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The slime mould Physarum polycephalum is known to construct protoplasmic transport
networks which approximate proximity graphs by foraging for nutrients during its plasmodial
life cycle stage. In these networks, nodes are represented by nutrients and edges are represented
by protoplasmic tubes. These networks have been shown to be efficient in terms of length and
resilience of the overall network to random damage. However relatively little research has
been performed in the potential for Physarum transport networks to approximate the overall
shape of a dataset. In this paper we distinguish between connectivity and shape of a planar
point dataset and demonstrate, using scoping experiments with plasmodia of P. polycephalum
and a multi-agent model of the organism, how we can generate representations of the external
and internal shapes of a set of points. As with proximity graphs formed by P. polycephalum,
the behaviour of the plasmodium (real and model) is mediated by environmental stimuli.
We further explore potential morphological computation approaches with the multi-agent
model, presenting methods which approximate the Convex Hull and the Concave Hull. We
demonstrate how a growth parameter in the model can be used to transition between Convex
and Concave Hulls. These results suggest novel mechanisms of morphological computation
mediated by environmental stimuli.

Keywords: Physarum polycephalum, morphological adaptation, unconventional
computation, convex hull, concave hull

1. Introduction

Slime mould Physarum polycephalum is a single-celled organism which is capable of
remarkable biological and computational feats, despite possessing no nervous sys-
tem, skeleton or organised musculature. The study of the computational potential
of the Physarum plasmodium was initiated by Nakagaki et al. [1] who found that
the plasmodium could solve simple maze puzzles. This research has been extended
and the plasmodium has demonstrated its performance in, for example, path plan-
ning and plane division problems [2], spanning trees and proximity graphs [3], [4],
simple memory effects [5], the implementation of individual logic gates [6] and
Physarum inspired models of simple adding circuits [7].

The plasmodium of slime mould is amorphous in shape, ranging from the micro-
scopic scale to up to over a square metre in size. It is a giant multi-nucleate syn-
cytium comprised of a sponge-like actomyosin complex co-occurring in two physical
phases. The gel phase is a dense matrix subject to spontaneous contraction and
relaxation, under the influence of changing concentrations of intracellular chemi-
cals. The protoplasmic sol phase is transported through the plasmodium by the
force generated by the oscillatory contractions within the gel matrix. Protoplas-
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mic flux, and thus the behaviour of the organism, is affected by local changes in
temperature, space availability, chemoattractant stimuli and illumination [8], [9],
[10], [11]. The Physarum plasmodium can thus be regarded as a complex functional
material capable of both sensory and motor behaviour. Indeed Physarum has been
described as a membrane bound reaction-diffusion system in reference to both the
complex interactions within the plasmodium and the rich computational potential
afforded by its material properties [12].

Computational geometry problems tackle the grouping or partitioning of points
in the plane or in higher dimensions. Because of the lack of supportive tissue,
the plasmodium typically extends along the space of the surface on which it lives,
and Physarum may be considered as a 2D organism and its nutrient sources can
be considered as a coarse representation of points on the plane. Conversely, the
networks formed by growth and adaptation of the organism can be considered
as edges in the plane. The efficiency of proximity graphs formed by Physarum
is a trade-off between minimum distance (or minimum amount of material) and
resilience to random disconnections [13]. However, although the networks connect
all of the nutrient sources, they do not group them, or provide a representation of
the space or shape in which they reside.

Relatively little research has been performed in assessing the behaviour of
Physarum on representing the area or shape of a set of points. The plasmodium
was previously used to perform division of the plane in approximations of Voronoi
diagrams. The Voronoi diagram of a set of n points in the plane is the subdivision
of the plane into n cells so that every location within each cell is closest to the gen-
erating point within that cell. Conversely the bisectors forming the diagram are
equidistant from the points between them. Two different methods have been pro-
posed. The first method used avoidance of nodes represented by repellent sources
[2, 14] and the resultant pattern of plasmodial veins approximated the Voronoi
bisectors. The second method utilised the merging of growth fronts of individual
plasmodia to represent the Voronoi bisectors [15] at regions where fusion of the
plasmodia occurred. A multi-agent model of Physarum was used to model both
methods of Voronoi diagram approximation and was found to generate unusual
hybrid graphs which combined plane division (grouping and division of points)
with internally minimal connections between the points [16].

