

are transformed to a Cartesian wing coordinate system which has its origin at the leading 

edge 10 mm off the root connection to the fuselage (i.e. no standard aircraft coordinate 

system). 

During the design phase of the IPCT setup the installation parameters were balanced 

between structural constraints and accuracy requirements. Figure 8 (left) shows the 

estimated measurement error according to Kraus(10) for the stereoscopic setup with a 

varying base distance (sensor camera 1 to sensor camera 2). Considering this the 

stereoscopic base width was set to one meter with an expected accuracy of the system 

between 1.5 mm near the cameras up to 7 mm at the wing tip (see also Table 1). For the 

real measurement it is not easy to determine error values but a good indication for at least 

the systematic error part provides the averaging of a number of static on-ground recording 

results. This has been done for 100 samples and is illustrated in Figure 8 (right). A 

partitioning reference into root and tip section is given in Figure 7 (right). 

  
Figure 8. Theoretical error estimation in spanwise direction for different distances between two cameras 

(left); processed ground shape recording of the port wing overlaid with a greyscale code for standard 
deviation of 100 averaged IPCT image pairs; the darker the better (right) 

To wing tip 



 

The greyscale in the right part of Figure 8 pertains to the standard deviation (STD) of 100 

averaged image pairs that were recorded in a levelled static on-ground condition as a 

reference during the calibration procedure. Darker areas in the root section represent STD 

values better than 0.5 mm whereas higher STD values towards the wing tip rise up to 

approx. 5 mm at most and appear in lighter grey nuances. So, the error values for this 

measurement are within the theoretically estimated range and testify reliable IPCT results. 

In Figure 9 an exemplary IPCT result is presented. The depiction shows the wing shape of 

the glider for two different load cases measured with IPCT. A wing deformation of about 

360 mm at the wing tip was determined comparing the reference on-ground shape (dark 

with white marker positions, see also Figure 8) with the wing shape during a manoeuvre 

with a constant vertical acceleration of approx. 1.8g (light with black marker positions). 

Regarding the measured deformation magnitude of several hundred millimetres leads to a 

relative accuracy of better than 2%. 

 
Figure 9. Representative IPCT result comparing the shape of the port wing on-ground (dark with white 

marker positions) with the wing shape during a manoeuvre with constant vertical acceleration (light with 
black marker positions) 

Further post-processing steps are firstly a projection of the in-flight measurement results to 

the reference ground shape to calculate a comprehensive deformation distribution. 

Secondly, a transfer of these effective deformation data to a meshed FEM node grid links 

the IPCT measurement results with the respective numerical FEM model of the glider wing. 

The scientific flight test campaign presented in this paper was focused on the assessment of 

a new application scenario for the deformation measurement method IPCT. In order to 

realize this project several challenges were successfully taken. On the one hand a class of 

aircraft like the composite training glider PW-6U had not been examined with IPCT before 

and this type of aircraft initially was not dedicated to research. Also the major part of the 

researchers had to be trained as the team had had no experience with the measurement 

method. The results of the PW-6U test campaign proved the reliable applicability of IPCT 

for test beds of this category. 

To wing tip 

Wing shape on-ground 
(static) 
 

Wing shape in-flight 

(constant g manoeuvre) 



 

5.0 POTENTIAL FOR FURTHER WORK 

The present and preceding research projects aiming at in-flight displacement and 

deformation measurements using the modern method IPCT proved its reliability and 

feasibility for industrial applications. Now, further fields of application using the 

miniaturized IPCT setup can be covered where the control computer has to be small, energy 

saving and can be autonomously powered with a separate battery. Further development 

potential lies in two branches of IPCT. On the one hand the miniaturized system could be 

adapted to cameras with better performance in terms of resolution, frame rate, sensor 

sensitivity and image quality in general. On the other hand the robust post-processing 

algorithms can be enhanced which work reliably but relatively slow and do not include 

timeline correlation yet. 

This particular measurements on a glider provided wing deformation data for further 

analysis of the composite structure. The authors proposed an advanced approach for aircraft 

structure analysis by combining optical deformation measurement data gathered in-flight 

with a numerical FEM model. 

