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In language, a small number of meaningless building blocks can be combined into an unlimited set of7

meaningful utterances. This is known as combinatorial structure. One hypothesis for the initial emergence8

of combinatorial structure in language is that recombining elements of signals solves the problem of over-9

crowding in a signal space. Another hypothesis is that iconicity may impede the emergence of combinatorial10

structure. However, how these two hypotheses relate to each other is not often discussed. In this paper,11

we explore how signal space dimensionality relates to both overcrowding in the signal space and iconicity.12

We use an artificial signalling experiment to test whether a signal space and a meaning space having sim-13

ilar topologies will generate an iconic system and whether, when the topologies differ, the emergence of14

combinatorially structured signals is facilitated. In our experiments, signals are created from participants’15

hand movements, which are measured using an infrared sensor. We found that participants take advantage16

of iconic signal-meaning mappings where possible. Further, we use trajectory predictability, measures of17

variance, and Hidden Markov Models to measure the use of structure within the signals produced and found18

that when topologies do not match, then there is more evidence of combinatorial structure. The results from19

these experiments are interpreted in the context of the differences between the emergence of combinatorial20

structure in different linguistic modalities (speech and sign).21
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Introduction24

Language is structured on at least two levels (Hockett, 1960). On one level, a small number of mean-25

ingless building blocks (phonemes, or parts of syllables for instance) are combined into an unlimited set of26

utterances (words and morphemes). This is known as combinatorial structure. On the other level, mean-27

ingful building blocks (words and morphemes) are combined into larger meaningful utterances (phrases and28

sentences). This is known as compositional structure. In this paper, we focus on combinatorial structure.29

This paper investigates the emergence of structure on the combinatorial level. Specifically, we are30

interested in how the topology of a signalling space affects the emergence of combinatorial structure. We31

hypothesise that combinatorial structure will be facilitated when a meaning space has more dimensions (ways32

meanings can be differentiated) than the signal space has dimensions (ways signals can be differentiated). We33

are also interested in the emergence of iconicity. Iconicity is the property of language that allows meanings to34

be predicted from their signals. We posit that iconicity can also be facilitated by the topology of a signalling35

space, but when a meaning space and a signal space have similar numbers of dimensions, rather than differing36

ones. Taken together, these hypotheses will have different predictions for systems with different topologies.37

We posit that it is dimensionality that is at the root of why different signal structures may be facilitated by38

different linguistic modalities in the real world (speech and sign).39

Previously, linguists have hypothesised that combinatorial structure is present in all human languages,40

spoken and signed (Hockett, 1960). Further, evidence suggests that at least in the hominid lineage, the ability41

to use combinatorial structure is a uniquely human trait (Scott-Phillips & Blythe, 2013). It therefore needs to42

be explained why human language has combinatorial structure. Hockett (1960) proposed that combinatorial43

structure emerges when the number of meanings, and therefore signals, grows, while the signal space stays44

the same. If all signals are unique (i.e. they do not overlap in the signal space), this means that the signal45

space becomes more and more crowded and that signals become more easily confused. Combining elements46
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from a smaller set of essentially holistic signals into a larger set of longer signals makes it possible to increase47

the number of signals beyond what can be achieved by purely holistic signals. Others have hypothesised that48

combinatorial structure may be adopted as an efficient way to transmit signals when more iconic strategies49

are not available. Goldin-Meadow and McNeill (1999) propose that there is a relation between the emer-50

gence of combinatorial structure and the (in)ability for mimetic (≈ iconic) signal-meaning mappings; spoken51

language needs to rely on combinatorial structure exactly because it cannot express meanings mimetically52