Although the Voronoi diagram can be considered as representing area (dividing
a set of points), it does not represent the overall shape or border of a set of points.
A method of representing the overall shape was described in [17] using stimuli
which had a long-range attractant effect and a short-range repellent effect. By
inoculating the plasmodium away from the set of points the organism grew towards
the attractants but then, repelled at short range, traversed the periphery of the
stimuli, approximating the Concave Hull of the point set.

Why does Physarum not naturally represent the shape of its environment? One
reason may be that the organism appears to behave in a manner which initially
optimises (maximises) area exploration and which later adapts its network by op-
timising (minimising) network distance and network resiliency to damage. When
inoculating the plasmodium in a shape pattern, the organism will quickly form
networks, breaking up the solid pattern. This is an efficient strategy in terms of
minimising material and energy resources but, from a computational perspective,
is not useful if we require a shape representation. By using a multi-agent model
of Physarum which behaves as an adaptive virtual material is is possible to slow
the adaptation of the (virtual) plasmodium so that, as it adapts, it retains its
solid shape. This was used in a simple method so approximate a combinatorial
optimisation problem by shrinkage [18]. During this shrinkage process a transition
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continuum was seen from the complete coverage of the data set (the initial inocu-
lation pattern) down to the Steiner Minimum Tree. This suggests the possibility of
using morphological adaptation to compute the area occupied by, and the general
shape of, a set of points.

In this paper we examine potential mechanisms, mediated by environmental stim-
uli, to represent the area and shape of a set of points using Physarum and its multi-
agent model. We begin by assessing the possibility of confining the plasmodium
to represent shape using attractants and light illumination. We reproduce these
results in a multi-agent model and then extend the modelling approach to examine
different methods of approximating the Convex Hull and the Concave Hull. We
devise a parameter which can be used to control the concavity of a growing model
plasmodium.

2. Experimental Results

It is known that the growth of P. polycephalum is affected by stimuli within its
environment. These stimuli include the presence and distribution pattern of chemo-
attractants within its local environment (to which the organism grows towards)
and exposure to hazards such as light irradiation (which the organism avoids).
The growth patterns of P. polycephalum are, however, difficult to control with any
accuracy. Can attractants and light irradiation be used to ‘persuade’ the organism
to conform to a particular shape?

In Fig. 1, a P. polycephalum plasmodium was inoculated onto a 2% non-nutrient
agar plate upon which an array of chemo-attractants (oat flakes) was arranged in
the shape of the letter ‘H’ (full details of plasmodial culture technique are included
in appendix 1). On the lid of the plate, an H-shaped cardboard mask was present
that completely covered the oats. The plasmodium was then left to propagate for
approximately 3 days in a light-proof box in the presence of a bright white light
(a 7W array of 48 5500K ‘daylight white’ LEDs, 156cd (Lighting Ever, UK)),
causing all portions of the plate except the area under the cardboard mask to be
irradiated. The organism was observed to grow towards and subsequently connect
the oat flakes: the mask mostly was found to prevent the organism from foraging
into illuminated areas and the subsequent plasmodial network approximated the
‘H’ shape (Fig. 1h).

In the corresponding control experiment, illumination was removed to assess
whether the attractant stimuli alone could confine the plasmodium to the shape.
As Fig. 2 demonstrates, the lack of illumination resulted in no representation of
the ‘H’ pattern, even though the oat flakes retained this pattern. The final con-
figuration shows almost uniform coverage of the arena, regardless of the oat flake
configuration (Fig. 2h, suggesting that the hazardous stimulus is important for
shape representation).

In further studies using an oat/mask configuration in the shape of the letter ‘C’
(Fig. 3), it was found that, once again, experimental plasmodia approximate the
shape of the nutrient array when a corresponding protective mask is present. Having
fully occupied the space under the mask, however, the plasmodium was observed
to extend a growth front to connect opposite sides of the ‘C’ shape. This can be
seen in the superimposed and enhanced collective representation of the plasmodial
pattern shown in Fig. 3g (for details of image enhancement, see appendix 2). The
final pattern of the network approximates the convex hull for this point set (Fig.
3h).

