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Abstract: This paper presents a single-ended traveling-wave-based fault location (F.L.) method in a hybrid 

transmission line (HTL) with an overhead section combined with a cable section. For this, the software has been 

developed in a MATLAB programming environment. Wavelet packet transform is used to extract transient 

information of the aerial mode current and voltage signals. The normalized current and voltage wavelet entropy 

(features) are fed to the feature selection part of the software. Regarding the HTL construction, the optimal features 

are obtained using the support vector machine and particle swarm optimization. A three-layer artificial neural network 
is trained to identify the faulty section and half using the optimal features of post fault signals. The square of the aerial 

mode voltage wavelet coefficients is applied to locate the fault using Bewley's diagram. The proposed approach is 

applied for F.L. in HTL. Transient simulations are obtained through EMTP-RV software for various fault scenarios, 

including fault types, resistances, inception angles, and locations. The post fault signals are fed to the developed 

software. The results illustrate the high accuracy of the proposed method in comparison to previous works. 
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List of Symbols and Abbreviations: 

 
OHL: Overhead Transmission Lines 
UGC: Underground Cable 
W.T.: Wavelet Transform 

DWT: Discrete Wavelet Transform 
WPT: Wavelet Packet Transform 

ANNBPR: Artificial Neural Network-based pattern recognition 

FL: Fault Location  

RBF: Radial Basis Function 

SVM: Support Vector Machine 

T.T.: Time-Time Transform 

PSO: Particle Swarm Optimization 

si: The ith WPT coefficient of the signal s 

xi: Input data of the SVM classifier 

Yi: Labels of each Input data of the SVM classifier 

𝛼𝑖: Lagrangian coefficients of the Lagrange function for input data of the SVM classifier 

M(α): Lagrange function 

𝑘(𝑥𝑖 , 𝑥𝑗): Kernel function 

C: parameter that relates to the penalty coefficient of the SVM classifier 

b: Bias coefficient 

sgn: Sign function. 
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γ: Standard deviation of the Gaussian function 

𝑑(𝑥): Decision-making function in SVM classifier 

𝐶𝐹: Performance function 

Ei: Error related to each KFold 

K: Number of Folds 

N: Total number of data 

t: Target of the ANNBPR 

y: Output of the ANNBPR 

e: Cross entropy function for analyzing the performance of the ANNBPR 

𝑉𝑐𝑎𝑏𝑙𝑒 : Speed of the propagation of the wave in the cable section 

𝑉𝑙𝑖𝑛𝑒 : Speed of the propagation of the wave in the overhead section  

𝐿𝐿 : Length of the overhead section  

𝐿𝐶 : Length of the cable section 

𝐿 : Length of the overhead/cable section  

𝑊𝑇𝐶𝐷𝐴2
2 : The Square of the coefficients of wavelet packet transform of the aerial mode voltage 

E(s): Shannon Entropy of the signals 
 

1. Introduction 

1.1. Background and Motivation 

Since overhead transmission lines (OHL) are exposed to damage due to natural disasters and have an 

undesirable impact on the landscape, hybrid transmission lines (HTL), which consist of overhead and cable sections, 

are used appropriately to the location [1-2]. Although underground cables (UGCs) benefit the environment and relieve 

public pressure, the expensive investment and high life cycle cost limit their use in the complete replacement of OHLs. 

Therefore, an HTL mainly consists of one or more OHL sections and one or more UGC sections, providing a trade-

off between several issues such as investment, power transfer continuity, and environmental issues. In the case of a 

short circuit on transmission lines, the fault location (F.L.) must be determined swiftly and accurately to minimize 

transmission-line outage time, thereupon increasing system stability and decreasing system energy not supplied. F.L. 

methods are classified into three classes: impedance-based, traveling waves-based, and artificial intelligence-based 

[3]. 

The most common F.L. method is the impedance-based method, which calculates the fault distance by using 

the linear relationship between the F.L. and sequential impedance. In the case of underground cables (UGCs), the 

variation of the zero-sequence impedance regarding the different types of sheath grounding methods causes a non-

linear relation between measured impedance and fault distance. As a result, the impedance-based method has 

encountered several problems for F.L. in UGCs and, consequently, in HTLs [2, 4]. More recently, traveling wave-

based F.L. methods have attracted the attention of researchers owing to their high reliability and high speed in 

determining fault type and location. These methods need high sampling rate transformers. Due to advancements in 

power electronics and optical instrument transformers' production, high-frequency sampling for transient fault signal 

recording has been realized [5-7].  In single-ended traveling waves-based F.L. methods, the location of a short circuit 

can be calculated according to the time delay between the arrival times of the incident and reflected traveling waves 

of aerial mode voltage at the terminal.  

Using the cross-correlation between the primary wave and the propagated wave is the basic and one of the most 

utilized methods for detecting the incident and reflected traveling waves on a transmission line [8]. This method needs 
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the exact selection of the time window length. At the same time, it depends on the F.L. The primary idea to solve this 

problem has been proposed in [9], which uses the discrete wavelet transform (DWT) for the information extraction of 

the transient wave. Different mother wavelets in various scales are utilized for arrival time detection, mainly dependent 

on test cases, noise severity, and sampling frequency [10-12]. In the case of an HTL, the main challenge in the traveling 

waves-based F.L. method is determining the fault section due to the inequality of the propagation speed on overhead 

and cable sections. A single-ended traveling wave-based F.L. method for HTL is presented in [13]. DWT, SVM, and 

Bewley diagrams are used to quickly extract information, faulty-section, and half identification and fault location. The 

accuracy of this method is not satisfactory in the case of high resistance faults or small fault inception angles due to 

generating small energies of voltage and current wavelet coefficients.  

