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ABSTRACT 16 

Lameness is a major issue in dairy herds and its early and automated detection offers animal 17 

welfare benefits together with high potential commercial savings for farmers. Current 18 

advancements in automated detection have not achieved a sensitive measure for classifying 19 

early lameness. A novel proxy for lameness using 3-dimensional (3D) depth video data to 20 

analyse the animal’s gait asymmetry is introduced. This dynamic proxy is derived from the 21 

height variations in the hip joint during walking. The video capture setup is completely covert 22 

and it facilitates an automated process. The animals are recorded using an overhead 3D depth 23 

camera as they walk freely in single file after the milking session. A 3D depth image of the 24 

cow’s body is used to automatically track key regions such as the hooks and the spine. The 25 

height movements are calculated from these regions to form the locomotion signals of this 26 

study, which are analysed using a Hilbert transform. Our results using a 1-5 locomotion 27 

scoring (LS) system on 22 Holstein Friesian dairy cows, a threshold could be identified 28 

between LS 1 and 2 (and above). This boundary is important as it represents the earliest point 29 

in time at which a cow is considered lame, and its early detection could improve intervention 30 

outcome thereby minimising losses and reducing animal suffering. Using a linear Support 31 

Vector Machine (SVM) binary classification model, the threshold achieved an accuracy of 32 

95.7% with a 100% sensitivity (detecting lame cows) and 75% specificity (detecting non-33 

lame cows).  34 

Key words: 3D computer vision, early lameness detection, gait asymmetry, locomotion 35 
analysis   36 
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1. Introduction 37 

Lameness in dairy cows is acknowledged as being one of the most serious problems that 38 

affect an animal's welfare and thus, farm productivity (De Mol et al., 2013). Willshire & Bell 39 

(2009) reported that lameness in the UK’s national herd accounted for financial losses of up 40 

to £127.8 million in the year 2009. Regardless of its causes, early detection and prompt 41 

treatment minimises losses and reduces animal suffering (Cha, Hertl, Bar, & Gröhn, 2010; 42 

Leach, Tisdall, Bell, Main, & Green, 2012). Until now, measurement and analysis of weight 43 

distribution or walking pattern as the animal walks on force plates or the use of body sensors 44 

(accelerometers) are the most established conventional gait analysis methods. However, due 45 

to high expense, implementation complexity  (Chapinal, de Passillé, Rushen, & Wagner, 46 

2010; Maertens et al., 2011) and high vulnerability to damage and loss of the recording 47 

equipment while collecting the data; such systems have never been implemented on a large 48 

scale, or on a regular basis, in dairy farming. Automated vision based methods for lameness 49 

detection are in their infancy and are based almost entirely on a single static measurable trait 50 

(i.e. estimating the animal’s back curvature/posture to predict gait soundness, Poursaberi, 51 

Bahr, Pluk, Van Nuffel, & Berckmans, 2010). However, although well established in the 52 

literature, there is unreliability in using back arching, as reported by Poursaberi et al. (2011), 53 

whereby some lame cows do not present an arched back, while conversely some healthy 54 

cows do show an arched back. Both Viazzi et al. (2014) and Van Hertem et al. (2014) 55 

developed automated lameness detection systems based on the measurements of the back 56 

arch, using 3-dimensional (3D) video. Although such systems are applicable for commercial 57 

farm implementations, no published research has shown a method that focused on early 58 

lameness classification that is suitable for daily use on a commercial farm, as we present 59 

here. 60 

2.0 Method 61 
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Because many quadrupeds (including cows) walk in a symmetrical manner, gait symmetry 62 

has been the principal indicator in many conventional methods. However, it has been 63 

reported that gait asymmetry may occur for reasons other than lameness (e.g. udder fill; 64 

