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Abstract

This paper develops and tests an efficient mixed integer programming model for capacitated lot
sizing and scheduling with non-triangular and sequence-dependent setup times and costs
incorporating all necessary features of setup carryover and overlapping on different machine
configurations. The model’s formulation is based on the Asymmetric Travelling Salesman
Problem (ATSP) and allows multiple lots of a product within a period. The model conserves the
setup state when no product is being processed over successive periods, allows starting a setup in
a period and ending it in the next period, permits ending a setup in a period and starting production
in the next period(s), and enforces a minimum lot size over multiple periods. This new
comprehensive model thus relaxes all limitations of physical separation between the periods. The
model is first developed for a single machine and then extended to other machine configurations,
including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility
and comprehensiveness of the proposed models.

Keywords: Lot sizing; Scheduling; Period Overlapping; Carryover Setups; Machine
Configurations

1. Introduction

The classic Capacitated Lot Sizing Problem (CLSP) does not sequence or schedule
products within a period (Bitran and Yanasse 1982; Haase 1996; Karimi et al. 2003). In
addition, it does not allow a setup to be carried over from one period to the next, even when
the last product in a period is the same as the first product in the next period. Gopalakrishnan
et al. (1995) developed a modelling framework for formulating the CLSP with setup carry over
by introducing additional binary variables, and later incorporated sequence-independent and
product-dependent setup times and costs (Gopalakrishnan 2000). Different studies have
demonstrated that considering the setup carry-over significantly saves costs by decreasing the
number of setups and releasing production capacity (Gopalakrishnan et al. 2001; Gupta and
Magnusson 2005; Porkka et al. 2003; Sox and Gao 1999). This problem also called the
capacitated lot sizing problem with linked lot sizes (Suerie and Stadtler 2003).

A further issue for capacitated lot sizing is to determine a sequence for all products within
a time period if setup times or costs are sequence-dependent. The CLSP is called large bucket
problem since several item can be produced per period (Eppen and Martin 1987). Subdividing
the (macro-) periods of CLSP into several (micro-) periods leads to discrete lotsizing and
scheduling problem (DLSP) which is called a small bucket problem (Fleischmann 1990;
Salomon 1991; Salomon et al. 1991; Salomon et al. 1997).

The main serious restriction of the DLSP as a small-bucket formulation is not allowing
both setup time and production time within a period. Thus this article focuses on the CLSP as
a big-bucket formulation which is more flexible for integrating lot sizing and sequencing
decisions. The CLSP partitions the planning horizon into a number of lengthy time periods,
allowing setups of several products within the same period (a “big bucket”). Gupta and
Magnusson (2005) classified the CLSP literature according to extensions on sequence
dependency of setup costs and times. They extended the framework proposed by
Gopalakrishnan (2000) to include sequence-dependent setup times and costs. Haase (1996)
modelled the Capacitated Lot sizing problem with Sequence-Dependent setup costs (CLSD)
and included setup times (Haase and Kimms 2000) by assuming predetermined efficient
production sequences and null inventory for the production of an item in a period. The General



Lot sizing and Scheduling Problem (GLSP) (Fleischmann and Meyr 1997) is very close to the
CLSD but is more flexible since it eliminates the restrictions of the CLSD. Meyr (2000)
included sequence-dependent setup times, resulting in the GLSPST and extended it to become
the GLSPPL for parallel machines (Meyr 2002).

In their recent well-structured review paper, Copil et al. (2016) presented the historical
development of the body of knowledge for simultaneous lotsizing and scheduling problem and
discussed the recent trends. The GLSP has been known as the most flexible lotsizing and
scheduling formulation in large buckets for representing different environments under slight
modifications (Kocglar 2005; Koglar and Sural 2005). Moreover, the need for only triangular
setups is relaxed in the GLSP as it allows multiple lots of a product in a period as long as the
lots of all products do not exceed the number of micro-periods in a period. Non-triangular setup
times can happen in many industries such chemicals, food, beverages and oil. For example, in
the animal-feed industry, some product families can cause contamination of other families so
mixing equipment must be cleaned in order to avoid it. Cleaning can result in substantial setups
that consuming scarce production time. The amount of cleaning can often be minimised by
producing an intermediate cleansing or shortcut product which can give rise to non-triangular
setup times. In an alternative approach to the GLSP, Clark and Clark (2000) designed a mixed
integer programming (MIP) model for the simultaneous sequencing and sizing of production
lots on a set of parallel machines. They assumed non-triangular sequence-dependent setup
times, no setup costs and the possibility of backlogging demand.

The problem of sequencing a set of lots with sequence dependent setups is related to the
travelling salesman problem (TSP) and the vehicle routing problem (VRP) (Laporte 1992a;
Laporte 1992b). Almada-Lobo et al. (2007) presented two models for the CLSP with sequence-
dependent and triangular setup times and costs using the Miller-Tucker-Zemlin (MTZ) subtour
prohibition constraints (Desrochers and Laporte 1991). The main restriction of conventional
TSP based models is permitting the production of only one lot per product per period which
may well not be optimal when non-triangular setups exist. Clark et al. (2010) formulated a
sequencing and lotsizing model with non-triangular setup times based on the Asymmetric
Travelling Salesman Problem (ATSP) at an animal-feed plant. To solve the model, optimal
solution methods based on iterative subtour elimination and patching were developed. In the
ATSP-based models (Almada-lobo et al. 2007; Clark et al. 2010), at most one lot per product
can be produced in a period (and no subtour is permitted), so in the case of non-triangular setup,
any optimal multiple production of a shortcut product is not allowed. Menezes et al. (2011)
relaxed this restriction and allowed production of multiple lots per period (and correctly
including connected subtours) by using an iterative model and method based on a potentially
exponentially number of subtour elimination constraints (to exclude disconnected subtours).

Clark et al. (2014) presented a stronger formulation than Menezes et al. (2011) for
modelling the production of multiple lots of a product per period by using a polynomial number
of multi-commodity-flow-type constraints (Claus 1984) to exclude disconnected subtours
while allowing ones connected to the main sequence. Guimaraes et al. (2014) proposed a two-
dimensional framework to classify the discrete time modeling approaches for lotsizing and
scheduling problem. They also present a new formulation using commodity flow based subtour
elimination constraints for the problem.



Setup overlapping has been studied by Suerie (2006) for small-bucket and by Sung and
Maravelias (2008) for big-bucket formulations, but with sequence-independent setup times and
costs. Belo-Filho et al. (2013) extended the model by Suerie (2006) for small-bucket and
proposed two models for the capacitated lot-sizing problem with backlogging and setup
carryover and crossover. Almada-Lobo et al. (2007) incorporated setup carryover features for
a capacitated lot sizing and scheduling problem that allows a product to be set up at the end of
one period and the actual production to start in the next period. Menezes et al. (2011) modelled
setup cross-overs that allows a setup to start in one period and to end in the next period.

In this article, the first mixed integer linear programming formulation is presented for lot
sizing and scheduling with non-triangular sequence-dependent setup times and costs that
allows not only multiple lots of a product in a period using just a polynomial number of
constraints and incorporating all the necessary features of setup carryover, as in Clark et al
(2014), but also overlapping of setups over period boundaries. The inclusion of overlapping
setups is the original contribution of this article and permits modelling the production system
more realistically by relaxing all the limitations of physical separation between the periods.