(iconically). Roberts, Lewandowski, and Galantucci (2015) argue that early in a language’s emergence, if53

iconicity is available, this will be adopted over methods that are more efficient for transmission (such as com-54

binatorial structure). This happens because iconicity is high in referential efficiency, which is more useful55

when languages are in their infancy, i.e. when linguistic conventions have not yet been firmly established in56

the language community.57

An important source of evidence regarding the emergence of combinatorial structure comes from58

newly emerging sign languages, such as Al-Sayyid Bedouin Sign Language and Central Taurus Sign Lan-59

guage (Sandler, Aronoff, Meir, & Padden, 2011; Caselli, Ergin, Jackendoff, & Cohen-Goldberg, 2014). While60

these languages do combine words into sentences, the words they use do not appear to be constructed from61

combinations of a limited set of meaningless building blocks (e.g. handshapes). In other words: these62

languages do have compositional structure, but lack combinatorial structure (at least in the initial stages of63

their emergence). Conversely, it is not easy to imagine a spoken language without a level of combinatorial64

structure. Nothing similar has ever been reported for emerging spoken languages such as contact languages,65

pidgins and creoles. Taken together, these observations suggest that different linguistic modalities cause dif-66

ferences in how structure emerges. Here we ask whether this is due to the availability of more iconicity in67

signed languages, or a constraint in the amount of distinctions possible in spoken languages.68

Signal-space crowding and the emergence of combinatorial structure69

Mathematical models (Nowak, Krakauer, & Dress, 1999) and computational models (Zuidema & de70

Boer, 2009) show that combinatorial signals can indeed theoretically emerge from holistic signals as a result71
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of overcrowding in the signal space. However, in reality, the process of transition from holistic to combinato-72

rial signals involves more factors. The evidence from emerging sign languages mentioned above shows that73

apparently fully functional languages can get by without combinatorial structure. These emerging languages74

slowly transition from a state without combinatorial structure to a state with combinatorial structure, without75

a marked increase in vocabulary size (Sandler et al., 2011). Apparently, the size and flexibility of the sign76

modality allows for a fully holistic language (on the word level) in an initial stage.77

Backing up the naturalistic results, and in contrast with the models, experimental investigations have78

failed to show a strong correlation between the crowdedness of the signal space and the emergence of com-79

binatorial structure. Verhoef, Kirby, and de Boer (2014) investigated the emergence of structure in sets of80

signals that were produced with slide whistles. Participants learnt a set of 12 whistled signals, and after a81

short period of training, their reproductions were recorded and used as learning input for the next "gener-82

ation" of learners. This process of transmission from generation to generation was modelled in an iterated83

learning chain of 10 generations (Kirby, Cornish, & Smith, 2008). They found that even in this small set of84

signals, combinatorial structure emerged rapidly and in a much more systematic way than through gradual85

shifts as predicted by Nowak et al. (1999) and Zuidema and de Boer (2009). This indicates that processes of86

reanalysis and generalisation of structure play a more important role than just crowding of the signal space.87

Roberts and Galantucci (2012) also investigated whether crowding in the signal space affected the88

emergence of combinatorial structure. Participants developed a set of signals to communicate about different89

animal silhouettes. The instrument used to generate graphical signals (designed by Galantucci, 2005) pre-90

vented them from either drawing the silhouettes, writing the name of the animals, or using other pre-existing91

symbols. They found that there was no strong relation between the number of animals communicated by92

participants and the level of structure found in signals.93

Little and de Boer (2014) adapted Verhoef et al’s (2014) slide whistle experiment to investigate how94

the size of the signal space would affect the emergence of structure. By limiting the movement of the slider of95

the slide whistle with a stopper, the possible signals were restricted to a third of the original pitch range. There96

was no significant difference in the emergence of structure between the reduced condition and the original97
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condition, indicating that there was no strong effect of reducing the available signal space on the emergence98

of combinatorial structure. However, although the stopper prevented a certain portion of the pitch range from99

being used, it did not affect participants’ ability to replicate essential features of the trajectories that could be100

produced without a stopper (for example, a rising pitch repeated). With the specific example of slide whistle101

signals, it is not the size of the signal space that would cause overcrowding, but the way in which signals in102

the space can be modified and varied. This idea is at the core of the present work and will be discussed more103

thoroughly below.104

The current experimental evidence, then, seems to suggest that crowding in the signal space does not105

play such a primary role in the emergence of structure as predicted by Hockett. However, it is clear that the106

nature of the signal space must influence the emergence of combinatorial structure, otherwise, we could not107

explain that the sign languages can exist (at least briefly) without combinatorial structure, whereas spoken108

languages apparently cannot. One reason for this difference between modalities could be the extent to which109

a given signalling medium allows for the use of iconicity.110

Iconicity and Combinatorial Structure111

Hockett (1960) proposed that an arbitrary mapping between signal and meaning is a design feature of112

language. However, it is now well-accepted that there is a non-trivial amount of iconicity in human language.113