Flower, Sanderson, & Weary (2006) or a slippery floor causing the cows to take short and 65 

careful steps; van der Tol et al. (2005)). For similar reasons, a levelled concrete surface (with 66 

micro-grooves to improve the grip as the animals walk) was used while recording the data 67 

after the milking session. However, from a wider perspective, monitoring locomotion is 68 

generally useful for the farmers because it may reveal other well-being issues (Van Nuffel et 69 

al., 2015) - e.g. mastitis; Van Nuffel et al. (2015) or sole ulcers; Flower et al. (2006).  70 

In a symmetrical (healthy) gait, the animal’s feet are expected to be on the ground for the 71 

same amount of time and the footfalls within each pair of legs are evenly spaced in time. As a 72 

consequence, the left and right side of the body perform the same motion half a stride out of 73 

phase (Hildebrand et al., 1985; Remy, Buffinton, & Siegwart, 2009). However, in the case of 74 

a lame animal, the limbs tend to exhibit a certain asymmetry as the animal walks, which 75 

could be used as an indicator for a certain lameness stage. In dairy cows it is known that 76 

lameness significantly worsens the vertical symmetry (i.e. symmetry of the weight 77 

distribution between the right and left legs) as the animals walk on force plates (Thorup et al., 78 

2014). Thus, the contralateral limb movements of lame animals are expected to show 79 

asymmetry as the animal walks. However, prior investigations have mainly focused on 80 

measuring the kinematic differences of these limbs on force plates, which is -as mentioned 81 

earlier- a complex method to implement on commercial dairy farms. Instead, by using 3D 82 

video from the top of the herd, here we investigate the height movement variations of the hip 83 

joints to study gait asymmetry. 84 

It is hypothesized that a dynamic measure over a full gait cycle, observing the regular 85 

movements of each footfall, will assist in detecting early stage lameness. Standard 2-86 
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dimensional (2D) video imagery when used in this way presents numerous problems which 87 

are difficult to overcome (Van Hertem et al., 2014). These include segmentation of the 88 

foreground from the background, occlusions and sensitivity to lighting variance. Recent 89 

advances in acquisition technology have allowed deployment of cheap and accurate 3D 90 

sensors, capable of video recording, which helps overcome those issues associated with 2D 91 

capture, and assists in the extraction of robust features. By incorporating Hildebrand’s work 92 

on locomotion and results from force plate methods, a novel extrapolation from 3D video 93 

data was developed to extract motion in terms of height variation symmetry, thus, objectively 94 

analysing an animal's locomotion.  95 

From an implementation perspective, dairy farmers tend to prefer any system offering the 96 

least possible interference in the daily routine of the herd. Farmers also prefer a capturing 97 

setup where minimal human involvement is required to achieve maximum accuracy and this 98 

points to the need for an automated mechanism. One of the major subjectivity concerns in 99 

many conventional and manual methods is the presence of a human observer, which is known 100 

to affect the cow’s behaviour (Breuer, Hemsworth, Barnett, Matthews, & Coleman, 2000; 101 

Grandin, 2010; Reader, Green, Kaler, Mason, & Green, 2011). The accuracy of the lameness 102 

scoring is highly contingent on the animal’s behaviour, which in cows is liable to variation in 103 

the presence of observers. Therefore, in order to be able to study pain-related behaviour in the 104 

most reliable manner; the data capturing system has to be completely covert (human 105 

involvement during the procedure should not be required). By using an overhead view (i.e. 106 

from above the herd), our capturing system is completely covert, thus, enabling objective 107 

results to be obtained. Our approach also facilitates full automation and provides a hardware 108 

configuration which is less prone to damage and the presence of complex and noisy image 109 

backgrounds.  110 
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The locomotion data presented here is an initial part of a large ongoing data collection project 111 

at Bridge Farm, Glastonbury, United Kingdom, where more than 200 Holstein Friesian dairy 112 

cows are housed. All cows were milked twice a day. A custom race has been built next to the 113 

milking parlour which forces the cows to walk unconstrained in single file underneath the 3D 114 

camera. This race was in regular use as an exit from the milking parlour for several months to 115 

allow the animals to adapt to the changes, before collecting the data.  The data consists of 23 116 