In [14], the F.L. is determined using the installed fault locators at both terminals of the HTL. In this method, 

the faulty section is determined by comparing the time delay and the arrival time of traveling waves to the two 

terminals concerning the default values. These fault locators are synchronized through 2 Megapixel optical fiber 

channels. Despite the high accuracy of this procedure, its increased investment cost has restricted its acceptability by 

power system operators. In [15], the wavelet coefficients of the aerial mode voltage have been used to find the faulty-

section identification and F.L. The obtained results show the weak accuracy of this method. In addition, the used 

default value to find the F.L. depends on the network configuration.  

The support vector machine (SVM) has been applied to determine the fault section on HTL [16]. In the 

proposed algorithm, the SVM inputs are the coefficients square of the aerial mode voltage in the DWT. This method 

has a low computational burden, but the method's accuracy when the fault occurs on half of the cable section is 

inappropriate. 

In [17], a traveling-wave-based F.L. algorithm comprising a faulty-section identification and a F.L. method is 

presented for hybrid multi-terminal transmission systems.  The main disadvantage of the proposed method is that it 

cannot find the fault section in some instances. In [18] for thyristor-controlled series- compensated lines, a novel 

protection method is presented based on the time-time (T.T.) transform. In the proposed algorithm, current signals at 

both sides of the sending and receiving ends are retrieved and processed through time-time domain transform (TT-

transform), and a TT-matrix is produced. Although obtained results show suitable performance, the proposed method 

is not tested on HTL. 

Most recently, a hybrid SVM-TT transform-based method for F.L. in HTL is presented [19]. Although the 

simulation results give satisfactory accuracy for a faulty section and half identification, this method suffers from high 

error in F.L., especially for the faults near the middle point of the overhead and cable sections. For example, in a 

reported case, the cable F.L. error is about 1.48% of total HTL length or 8.91% of the UGC length, equal to 2.85km.    

In [20], a two aspects procedure based on wide-area traveling-wave has been proposed for F.L. in regional 

power grids. The proposed method is double-ended and is applied only to OHL. In [21], the F.L. technique is presented 

for three-terminal hybrid OHLs with one off-service line branch. The average obtained error is 1.65%, but the method 

is not tested on HTL. 

1.2. Contributions 
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The delay between the arrival time of the initial traveling waves in the ground and aerial modes has been used 

previously for faulty-section and half identification on HTL. The accuracy of the results depends on fault type, fault 

inception angle, fault resistances, and fault location, while the F.L. error is high. Using a classifier leads to improved 

accuracy in the detection of the faulty section and half. In addition, the type of features used as inputs of the classifier 

for faulty-section and half identification have a high impact on distinguishing sections from each other. Available 

published F.L. methods use a trial and error approach to find the features which are not immune from the risk of the 

calculation errors. 

F.L. methods based on DWT, T.T., and S transform show that the misclassification zone around the middle 

point of the overhead and cable sections is more than 1.48% of total HTL length (2.5 Km) for high-resistance faults 

or faults occurring at small inception angles. These errors for F.L., especially in the cable section, are so high. 

In this paper, a single-ended method based on traveling waves has been proposed to compute the F.L. on HTL. 

This method uses WPT to extract the high-frequency data of the aerial mode current and voltage signals. Artificial 

Neural Network based pattern recognition (ANNBPR) classifiers are used for faulty-section and half identification. In 

the proposed algorithm to decrease the computational burden and the error of the ANNBPR classifiers, raised by trial 

and error, the optimal features of ANNBPR classifiers are calculated by a particle swarm optimization (PSO)-based 

feature selection procedure with SVM as the fitness function. Furthermore, the K-Fold validation method is used in 

the proposed feature selection method to avoid the dependence of SVMs on the training data. After identifying the 

faulty section and half by the neural network, Bewley's diagram of aerial mode voltage signal is used to determine the 

location of the fault. The WPT square coefficients of the aerial mode voltage are employed to extract the high-

frequency data of the aerial mode voltage signal for F.L. 

1.3. Paper Organization 

The remainder of this paper is organized as follows. WPT and the mathematical formulation of the suggested 

model are presented in section 2. In section 3, the feature selection method based on PSO-SVM is presented. In section 

4, the proposed F.L. method is introduced in detail. Section 5 includes the simulation results, and finally, section 6 

concludes the paper. 

2. Proposed structure of WPT decomposition 

Wavelet Transform (W.T.) has several applications in the topic of signal processing in power systems, such as 

transient states analysis [22], power quality analysis [23], and harmonics analysis [24]. This transform uses the fast 

and slow changes of the waveform that correspond to the high frequency and low-frequency components of the signal, 

respectively. W.T. overcomes the limitations of the Fourier transform method, such as being a single-domain 

transform (i.e., only works in frequency domain) and its ability to eliminate sub and inter-harmonics. 