In spoken language, the most salient example is true onomatopoeia, the property that a word sounds like114

what it depicts (e. g. cuckoo, peewit, chiffchaff and certain other bird names), though this is quite rare.115

A more common form of iconicity is sound symbolism, which has now been demonstrated to be much116

more widespread than previously thought (Blasi, Wichmann, Hammarström, Stadler, & Christiansen, 2016).117

In sound symbolism, there is a less direct relation between the signal of a word and its meaning than in118

onomatopoeia. One example is that of the relation between the size of an object that a word indicates and the119

second formant of the vowel(s) it contains. Vowels with a high second formant tend to indicate smallness, as120

in words like "teeny" (Blasi et al., 2016). Another very different example is that words that start with sn- often121

have something to do with the nose: sneeze, sniff, snot, snout etc. (possibly because "sn" is onomatopoeic122
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for the sound one makes when one has a cold). Here sn- almost functions like a morpheme, but its meaning123

is not sufficiently well-defined to be a true morpheme, and there are many words starting with sn that have124

nothing to do with the nose. In sign languages, there is a lot of visual iconic structure. For instance, the125

sign for tree in British Sign Language has the arm representing the trunk, with the fingers pointing upwards126

and splayed to represent the branches of the tree. Although it is hard to quantify precisely, iconic structure127

is more prevalent in sign language than in spoken language. This assumption is supported by experimental128

evidence demonstrating that it is more difficult to be iconic using vocalisations than it is with gestures (Fay,129

Lister, Ellison, & Goldin-Meadow, 2014). Further, sign languages have more signal dimensions than spoken130

languages (Crasborn, Hulst, & Kooij, 2002). More signal space dimensions allow for more mappings to be131

made between the signal space and the highly complex meaning space we communicate about in real life,132

especially when those meanings are visual or spatial in nature.133

In the introduction we mentioned the hypothesis of Goldin-Meadow and McNeill (1999) and Roberts134

et al. (2015); that iconicity suppresses the emergence of combinatorial structure. Roberts and Galantucci135

(2012) explore how this mechanism could work. They hypothesise that as signs become conventionalised,136

iconicity may become dormant, i.e. language users are no longer aware of it. Once iconicity has been lost137

(or become dormant) through a process of conventionalistion, this opens up the possibility of re-analysing138

regularities in signs as meaningless building blocks that then become standardised across signs. Iconic signs139

are robust to variation, as their meaning can be compensated for with knowledge of the world. This is not140

possible when signs or building blocks become arbitrary, and so a pressure for all speakers to adhere to141

the same standard takes over. These hypotheses suggest that the ability to use iconicity interacts with the142

emergence of combinatorial (and compositional) structure.143

Evidence for the connection between iconicity and combinatorial structure comes from several recent144

experimental studies. Roberts and Galantucci (2012) found in their animal silhouette experiment that more145

iconic signals tend to be less combinatorial. Further, Roberts et al. (2015) conducted a study where the146

meanings could either be easily represented iconically or not, with the results indicating the emergence of147

combinatorial structure in non-iconic signals, but not in those that retained their iconicity. Similarly, Verhoef,148
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Kirby, and Boer (2015) showed that structure emerged differently in a situation where participants could make149

use of possibly iconic signal-meaning mappings than in a situation where they could not. The experiment150

used the same setup as the one described above (Verhoef et al., 2014), except that the whistles were associated151

with meanings. In one condition, signals were paired with the same meaning they were produced for when152

passed to the next generation for learning. This meant that iconicity in signals could persist in transmission.153