3D recorded sessions from 22 cows, using a standard depth-sensor camera (ASUS Xtion PRO 117 

LIVE, ASUSTeK Computer Inc., Taipei, Taiwan). All cows have visible brand numbers and 118 

are tagged with standard Half Duplex (HDX) electronic tags for identification purposes. A 119 

Radio Frequency Identification (RFID) reader (Agrident ASR700 Controller, Agrident B.V., 120 

Meterik, Limburg, Netherlands) was used to read the tags as the cows walked in the race. A 121 

single camera was used through-out the entire data collection to capture the animals from an 122 

overhead position. Both the camera and the RFID reader were connected to a computer 123 

(Windows 7, i5, 8GB RAM). As we are studying a sensitive lameness stage, it is important 124 

that we observe as many possible cycles of the locomotion’s resulting signals. Following 125 

several tests at different Field of Views (FOVs); the 3D data presented here is captured at a 126 

height of 3.69 m off the ground. This was the maximum height achieved to acquire as many 127 

footfalls as possible without causing heavy distortions in the depth data (pixel resolution at 128 

this setting is 3.6 mm × 3.6 mm). The horizontal FOV was around 6 m. This has allowed the 129 

capture of at least two full gait cycles i.e. eight footfalls on average. The average acquired 130 

frames for one cow’s locomotion was 70. This also means that we were able to perform the 131 

analysis as the cow’s body leaves the frame (i.e. when the hooks are still visible). The camera 132 

operated at 30 frames s-1. 133 
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To provide conventional manual scoring, an experienced local observer has scored each cow 134 

using the locomotion/lameness score (LS) system provided by (Sprecher, Hostetler, & 135 

Kaneene, 1997). 136 

3. Results & Discussion 137 

As presented in Table 1, the animals were scored in an open field as they walked freely from 138 

the cow race. This was performed immediately after (~5-7 min) the evening milking session 139 

when the 3D recordings were made, in order to minimise any variations that might occur 140 

given a longer time frame (e.g. injury). At the time of scoring, two additional standard 2D 141 

digital video cameras (one looking to the side, the other looking at the rear of the animals) 142 

were used to assist with reviewing the manual locomotion scores and identifying the cows 143 

using the brand number. The observer watched the recorded 2D videos and gave a final score 144 

for each cow with a clear brand number. The data was organised manually; the desired 145 

(manually scored with a brand number) cows were located in the RFID logs, and the 146 

timestamps of these readings were then used to locate the cows in the 3D recorded data. Each 147 

cow used in this data has been scored at least three times over the period of three weeks (with 148 

the exception of the severely lame cows i.e. LS 4 and 5 in Table 1), from the 20th May 2015 149 

to the 2nd June 2015. Because early lameness is being investigated, only cows that repeatedly 150 

received manual scores of either 1, 2 or 3 across the three sessions were used. This provides a 151 

reliable data-set of cows scored at LS 1, 2 and 3 that can be used confidently to establish a 152 

sensitive early lameness threshold. The scored cows were extracted from the recorded 3D 153 

data as separate ONI files (labelled with the unique brand number), each cow's locomotion 154 

represents a single ONI file which was then processed in MATLAB (R2015b, The 155 

MathWorks Inc., MA, USA). 156 
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The pre-processing steps of the 3D data involve subtracting the background (an image of the 157 

cow race when there is no cow present) and applying a height threshold to eliminate 158 

surrounding object pixels and discarding extraneous information by filtering-out the noisy 159 

areas from the subtracted depth image. The resulting image was then smoothed using a 160 

symmetric Gaussian low-pass filter to remove quantization artefacts in the raw image. This 161 

processed 3D image is used to extract the height measurements from key Regions of Interests 162 

(ROIs), to compare the changes in the 3D surface as the cow progresses under the camera. 163 