In DWT, the input signal decomposes into approximated and detailed components using low and high pass 

filters. Afterward, only the approximated component is decomposed to extract the desired features of the signal. In 

WPT, the extended discrete form of the conventional W.T., both detailed and approximated components are 

decomposed simultaneously. As a result, WPT gives more information about the signal, has a better frequency 

resolution, and offers a more comprehensive view of the signal [25]. 
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In this paper, the first cycle of the post fault of aerial mode current and voltage are decomposed to the third 

level, as shown in Fig. 1. 
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DAA3AAA3

DA2

DDA3ADA3

D1

AD2

DAD3AAD3

DD2

DDD3ADD3

Frequency  = 0 – 1MHz

 

Fig. 1. Structure of WPT decomposition  

Furthermore, the entropy criterion is the most common way to find the optimal decomposition in signal 

decomposition applications [26].  

The statistical feature of the Shannon entropy is used for optimal decomposition. The feature matrix contains 

30 features (one entropy statistical feature for fifteen coefficients of the WPT, each one for two signal types, 

1×15×2=30). Entropy (E) is defined as an incremental cost function that E (0) =0. Shannon entropy is as follows [27]: 

𝐸(𝑠) = −∑𝑠𝑖
2 log(𝑠𝑖

2)

𝑖

                             (1) 

Some parameters can affect the amplitude of voltage and current signals and consequently the entropy values. This 

affection may lead to misclassification of features and subsequently introduce error in F.L. calculation. To make the 

proposed F.L. approach immune against this error, the normalized entropy values are used. The following formula is 

used for normalization. 

𝑦𝑖 =
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

(𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛)
× (𝑒𝑖 − 𝑒𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛                              (2) 

Where ei, emax and emin are the ith, maximum and minimum values of the entropy vector of each feature, respectively. 

ymax and ymin are the upper and lower limits of normalization interval, respectively. In this paper ymax = +1 and ymin = 

-1. 

3. Proposed feature selection method  

Large-scale data raises the computational burden, despite creating opportunities in the study process.  On the 

other hand, in most cases, all features of signals are not essential to make an appropriate classification. Furthermore, 

using all features decreases the efficiency of the learning algorithm [28, 29]. The feature selection method is an 

effective way to reduce the computational burden. Feature selection methods are categorized based on the generation 

and fitness functions.  

The applied generation and fitness functions of the proposed method are introduced as follows: 

 

3.1 Generation function 
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 The generation function creates the candidate subsets among the features set. The number of possible subsets 

will be equal to 2𝑁 features for a set of N data which is known here as the solution space. This number would be too 

high even for a small value of N. For this reason, using the optimization algorithms to search the solution space and 

find the near to optimum solution would be very efficient. According to [30, 31], the PSO has advantages over feature 

selection over other classical optimization algorithms. Therefore, in this research, the PSO algorithm is used as the 

generating function to select an optimal subset of the available features. 

3.2 Fitness function  

The fitness function of a single particle evaluates how close the particle is to the optimal point [32]. Hence, in 

this paper, errors of the SVM classifiers are used as a fitness function in feature selection. In the proposed method, 

three SVM classifiers are used to determine the optimal features for faulty-section and half identification. If a fault 

occurs on the overhead section, the output of SVM1 will be {+1}, but if it appears on the cable section, the outcome 

will be equal to {-1}. Furthermore, SVM2 and SVM3 are used to determine the faulty half of the overhead and cable 

sections, respectively. The output of SVM is {+1}, if the fault occurs on the first half of the overhead and cable section, 

and will be {-1} if the fault occurs on the second half of overhead or cable sections. The SVM classifier is briefly 

introduced as below. 

Suppose that the data set is {(𝑥𝑖  , 𝑦𝑖)}𝑖=1
𝑙 ∈ 𝑅𝑛 × {−1,+1} where 𝑥𝑖 is the input data and 𝑦𝑖 is the label of each 

𝑥𝑖. The procedure is looking for a hyper plan in SVM that separates data with minimum error and maximum safety 

margin [33]. Whereas the used data in this paper is not linearly separable, this hyper plan can be achieved by solving 

the following optimization problem: 

{
 
 

 
 
    max𝑀(𝛼) = −

1

2
∑∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖, 𝑥𝑗)

𝑙

𝑖=1

+∑ 𝛼𝑖

𝑙

𝑖=1

𝑙

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∑ 𝛼𝑖𝑦𝑖 = 0 ,   

𝑙

𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶 ,   𝑖 = 1,2, … , 𝑙

                   (3) 

Where 𝛼𝑖 is the Lagrangian coefficients of the Lagrange function, M(α), for each 𝑥𝑖, C is a parameter that relates to 

the penalty coefficient. The Kernel function 𝑘(𝑥𝑖 , 𝑥𝑗) is used for mapping the data to a higher dimensional feature 

space where data is linearly separable in the new space. The decision-making function in the SVM is according to Eq. 