It was found that the presence of an illumination mask was necessary to confine
the plasmodium within a shape. How important is the contribution of the attractant
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(a) 0h (b) 4h (c) 12h

(d) 25h (e) 36h (f) 55h

Figure 1. Environmentally mediated confinement of plasmodium for shape representation. a) inoculation
of P. polycephalum (bottom right) on an agar plate loaded with oat flakes patterned in letter ‘H’ configu-
ration. Cardboard shape indicates region masked from light illumination, b-f) propagation of plasmodium
connects oat flakes whilst tending to avoid illuminated regions outside the mask.

(a) 0h (b) 4h (c) 22h

(d) 25h (e) 36h (f) 55h

Figure 2. Removal of illumination stimuli prevents confinement to shape. a) inoculation of P. polycephalum
on oat flakes patterned in letter ‘H’ configuration. Control experiment with no illumination stimulus, b-f)
propagation of plasmodium connects oat flakes but does not avoid regions outside the cardboard mask.
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(a) 0h (b) 31h (c) 45h (d) 51h

(e) 54h (f) 57h (g) 69h, filtered (h) 69h

Figure 3. Environmentally mediated confinement of plasmodium for shape representation. a) inoculation
of P. polycephalum on oat flakes patterned in letter ‘C’ configuration. Cardboard shape indicates region
masked from light illumination, b-e) propagation of plasmodium connects oat flakes whilst tending to
avoid illuminated regions outside the mask, f-h) after reaching the end of the shape a protoplasmic tube is
extended to connect the opposite side of the shape, approximating the Convex Hull of the shape (overlaid),
g) view of superimposed plasmodial network subjected to image enhancement (see text for details) indicates
that the majority of the network is confined by the illumination mask within the shape.

array in comparison to the mask? To answer this, the ‘C’ shape was projected onto
plates with an illumination mask but presented the array of attractant stimuli not
in the shape, but as a regularly spaced (10×10mm apart) 2D array (Fig. 4a). When
inoculated within this array, the plasmodium was found to occasionally migrate
towards attractants outside the mask (Fig. 4c, for example) but the majority of the
plasmodial network was confined within the unilluminated region. The importance
of the illumination mask is again emphasised by the uniform coverage of the 2D
attractant array when the illumination mask pattern is not presented (Fig. 4h).
The results presented here are highly repeatable.

3. Modelling Results

We used the multi-agent approach introduced in [19]. Agents sense the concen-
tration of a hypothetical ‘chemical’ in a 2D lattice, orient themselves towards the
locally strongest source and deposit the same chemical during forward movement.
The agent population spontaneously forms emergent transport networks which
undergo complex evolution, exhibiting minimisation and cohesion effects. The dy-
namical network patterns were found to reproduce a wide range of Turing-type
reaction-diffusion patterning [20]. External stimuli by nutrients and repellents are
represented by projecting positively weighted and negatively weighted values re-
spectively into the lattice and the network evolution is constrained by the dis-
tribution of nutrients and repellents. Network evolution is affected by nutrient
distribution, nutrient concentration and repellent placement. A full description of
the model and parameters is given in appendix 3.
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(a) 0h (b) 6h (c) 26h (d) 42h

(e) 48h (f) 65h (g) 72h, filtered (h) control, 65h

Figure 4. Environmentally mediated confinement of plasmodium for shape representation. a) inoculation
of P. polycephalum on oat flakes arranged in a regular 2D array. Cardboard shape indicates shaped region
masked from light illumination, b-f) propagation of plasmodium connects oat flakes whilst tending to
avoid illuminated regions outside the mask, g) superimposed plasmodium networks subjected to image
enhancement (see text for details) indicating that the majority of the the network is confined within the
boundaries of the mask, h) control experiment without illumination shows uniform growth within the array
and no representation of shape.

3.1 Experimental Validation

The model was initially used to replicate the experimental results. We patterned
a set of attractant stimuli in the lattice in the ‘H’ shape as used in the previous
experiment and inoculated a small population at a single stimulus site. The model
was run with simulated light irradiation and again without. The results showed that
the simulated light illumination mask was necessary for the model to be mostly
confined within the H pattern (Fig. 5a-d). Without the illumination mask the
population was not confined to the shape and grew a transport network which
occupied the entire arena (Fig. 5e-h).