Our algorithm is able to extract high curvedness (convex) features of the animal’s hooks and 164 

spine from the processed 3D image, by applying the curvedness measure as first proposed by 165 

Koenderink & van Doorn (1992):  166 

2 2
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( , ) 2
x y x y
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C

C
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where C is the curvedness measure of the 3D shape. It represents the normalised magnitude 170 

of the combined principle curvatures ( 1 2k k+ ). The principal curvatures (in differential 171 

geometry) are calculated from the Gaussian and mean curvatures of the surface. They 172 

correspond to the orthogonal axes which reflect a point on the object’s surface. By 173 

thresholding the curvedness, the most prominent convex features (which corresponds to 174 

peaks) are visible - as shown in Fig. 1. The scapula or shoulders are very difficult to extract at 175 

the current camera height. However, we found that the peaks were a reliable feature to extract 176 

the hooks in order to track the hind limb movements. These peaks are typically represented 177 

by a region of 10-20 pixels allowing the local maxima of this region to be located. For 178 
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increased robustness to noise, the algorithm calculated a weighted average using a 2D 179 

Gaussian convolution window over each thresholded region to find the pixel with the highest 180 

curvedness value. Thus, we are able to robustly locate the hooks’ ROIs by tracking the 181 

outermost peak points as the animal walks. Using this approach, it was found that the spine 182 

represents the largest connected object given in a binary converted image of the curvedness 183 

threshold. Figure 1 illustrates the image processing pipeline described above. This process 184 

was repeated for each frame in the data. An overall detection rate (number of successfully 185 

processed frames where all features were correctly tracked /all frames) of 85.7% on the first 186 

attempt for the automated features extraction algorithm, for both the hooks and the spine 187 

features. All frames were manually observed to ensure correct features extraction. An 188 

interactive tool for manual intervention allowed the correction of any obvious misdetections, 189 

in order to correct ROIs for accurate feature points. This test allowed us to identify some of 190 

the most common problems in our data (i.e. changes in the spine’s curvedness which leads to 191 

a separated spine ROI or the pins been identified as hooks when the whole body alignment 192 

changes). Upon modifying the algorithm, a better automatic performance is achieved for 193 

hooks and spine features (96.1% and 100%, respectively). 194 

A dynamic measure of height changes for each ROI was applied by calculating the median 195 

and maximum variations. It was found that maximum height variations were more suitable 196 

for this analysis as they are more sensitive to small changes, especially in cows with early 197 

stage lameness. These measures are normalised by removing the global locomotion variations 198 

from the surface of the cow. A middle ROI (near the sacrum bone) was located between the 199 

right and left hook to remove the effect of the cow’s overall movement towards and away 200 

from the camera by subtracting the sacrum ROI variations from both hooks’ ROIs. The 201 

resulting signals were then filtered using a moving-average digital filter to remove noise 202 

(mainly due to the high distance of the camera position) and a sine wave was fitted (using a 203 
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least-squares cost function) to the mean in each estimated period. In a healthy cow, as shown 204 

in Fig. 2, the right-left locomotion signals may not start equally out of phase but shift to 205 

become equally out of phase for the right-left hooks (i.e. the movements of the right-left hind 206 

limbs) at a certain time in the locomotion, representing a full cycle of footfalls. This is mainly 207 

because the animals enter the FOV freely, i.e. the starting footfall (limb) is unknown and it 208 

varies across the data. Because of their lateral sequenced gait (hind-left, fore-right, hind-right, 209 

fore-left) as they walk, the phase difference given one full cycle between the out of phase 210 

maxima and minima peaks (from the locomotion signals) usefully indicates how symmetrical 211 

the height variations are. Thus, it is a key proxy that can be used to track, measure and rank 212 

the symmetry between the movement of the right and left hind limbs and to subsequently, 213 

establish distinguished patterns between locomotion scores. Because of the nature of these 214 