(4): 

𝑑(𝑥) = 𝑠𝑔𝑛 [∑𝑦𝑖𝛼𝑖𝑘(𝑥𝑖 , 𝑥𝑗) + 𝑏
𝑠𝑣

]                                                              (4) 

Among defined Kernel functions for SVM, the radial basis function (RBF) separates the data more accurately; 

therefore, this paper uses the radial basis function. This function is defined as follows [33]: 

𝐾(𝑥𝑖 + 𝑦𝑗) = 𝑒𝑥𝑝(−
‖𝑥𝑖 + 𝑦𝑗‖

2

𝛾
)                                                              (5) 

In SVM, C determines the safety margin, and its lower values provide wider safety margins, and its higher values 

provide narrower safety margins. Furthermore, low values of γ cause that classifier to follow faster changes and the 
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Gaussian function to become sharp and have a better local function.  Also, high values of γ cause the classifier to 

follow slower changes. Therefore, in this paper, two parameters of C and γ that will affect the accuracy and operation 

of SVM are determined using the PSO optimization algorithm.  

In the proposed method to identify the faulty section and its corresponding half, optimal feature inputs of each 

ANNBPR are determined by the PSO-based feature selection method and the error of the SVM, as discussed earlier. 

In the proposed feature selection method, the error of SVM classifiers should have the minimum amount for the 

optimal feature subset which PSO obtains. Furthermore, to avoid the dependence of the SVMs model on the training 

data, the K-Fold validation method is used according to Fig. 2, which divides the data set into training and test sets. 

In other words, if 𝐹𝑖 is a subset of entropy values of voltage and current, which are extracted from the WPT, then the 

performance function (C.F.) can be defined according to Eq. (6): 

𝐶𝐹(𝐹𝑖) =
1

𝑘
∑𝐸𝑗(𝐹𝑖)                                                                                  (6)

𝐾

𝑗=1

 

Where 𝐸𝑗  is the error related to each KFold, K is the number of Folds. To achieve a reliable performance of the 

classifiers, the authors tested different values of K, and it is found that for k= 5, a more accurate classification output 

is obtained.  

In Eq. (6), 𝐸𝑗  for each one of three SVM functions is defined as follows: 

𝐸𝑗(𝐹𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑒𝑠𝑡𝑠
                          (7) 

 

 

Fig. 2. KFold cross-validation 

The arrangement of each particle in the process of optimal feature selection is shown in Fig. 3. Each particle is 

composed of three parts where the first two parts are related to SVM  C and γ parameters, and the third part is made 

of a 1×30 dimension vector and contains random numbers between zero and one (0 < 𝑓𝑖 < 1) as random features. If 

the value of each 𝑓𝑖(𝑖 ∈ {1, 2, . . . , 30}) is less than 0.5, then its corresponding feature will not be selected, and If  the 

value of each 𝑓𝑖 is more than 0.5, then its corresponding feature will be selected and applied to the decision function.  
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Fig. 3. The structure of the SVM classifier particle 

The schematic diagram of the proposed feature selection method is shown in Fig. 4. The feature selection method is 

only performed one time for each ANNBPR. The method relies on the feature selection based on SVM-PSO to extract 

the best features, as opposed to the available published F.L. methods that use a trial and error approach to find the best 

features. 

Start

Measure 3-ph transient voltage and 

current signal at one end

Start

Apply modal transform

Calculate aerial mode voltage 

and current and normalize them

Apply feature selection method based on SVM and 

PSO to find optimal features and SVM parameters 

Convey optimal feature to the fault location process

 

Fig. 4.  Schematic of the proposed feature selection 

4. Proposed FL algorithm  

In this paper, the measured values of the aerial mode voltage at one terminal are used to determine the F.L. in HTL. 

The Schematic diagram of the proposed F.L. method is shown in Fig. 5. 
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Measure 3-ph voltage and current transients 
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Extract aerial mode voltage and current and 

normalize them 

Apply ANN1 to identify the faulty section 

Apply ANN2 to determine 

the faulty half of OHL

Fault location using 

Bewley’s latice diagram

end

Calculate feature matrix that contains 

optimal features which are selected in Fig.4.   

1st half 2nd half

FS=+1 FS=-1

FH=+1 FH=-1

Apply ANN3 to determine 

the faulty half of UGC

1st half 2nd half

FH=+1 FH=-1

 

Fig. 5.  Schematic diagram of the proposed fault location method 

The WPT is used to extract the information of the time-frequency domain of the aerial mode voltage signals obtained 

by EMTP_RV software. Optimal features as inputs of the classifier are determined by the feature selection method 

based on PSO-SVM. Therefore, the proposed algorithm consists of two steps as follows:  
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• Identification of faulty-section and its corresponding half by ANNBPR 

• Determination of F.L. using Bewley's diagram. 

These two steps are explained in sequence.  

4.1 Identification of the faulty section and half 

Using a time delay between ground and aerial mode voltages is the standard method to determine faulty-section 

of the OHL or UGC and its related half in previous works. In this paper, the ANNBPR classifiers are used for this 

purpose. ANNBPR is a powerful tool in pattern recognition and data classification. Pattern recognition networks are 

feed-forward networks that classify the inputs according to the specified target classes. Such ANNBPR often have 

one or more sigmoid hidden layers and one softmax output layer. The hidden layer has fifty neurons in this work, and 

the output layer has two neurons (two classes).  

After fault occurrence, one cycle of the post fault three-phase voltages and currents at one bus is measured. 