Moving towards more flexible and realistic modeling in production planning systems has
been already attracted many researchers. To alleviate the problem of physical separation in
discrete time scale, an alternative approach called block planning is proposed based on
continuous representation of time (Glinther 2014; Gunther et al. 2006). However, the degree of
flexibility of proposed approach is limited to necessity of the the grouping of product into setup
families and the production of product within a family in a pre-defined sequence.

For the first time, in this paper not only all the limitations of discrete time scale modeling
are relaxed but also practical assumptions are researched.Thus, a setup can start at the end of a
period and finish at the beginning of the next period, or a setup can finish at the end of a period
and production start in the next period. Furthermore, an imposed minimum lot size can cross
over periods, and the setup state is conserved when no product is being processed over multiple
periods. All these features increase the model flexibility and lead to better solutions,
particularly under tight capacity conditions or whenever setup times are significant. The
extension of the model to parallel machines or a flexible flow line is presented and discussed
via computational tests.

The new model for single machine is developed in section 2, allowing the production of
multiple lots while incorporating all the features of setup carryover and overlapping. Moreover
the effectiveness of multi-lot over single-lot production by taking advantage of shortcut
products and the usefulness of modelling the setup overlapping under tight production capacity
are both illustrated in some examples in section 2 and then computationally tested in section 3.
The model is extended to parallel machines and flexible flow lines in section 4 where the
efficiency of each model is discussed in detail with an example. The paper concludes in section
5 with a discussion of the model’s value and identifies remaining challenges and opportunities
for future research.

2. Modelling multiple lots and overlapping setups on a single machine

The model is initially based on Clark et al (2014). The parameters and indices of the model
are:



Ji Number of total products i,j,k

T Number of periods t in the planning horizon
The input data required by the model are:

d;; Demand for product i realised at the end of period t

Ct Available capacity (time) in each period t

Sty Time needed to setup from product i to product j

SCij Cost of setting up from product i to product j

b; Time needed to produce a unit of product i

hi: Cost of holding a unit of product i in inventory from period t to t+1
Jit Backlog cost per period for product i from period t to t+1

UB;; Upper bound C;/b; on the quantity of product i produced in period t

io The product that is already setup at the end of period 0, i.e., the starting
setup configuration in period 1.

ml; Minimum lot size imposed on product j.

]
The decisions made by the model are represented by following variables:

I;; Inventory level of product i at the end of period t.

B;; Backordered amount of product i at the end of period t.

Xt Production quantity of product i in period t.

Slk, Number of units of slack capacity in period t.

xk The quantity produced in period t of the first (crossover) lot of product

i in period t if it was setup in period t-1, otherwise 0.

xh The quantity produced in period t of the last (crossover) lot of product
i in period t if its production continues into period t+1, otherwise 0.

YVijt Number of times that production is to be changed over from product i
to product j in period t. Integer non-negative.

Zit Number of times that product i is in a setup state in period t, Integer
non-negative.

Qi = 1 either because j-to-i is the last setup in previous periods to t or
because j-to-i is the setup operation that overlaps from t-1 to t.

For all the products, the initial inventory (I;,) and the backlogs (B;,) are set to be zero at
the start of the planning horizon.



2.1 The objective function and main constraints
The objective function minimises a weighted sum of backorders, inventory and setup
costs:

Minimise z SCijYije T z hit I + Z 9itBit @)
it it

ijt

Constraint (2) balances inventory, backlogs, production and demand over consecutive
periods:

Lit—1 = Bjt—1 + Xj¢ — Lt + Bjy = dj¢ Vj,t(2)

Constraint (3) represents the limited capacity and calculates any slack capacity:
v
Z bix; + Z stijyije + slky = G t(3)
i ij

Constraint (4) enforces the appropriate setup before production:
Xjt < UBthth V],t(4)

Constraint (5) prohibits setup between the same products:
Yjjt =0 v j, t(5)

Constraint (6) ensures that the machine is set up for exactly one product at the beginning
of each period. The initial setup configuration at first period is expressed by constraint (7).

Zflit=1 vit=1,.,T+1(6)
i

aiotzl Vt=1(7)

2.2 Imposing a minimum lot size

Some cleansing products k require a minimum lot size ml, to eliminate the previous
product’s contaminants, and also prohibits that a setup from i to j passes through cleansing
products k without any production. Constraints (8) to (11) achieve this and also allow a
minimum lot size to cross over the periods.

Recall that xﬁ is the quantity produced in period t of the first (crossover) lot of product j
in period t if it was setup in period t-1, but is otherwise 0, as imposed by Constraints (8):

xj; < UBjia;q Vj,t(8)

Similarly ijt is the quantity produced in period t of the last (crossover) lot of product j in

period t if its production continues into period t+1, otherwise 0, as imposed by constraints (9).

x]Lt S UBjtaj,t-l-l VJ, t (9)



Then Xth + xf ++11S the size of a crossover lot of a product j that has been started in period
t and completed in period t+1. Constraints (10) oblige this crossover lot to be of size at least
ml;:

X+ X1 = mliaj e v j, t(10)

Lastly constraint (11) imposes minimum lot sizes for both crossover and non-crossover
lots using auxiliary variables xj; , x/,.

Xjt — x}; - ijt > mlj (zjr — @je — Ajr41) vj,t(11)

Constraints (11) force a lot to be of size at least z;,ml;in period t. If the machine begins or
ends the period in setup state j (or both) then a;; + ;.. = 1 (or 2) then constraints (11)
impose the (z;; — ajs — a; 41) lots to be at least of size z;;ml;, splittable into smaller separate
lots of at least size ml; units in size.

Clark et al. (2014) imposed a minimum lot size with the condition that there exists at least
one setup in each period, i.e., result a carryover lot could not span over whole periods. Letting
a carryover lot span over 3 or more periods while forcing the minimum lot size for the whole
crossover lot was left as a challenge for future research. In this paper, this limitation is removed.
The following example shows how the new minimum lot constraints can span the lot over the
periods with no demand and impose the minimum lot size (ml;) for the whole crossover lot.

Example 1: Consider a demand for product A in period 1, for product B in period 3 and
no demand in period 2. A minimum lot size is imposed on the use of shortcut product C. In this
case there are two possibilities as now detailed below:

In the first possibility, setup A to C and C to B can both happen either in period two or,
one setup can happen in period two and the other setup in period 1 or 3. So the minimum lot
size will be enforced by constraint (11). In the second possibility, setup A to C happens in
period 1 and setup C to B in period 3 while there is no setup in period 2 as shown in Figure 1.