These model results reproduced the experimental findings. However, the model
differs from the real plasmodium in that it is not affected by adhesion to the slime
matrix, a polysaccharide-rich protective extracellular ‘sheath’. This allows greater
flexibility when using the P. polycephalum plasmodium as an inspiration to develop
spatially represented unconventional computation methods. Using such approaches
we have been able to demonstrate morphological computation of combinatorial
optimisation problems [18], spline curves [21] and the centre-of-mass of a shape
[22]. It should be noted that such methods may not be directly implementable in
real plasmodium due to practical limitations and the unpredictable behaviour of
the organism. However the methods do follow the same basic qualities, namely
simple material behaviour, morphological adaptation and distributed embedded
computation.

3.2 Convex Hull by Material Shrinkage Around Attractants

We begin by devising approaches to approximate the Convex Hull. The Convex
Hull of a set of points is the smallest convex polygon enclosing the set, where all
points are on the boundary or interior of the polygon (Fig. 6a). Classical algorithms
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(a) t=50 (b) t=500 (c) t=1000 (d) t=1500

(e) t=50 (f) t=500 (g) t=1000 (h) t=1500

Figure 5. Approximation of response to ‘H’ pattern of attractants in multi-agent model with and without
simulated light irradiation. a-d) growth of model plasmodium with simulated light irradiation outside mask-
ing area. model plasmodium does not venture outside the masked area, e-h) growth of model plasmodium
without light irradiation mask shows unconstrained growth outside the pattern of attractants.

to generate Convex Hulls are often inspired by intuitively inspired methods, such
as shrink wrapping an elastic band around the set of points, or rotating calipers
around the set of points [23, 24]. Is it possible to approximate the Convex Hull
using emergent transport networks by mimicking a physically inspired method?
To achieve this we initialised a circular ring of virtual plasmodium outside the
set of points (Fig. 6b). Because of the innate minimising behaviour of the particle
networks the population thus represented a ring of deformable elastic material.

This bounding ‘band’ then automatically shrinks to encompass the outer region
of the set of points. The minimising properties of the paths ensure that the edges
of the Hull are straight and convex. There are some practical limitations of this
approach. Firstly, the bounds of the set of points must be known in advance, which
is not always the case in certain Convex Hull problems. Secondly, points which are
inside the final Hull, but close to the ‘band’ (for example near the top edge in
Fig. 6c) may, via diffusion of their projected attractant, attract the band inwards,
forming a concavity. This possibility may be avoided by restricting the nodes to
project stimuli only when they have been directly contacted by particles comprising
the shrinking band. One benefit of this is that the nodes which are actually part
of the final Hull are highlighted (Fig. 6e, the larger nodes).

3.3 Convex Hull by Material Shrinkage Around Repellents

Alternatively, to avoid the potential of attraction to nodes within the Hull bound-
ary, it is possible to have the ‘band’ shrink around the array of points which are
actually repulsive to the particles comprising the band. This is achieved by pro-
jecting a repellent stimulus (for example, a negative value into the lattice) at the
nutrient node locations. The band will still shrink to envelope the nodes but —
because of the repulsion effect — will not actually contact the nodes. This gener-
ates a Convex Hull which encompasses the nodes but does not directly touch them
(Fig. 7) and results in a Hull which slightly overlaps the original dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Approximation of Convex Hull by shrinking band of virtual plasmodium. a) original data set
with Convex Hull (edges). Nodes which are part of the Convex Hull are circled, b-e) A circular band
of virtual plasmodium initialised outside the region of points and shrinks. In this example nodes only
emanate nutrients when touched by virtual plasmodia (see text), f) bounding points of final Convex Hull
are indicated by larger nodes.

Figure 7. Convex Hull via shrinkage around repellent stimuli. Three separate examples are shown. A
band of virtual plasmodium shrinks around the set of points to approximate the Convex Hull. Note a
small peripheral region is indicated because of the repulsive region.