In the other condition, a random meaning was associated with each unique signal presented to the listener, so154

that producer and listener did not have the same meaning for a given signal. The former condition allowed155

for transmission of iconic signal-meaning mappings, while the latter condition did not. Verhoef et al. (2015)156

found that structure emerged faster in the condition where signal-meaning mappings were not preserved, i.e.157

where iconicity was not possible.158

In the experiments above, iconicity is either possible or not. However, the difference in iconic ability159

between spoken and signed language is one of degree rather than a parameter that is "on" or "off". In the160

experiments in the current paper, we are interested in how more nuanced manipulations of available signal-161

meaning mappings can promote the emergence of combinatorial structure.162

The Current Study163

Iconicity in the current study164

In this paper, we investigate whether the observed differences in the emergence of structure are de-165

pendent on the degree of iconicity a particular signal space affords. Iconicity can take various forms, as we166

have already made clear. However, we need to formalise notions of different types of iconicity in order to167

inform our experimental design and results. We define two forms of iconicity: relative and absolute iconicity168

(Monaghan, Shillcock, Christiansen, & Kirby, 2014). For relative iconicity, there is what mathematicians169

call a homeomorphism between the meaning space and the signal space (i.e. there is an invertible mapping170

in which neighbouring points in the meaning space stay neighbouring points in the signal space). The con-171

sequence of such a mapping is that if one knows enough signal-meaning mappings (at least the number of172

dimensions +1), then meanings corresponding to unseen signals and signals corresponding to unseen mean-173
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ings can be guessed. In order for this mapping to work, points along the dimensions of the meaning and174

signal spaces must be ordered in some way. Meaning and signal spaces with categorical dimensions (e.g.175

biological sex) do not allow for such generalisable relative iconicity. Indeed, previously, we conducted an176

experiment using continuous signals to refer to meanings with categorical dimensions (Little, Eryılmaz, &177

de Boer, 2015). Using the same methodology as the current paper (see Methods section below), we com-178

pared what happens when a continuous signal space is used to describe a continuous meaning space verses a179

discrete meaning space. We found that the discrete condition created signals with more movement and struc-180

ture when relative iconicity was more difficult. This suggests that structure may emerge due to transparent181

mappings not being available, which fits with the findings from the experiments mentioned above (Roberts182

& Galantucci, 2012; Roberts et al., 2015; Verhoef et al., 2015).183

For absolute iconicity, one only needs to see one signal in order to see an iconic relation. To achieve184

this, the dimensions that correspond through the homeomorphism must also correspond to a feature in the real185

world. For example, this is the case in the absolute iconic mapping between the second formant of vowels186

[i], [o], [u] and size, where the second formant (a frequency) maps to the pitch that an object would make if187

tapped. It should be noted that these dimensions do not have to be linear and continuous. They can be spatial188

(as in directions) or discrete/categorical (as in presence and absence of a property). In addition, similarity is a189

very broad notion in practice; it often takes the form of an associative link between a property (e.g. size) and a190

selected feature that corresponds to that property (e.g. frequency when tapped). Depending on the number of191

dimensions that are related to the same feature in the real world, the indirectness of these links, and the total192

number of dimensions that are mapped through the homeomorphism, there is a continuum between absolute193

iconicity, relative iconicity and no iconicity at all.194

Topology in the current study195

In our experiments, the notion of topology allows us to operationalise the way signal and meaning196

spaces map onto each other. When a meaning space has the same number of dimensions (or fewer) as the197

signal space, an iconic mapping is possible. When the number of dimensions of the signal space is lower than198
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that of the meaning space, completely iconic mappings are no longer possible.199

Zuidema and Westermann (2003) were the first to look at signal and meaning spaces with identical200

topologies. They looked at meanings and signals from a bounded linear space. Using a computer simulation,201

they found that the most robust signal-meaning mapping was a topology-preserving iconic mapping: one in202

which signals that were close together corresponded to meanings that were close together. In this way, small203

errors in production and perception only disrupted communication minimally. In a follow-up study, de Boer204

and Verhoef (2012) found that, while this works when the topologies of the signal and meaning space match,205

when the meaning space has more dimensions than the signal space, mappings emerge that show structure.206