Period 1 Period 2 Period 3

S Product C ST

Product A AtoC CtoB

Product B

Figure 1: Example (1) lot crossover

So according to constraint (10):
xt + xE, = mi, (C1)
xt, + xby = mi, (C2)
and according to constraint (11):
Xca = X{p — X 2 —mlc  (C3)
Xe1— X612 0 (C4)
Xc3 — Xes = 0 (C5)
In order to impose the minimum lot size for C, it is necessary to justify that the total production
of product C (at the end of period 1, in period 2 and at the beginning of period 3) is at least ml:
Xc1 + Xcp +Xc3 = mlc



To justify this, first constraints C1 and C2 are summed:

xt + xb, +xk, + x5 = 2mi, (C6)
Then constraints C3, C4 and C5 are summed:

Xc1 + Xep + Xez 2 Xy + XGp + Xy + x(3 —mlc (C7)
Finally combining constraints C6 and C7 concludes that the crossover lot of product C (x-; +
Xco + X¢3) 1S at least ml¢ and constraint (10) imposes ml¢ (not 2ml) for the whole crossover
lot. Moreover this conclusion can be extended for more than one period with having no
demand.

Xcr + Xco + Xeg = xE + xE + xby + xE5 —mle = 2ml; —mlc = ml;

Note that constraints (8) to (11) are more efficient than the conventional constraint: x;, =
ml; Y. yije, V j, t, as used in other lot sizing and scheduling models (Clark and Clark 2000;
Fleischmann and Meyr 1997) to impose minimum lot size. The reason is that in the
conventional constraint, the whole setup and the production of the minimum lot size should be
carried out in a single period so the minimum lot size neither can crossover to the next period(s)
nor can be produced in a period when the setup is ending at the end of previous period(s). All
these restrictions are relaxed in the new constraints (8) to (11). Examples 2 and 3 in the section
2.4 show explicitly the difference of two types of constraints for imposing minimum lot size.

2.3 Lot sequencing constraints

Here, the ATSP-related constraints are demonstrated for sequencing product lots.
Conventional ATSP-based models restrict production to at most one lot per product per period,
which may not be optimal when non-triangular setups exist. Non-triangular setups occur in
industries such as food, animal feed, beverages and oil where there are intermediate “cleaning”
or “shortcut” products. For example in the animal feed industry, some products can
contaminate other products and lead to serious effects on animal’s health. To avoid this,
machines must be cleaned, sometimes resulting in substantial setups that consume scarce
production time. Alternatively, the production of a sufficient amount of an intermediate or
cleaning product can clean the machines and reduce overall setup times (costs). In this
situation, the setup to and from the cleaning or shortcut product (k) is less costly and time
consuming than a direct setup between two products (i,j) means that st; ; > st;, + sty ;.
Therefore the shortcut product may need to be produced more than once within a period.

A sequence with multiple lots per period for some products could look like that illustrated
in Figure 2. Subtours connected to the main sequence S by shortcut products are possible (such
as subtours B and C). Thus an exact formulation must allow connected subtours but exclude
disconnected subtours (such as subtours A and D). To model the sequencing of product lots,
the multi-commodity-flow (MCF) formulations by Claus (1984) are adapted to exclude
disconnected subtours while allowing ones connected to the main sequence. Clark et al. (2014)
applied the Claus (1984) ATSP subtour elimination method to allow multiple productions of
shortcut products for a single machine and computationally demonstrated the effectiveness of
the Multiple-Lot (ML) model in comparison with the equivalent One-Lot (1L) models. In this
work, the same method is applied and the constraints are as follows.
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Figure 2: A main sequence (S) and different types of subtours (A, B, C, D)

Constraints (12) and (13) are flow conservation constraints relating the a;; and z;; setup
state variables to the y; ;. changeover variables as shown in Figure 3.

Vi t((12
Xt +Zyjit = Zjt i,t(12)
J
Vi t(13
zyijt + Qi1 = Zit Lt (13)
Jj

ait ai,t+]_
\ Zit /

Zyjit/ \ Yijt

]

Figure 1: Node flow modelled by constraints (12) and (13)

To make constraints (13) work for last period ¢t = T either set ¢t = {1,..,T + 1} is considered
for a;; or new constraints (13a) are added as follows:

Z Yjir + Qv 2 Z Yijr Vi t=T(13)
J J

The optimal solution to the model specified so far is a sequence from product i|[{a;; = 1}
to k|{ay +1 = 1} plus any disconnected subtours. The latter are excluded by imposing in every
period t that there is so-called k-walk from (i|{a;; = 1}) to all products k in the period’s
sequence. From now on, pf denotes product i|[{a;; = 1}.

Define additional binary variable aﬁ‘jt as follows:

agfjt =1 if the arc i — j is on a k-walk from crossover product pZ to product
k within period t’s sequence of lots, otherwise 0.

The arc i — j has to exist, hence:
afie < yije Vi, j,k t (14)

Further binary decision variables z2™are needed. Define:



zhm =1 if product i is ever in setup state in period t, otherwise 0.

The required relationships z5™ = 1 & z;, > 1and z5™ = 0 & z;, = 0 are enforced by:
Zip = Zibtin Vit (15)
zy; < ZUB;zP™ V i, t(16)

Where ZUB; is a fixed upper bound (UB) on z;and greater than one. ZUB; can be
estimated as the smaller of J (the number of products) and the size of the ordered set
{(i,))Ist;j = sty + sty;}, which is 1 for many non-shortcut products.

Constraints (17-19) below exclude disconnected subtours. Constraints (17) force the k-
walk to reach product k and are enforced only when the setup state k exists for a time in the

period (i.e, when z2™ = 1), but not when this is never the case (when z2i" = 0):
' vk t(17
Qe + Z ag(kt = lec)én (17)
i

If there is no production of product k in a period, then z2™ = 0, and by (17), af,, = 0 Vi
(constraint (14) also forces this via af,, < y. = 0).

The k-walk corresponding to the variables {aﬁ‘jtlv i,j } has to begin at pZ and then pass
through other products to reach product k.

If a, = 1 then there is no need for a k-walk. If ay, = 0, then by (17) ¥;ak, =1, i.e.,

ak.. = 1 for precisely one product i, the penultimate on the k-walk. Then, by (18), a¥, = 1 for

y Wit T
precisely one product j that is the 3rd last product on the k-walk, and so on, reversing along the
k-walk, requiring a¥;, = 1 along the k-walk, finishing at the initially-setup product i = p& (for

ijt
which a;, = 1).
i + Z ak, = Z ak, Vk,i # k, t(18)
J J

Constraint (19) forces the k-walk from pf to terminate at product k:
agir =0 V k,j,t (19)

If there is no production of k in period t, then (19) requires a,’\ﬁjt = 0 which is not

constraining as af5, = 0 by (17).
The ML-SM model (Multiple Lot for Single Machine) is specified by expressions (1-19).

It allows multiple production lots of shortcut products for a single machine while still not
relaxing the limitations of a period’s physical separation.

2.4 Period overlapping setup constraints

The last step is allowing setup operations to overlap periods, i.e., to permit a setup to begin
in a period and end in the next period. The model is called MLOV-SM and relaxes all
limitations of physical separation between the periods. The MLOV-SM is advantageous when
capacity is tight and so lot sizing and sequencing decisions need more flexibility to reduce
backlogs.

Consider the following additional decision variables:

OLS;j¢ =1 if the overlapping setup operation i to j begins in period t and
finishes in period t+1, otherwise 0.