The aerial mode voltage and current are computed using the Clarke transform and fed to the WPT. The outputs of 

WPT are the values of optimal features in the form of a matrix (i.e., feature matrix). The feature matrix is the input of 

all three ANNBPRs. If a fault occurs on the OHL, the output of ANNBPR1 will be {FS=+1}, but if it appears on the 

UGC, the output will be equal to {FS=-1}. Furthermore, ANNBPR2 and ANNBPR3 are used to determine the half 

faulty section of the OHL and UGC, respectively. When faults occur on the first half of OHL and UGC, outputs of 

ANNBPR2 and ANNBPR3 is +1 {FH=+1}, and for the second half of them equals -1{FH=-1}. 

The structure of this network is shown in Fig. 6. The number of neurons is achieved by trial and error such that 

the error of the ANNBPR classifiers gets the least possible value. The Cross entropy function is used in these networks 

for analyzing the performance of the networks. The performance of the networks will be better with the lower output 

of the cross-entropy. This function can be defined for a two-class classifier as: 

 

Fig. 6. Structure of ANNBPR 

 

𝑒 = −𝑡 × 𝑙𝑜𝑔(𝑦) − (1 − 𝑡) × 𝑙𝑜𝑔(1 − 𝑦)                                                              (8) 

The accuracy of each ANNBPR classifier can be calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % = (1 − 𝑒) ∗ 100                                                                                        (9) 
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4.2 F.L. estimation 

After identifying the faulty section and related half, it is possible to determine the exact location of the fault. At first, 

the square of DA2 coefficients of the aerial mode voltage ( i. e. ,𝑊𝑇𝐶𝐷𝐴2
2 ) are determined. Then the primary and 

secondary arrival times of the peak aerial mode voltage at the measuring device are calculated by 𝑊𝑇𝐶𝐷𝐴2
2 . Through 

calculated values, the behavior of the traveling wave has been investigated by Bewley's diagram. Finally, the location 

of the fault is calculated according to Table 1. 

Table 1: The used Formula for calculating F.L. in various sections of HTL 

Related formula Faulty half (corresponding outputs of classifier) Faulty-section   

𝒙 =
𝑽𝒍𝒊𝒏𝒆 × ∆𝒕

𝟐
 First half (FS=+1 & FH=+1) 

 

Overhead 
𝒙 = 𝑳𝑳 −

𝑽𝒍𝒊𝒏𝒆 × ∆𝒕

𝟐
 Second half (FS=+1 & FH=-1) 

𝒙 = 𝑳𝑳 +
𝑽𝒄𝒂𝒃𝒍𝒆 × ∆𝒕

𝟐
 First half (FS=-1 & FH=+1) 

Cable 

 
𝒙 = 𝑳𝑳 + 𝑳𝑪 −

𝑽𝒄𝒂𝒃𝒍𝒆 × ∆𝒕

𝟐
 Second half (FS=-1 & FH=-1) 

5. The system under study and simulation results  

The performance of the proposed F.L. method is evaluated on a 50 Hz, 230 kV HTL using EMPT-RV software. 

A single-line diagram of the HTL is depicted in Fig. 7. The lengths of the overhead section (𝐿𝐿) and the cable section 

(𝐿𝐶) are 100 miles and 20 miles, respectively. The measuring device is installed in location M at the beginning of the 

overhead section. 

Overhead Line Cable

Sending End Receiving End

LL LC

S
R

M

 

Fig. 7. HTL under consideration 

The sampling frequency has been selected 1 MHz to increase the accuracy and resolution of the WPT. Also, 

db4 mother wavelet has been used to extract the transient information of the voltage and current signals. Moreover, 

the data of the overhead and the cable sections are taken from references [34] and [35], respectively, which have been 

shown in Appendix I. Frequency-dependent models are used to simulate the HTL sections. The aerial mode 

propagation speed of the traveling waves on the overhead and the cable sections have been calculated by EMTP-RV 

and are equal to 1.85105 miles per second and 0.99105 miles per second, respectively. 
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To evaluate the performance of the proposed method, we simulated 1350 different cases in the HTL, including 

different fault inception angles, fault locations, fault resistances, and fault types. The following values are used for 

this study: 

1) Fault inception angles: 10o, 125o, and 260o (i.e. 3 inception angles for all fault types, fault locations and 
fault resistances).  

2) Fault resistance: 0.1Ω, 20Ω, and 100Ω (i.e. 3 resistances for 7 ground faults).         

3) Fault locations: 10%, 20%, …, 80%, and 90% of the overhead and cable sections (i.e. 18 locations in 

combined line length).     

4) Fault types: A.G., B.G., C.G., ABG, ACG, BCG, AB, A.C., BC, ABC, and ABCG (i.e. 11 types including 

7 ground faults).  

 

Therefore, 3×18× (3×7+4) = 1350 scenarios are simulated. 

5.1. Optimum features for identification of the faulty section and half  

To show the importance of selecting optimal features for the SVM classifier compared with selecting all 

features, the authors calculated the accuracy of the faulty-section and its corresponding half identification for all 1350 

generated cases. The obtained results are presented in Table 2. PSO determines the optimal values of SVM parameters 

and optimum features (as input of ANNBPR classifier).  