Here, we propose that de Boer & Verhoef’s (2012) model can inform us about the emergence of structure207

in signed and spoken language: the signal space of signed languages (in comparison to the signal space of208

spoken language) is closer in topology to the (often visual and spatial) meaning space that humans tend to talk209

about. The more overlap there is between topologies, the easier it is to find signal-meaning mappings where210

a small change in signal corresponds to a small change in meaning. Moreover, when the topologies map, it211

is possible to have productive iconic signal sets where new signals are predictable from existing ones (for212

instance, higher pitches corresponding to smaller objects). In order to develop these ideas further, it is first213

necessary to experimentally investigate whether the effects predicted by de Boer and Verhoef (2012) hold for214

human behaviour.215

In our experiments, we manipulate the number of dimensions in our signal and meaning spaces to216

investigate the properties of the signalling systems that participants create. The number of dimensions (the217

dimensionality) of the meaning space is manipulated by varying images in size, shade and/or colour. The218

number of dimensions in the signal space is controlled by using an artificial signalling apparatus (built using219

a Leap Motion infra-red hand position sensor) that produces tones that can differ in intensity and/or pitch220

depending on hand position. This allows us to have different combinations of signal and meaning space221

dimensionality, and therefore different mappings between the topologies of these spaces.222

One important implication to manipulating the topology of our signal space is that dimensionality is223

not only tied to the iconicity possible (as outlined above), but it also affects the size of a signal space. The224
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more dimensions a signal space has, the more distinctions can be made between signals in that space. This225

means that the overcrowding of signal space hypothesis and the iconicity hypothesis cannot be teased apart226

by the experimental work in this paper directly. They may also be more interrelated in real world languages227

than is indicated in previous work.228

Experiments229

Our experiments aim to explore the effects that signal space topology has on the emergence of struc-230

ture. Specifically, following the themes of de Boer and Verhoef (2012), we aim to find out how differences231

in the dimensionality of both the signal space and the meaning space will affect the structure in signals used.232

Following the findings of de Boer and Verhoef (2012), our hypothesis is that when the dimensionality of the233

signal space is lower than that of the meaning space, then combinatorial structure will be adopted. We also234

expect that when there is matching dimensionality in signal and meaning spaces, then participants will adopt235

iconic strategies.236

Experiment 1 compares signal spaces which are either 1 dimensional (pitch or volume) or two-237

dimensional (both pitch and volume). These signals were used to label meanings that either differed in only238

one dimension (size) or two dimensions (both size and shade of grey). However, we found that participants239

used duration as a signal dimension, meaning that the number of signal dimensions did not correspond to the240

intended number in the experimental design. To fix this, in Experiment 2, signals only differed in pitch (and241

duration) and the meaning space grew to 3 dimensions to ensure we could observe the effects of meaning242

dimensions outnumbering signal space dimensions.243

Experiment 1244

Experiment 1 consisted of signal creation tasks and signal recognition tasks. In contrast to previous245

experimental work, these signals were not used for communication between participants, or iterated learning.246

Instead, participants created and then recognised their own signals.247
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Methods248

Participants. Participants were recruited at the Vrije Universiteit Brussel (VUB) in Belgium. 25249

participants took part in the experiment; 10 male and 15 female. Participants had an average age of 24 (SD250

= 4.6). No participants reported any knowledge of sign languages. We also asked participants to self-report251

their musical proficiency (on a scale of 1-5). This information was recorded as recognition of pitch-track252

signals might be dependent on participants’ musical abilities, so we needed to identify and control for this253

potential effect in our results.254

The signal space. Our experiment used a continuous signal space created using a Leap Motion de-255

vice: an infrared sensor designed to detect hand position and motion (for extensive details about the Leap256

Motion paradigm, see Eryılmaz & Little, 2016). Participants created auditory signals using their hand posi-257

tions within the space above the sensor. The Leap Motion was used to generate continuous, auditory signals258

that were not speech-like. In this way, we could see how structure emerged in our signals in a way that is259

analogous to speech, without having pre-existing linguistic knowledge interfere with participants’ behaviour.260