3.4 Convex Hull by Self-organisation

If the boundary of the Hull points is not known in advance then it is possible to
utilise a method which employs both self-organisation and repulsion to approximate
the Hull, as shown in Fig. 8. In this approach the particle population is initialised at
random locations within the lattice (both outside and inside the set of points). The
particles are repelled by the repellent nodes and move away from these regions. If
a particle touches a node it is annihilated and randomly initialised to a new blank
part of the lattice. Over time, the inner region of the lattice becomes depleted of
particles, but in contrast the region outside the set of point (which is further away
from the repulsive nodes) becomes more populous. The increasing strength of the
emerging Convex Hull trail outside the dataset attracts particles from inside the
dataset (because the deposited ‘ring’ of flux is higher in concentration than the
inner region, due to the increased number of particles) and the particles are drawn
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out into this ring. The natural contraction of the outer ring approximates the final
Convex Hull.

Figure 8. Convex Hull via self-organisation within repulsive field. Particle population is initialised ran-
domly in the arena and is repulsed by nodes. Convex Hull emerges at the border and internal connections
gradually weaken.

3.5 Representing the Shape of a Set of Points

The area occupied by, or the ‘shape’ of, a set of points is not as simple to define
as its Convex Hull. It is commonly defined in Geographical Information Systems
(GIS) as the Concave Hull, the minimum region (or footprint [25]) occupied by a
set of points, which cannot, in some cases, be represented correctly by the Convex
Hull [26]. For example, a set of points arranged to form the capital letter ‘C’ would
not be correctly represented by the Convex Hull because the gap in the letter would
be closed (see Fig. 10a).

Attempts to formalise concave bounding representations of a point set were sug-
gested by Edelsbrunner et al. in the definition of α-shapes [27]. The α-shape of a
set of points, P , is an intersection of the complement of all closed discs of radius
1/α that includes no points of P . An α-shape is a Convex Hull when α→∞ (Fig.
9a). When decreasing α, the shapes may shrink, develop holes and become discon-
nected (Fig. 9b-d), collapsing to P when α → 0. A Concave Hull is non-convex
polygon representing area occupied by P . A Concave Hull is a connected α-shape
without holes.

(a) (b) (c) (d)

Figure 9. Examples of α-shape of a set of points as α decreases. Note the limitations of this approach as
the shapes can contain cycles (c) or become disconnected from the data points (d).

3.6 Approximation of the Concave Hull by Shrinkage

The virtual plasmodium approximates the Concave Hull via its innate morpho-
logical adaptation as the population size is slowly reduced. A slow reduction in
population size prevents hole defects forming in the material which would result
in cyclic networks instead of the desired solid shape. The reduction in population
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size may be implemented by either randomly reducing particles at a low probabil-
ity rate or by adjusting the growth and shrinkage parameters to bias adaptation
towards shrinkage whilst maintaining network connectivity.

In the examples shown below the virtual plasmodium is initialised as a large
population (a solid mass) within the confines of a Convex Hull (calculated using
the classical algorithmic method) of a set of points (Fig. 10b). By slowly reducing
the population size (by biasing the parameters towards shrinkage), the virtual
plasmodium adapts its shape as it shrinks. Retention of the mass of particles to
the nodes is ensured by chemoattractant projection and as the the population
continues to reduce, the shape outlined by the population becomes increasingly
concave (Fig. 10c-f).

The graph of changing population size as the virtual plasmodium adapts (Fig. 11)
shows that the population stabilises as the concave shape is adopted. If varying
degrees of concavity are required, the current population size as a fraction of the
original size, or alternatively the rate of population decline, could possibly be used
as a simple parameter to tune the desired concavity.

(a) (b) (c)

(d) (e) (f)

Figure 10. Concave Hull by uniform shrinkage of the virtual plasmodium. (a) Set of points approximating
the shape of letter ‘C’ cannot be intuitively represented by Convex Hull, (b-f) Approximation of concave
hull by gradual shrinkage of the virtual plasmodium, p=18,000, SA 60◦, RA 60◦, SO 7.

If the shrinkage of the initial Convex Hull were to continue beyond the Con-
cave Hull the area would shrink until a network representation (approximating the
Steiner tree) is formed. The shrinkage of the agent population thus represents the
transition between area coverage and network distance.