St The amount of setup time that overlaps into period t+1, having begun
at the end of period t.

The value of S; must be zero if there is no overlapping last setup at the end of period t:
St < Z StijOLSijt Vit (20)
ij
The last setup and at most one setup in period t can overlap from period t to t+1:

> LS < ayn Vit (21)
Jj

The value of OLS;;, must be zero if i to  is not a setup initiated in period t:
OLSije < Yije Vi, jt(22)
The capacity constraint (3) now becomes:

Vit(2
Zbixit +ZStijyijt+St—1 _St‘l‘Slkt = Ct t( 3)
i ij

When the last setup is overlapping, OLS;;, = 1, then product j cannot be produced as it is
the last (crossover) lot in period t. Thus constraints (4) and (9) now become (24) and (25).

Xje < UBje X (2 = ) OLSy0) vt (24)
i

ijt < UBjt (@j¢41 — Z OLS;j¢) V)it (25)
i
Thus model MLOV-SM is specified by expressions (1-2), (5-8) and (10-25) and restated
completely in the Appendix A.

2.5 Examples

Two examples now show the effectiveness of the new minimum lot constraints (8) to (11),
in comparison with the conventional constraint (26) and also the solution’s improvement
obtained by modelling setup overlapping features. The following examples are solved by three
models, consisting of MLOV-SM (stated in Appendix A), ML-SM (Multiple Lot for Single
Machine) which is specified by expressions (1-19), and the Conventional Model which has the
same constraints as ML-SM but imposes minimum lot sizes by conventional constraint (26)
rather than new imposing minimum lot sizes constraints (8) to (11).

Xjr = mljzyl'jt vt (26)
7

Note that in the ML-SM model, constraints (4) are valid but loose: the value of z;; need
only be 1, and not > 2. Thus constraints (4) can be tightened by replacing z;; by zﬁi” (xje <
UBje X zji™).

Examples 2 and 3: The following data are used for both examples: C, = 100, ml; =
10,T =3,] = 2, iy = 1,st;; = 20, b; = 1, h;y = 15,5¢;; = 600, g;; = 1000; and the
demands are shown in Table 1. The models are implemented in the optimisation modelling
software GAMS build 24.7.1 (Brooke et al. 1988) and solved using the industrial-strength



CPLEX 12.6 solver (CPLEX. 2014) on a computer with a 2.1 GHZ CPU and 2 GB of RAM.

All models were solved in less than a second for both examples.
Table 1: Demand data for example 2 and 3.
Demand | Example(2) Example(3)
dy t=1 t=2 t=3 [t=1 t=2 t=3
i=1 75 0 9 |75 O 90
i=2 0 90 0 0 95 0

The production diagram and the results of Example 2 are shown in Figure 4 and Table 2
respectively. Note how modelling of all necessary features of production improves the solution
remarkably. As shown in Figure 4, the Conventional model cannot use the machine’s capacity
efficiently and there are 5 units of idle or slack time in period 1 as the setup and minimum lot
production has to be done totally in a single period (constraint (26)). This restriction is relaxed
in the ML-SM model so the setup ends in period 1 and the minimum-sized lot is produced in
period 2 that significantly results in a reduction of the number of inventory and backlogs as
shown in Table 2. However there are still 10 units of slack time in period 2 as, in the ML-SM
model, a setup cannot overlap, i.e., the setup begins in period 2 and ends in period 3. In the
new lot sizing and scheduling model, MLOV-SM, all the limitations caused by previous models
are relaxed and the production system is modelled realistically. Thus the scarce production
capacity is used more efficiently.

Period 1 Period 2 Period 3
) Product 1 Idle| Setup Product 2 Product 2 Setup Product 1
Conventional 95 time | 1t0 2 80 10 | 2to1 70
Product 1 Setup [.-min Product 2 Idle| Setup Product 1
ML-SM 80 1to2 lot 90 time| 2to 1 80
W\
New ml constraints
MLOV-SM Product 1 Setup |-min Product 2 Seup Product 1
75 1t02 | lot 90 21 90
New ml constraints ,\Setup—overlapping

Figure 4: Production diagram of Example 2 obtained by Conventional, ML-SM and MLOV-SM models

Table 2: Results of Example 2 obtained by Conventional, ML-SM and MLOV-SM models

Example 2 Conventional ML-SM MLOV-SM
Slack capacity 5 10 0
Total Inventory 40 10 0
Backlogs 10 5 0
Total cost = Cost of 11800 6350 1200

(Backlogs + Inventory +Setup) (10000+600+1200) (5000+150+1200) (0+0+1200)




In Example 2 the optimal solution is obtained by the MLOV-SM model with no shortages
or inventory. In order to tighten capacity even more, the demand of product 2 is increased to
95 in Example 3. The production diagram and the results of Example 3 are shown in Figure 5
and Table 3 respectively. Note that the Conventional model found a solution with high total
inventories (50) and backlogs (15) while the optimal solution found by MLOV-SM has no
backlogs and only 5 inventories.

Period 1 Period 2 Period 3
. Product 1 Setup Product 2 Product 2 Setup Product 1
Conventional 100 1t02 80 15 | 2tol 65
Product 1 Setup [-‘min Product 2 Idle| Setup Product 1
ML-SM 80 1to2 lot 95 time| 2to 1 80

A

New ml constraints

=5

MLOV-SM Product 1 | Setup
75 1to2

Product 2 Sejup Product 1
90 2th1 90

New ml constraints ’\

Figure 5: Production diagram of Example 3 obtained by Conventional, ML-SM and MLOV-SM models
Furthermore, as shown in MLOV-SM’s production diagram in Figure 5, the minimum lot
crosses over from period 1 to 2. Lot crossover is another feature which is modelled via the new
minimum lot size (ml) constraints (8) to (11), improving the solutions and giving more
flexibility to the lot sizing model.
Table 3: Results of Example 3 obtained by Conventional, ML-SM and MLOV-SM models

Product2:

Setup-overlapping

Example 3 Conventional ML-SM MLOV-SM
Slack capacity 0 5 0
Total Inventory 50 10 5
Backlogs 15 5 0
Total cost = Cost of 16950 6350 1275
(Backlogs + Inventory +Setup) (15000+750+1200) (5000+150+1200) (0+75+1200)

Examples 2 and 3 showed how the new comprehensive mathematical formulation,
MLOV-SM, relaxes all limitations of physical separation between the periods. The MLOV-
SM modelled the new features consisting of starting a setup in one period and ending it in the
next period, ending a setup in a period and starting production in the next period(s), and
crossing a minimum lot size over multiple periods.

3. Computational tests

The aim of the tests is to assess how effectively the Multiple Lot model took advantage of
shortcut products to reduce the total time spent on setups, compared to the equivalent One Lot
(1L) model. In the latter case, the formulation (ML-SM) can be simplified to a model that

assumes At Most One Lot per product per period (denoted 1L-SM) by merging z;; and z}’ti" to



be a binary variable z;, for a single machine. Thus constraints (15) and (16) disappear. The
tests also evaluated the impact of model MLOV-SM, on reducing demand backlogs, total
inventory and cost in the case of tight production capacity. The models were implemented in
the optimisation modelling software GAMS build 24.7.1 (Brooke et al. 1988) and solved using
the CPLEX 12.6 solver (CPLEX. 2014) on a computer with a 2.1 GHZ CPU and 2 GB of RAM.