Table 2: Optimal selected features, parameters, and calculated accuracy of SVM classifiers  

Accuracy 

of 

classifier 

(%) 

Inputs for SVM 

Calculated SVM 

parameters With / Without feature 

selection 

Type of 

classifier 
γ  C 

92 Total features (30 features) 1 2.8480×103 Without feature selection 

SVM1 
99.33 

V1, AA2, DA2, AAA3, 

DAA3, DDA3, AAD3, 

ADD3, DDD3 
Voltage 

0.7883 7.5012×103 With feature selection 
D1, AD2, AAA3, 

DAD3 
Current 

92.15 Total features (30 features) 0.9613 4.6210×103 Without feature selection 

SVM2 
96.8 

V1, AA2, DA2, DD2, 
DAA3, AAD3, DAD3, 

ADD3, DDD3 

Voltage 
0.8590 7.3824×103 With feature selection 

I1, A1, AA2, AD2, 
AAA3, AAD3, DAD3 

Current 

92.15 Total features (30 features) 0.9944 7.1145×103 Without feature selection 

SVM3 
96.9 

V1, AA2, AD2, DD2, 
AAA3, DAA3, ADA3, 
AAD3, ADD3, DDD3 

Voltage 
0.7433 6.2456×103 With feature selection 

3, AA2, AD1A Current 

 

 As explained in section 2, the feature matrix contains 30 features that 15 of which are related to aerial mode 

voltage, and the other 15 are about aerial mode current. Some of these features are selected by the feature selection 

method (using SVM+PSO) as optimal features. Based on this, 13 features (9 features of aerial mode voltage and 4 

features of aerial mode current), 16 features (9 features of aerial mode voltage and 7 features of aerial mode current), 



13 

 

and 13 features (10 features of aerial mode voltage and 3 features of aerial mode current) are selected by SVM1, 

SVM2 and SVM3, respectively, as optimal features.  

 According to Table 2, using optimum features compared to all 30 features increases the accuracy of the faulty-

section discrimination by 7.33%, faulty half in the overhead section by 4.65%, and faulty half in the cable section 

4.75%. 

 It is worth noting that since the parameters C and γ have a significant influence on the accuracy of the SVM 

classifier, PSO also determines them for the case where all features are applied.  

In the ANNBPR under study, 70 percent of the simulation results (i.e., 1350 different cases) are used as training 

data, 15 percent as test data, and the remaining 15 percent as validation data. To avoid dependency of ANNBPR output 

to training data, we performed data separation randomly and repeated it 200 times. The average of the errors calculated 

by Eq. (8) is considered the error of Pattern recognition. 

Compression between the accuracy of the proposed approach (ANNBPR) and several other classifiers is 

presented in Table 3. Some other approaches, such as KNN [36] and SVM, are implemented in this paper. Also, the 

results of the proposed approaches in [13] and [19] are presented in Table 3 too. It should be mentioned that the same 

optimal features are considered for ANNBPR, SVM, and KNN to achieve a fair comparison. 

Analysis of Table 3 shows that the accuracy of the proposed ANNBPR classifier in determining the faulty 

section and half is more than those obtained via SVM, KNN, and the proposed approach of [13]. Although the accuracy 

of [19] in detecting the faulty section is a bit better than the accuracy of this paper, investigation of the F.L. errors, 

presented in section 5.2., will illustrate the advantage of the method of this paper compared to [19].   

Table 3: Comparison of different fault classifiers used in detecting the faulty section and half 

Detection accuracy (%) 

Fault 
classifier 

Feature 
selection 

Reference 
number 

Half 

section on 

cable 

section 

Half section 

on overhead 

section 

Faulty-

section   

97.08 98.61 99.58 ANNBPR  

SVM+PSO This paper 96.90 96.80 99.33 SVM 

81.33 90.37 96.96 KNN 

95.60 98.2 98.8 SVM Not used [13] 

97.50 98.9 99.8 SVM+PSO Not used [19] 

 

5.2. Simulation result  

In this section, the performance of the proposed approach is investigated by simulating faults in different 

sections and halves. 

For the sake of clarification, a sample F.L. and error calculation are presented. For this purpose, phase A to 

ground fault (A.G.) has been simulated in the first half of the overhead section, 12 miles from the bus S. The fault 

resistance and inception angle are 100 ohms and 1o, respectively. The three-phase voltages before and after fault 

occurrence are depicted in Fig. 8.  
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Fig. 9 exhibits the 𝑊𝑇𝐶𝐷𝐴2
2 and the aerial mode voltage profiles. As shown in Fig. 9, the time difference 

between the primary and secondary peaks of the traveling wave is 127 microseconds. 

If fault occurs on the overhead section, FS = +1, and FH=+1, using the equation of the first row of Table 1, 

F.L. can be calculated as follows: 

 

 

Fig. 8 Pre-fault and post-fault three phase voltages for A.G. fault 

 

Fig. 9 the aerial mode voltage and WTC2 signals for A.G. fault scenario 

 

𝑥 =
1.85 × 105 × 127 × 10−6

2
= 11.89𝑚𝑖𝑙𝑒 

Based on the following equation, the F.L. error is - 0.11%. 

 

%𝐸 =
𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 −𝑑𝑎𝑐𝑡𝑢𝑎𝑙

𝐿
× 100                                          (10) 

Where L is the length of the overhead/cable section. 