3.7 Approximating the Concave Hull by Growth

The shrinkage of a solid mass of virtual plasmodium cannot construct α-shapes,
shapes with vacant regions within them, for example as with the letter ‘A’. How-
ever, by initialising the a smaller population size at the node sites themselves, the



December 15, 2014 21:7 The International Journal of Parallel, Emergent and Distributed Systems
IJPED˙paper˙RM

11

Figure 11. Decrease in population size as concave shape formed from a Convex Hull of the point set in
Fig. 10a. Plot shows population size over time. Letters and circles B-E represent population levels in the
corresponding images of Fig. 10(b–e).

individual fragments of ‘plasmodium’ grow and fuse together when each fragment
senses the attractant deposited by a neighbouring fragment, eventually recover-
ing the general shape of the letter (Fig. 12,a-d). Further increasing the population
size (manually or by biasing growth/shrinkage parameters) results in removal of the
internal space and transition from an α-shape to a solid Concave Hull (Fig. 12,e-f).

(a) (b) (c)

(d) (e) (f)

Figure 12. Alternate method of generating α-shape and Concave Hull by merging regions.

One limitation with this approach is that it cannot guarantee that all sites will
fuse. For example, if one node is a significant distance from all other sites it will
not sense the stimulus from more distant sites. This node will thus not fuse with
the remaining masses, resulting in two separate shapes. This limitation can be
overcome by ensuring that the initial inoculation sites are connected in some way.
A suitable candidate pattern is the Minimum Spanning Tree (MST) structure of
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the data points (Fig. 13a and b). This structure guarantees connectivity between
all points and also does not possess any cyclic regions. By inoculating the model
plasmodium on the MST pattern and biasing the growth/shrinkage parameters
towards growth, the model then ‘inflates’ the MST (Fig. 13c-i) and automatically
halts its growth (maintaining a constant population size) as a Concave Hull is
approximated (Fig. 14). To visualise the classical Concave Hull edges from this
pattern we can use the approach described in [18] and traverse the perimeter of
the pattern, constructing the Concave Hull by adding nodes which are located on
the periphery of the shape, yielding the classical (straight lines) structure of the
Concave Hull (Fig. 13i, edges).

(a) original (b) MST (c) t=80

(d) t=320 (e) t=950 (f) t=1500

(g) t=2400 (h) t=6600 (i) t=13000

Figure 13. Growth of Concave Hull from Minimum Spanning Tree. a) points representing the locations
of major cities in People’s Republic of China, b) Minimum Spanning Tree of points connects all points
without cycles, c-i) after inoculating the virtual plasmodium on the Minimum Spanning Tree the virtual
plasmodium grows to approximate the Concave Hull, stabilising its growth automatically (overlaid edges
show classical Concave Hull).

3.8 Transformation Between Convex and Concave Hull

By growing the population from the MST a representation of the Concave Hull
is generated. Can we ‘tune’ the shape of the final blob pattern? In Fig. 15 we
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Figure 14. Increase and stabilisation of population size as concave hull grows from inoculation of the
model plasmodium on the MST. Plot shows population size over time.

assess this on a simple test structure, a set of points arranged in a square. After
inoculation on the MST the population grows and at 5000 steps the blob fills the
region between the bounding points (in this square pattern the Concave Hull is the
same as the Convex Hull). Galton demonstrated that the an optimal descriptor for
the ‘shape’ of a set of points is a conflicting trade-off between minimising area of
the shape and minimising the perimeter of the shape [28]. Can we utilise a single
parameter of the multi-agent model to transition between these two competing
objectives?

By adjusting the value of the Gmax growth parameter it was found that the
concavity of the blob could be adjusted. Fig. 16 shows the effect of different values
of Gmax in five different experiments. As Gmax increased, the concavity reduced
until at Gmax = 25 the final blob was fully convex (maximising the area and
minimising the perimeter). At higher Gmax values the growth was not constrained
by the stimuli from the point sources, causing uncontrolled growth patterns (Fig.
16e). We also found that reducing the value of the Gmax parameter during an
experimental run dynamically reduced the size and area of the blob, transforming
convex shapes back into concave shapes (minimising the area but increasing the
perimeter).