To obtain initial insights, the performance of the three models (1L-SM, ML-SM and
MLOV-SM) was compared on two problem sizes: a small size with 10 products including 1
shortcut product, and a big size with 20 products including 2 shortcut products, whose lot sizes
and sequences were to be scheduled over two horizons of T = 4 and T=8 demand periods.

The following data were used: C, = 100,ml; =5,i, = 1,b; = 0.5,h;; = 10,g;; =
10000, vj, t for all instances. In (Clark et al. 2014) the setup times were initially set to be
st;j = (j— 1) if j =i otherwise (10 +j — i), so the product 2 would normally be setup
immediately after product 1. However, product 5 was then made an extreme shortcut with zero
setup times: sts; = st;s = 0. In this paper, to make setup times more tangible, particularly in
case of an overlapping setup, all setup times were increased by 3 so that sts; = st;s = 3 and
stjj = (3+j —1i)if j = iotherwise (13 + j — i). Setup costs are proportional to setup times,
l.e.sc;j = 50 X (j — i) if j = i, otherwise 50 x (10 + j — i), and for shortcut products are:
Scs; = s¢is = 50.

The periodic demand forecasts d;; varied randomly over product i and period t to provoke
non-uniform lot-sizes and avoid lot-for-lot production. To show the effectiveness of model
MLOV-SM, the demands in two consecutive periods are set to be non-zero for different
products for time horizon T=4. For example, if there are 10 products, then for period t, 5
random products have non-zero demand, with the other 5 having demand zero, while in period
t+1, those products with zero-demand in period t now have non-zero demand, with other 5
having zero demand. We also used another TBO-profile (time between orders) with different
lengths 1, 2 and 3 for time horizon T=8. In this case, for each product a random TBO length
(from 1 to 3) is chosen and then demands are generated for a product over 8 periods according
to the TBO.

When capacity is loose, then there is much more flexibility about when setups can occur
in an optimal solution, so we expect that period-overlapping setups will not make a
difference. However, under tight capacity, there will be little such flexibility, so it is important
to use scarce production capacity efficiently via relaxing all restrictions of physical separation
between the periods. To simulate tight capacity the overall demand was adjusted so that setup
times could take up to 20-25% of capacity. For loose capacity this was adjusted to 15%.

A similar procedure was applied for big size problems with 20 products. The machine
capacity per period was doubled and setup times for products P11 to P20 simply replicate those
for P1 to P10, with the two extreme shortcut products being P5 and P15.

Considering the two types of capacity (loose and tight) and planning horizons (T=4 and
8), 4 combinations were generated for each problem size. For each combination, 20 test
problems were generated, totalling 160 problem instances for big and small sizes, which were
solved by the 1L-SM, ML-SM and MLOV-SM models. The CPLEX optimizer was allowed to
run for a maximum of 1 hour for big size problems, at which point the incumbent solution (i.e.,
the best found up to then) was used.



Table 4: A mean results of 1L-SM, ML-SM and MLOV-SM for single machine problems

Single Machine 10 products with one shortcut 20 products with two shortcuts
Mean Mean

T Cap Criteria 1L ML MLOV p-value 1L ML MLOV  p-value
Setup time 77.75 78 77.95 0.902 | 219.1 2233 2147 0.170
4 Tight  slacktime | 557 5.97 672  0.061 |9.1 9.5 98  0.129
Inventory 14.45 105 6.1 0.000 | 12.45 10.2 8.4 0.000
Backlogs 7.55 5.8 4.1 0.000 | 29.3 27.3 25.8 0.000
CPU time 5.4 3.95 4.55 0.136 641 867 1287 0.138
Total cost 76842 59260 42208 0.000 | 230380 281550 253760  (.000
T Cap Criteria 1L ML MLOV p-value 1L ML MLOV  p-value
Setup time 78.7 80.05 79.75 0.176 | 1358 136.8 137 0.109
4 Loose  Slack time 20.6 20.1 20.075 0.715 | 32.67 31.67 31.5 0.109
Inventory 6 4.1 3.85 0.143 | 12.16 1133 1041 0.402

Backlogs 0 0 0 Na 0 0 0 Na
CPUtime | 301 2.4 255 0066 | 2218 1833 285 0.028
Total cost 1250 1201 1198.5 0.000 | 1540 1510 1490 0.006
T Cap Criteria 1L ML MLOV p-value 1L ML MLOV  p-value

Setuptime | 141.15 142.95 142.4 0.013 | 293.7 2929 2925 0.043

8 Tight Slack time 37.95 36.05 36.6 0.007 | 56.7 57.3 59.60 0.010
Inventory 59.65 49,95 47.1 0.000 | 85.28 78 78.14  0.009

Backlogs 31.25 29.3 27.6 0.000 45 43.37 395 0.000

CPU time 55.8 37.45 61.05 0.313 | 2260 2534 3560 0.170

Totalcost | 315035 205618 278502 0.000 | 455294 437827 398286  (0.000

T Cap Criteria 1L ML MLOV p-value 1L ML MLOV  p-value

Setup time 138.7 141.15 140.6 0.064 | 286.5 2859 2848 0.034
8 Loose  slacktime | 72,175 69.725 70225 0.063 | 653 642 6596 0.021

Inventory 40.5 36.6 363  0.069 | 305 2691 2573 0.071
Backlogs 0 0 0 Na 0 0 0 Na
CPU time 12.3 7.95 112 0406 | 9315 763.6 1021.9 0.042

Total cost 24875 24445 2440.5 0.027 | 3340.6 3336.8 33254 0.038

Table 4 compare the performance of three models on 6 criteria calculated over the
planning horizons 4 and 8:

Total time spent on setups = Y.;; st;;V;

Amount of unused (slack) capacity = Y; slk;

Inventory =Y;; I;;

Backlogs = ).;; Bi:

CPU time

Total cost = Backlogs + Inventory + Setup = X.;: gieBir + Xit hielie + Xije SCijVije

For each criterion, the difference between the mean values for the three models was
statistically tested using a balanced analysis of variance test. The test used the data instance
(that is the run) as a random blocking factor. The null hypothesis is that the difference between

the models’ means is zero.
Table 5: The paired T-test results between 1L-SM, ML-SM and MLOV-SM for single machine problems



Single Machine
The paired T-test

10 products with one shortcut

P-Value

20 products with two shortcuts

P-Value

T Capacity Criteria | IL&ML ML&MLOV MLOV&IL | IL&ML ML&MLOV MLOV&IL
Setup 0.296 0.467 0.384 0.053 0.324 0.062

4 Tlght time
Slacktime | 0.175 0.076 0.016 0.203 0.034 0.041
Inventory | (0.005 0.049 0.003 0.006 0.038 0.001
Backlogs | 0.000 0.000 0.000 0.028 0.000 0.000
CPUtime | 0.020 0.096 0.189 0.128 0.096 0.073
Total cost | (0.000 0.000 0.000 0.000 0.000 0.000