We could manipulate the dimensionality of this signal space, so signal generation depended on moving261

the hand within a horizontal dimension (x), vertical dimension (y) or both (Figure 1). Signals were generated262

that either differed in pitch (on the x-axis), volume (on the y-axis), or both. Participants were told explicitly263

which signal dimension(s) they were manipulating. When a signal could be altered along two perceptual264

dimensions (i.e. pitch and volume), participants achieved this by moving one hand within a two-dimensional265

space, i.e. moving a hand up or down would affect the volume, while a hand moving left or right would266

manipulate the pitch. Participants could hear the signals they were producing. Participants were given clear267

instructions on how to use the sensor and had time to get used to the mapping between their hand position268

and sound.269

Both the pitch and volume scales used were non-linear. Though our paradigm allows for any mapping270

between the hand position and the acoustic signal, participant feedback in pilots indicated that people could271

more intuitively manipulate non-linear scales. However, the output data has variables for both absolute hand272
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Figure 1. The signal dimensions available using the Leap Motion. In phases with a one-dimensional signal
space, only either the x- or y-axis was available.

position within signal trajectories (represented as coordinates), and transformed pitch and volume values so273

that we could explore whether participants were relying more on hand position or the acoustic signal.274

Recording was interrupted when participants’ hands were not detectable, meaning that there were275

no gaps in any of the recorded signals, even if participants tried to produce them. This was done to stop276

participants creating gaps to separate structural elements in the signals, as this is not something typically used277

to separate combinatorial elements in speech or sign. The data does not show much (if any) evidence that278

participants tried to include gaps in the experimental rounds, which would be evident from sudden changes279

in pitch in the signal.280

The meaning space. The meaning space consisted of a set of squares that differed along continuous281

dimensions. In phases where the meaning space only differed on one dimension, five black squares differed282

only in size. In phases where the meaning space differed on two dimensions, nine squares differed in both283

size and in different shades of grey (Figure 2). Participants had to create distinct signals for each square.284

Procedure. Participants were given instructions on how to generate signals using the Leap Motion.285

They were given time to practice using the Leap Motion while the instruction screen was showing. Partic-286

ipants had control of when to start the experiment, and so could practice for as long as they wanted. They287
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were instructed to sit back in the chair during the experiment, so that their upper body did not interfere with288

the Leap Motion. Participants were also told that they would have to recognise the signals they produced, so289

they knew they had to make signals distinct from one another.290

There were three phases of the experiment: each phase consisted of a practice round and an experi-291

mental round. There was no difference between practice rounds and experimental rounds, but only the data292

from the experimental round was used in the analysis. Each practice and experimental round consisted of a293

signal creation task and a signal recognition task.294

Signal Creation Task. At the beginning of each signal creation task, participants saw the entire295

meaning space. They then were presented with squares in a random order, one by one, and pressed an on-296

screen button to begin and finish recording their signals. They had the opportunity to play back the signal they297

had just created, and rerecord the signal if they were not happy. Participants created signals for all possible298

squares in a phase.299

Signal Recognition task. After each signal creation task, participants completed a signal recog-300

nition task. All signals they had created were presented to them in random order one after the other. For301

each signal, they were asked to identify its referent from an array of three randomly selected meanings (from302

the repertoire of possible meanings - i.e. squares of different colours and shades of grey - within the cur-303

rent phase) plus the correct referent, so four meanings in total. They were given immediate feedback about304

whether they were correct, and if not, what the correct meaning had been. This task worked as a proxy for305

the pressure to communicate each meaning unambiguously (expressivity), as participants knew that they had306

to produce signals that they could then connect back to the meaning in this task, thus preventing them from307

producing random signals, or just the same signal over and over again. Their performance in this task was308

recorded.309

When participants were incorrect, we measured the distance between the meaning they selected and310

the correct meaning. The distance was calculated as the sum of differences along each dimension using a311

measure similar to Hamming distance. Let mi j define a meaning with size i and shade j in a meaning space312

where 0 < i < I and 0 < j < J . The distance between two meanings mi j and mi′ j′ is then the following:313
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D(mi j,mi′ j′) =
∣∣i− i′