The algorithm of data transfer between the IPCT post-processing software and the Finite 

Element Method pre-processor enabled to associate a 3D IPCT result with the nodes of a 

corresponding finite element mesh. Therefore, the stress or strain distribution in the 

structure as a result of initial deformation corresponds to the in-flight conditions. The 

detailed description of this procedure will be addressed in subsequent publications. 

6.0 LESSONS LEARNED 

Despite being another one in their research history, the flight test campaign presented in 

this paper was a challenging task for both partners the Rzeszów University of Technology 

and the German Aerospace Center DLR. The experience gained during this collaborative 

research program allowed to identify issues, procedures or other relevant events that should 

be taken into account for following activities of this type. Both, the positive achievements 

as well as threats or inconveniences became vital lessons for the team, worth to be 

mentioned for the respective research community. The most numerous remarks concern the 

preliminary preparations and operational matters. Some of them are connected to the flying 

test bed itself. The following conclusions of this project are sorted into three categories: 

 as worth to be repeated in further campaigns,  as might be considered in scope of 

precaution or doubt and  as threats or issues that should be avoided. 

 A Significant distance between partner sites and a limited number of bilateral 

meetings had no influence on the project performance. Electronic media allowed to 

transfer bulk data and to communicate in real time without delay. Furthermore, these 

factors disciplined the team members to do dependable preparations and work time-

effective; 

 The flight trials were located in a C-class controlled airspace of an international 

airport with traffic of mid density. Proper pre-planning with air traffic controllers 

and coordination of research sorties with scheduled and unscheduled flights 

prevented delays within the program. 



 

 The airfield of the Rzeszów University of Technology has an asphalt runway with 

taxiways, aprons and hangars. Usually gliders operate from small grass airfields. 

In contrast to that research flights with tiny and sensitive metrology installations 

demand a convenient environment with maintenance hangar and hardened 

pavements. Therefore, the number of possible locations might be limited 

significantly. 

 A towing airplane is inevitable for glider flight testing. 

 A chase airplane might be considered as an additional element of the recording 

system but here it was used for observation and photo documentation matters only. 

 The work load, number of required crew members and individual effort for 

flight testing with a glider is relatively high compared to the reduced complexity of a 

glider itself. Campaigns with powered aircraft seem to be easier to coordinate and 

perform. 

 The flying test bed should be chosen carefully. Planning a program with a not yet 

ready prototype is risky and may cause unexpected delays or cancellations. 

 Changes in certification and licensing requirements always generate irritating 

delays, especially when authorities do not have respective procedures. In this 

program only the interpretation for an approved pilot took half a year. 

7.0 CONCLUSIONS  

This paper presents an exemplary industrial application of a promising optical metrology. 

The typical task of experimental verification of the structure stiffness and strength has been 

solved. Using the digital image correlation method IPCT the wing structure deformation 

was measured. Therefore, the following summary of this flight test campaign can be stated: 

 The design and preparation of the measurement setup for the composite glider were 

based on solutions and procedures elaborated according to experience gained during 

previous measurement campaigns. Despite the aircraft might be considered as generally 

not dedicated to flight testing no unexpected technical difficulties were encountered 

during the task. 

 The hardware and software for data pre- and post-processing might be considered as 

ready off-the-shelf. 

Concerning the previous statements this example proves that stereoscopic IPCT has been 

developed to the level of research applications in an industrial environment as it was 

considered at the beginning of the AIM² project. 

The results of the measurements in flight conditions allowed preparing essential data for 

further investigations of numerical airframe structure models. 

Nevertheless, some lessons learned should be kept in mind: 

 The most difficulties which were generating delays in the program schedule 

resulted from official requirements demanded by aviation authority concerning 

examination of the test bed reliability and durability. Furthermore, the official 

requirements for the flight and ground personnel should be figured out well before. 



 

 Also the change of the test platform from the not-ready prototype to a series 

aircraft took one year. 

The effective amount of time for preparation and testing turned out to be relatively small 

but it was multiplied by certification issues. 
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