T Capacity Criteria | IL&QML ML&MLOV MLOV&IL | IL&ML ML&MLOV MLOV&IL
Setup 0.067 0.309 0.086 0.087 0.186 0.076

4  Loose time
Slacktime | 0.291 0.478 0.245 0.087 0.181 0.067
Inventory | 0.104 0.374 0.040 0.134 0.178 0.108
Backlogs Na Na Na Na Na Na
CPUtime | 0.052 0.093 0.048 0.122 0.028 0.015
Total cost | (0.000 0.165 0.000 0.032 0.087 0.024

T Capacity Criteria | IL&ML ML&MLOV MLOV&IL | IL&ML ML&MLOV MLOV&IL
Setup 0.011 0.009 0.046 0.008 0.006 0.012

8 Tight time
Slack time | (0.006 0.009 0.034 0.032 0.044 0.014
Inventory | 0.000 0.003 0.000 0.012 0.002 0.000
Backlogs | 0.001 0.000 0.000 0.002 0.000 0.000
CPUtime | 0.149 0.064 0.373 0.258 0.420 0.131
Total cost | (0.001 0.000 0.000 0.000 0.000 0.000

T Capacity Criteria | IL&QML ML&MLOV MLOV&IL | 1IL&ML ML&MLOV MLOV&IL
Setup 0.032 0.022 0.082 0.095 0.047 0.035

8 Loose time
Slack time | 0.033 0.032 0.078 0.033 0.016 0.024
Inventory | 0.049 0.369 0.047 0.032 0.109 0.026
Backlogs Na Na Na Na Na Na
CPUtime | 0.135 0.034 0.393 0.183 0.045 0.023
Total cost | (0.037 0.088 0.025 0.024 0.061 0.017

The results in Table 4 and the paired t-test p-values in Table 5 show a highly significant

decrease in backlogs, inventory and total cost under tight capacity for the model MLOV-SM
compared to those for the ML-SM and 1L-SM. It highlights how model MLOV-SM uses scarce
machine capacity and how the relaxing of all restrictions of physical separation between the
periods plays an important role in minimizing shortage. The ML-SM model is also more
efficient than 1L-SM as it uses the shortcut product P5 in small size problem and products P5
and P15 in big size problems, to economise on setups and reduce backlogs and inventory.



As expected, under loose capacity with no backlogs, due to greater flexibility in setups,
period overlapping did not make a significant difference in inventory and slack time, although
it significantly improved the total cost compared to the 1L model.

Not surprisingly, there were much longer solution times for 20 products than 10 products,
and also for instances with T=8 periods compared to those with T=4. For 20 products and T=8
under tight capacity, 17 of the 20 instances of the MLOV model used the full 1 hour allowance
of computing time (with median optimality gap of 3.7% for these 17), while none did for the
1L and ML model.

4. Extensions to Parallel Machines and Flexible Flow Lines

In this section the Single Machine models are extended to Parallel Machines (PM) and
Flexible Flow Lines (FFL). The data, variables and constraints of the Single Machine models
are adapted to parallel machines by including an index m. The Multiple Lot model for Parallel
Machines, denoted ML-PM, and Multiple Lot model with Setup-Overlapping for Parallel
Machines, denoted MLOV-PM, are extensions of ML-SM and MLOV-SM respectively.

4.1Parallel Machines

The input data required by the PM models are:

dit Demand for product i realised at the end of period t

Cnt Available capacity time of machine m in each period t

Stijm Time needed to setup from product i to product j on machine m

SCijm Cost needed to setup from product i to product j on machine m

bim Time needed to produce a unit of product i on machine m

hi; Cost of holding a unit of product i from period t to t+1

Jit Backlog cost per period for product i from period t to t+1

UBimt Upper bound C,,;/b;,, on the quantity of product i produced in period t
on machine m

lom The product setup at the end of period 0 on machine m, i.e., the starting

setup configuration
The decisions variables by the PM model are represented by following variables:

I;; Inventory level of product i at the end of period t.

B;; Backordered amount of product i at the end of period t.

Xime Production quantity of product i in period t on machine m.

Slk: Number of unites of slack capacity of machine m in period t.

xh. The quantity produced in period t of the first (crossover) lot of product

i on machine m in period t if it was setup in period t-1, otherwise 0.



Xk . The quantity produced in period t of the last (crossover) lot of product i
on machine m in period t if its production continues into period t+1,
otherwise 0.

Vijmt Number of times that production is to be changed over from product i to
product j on machine m in period t, Integer non-negative.

Zimt Number of times that product i is in a setup state on machine m in period
t, Integer non-negative.

Aime = 1 either because j-to-i is the last setup of machine m in previous
periods to t or because j-to-i is the setup operation that overlaps from t-1 to
t.

aﬁ'mt =1 if the arc i — j is on a walk from crossover product pZ to product k

within period t’s sequence of lots on machine m, otherwise 0.

zhm =1 if product i is ever in setup state on machine m in period t, otherwise
OLS;m: =1 if the overlapping setup operation j-to-i on machine m begins in
period t and finishes in period t+1.

St The amount of setup time that overlaps into period t+1 on machine m,
having begun at the end of period t.

For all the products, the initial inventory (/;,) and the backlogs (B;,) are set to be zero at
the start of the planning horizon. All the ML-PM and MLOV-PM’s constraints are similar to
ML-SM and MLOV-SM respectively with the new adapted data and variables. The complete
ML-PM and MLOV-PM models are presented in Appendix B and C.

Example 4: Consider 2 machines in parallel. The aim is to satisfy the demand shown in
Table 6 for 10 products over the 4 planning periods with minimal backorders, inventory and
setup costs. The capacity of each machine is C,,,; = 50, thus a total capacity of )., C;,s = 100
is available for each period. The remaining PM data is the same as for the SM problem: ml; =
5,iom = 1, bj, = 0.5, hjy = 10, g; = 10000, Vj, t. Also the setup times and costs of each
machine replicate those for a single machine.

The production diagrams and the results obtained by solving the 1L-PM, ML-PM and
MLOV-PM models are shown in Figure 6 and Table 7 respectively. Note that in Table 7, the
1L-PM and ML-PM model found the solution with the same amount 7 of inventory, and
amounts 6 and 2 of backlogs respectively, while the optimal solution found by MLOV-PM has

no backlogs or inventory.
Table 6: Demand data for PM and FFL.

d; t=1 t=2 t=3 t=4
i=1 33 0 34 0
i=2 33 0 0 0
i=3 31 0 33 0
i=4 33 0 0 0
i=5 30 0 34 0
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Figure 6: The production diagrams of 1L-PM, ML-PM and MLOV-PM
The solution is illustrated in Figure 6, where each node or circle shows the product at the

top and its lot size at the bottom, and each arrow demonstrates a setup and an overlapped setup
in bold as below:

@ Setup Overlapped Setup
\\/ > >

Lot size

Note in Figure 6 how effectively the MLOV-PM model twice took advantage of
overlapping setups on machine 1 to use machine capacity and reduce inventory, backlogs and



slack time. Furthermore, both the multiple lot models, ML-PM and MLOV-PM, took

advantage of shortcut product 5 to reduce the backlogs, compares to the one lot model 1L-PM.
Table 7: Results of 1L-PM, ML-PM and MLOV-PM

Parallel machine 1L-PM ML-PM MLOV-PM
Setup time 76 80 80
Slack capacity 4 0 0
Inventory 7 7 0
Backlogs 6 2 0
CPU time (seconds) 774 315 451
Total cost = Cost of 61220 21270 1200

(Backlogs + Inventory +Setup)  (60000+70+1150) (20000+70+1200) (0+0+1200)

4.2Flexible Flow Line

To model different machines at each stage e of an FFL, an index m,, is used. There are E
different stages e and M,, different machines m,, available for production at stage e. Apart from
the inventory and backlogs variables, the FFL’s data and variables are similar to PM’s where
index m is replaced by index m,. The new inventory and backlogs variables of FFL are as
follows:

Liot Inventory level of product i at stage e at the end of period t.
Bigt Backordered amount of product i at the last stage E at the end of period t.