A.G. faults with 0.5 Ω fault resistance in different distances have been studied. The results are presented in 

Table 4. The simulation results show that the calculation error is restricted to 0.41% and 1.2% in overhead and cable 

sections, respectively. 
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Table 4: Fault location error for different case 

 

Fault section 

Fault Distance 

from the 

beginning of the 

section  

(mile) 

Outputs of classifier 
Calculated fault 

location (miles) 

Calculated 

absolute error  

) % ( F.S. F.H. 

Overhead section 

5 1 1 4.81 0.19 
10 1 1 9.99 0.01 

20 1 1 19.98 0.02 
30 1 1 29.97 0.03 
40 1 1 39.59 0.41 
50 1 1 50.04 0.04 
60 1 -1 60.41 0.41 

70 1 -1 70.13 0.13 
80 1 -1 80.39 0.39 
90 1 -1 90.01 0.01 

Cable section 

2 -1 1 1.98 0.10 
4 -1 1 3.96 0.20 
6 -1 1 6.13 0.65 

8 -1 1 8.11 0.55 
10 -1 1 10.14 0.70 
12 -1 -1 11.89 0.55 
14 -1 -1 13.87 0.65 
16 -1 -1 16.24 1.2 

18 -1 -1 18.02 0.1 

To compare the accuracy of the proposed method with recently published research [13, 19], we depicted the 

F.L. absolute error versus per unit fault distance for overhead and cable sections in Figs. 10 and 11, respectively.   

According to Fig.10, the error of the proposed method in the entire overhead section is less than in previous 

works. Also, Fig.11 implies that the error of the proposed method is less than other works in the entire cable section.     

 

Fig. 10. Overhead section F.L. error comparison between the proposed method and recently published research  
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Fig. 11.  Cable section F.L. error comparison between the proposed method and recently published research 

The distribution of the obtained F.L. absolute errors in OHL and UGC sections is depicted in Fig. 12 in the 

form of box-plot form. Box-plot displays five statistical data: minimum, first quartile (Q1), median, third quartile 

(Q3), and maximum values of the corresponding data. The line that divides the box-plot into two parts is called median, 

in which half of the values are greater than or equal to this point, and the other half are less. 25 percent of the data fall 

below the Q1, and 25 percent are above the Q3. 

Fig. 12 (a) shows that the F.L. absolute errors in the OHL section is distributed between 0.01% and 0.41%. The 

first quartile, the median, and the third quartile of the F.L. absolute errors in OHL section are 0.02%, 0.04%, and 

0.39%, respectively. Furthermore, Fig 12 (b) illustrates the F.L. absolute errors in UGC spread out from 0.1% to 1.2% 

so that the first quartile, the median, and the third quartile are 0.20%, 0.55%, and 0.65%, respectively. The average 

absolute F.L. error is 0.161% and 0.522% in OHL and UGC sections, respectively.  

5.3.  Sensitivity analysis 

The impact of some effective fault parameters such as fault type, resistance, and inception angle have been 

simulated, and the results are presented. It should be noted that the absolute F.L. errors are calculated based on Eq. 

(10).  

5.3.1 The effect of fault resistance on F.L. accuracy 

To evaluate the performance of the proposed method, the effect of various fault resistances ranging 0.01-100 

in several arbitrary fault types and inception angles are studied as presented in Table 5. The results of this Table show 

that the error values are not affected by the value of fault resistance. It should be noted that, although the variation of 

the fault resistances strongly affects the intensity of the transient waves, since the normalized features are used as the 

input of ANNBPR, the F.L. accuracy is independent of the fault resistance value.  

5.3.2 The effect of fault inception angle on F.L. accuracy 
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The impact of the fault inception angles ranging from 0 to 359 degrees is evaluated on the performance of the 

proposed method and the results are reported in Table 6. The study is carried out at a fixed fault type phase A to the 

ground (A.G.), random fault distances, and resistances. Analysis of the results indicates that the value of the inception 

angle does not significantly affect the F.L. accuracy. 

 

 

(a) 

 

(b) 

Fig. 12.  Box plot of the absolute F.L. errors in (a) OHL section and (b) UGC section 

 

Table 5: Evaluating the impact of fault resistances on the performance of the proposed method 

Fault type, 

location and 

inception angle 

Fault resistance 

(Ohms) 

Outputs of classifier 
Calculated fault 

location (miles) 

Calculated 

absolute error  

) % ( 
F.S. F.H. 

AG at 5 mile of 

HTL, =35° 

0.01 1 1 

4.81 0.19 
14 1 1 
52 1 1 
100 1 1 

ABG at 87 mile 

of HTL, 

=280° 

0.01 1 -1 

87.05 0.05 
14 1 -1 
52 1 -1 
100 1 -1 

CG at 105 mile 

of HTL (5 mile 

of cable 

section),  =10° 

0.01 -1 1 

104.85 0.75 
14 -1 1 
52 -1 1 
100 -1 1 

ACG at 118 

mile of HTL (18 
mile of cable 

section), =40° 

0.01 -1 -1 

118.02 0.1 
14 -1 -1 
52 -1 -1 
100 -1 -1 
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Table 6: Evaluating the impact of fault inception angle on the performance of the proposed method  

Fault type, 

location and 

resistance 

Fault inception angle  

(degrees) 

Outputs of classifier Calculated 

fault location  

(miles) 

Calculated 

absolute error  

) % ( F.S. F.H. 