sinusoidal signals, i.e. single cycle sinusoids (mono-components), the Hilbert transform is a 215 

suitable technique to estimate the instantaneous varied frequency between right and left 216 

signals. This transform converts the locomotion signals from the time-domain into analytic 217 

signals in which the phase and magnitude of the original data can be analysed directly. Here 218 

the magnitude and phase will change in synchronization with the original sinusoidal signal 219 

and the differences between right and left can be calculated. Figure 2 shows the signal 220 

processing steps of this study, as described above. Figure 3 shows examples of various 221 

locomotion signals from our data for LS 1-3. The difference in the amplitude changes are 222 

noticeably in lame cows, indicating either hook has moved higher/lower as compared to the 223 

other. This supports the previous findings, that cows standing with discomfort in one limb, 224 

remove weight from that limb and shift it primarily to the contralateral limb (Neveux, Weary, 225 

Rushen, von Keyserlingk, & de Passillé, 2006), resulting in significantly higher height 226 

variations (maxima peak) in the contralateral limb as compared to the lame limb (minima 227 
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peak) in a given cycle. Thus, a smaller phase difference is observed in a lame as compared to 228 

a healthy cow.  229 

The resulting locomotion signals of this study correlate well with the manual locomotion 230 

scores which are heavily reliant on the limb movements, even though the limbs themselves 231 

are not visible from the view point of the 3D camera. Subsequently, we were able to extract a 232 

novel proxy by measuring the resulting symmetry from the height movements as we are 233 

closely observing the dynamics of each hind limb across all frames, as the animals walk 234 

freely. This has allowed us to anticipate objective lameness trends at early stages.  235 

The symmetry patterns derived from the phase difference of close locomotion scores i.e. LS 236 

1, 2 and 3 are noticeably changing across the majority of the examined data. Our results in 237 

Table 1 show a clear difference in the overall mean phase difference of the right-left signals 238 

in LS 1, 2 and 3. Here lameness reduces the overall mean difference due to uneven peaks in 239 

the locomotion signals resulting from asymmetric height movements. However, in severe 240 

lameness scores, due to very limited data (only two cows in locomotion scores 4 and 5), 241 

although the mean differences sit within the early lameness threshold, they fall outside the 242 

trend observed in scores when more data and sessions are available. It is important to mention 243 

that collecting more data in LS 4 and 5 is very difficult. 244 

Table 1 Manual and algorithm locomotion scores.   245 

 Manual locomotion scores1  Algorithm scores 

Cows2  N3 Locomotion Score  Mean phase difference (SD) Significance4 

4  3 1  0.1520 (0.0614) - 

7  3 2  0.0785 (0.0516) Y 

10  3 3  0.0493 (0.0361) Y 

2 
 

1 
4  0.0507 (0.0486) Y 

 5  0.0523 (0.0386) Y 
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1 Scored manually by the in-house observer using Sprecher et al. (1997) 1-5 scoring method. 

2 Number of cows in each LS. 

3 Number of times each cow is manually scored. 

4 Y=Yes indicating a significance difference of less than P<0.05 from LS1, using a Student t-test. 
 

However, this does not affect the main purpose of this study, as we are able to observe a 246 

sensitive trend for early lameness. A significant statistical difference is shown using one-way 247 

ANOVA between all five groups (P<0.05). Student t-tests (unpaired two-sample t-tests, 248 

given unknown variance) reveal a significant difference between the data in LS 1 and each 249 

other level, as shown in Table 1.  The same test shows a significant difference for LS 1 vs LS 250 

2 and 3 combined, LS1 vs all other levels (P < 0.0004, P < 0.000009 respectively). Thus, a 251 

sensitive pattern was observed in the mean phase differences as the lameness level increases. 252 