Thus the new inventory balance constraints are:

v ij,t(27
ligt-1 — Bjgt-1 + Z Ximot — ljge + Bjge = djt Jrt(@i)
mg
Vijte=1,..,E—1(28
ligt—1+ ijmet — Lt = Z Xjmegyq t+1 Jte (28)
Me Me+1
Byp < BP-dy v i,t(29)

Constraints (27) and (28) express the material balance including backorders for end items
and work in process respectively. Constraint (29) bounds backorders of end items in any period
to be within a specified proportion of demand. This is the practiced assumptions in flexible
flow shop manufacturing systems (Ozdamar and Barbaroso lu 1999). Moreover the holding
cost will be different at each stage so h;; now becomes h;., which is the cost of holding a unit
of product i from period t to t+1 at stage e. The complete models for Multiple Lots for Flexible
Flow Lines, denoted ML-FFL, and Multiple Lots with Setup-Overlapping for Flexible Flow
Lines, denoted MLOV-FFL, are presented in Appendices D and E respectively. Apart from the
inventory balance constraints, the FFL’s constraints are similar to PM’s substituting index m
with index m,.

Example 5: If the parallel machines production system is duplicated in series, then the
result is a Flexible Flow Lines (FFL) production system with two stages in series and two
parallel machines for each stage. In this case, the FFL data for each stage is exactly the same
as for PM. The holding costs assume that successive stages add value, so that work-in-process
holding costs will increase as material progresses along the line. To reflect this, a value-added
percentage factor VAP is used, whose value is 1.2. The first stage’s unit holding cost h;;; for



product i is 10 and for the subsequent stages, hj,. = VAP - h;t..1, e = 2. Thus the second
stage’s unit holding cost h;;, for productiis h;;, = 1.2 X 10 = 12.

To analyse the FFL in detail, it was solved by the three models 1L-FFL, ML- FFL and
MLOV- FFL considering the demand of first and second period in Table 6. The production
diagrams and the results of FFL for two periods are shown in Figure 7 and Table 8 respectively.

In order to simplify the FFL production diagram, the one-period-backward shifted demand
is considered for intermediate stages (e < E), meaning that x;,,_,  +1 in the right hand of
equation (28) changes to x;,_, .. Thus for first stage, the inventory balance equation would be

Ijl,t—l + Zml x]mlt - I]lt = Zmz xjmzt ) v]’ t'
Table 8: Results of 1L-FFL, ML-FFL and MLOV-FFL for FFL problem with two periods

Flexible Flow Line 1L-FFL ML-FFL MLOV-FFL
Setup time 78 86 86
Slack capacity 9 2 0
Inventory 3 0 0
Backlogs 6 2 0
CPU time (seconds) 623 662 656
Total cost = Cost of 61236 21300 1300

(Backlogs + Inventory +Setup)  (60000+36+1200)  (20000+0+1300)  (0+0+1300)

Note that the ML-FFL model took advantage of shortcut products in both stages and
efficiently used the capacity of all four machines to reduce inventory, backlogs and slack
capacity, compared to the ML-FFL. As shown in Table 8, the backlogs and inventory fell to 2
and 0 respectively for the ML-FFL model, and both fell to 0 for the MLOV-FFL. Thus the
MLOV-FFL used the total scarce production capacity of 4 machines more efficiently by taking
advantage of overlapping setups three times (Figure 7) and left no inventory, shortage and slack
capacity.
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Figure7: The production diagrams of 1L-FFL, ML-FFL and MLOV-FFL with two periods



4.3 Computational tests

To obtain some insight into the relative efficiencies of the three models in PM and FFL, a
variety of problem sizes are solved in a three-hour time limit considering demand over 2 and 4
periods, similar to Table 6. The objective function and the CPLEX optimality gap of the models

after every hour are shown in Table 9 for each problem size.
Table 9: Results of the three models for different problem sizes in PM and FFL systems.

Stage ~ Machine  Period 1L MODEL ML MODEL MLOV MODEL
E M, T 1Hour 2 3 1Hour 2 3 1 Hour 2 Hours 3 Hours
Hours Hours Hours Hours

1 2 2 | Obj | 50680 - - 20650 - - 650 - -
Gap | Optimal in 13 seconds Optimal in 20 seconds Optimal in 3 seconds

1 2 4 | Obj | 51260 - - 21270 - - 1200 - -
Gap | Optimal in 146 seconds Optimal in 1044 seconds | Optimal in 328 seconds

1 3 2 | Obj | 180790 - - 154113 - - 154083 - -
Gap | Optimal in 205 seconds Optimal in 222 seconds Optimal in 154 seconds

1 3 4 | Obj | 424931 424931 351557 | 318384 301547 301547 | 338301 338301 301517
Gap 74.6% 69.2% 49.7% 61.1% 40.9% 27.4% 99.68% 99.66% 99.60%

2 2 2 | Obj | 51336 - - 21300 - - 1300 - -
Gap | Optimal in 1134 seconds | Optimal in 462 seconds Optimal in 73 seconds

2 2 4 | Obj | 122504 - - 22483 - - 2400 2400 2400
Gap | Out of memory in 1576 (s) Optimal in 1043 seconds 13.56% 10.17%  9.75%

with 98.43%

2 3 2 | Obj | 181548 - - 154869 154869 - 171616 154833 154833
Gap | Optimal in 2776 seconds | 24.2% 0% in 6123 (s) 75.4% 30.9% 5.8%

2 3 4 | Obj | 778255 689670 686870 | 723328 673015 652960 | No feasible 770433 526445
Gap 99.79% 99.77% 96.10% | 97.77% 92.91% 90.36% | Nofeasible 99.79% 99.69%

3 2 2 | Obj | 51992 - - 21949 1950 - -
Gap | Optimal in 2619 seconds | Optimal in 622 seconds Optimal in 550 seconds

3 2 4 | Obj | 344296 - - 805675 764891 454602 | 103626 103592 -
Gap | Out of memory in 2379 (s) 99.66%  99.64%  99.40% | Out of memory in 5799 (s) with

with 99.15% 97.20%

3 3 2 | Obj | 232920 232920 232920 | 322650 155633 155583 155583

Gap 389%  21.93% 21.91% | Outof memory in 1601(s) 81.94% 63.39%  48.39%
with 93.31%

3 3 4 | Obj | - - - - - - - - -

Gap | No feasible solution No feasible solution No feasible solution

The test results in Table 9 show, for all problem sizes, that the MLOV model obtains a
better solution than the ML and 1L models after three hours and that ML is more efficient than
1L due to its use of the shortcut product. However in large instances, the models left large

optimality

gaps,

particularly  MLOV

OLS;jm, ¢ for overlapping setups.