AG at 46 mile 

of line, RF=20 

Ω 

0 1 1 

45.88 0.12 

10 1 1 

35 1 1 

80 1 1 

300 1 1 

AG at 93 mile 

of line, RF=60 

Ω 

0 1 -1 

92.97 0.03 

10 1 -1 

35 1 -1 

80 1 -1 

300 1 -1 

AG at 102 mile 

of line (2 mile 

of cable), 

RF=0.1 Ω 

0 -1 1 

101.98 0.1 

10 -1 1 

35 -1 1 

80 -1 1 

300 -1 1 

AG at 115 mile 

of line (15 mile 

of cable), 

RF=70 Ω 

0 -1 -1 

115.1 0.5 
10 -1 -1 

35 -1 -1 

80 -1 -1 

300 -1 -1 

 

5.3.3. The effect of fault type on FL accuracy 

The effect of the fault type on the performance of the proposed method under various fault distances, 

resistances, and inception angles has been evaluated and presented in Table 7. As seen, fault type, like other fault 

parameters, does not considerably impact the proposed F.L. performance. 

Table7: Evaluating the impact of fault type on the performance of the proposed method  

Fault 

distances, resistances and 

inception angle 

Fault 

type 

Outputs of classifier Calculated 

fault location  

(miles) 

Calculated 

absolute error 

) % ( F.S. F.H. 

at 46 mile of HTL (46 mile of 

overhead section), RF=20 Ω, 

=40° 

AG 1 1 

45.88 0.12 
BC 1 1 

ACG 1 1 

ABC 1 1 

at 99 mile of HTL (99 mile of 

overhead section), RF=50 Ω, 

=140° 

BG 1 -1 

98.98 0.02 
AC 1 -1 

ABG 1 -1 

ABC 1 -1 

at 105 mile of HTL (5 mile of 

cable section), RF=0.5 Ω, =80° 

CG -1 1 

104.85 0.75 
BC -1 1 

ABG -1 1 

ABC -1 1 

at 111 mile of HTL (11 mile of 

cable section), RF=25 Ω, =77° 

AG -1 -1 

110.8 1 
AB -1 -1 

BCG -1 -1 

ABC -1 -1 



19 

 

6. Conclusions 

 

In this paper, a single-ended method based on the feature selection approach and WPT is presented to locate 

the fault in a HTL. The transient information of the current and voltage signals is extracted from the corresponding 

sampled data during the first cycle of the post fault period. The information is then processed to obtain the entropy of 

the signals. The SVM algorithm and PSO algorithm are used to provide the optimal features and by this a better 

classification accuracy is achieved. A three-layer ANNBPR classified the faulty section and half. The required data 

for training of the ANNBPR are generated under different simulation scenarios. So, Bewley's diagram of the aerial 

mode voltage is used to locate the fault. 

The proposed approach is applied to a 120-mile HTL (100-mile OHL + 20 mile UGC). The simulation results 

show the accuracy of distinguishing the faulty section is 99.58%, and the faulty half in overhead and cable sections is 

98.61% and 97.08%, respectively. Also, the error of F.L. is restricted to 0.41% and 1.2% in overhead and cable 

sections, respectively. 

The impact of various fault parameters such as type, resistance, and inception angle on the performance of the 

proposed method is evaluated. It is shown that the error of F.L. does not depend on these parameters.  

The results of this paper are compared with two works in the area [13] and [19]. The accuracy of faulty-section, 

half detection, and F.L. of the proposed method is better than [13]. Although faulty-section and half detection accuracy 

is a little lower than of [19], the F.L. error in all cases, especially near the middle of the overhead and cable sections, 

is lower than [19]. 
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Appendix I 

- Parameters of the system under study 

 

Receiving and sending end voltage source parameters [13] 

Positive sequence impedance (Z1) 1.96 + j 4.70 Ω 

Zero sequence impedance (Z0) 1.44 + j 4.39 Ω 

Frequency of the system 50 Hz 

 
- Configuration of overhead transmission line and cable [10] 

 

 
 

 

- EMTP_RV data for 230kv overhead transmission line [10] 

 

- EMTP_RV data for cable [10] 

 
Number of 

bundles 

Vertical Height at 

tower 

[ft] 

Horizontal 

Distance 

[ft] 

Outside Diameter 

[inches] 
DC Resistance 

[Ω/mile] 
skin Phase 

0 114 45 0.36 6.74 0.5 ground 

0 114 75 0.36 6.74 0.5 ground 

2 101 60 1.196 0.0984 0.5 A 

2 80 45 1.196 0.0984 0.5 B 

2 80 75 1.196 0.0984 0.5 C 

 

 
 

Resistivity 

of sheath 
[Ω/m] 

Resistivity 

of core 
[Ω/m] 

Outer 
insulation 

Radius 
[cm] 

Outside 
radius of 
sheath 
[cm] 

Inside 
radius of 
sheath 
[cm] 

Outside 
radius of 

core 
[cm] 

Inside 
radius of 

core 
[cm] 

phase 

0.21e-6 0.017e-6 4.84 4.13 3.85 2.34 0 A 

0.21e-6 0.017e-6 4.84 4.13 3.85 2.34 0 B 

0.21e-6 0.017e-6 4.84 4.13 3.85 2.34 0 C 