We suggest a threshold from this data at a mean phase difference of 0.09 (by subtracting the 253 

full standard deviation from the mean phase difference of LS 1). However, this could result in 254 

a small overlap between LS 1 and 2 which could be further refined given more data. At this 255 

early stage lameness threshold (i.e. LS 1 vs. all lameness levels), we used a supervised 256 

learning (liner SVM) classification model to assess the system’s sensitivity (100%), 257 

specificity (75%) and overall accuracy (95.7%). The sensitivity represents the ability to detect 258 

lame cows from LS 2 to 5, and the specificity represents the ability to detect the non-lame 259 

cows in LS 1. The binary classification model’s confusion matrix is shown in Table 2.  260 

Table 2 Confusion matrix for the early lameness threshold for all cows using a linear SVM classification. This strict binary 261 
classification is established between LS 1 (Healthy) and LS 2, 3, 4 and 5 (Lame). An accuracy of 0.95 is achieved using this 262 
classification at a very sensitive lameness stage, n =23.  263 

  True class 
  Lame Healthy 
Predicted class Lame 19  
 Healthy 1 3 
    

4. Conclusions: 264 

Preliminary results of a non-intrusive 3D video data capturing setup have been presented that 265 

allow regular daily data capture on a large scale in commercial dairy farms. Our algorithm is 266 
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able to detect lameness trends at early stages. The extracted novel proxy from the 3D data is a 267 

dynamic symmetry measure which reflects the locomotion soundness by tracking the 268 

movements of the spine and hind limbs. The presented results show patterns that enable us to 269 

distinguish between close locomotion scores; i.e. LS 1, 2 and 3 on 22 dairy cows. Based on 270 

these results, we are able to identify an early lameness threshold on a 1-5 scoring system. We 271 

believe that our study strides towards an accurate, automated and objective locomotion 272 

assessment without the need for human involvement. One of the major advantages of our 273 

system is that we are able to capture data after each milking session on a daily basis, thus, 274 

small developing lameness trends could be incorporated and detected potentially even before 275 

a human observer could. Future work will focus on improving the robustness of the 276 

algorithms using further captured data and by analysing the individual cow’s variation.  277 

  278 
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Fig. 1 (greyscale) 336 
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Fig. 1 (online color)  337 
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Fig. 2 338 
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Fig. 3  340 
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Fig. 1. Automated 3D depth image processing pipeline and features extraction for the hooks 341 

and the spine from a single 3D cow image. The first image is a raw depth image from the 342 

camera in the race; followed by the same image with the background removed, height 343 

threshold applied and smoothed to prevent limiting any curvature information; followed by 344 

the curvedness data calculation image with high peaks shown; followed by a binary 345 

converted image of the curvedness threshold to track the spine; followed by the features 346 

(ROIs) selection image. The distinctly curved (highest convex regions i.e. spine, hooks and 347 

pins) are clearly visible. This data is used to extract the ROIs in each frame.  348 

  349 

Fig. 2. Locomotion signals and their Hilbert transform derived from height variation 350 

measurements. This figure shows the signal processing steps in a descending order. The 351 

measurements are taken at 30 frames per second. The first figure represents raw maximum 352 

depth changes in cm in each ROI across all frames, right hook ROI (solid), left hook ROI 353 

(dashed), sacrum ROI (x-dotted); followed by normalized measurements for the right and left 354 

hooks ROIs after subtracting the sacrum ROI measurements from each hook ROI; followed 355 

by a filtered, smoothed sinusoidal fitted signals which represent the locomotion signals of this 356 

study; followed by the wrapped Hilbert transform (*-dotted) for the difference between the 357 

right hook ROI and the left hook ROI. 358 

 359 

Fig. 3. Examples of filtered sinusoidal locomotion signals for three different lameness scores. 360 

Right hook ROI (solid) and left hook ROI (dashed). The left column represents cows with 361 

locomotion score 1 (healthy); the middle column represents cows with locomotion score 2; 362 

the right column represents cows with locomotion score 3. All locomotion scores presented in 363 

this figure are according to Sprecher et al. (1997) scoring system. 364 