4. Conclusions

The results in this paper demonstrate that it may be possible to utilise slime mould
Physarum polycephalum to approximate the external and internal shape of a set of
points. We showed experimentally how this can be achieved using chemo-attractant
stimuli and masking by light illumination. We reproduced these results in a multi-
agent model of slime mould. We then extended the multi-agent approach to investi-
gate kinaesthetically inspired approaches to problems in which a representation of
shape is needed. This is not seen in the behaviour of P. polycephalum itself, due to
the spontaneous formation of networks and its relatively unpredictable behaviour.
However it is possible to bias the pattern formation mechanisms of the model to
generate different shrinkage behaviours. In the case of the Convex Hull we approx-
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(a) original (b) MST (c) t=100 (d) t=600

(e) t=1000 (f) t=1300 (g) t=1800 (h) t=5000

Figure 15. Tuning concavity of growth from Minimum Spanning Tree. a) 4 points arranged in square
pattern, b) Minimum Spanning Tree of square points used as inoculation sites, c-h) after inoculation on
the Minimum Spanning Tree the virtual plasmodium grows to approximate the Concave Hull.

(a) Gmax = 5 (b) Gmax = 10 (c) Gmax = 20

(d) Gmax = 25 (e) Gmax = 30

Figure 16. Increasing Gmax growth parameter reduces blob concavity. Separate experiments run for 5000
steps, except in the case of ‘e’ which was halted at 3000 steps due to unconstrained growth. a) Gmax = 5,
b) Gmax = 10, c) Gmax = 20, d) Gmax = 25, e) Gmax = 30.

imated the intuitive ‘band’ method but were also able to generate novel methods
based on repulsion and self-organisation. The Concave Hull was approximated by
shrinkage from the Convex Hull and also by growth. Growth-based approximation
of the Concave Hull was initially performed by fusion of individual virtual plas-
modia inoculated on point sources but this can generate disconnected shapes. By
inoculating the population on the MST it was possible to grow fully connected
Concave Hulls and indeed tune the evolution of the Hull concavity by adjusting a
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growth parameter. These results show that the innate material behaviour of the
multi-agent model of P. polycephalum is suitable for spatially represented problems
relating to the definition of shape. In future work we plan to extend the range of
geometry and image processing tasks using this approach.
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5. Appendix 1. Culture conditions for experimental growth of P.
polycephalum

Stock cultures were maintained by cultivating plasmodia of P. polycephalum (strain
HU554×HU560) on 2% non-nutrient agar in the absence of light at room tem-
perature (22±3oC). Porridge oats (Sainsburys, UK) were supplied as a nutrient
substrate and plasmodia were routinely subcultured every 4–5 days, as required.

6. Appendix 2. Image Filtering

Filtered images were produced by manually identifying the RGB values of both
slime mould and underlying cardboard mask, which were then isolated and re-
coloured with a bespoke Processing script. The two separate images were then
overlaid in Adobe Photoshop CS6 with the ‘difference blend’ function. Slime mould
is coloured green, cardboard is coloured grey and uncertainty between the two is
coloured purple. All other elements of the images are blacked out. These images
are included to aid recognition of plasmodial morphology.

7. Appendix 3. Particle Model Description

The multi-agent particle approach to modelling P. polycephalum uses a population
of indirectly coupled mobile particles with very simple behaviours, residing within
a 2D diffusive lattice which stores particle positions and the concentration of a
generic diffusive factor referred to as chemo-attractant. Collective particle posi-
tions represent the global pattern of the model plasmodium and collective particle
motion represents flux within the plasmodium. The particles act independently
and iteration of the particle population is performed randomly to avoid any arti-
facts from sequential ordering. The model is governed by parameters which affect
the particle behaviour and the interaction with the environment. For a complete
list of parameters see Table 1 which is grouped by category. When a particular
parameter is not used (for example in experiments with a fixed population size),
the table cell is filled by a dash.