Note that for both time horizons of 2 and 4 periods, adding a stage or a machine
significantly increases the optimality gap. Moreover CPLEX could not find a feasible solution
for any problem with the attributes bigger than E = 3, M = 3 and T = 4 within the three-hour

due to its

extra

binary  variables



time limit, emphasizing the need for an efficient heuristic solution procedure for large
problems.

5. Final remarks

This paper presented new mix integer programming formulations for capacitated lot sizing
and scheduling with non-triangular sequence-dependent setup times and costs, incorporating
all the necessary features of setup carryover and overlapping on different machine
configurations. These features relax all limitations of physical separation between the periods
provide more flexibility to the lot sizing model.

To assess how effectively the multiple lot model with setup overlapping took advantage
of shortcut products and setup overlapping features to reduce backlogs and inventory, three
models 1L, ML and MLOV were compared for three production systems SM, PM and FFL.
The computational results showed that the multiple-lots and setup overlapping features of the
model enable more efficient production than when the formulation excludes setup overlapping
or is restricted to single lot per product per product.

On a single machine the results showed highly significant decreases in backlogs,
inventory and total costs for the MLOV-SM model compared to those for the ML-SM and 1L-
SM models. Furthermore ML-SM is more efficient than 1L-SM due to its use of the shortcut
product 5 to economise on setups and reduce backlogs and inventory.

The tests on the PM and FFL models also confirmed the effectiveness of the new
formulation. However, because of the increased number of binary variables in large instances,
CPLEX exhausted the available RAM before terminating the branch-&-cut search and leaving
a large optimality gap.

To sum up, the test results above, although merely probing, and not conclusive, indicate
that for all machine configurations the MLOV model obtains a better solution. Due to the
importance of the number of binary variables in large instances, future research needs to
develop efficient solution methods fordifferent machine configurations. Future work will also
computationally compare different demand data patterns with variables sizes on the SM, PM
and FFL models.

The High Multiplicity Travelling Salesman Problem (HMATSP) is a special type of the
classical travelling salesman problem in which each node is visited multiple times. Sarin et al.
(2011) incorporated the HMATSP model as a substructure to formulate lot-sizing problem
involving parallel machines and sequence-dependent setup costs, also known as the
Chesapeake Problem. The HMATSP can also be applied for scheduling family products with
several identical items to be produced separately on a single machine. Modelling Multiple-Lot
production per period based on the HMATSP formulations poses a very interesting challenge
for future research.

While the multi-commaodity flow (MCF) subtour elimination constraints do provide
much tighter formulations, it is recognised that their inclusion can be increase computational
time in larger-sized models. The challenge of improving computing times is left for future
research.

Given that in the case of existing non-triangular setups sufficient production of an
intermediate or cleaning product can clean the machine more efficiently, the question arises as



to whether the quantity of cleaning product called minimum lot size is sequence dependent.
This poses another research challenge about how to model the sequence-dependency of
minimum lot sizes in lot sizing and scheduling problems.
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Appendix B: ML-PM model

Minimise X;jme SCijmYijme + 2ie Riclic + 2ie 9ie Bie 1)
lit-1 = Bjt—1 + Z Xjme — Ljt + Bje = dj¢ Vit
m
vm,t (3
Z bimXime + Z StijmYijme + Slkme = Ce mt (3)
i ij
Xjmt < UBjme X Zt v j,m,t (4)
YVjjmt =0 v j,m,t (5)
zaimt=1 vmt=1,..,T+ 1(6)
i
Aigpmt = 1 vm,t=1(7)
xﬁnt < UBjmtajmt V]' m,t (8)
ijmt < UBjmt@jm,t+1 Vj,m,t (9)
ijmt + xﬁn,tﬂ = Ml i1 v j,m,t (10)
Ximt — xﬁnt - ijmt = mlj (ijt — Ajmt — ajm,t+1) Vj, m,t (11)
Viom,t (12
Aime + Zyjimt = Zimt Lm,t (12)

J

vim,t (13
Z Yijmt T Aimt+1 = Zime (13)
Jj

Aime < Vijme Vi, j,kmt (14)
Zimt = Zimt Vi,m,t (15)
Zime < ZUBpmzint: Vimt (16)
k bi Vkmt (17
Apme t Z Aikeme = Zkmt )
i
k k Vki+kmt (18
Aime + Z Ajime = Z jjmt (18)
j J
A ime = V k,j,m,t (19)
Xime» lies Bje» SUkne xﬁnt, ijmt Positive variables
Zimt» Vijmt Integer variables

k bin . .
Ajjme» Ximtr Zimt Binary variables

Appendix C: MLOV-PM model
Minimise ¥;jme SCijm Vijme t 2it Pie lie + it Gie Bie (1)



lit—1 — Bje—1 + Z Xjme = lje + Bje = dj¢ Vit
m

vm,t (3
Z bimXime + Z StijmYijme + Sm,t—l — St + Slkyme = Coe m,t (3)
i i
Vjimt
Ximt < UBjmt X (Zjme — z OLS;jmt) J,m
l. )
Yjjmt =0 Yj,m,t
©)
Zflimt=1 vV mt=1,..T+1(6)
i
Xjyme = 1 Vmt=1(7)
Xime < UBjmiQjme v j,m,t (8)
ijmt < UBjt (@41 — Z OLS;jm¢) Vimt ()
i
ijmt + xﬁn,t+1 = mliQjm 41 Vjm,t (10)
Xime — xﬁnt - ijmt = ml (Zime — Ame — Xjme+1) Vimt (11)
Viom,t (12
Aime + zyjimt = Zimt Lm,t (12)
J
Vim,t (13
zyijmt t Aimt+1 = Zime Lm,t (13)
J
At < Vijme Vijkmt (14)
Zimt 2 Zim; Vimt (15)
Zime < ZUBimZpt Vimt (16)
i \4 1
Apmt + z agckmt = leg‘ll‘;llt k' m,t ( 7)
i
Vki+kmt (18
Aime + z ajkimt = Z afjmt : m ( )
J J
a',ﬁjmt=0 Vk,jmt(19)
Y m,t (20
St < 2 StijmOLS; jme m,t (20)
ij
Vim,t (21
ZOLSjimt < Qimt+1 Lm,t (21)
J
OLSijme < Yijme Vi,jmt (22)
Ximts Lits Bjts Sme» Skt xj";nt, x]-Lmt Positive variables
Zimt» Vijmt Integer variables
afjmt, Aime» Z%’;, OLS;jme Binary variables



Appendix D: ML-FFL model
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