∣∣+ ∣∣ j− j′
∣∣ (1)

For example, if the correct square has values 3 and 3 for size and shade respectively, and the chosen314

square had vales 1 and 2 for size and shade respectively, the distance between these two squares would be 3.315

Correct answers have a distance of 0.316

Phase 1:1. All participants started with phase 1:1. In this phase, the meaning space consisted of five317

black squares, each of different sizes (one meaning dimension). In this phase, the signal space also had only318

one dimension, which was either pitch or volume. Which signal dimension the participants started with was319

assigned at random. This phase was a matching phase, as there was a one to one mapping possible between320

the meaning space and signal space (Figure 2).321

Phase 1:2. In phase 1:2, participants created signals for a two-dimensional meaning space with the322

squares differing in size and shade. The signal space had only one dimension. Participants used the same323

one-dimensional signal space that they used in phase 1:1, so if they started the experiment only using pitch,324

they only used pitch in this phase. This was the mismatch phase, as there were more meaning dimensions325

than signal dimensions (Figure 2).326

Phase 2:2. In phase 2:2, participants described the two-dimensional meaning space (differing in327

size and shade), but with a two-dimensional signal space, where the signals differed in both pitch and volume328

along the x and y dimensions respectively (Fig. 2). This phase was a matching phase also, as there was a one329

to one mapping available between signal and meaning spaces.330

Counterbalancing. Participants completed the phases in order 1:1, 1:2, 2:2 (where mismatch phase331

interrupts matching phases) or 1:1, 2:2, 1:2 (where matching phases are consecutive). Order was counter-332

balanced because participants’ behaviour may depend on what they have previously done in the experiment.333

If people must solve the dimensionality mismatch before being presented with the two-dimensional signal334

space, then they may continue using an already established strategy that only uses only one dimension, rather335

than change their strategy to take advantage of both dimensions.336
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Figure 2. The phases used in the experiment. Phase 1:2 is the mismatch phase.

Post-experimental questionnaire. We administered a questionnaire with each participant after they337

had completed the experiment. This questionnaire asked about the ease of the experiment, as well as about338

the strategies that the participant adopted during each phase of the experiment. The questionnaire asked339

explicitly whether they had a strategy and, if so, how the participant encoded each meaning dimension into340

their signal.341

Results342

Signal Creation Task343

The data collected from the signal creation task consisted of coordinate values designating hand posi-344

tion at every time frame recorded, which is what the following statistics are based on. There were approxi-345

mately 110 time frames per second. Signals were on average 3.36 seconds long. We first looked at the mean346

of the coordinate values for each trajectory, and the duration of each signal. These simple measures give a347

good starting point to assess whether participants were encoding the meaning space directly with the signal348

space. If size or shade was directly encoded by pitch, volume or duration trough relative iconicity, then this349



SIGNAL DIMENSIONALITY AND THE EMERGENCE OF STRUCTURE 16

should be detectable in the mean coordinates or duration of the trajectories.350

The first dimension a participant used was collapsed into one outcome variable in our analysis, re-351

gardless of whether it was pitch or volume. All coordinates for signals using either pitch or volume were352

normalised to have the same range. We also controlled for whether these coordinates were pitch or volume in353

the mixed linear models below as a fixed effect, and also ran a separate analysis that showed that participants354

performed just as well in the task when starting with either pitch or volume (reported in the signal recognition355

results below). As explained above, meaning dimensions were coded to reflect the continuous way in which356

they differed, i.e. the smallest square was coded as having the value of 1 for size, and the biggest square a357

value of 5, with the lightest grey square given a value of 1 for shade, and the darkest had a value of 3. Using358

these values, we could predict duration and mean coordinates from size and shade.359

We ran a mixed linear model with size and shade as predictors, duration and mean coordinate value360

as outcomes. Participant number was included as a random effect, and whether their starting dimension361

was pitch or volume as a fixed effect. P-values were obtained by comparing with null models that did362

not include the variable of interest. In the first phase, duration was predicted by the size of the squares363