7.1 Generation of Emergent Transport Network and Subsequent
Morphological Adaptation

The behaviour of the particles occurs in two distinct stages, the sensory stage and
the motor stage. In the sensory stage, the particles sample their local environment
using three forward biased sensors whose angle from the forwards position (the sen-
sor angle parameter, SA), and distance (sensor offset, SO) may be parametrically
adjusted (Fig. 17a). The offset sensors generate local coupling of sensory inputs and
movement to generate the cohesion of the population. The SO distance is measured
in pixels and a minimum distance of 3 pixels is required for strong local coupling
to occur. The SO parameter acts as a scaling parameter, small values result in
fine-grained networks whereas larger values result in coarse-grained networks. It
was found in [20] that larger SO values resulted in the formation of so-called ‘va-
cancy islands’ within large blobs of the model plasmodium. For applications where
large ‘blobs’ of model plasmodium are required, these structures can be removed
by selecting SO from a random value from a pre-set range (see Table 1) for each
agent at each scheduler step. During the sensory stage each particle changes its
orientation to rotate (via the parameter rotation angle, RA) towards the strongest
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local source of chemo-attractant (Fig. 17b). After the sensory stage, each particle
executes the motor stage and attempts to move forwards in its current orientation
(an angle from 0–360◦) by a single pixel forwards. Each lattice site may only store
a single particle and particles deposit chemo-attractant into the lattice only in the
event of a successful forwards movement. If the next chosen site is already occupied
by another particle the move is abandoned and the particle selects a new randomly
chosen direction.

Figure 17. Architecture of a single component of the virtual plasmodium and its basic sensory algorithm.
(a) Morphology showing agent position ‘C’ and offset sensor positions (FL, F, FR), (b) Algorithm for
particle sensory stage.

7.2 Problem Representation and Experimental Parameters

Source node points were represented by projection of chemo-attractant to the diffu-
sive lattice at their positions indicated by white pixels on the source configuration
images. Lattice size varied with each particular arena but varied from 150 pixels
minimum size to 400 pixels maximum size. The attractant projection concentra-
tion was represented by the proja parameter. Projection of repellent sources was
implemented by negatively valued projection into the lattice at arena boundary
locations causing repulsion of the blob from these regions and is given by projr.
Diffusion in the lattice was implemented at each scheduler step and at every site
in the lattice via a simple mean filter of kernel size given by Dw. Damping of the
diffusion distance, which limits the distance of chemo-attractant gradient diffusion,
was achieved by multiplying the mean kernel value by 1−Dd per scheduler step.

7.3 Agent Particle Parameters

The model was initialised by creating a population of particles and inoculating
the population within the habitable regions of the arena The exact population size
differed depending on the particular experiment and is given by the number of
particles p. Particles were given random initial positions within the habitable area
and also random initial orientations. Particle sensor offset distance is given by SO.
Angle of rotation is given by RA◦ and sensor angle given by SA◦. Values of SA
and RA differ in experiments depending on whether that experiment reproduced
foraging behaviour, or strongly minimising adaptation behaviour. Agent forward
displacement was 1 pixel per scheduler step and particles moving forwards suc-
cessfully deposited chemo-attractant into the diffusive lattice, given by Dept. This
value is less than the attractant projection value proja, causing the particles to
be attracted to projection sites and ultimately constraining the adaptation of the
model plasmodium. Both data projection stimuli and agent particle trails were rep-
resented by the same chemo-attractant ensuring that the particles were attracted
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to both data stimuli and other agents’ trails.

7.4 Representing Light Irradiation Masks

Simulation of light-irradiation masked regions was implemented by damping the
sensing of trails by the agents by multiplying by a damping factor between 0 and
1, given by Ld if an agent was within the neighbourhood of a masked area, whose
window was given by Lw.

7.5 Growth and Shrinkage of Model Plasmodium

Adaptation of the blob size was implemented via tests at regular intervals. The
frequency at which the growth and shrinkage of the population was executed de-
termined the turnover rate for the population. The frequency of testing for growth
was given by the Gf parameter and the frequency for testing for shrinkage is given
by the Sf parameter. Growth of the population was implemented as follows: If
there were between Gmin and Gmax particles in a local neighbourhood (window
size given by Gw) of a particle, and the particle had moved forward successfully,
a new particle was created if there was a space available at a randomly selected
empty location in the immediate 3× 3 neighbourhood surrounding the particle.

Shrinkage of the population was implemented as follows: If there were between
Smin and Smax particles in a local neighbourhood (window size given by Sw) of
a particle the particle survived, otherwise it was deleted. Deletion of a particle
left a vacant space at this location which was filled by nearby particles (due to
the emergent cohesion effects), thus causing the blob to shrink slightly. As the
process continued the model plasmodium shrunk further and adapted its shape to
the stimuli provided by the configuration of path source points, arena boundaries
and repellent obstacles.
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