(χ2(1) = 18.5, p < 0.001), but the mean coordinate value was not. In the other 2 phases, the mean coordinate364

of signals on the first dimension that a participant saw in phase 1:1 (either pitch or volume) was predicted most365

strongly by shade. A mixed linear model, controlling for the same effects as above, showed this interaction366

to be significant (χ2(1) = 341.4, p < 0.001). The duration of the signal was predicted most strongly by the367

size of the square, with each step of size increasing the signal by 75.296 frames±7(std errors) (approx 0.7368

seconds). The mixed linear model for this effect, controlling for the same fixed and random effects, was also369

significant (χ2(1) = 103.14, p < 0.001). These effects demonstrate a propensity for encoding the meaning370

space with the signal space using relative iconicity. Size and duration are easy to map on to one another,371

and it makes sense that participants are more likely to encode the remaining meaning dimension (shade) with372

the signal dimension they were first exposed to. Figure 3 shows the output of one participant who mapped373

the signal space onto the meaning space in a very straightforward one to one mapping, with size encoded374

with duration and shade encoded with volume. This is an example of a topology-preserving mapping (a375



SIGNAL DIMENSIONALITY AND THE EMERGENCE OF STRUCTURE 17

homeomorphism).376

Figure 3. The mean trajectory coordinates (in mm) along the axis manipulating volume (where lower values
refer to louder sounds) plotted against duration (number of data frames, roughly 1/110 of a second). Size
and shade are represented by the size and shade of the squares in the graph. Within the phase with the
two-dimensional meaning space with a two-dimensional signal space, this participant used signal duration to
encode size, and signal volume to encode shade.

We also looked at standard deviation in signals to give us a good idea of the amount of movement377

in a signal. Signal trajectories produced in the phase where there was a mismatch (1:2) had higher standard378

deviations (M = 48.2mm) than signals produced in phases where the signal and meaning spaces matched in379

dimensionality (M = 33.4mm), indicating more movement in mismatch phases. Using a linear mixed effects380

analysis with standard deviation as the outcome variable and whether phases were matching or mismatching381

as the predictor, and controlling for participant number as a random effect, and whether they started with382

pitch or volume as a fixed effect, we found a significant effect (χ2(1) = 4.5, p < 0.05).383



SIGNAL DIMENSIONALITY AND THE EMERGENCE OF STRUCTURE 18

Predictability of signal trajectories384

We also quantified signal structure by measuring the predictability of signal trajectories given other385

signals in a participantâĂŹs repertoire. If each signal trajectory in a participant’s repertoire is predictable386

from the other signals, this gives an indication of systematic and consistent strategies being used within the387

repertoire.388

We created a measure for predictability of each signal trajectory, derived from a participant’s entire389

repertoire. The procedure is as follows:390

1. Use the k-means algorithm to compute a set of clusters S of hand coordinates using the whole repertoire,391

which reduce the continuous-valued trajectories to discrete ones (k = 150).392

2. Calculate the bigram probability distribution P for each symbol xi ∈ S.393

3. Use the bigram probabilities to calculate the negative log probability of each trajectory using Equation394

2 below.395

The choice of k was set quite high at 150 to ensure the quantisation was sufficiently fine-grained.396

This ensured that the high variation in our data set is well-represented in the prediction scores to avoid397

overestimating similarity. In the literature, such high values for this parameter are used for modelling high-398

dimensional speech data, which we used as an upper bound (e.g. Räsänen, Laine, & Altosaar, 2009).399

Letting S be the set of 150 clusters obtained in step 1, and T be a trajectory that consists of m symbols400

x0,x1,x2, ...,xm where xi ∈ S, the formal description of step 3 is the following:401

P(T) =−logP(x0)−
m

∑
a=1

logP(xa|xa−1) (2)

With the predictability value for each trajectory, we used a linear mixed effects model to compare the402

predictability of signals in the matching and mismatching phases. Controlling for duration and participant403

number as random effects, and size and shade of square as fixed effects, we found that whether signals404
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were produced in matched or mismatched phases predicted how predictable a trajectory was (χ2(1) = 3.9,405

p < 0.05). Signals produced in the matching phases had higher predictability.406

Signal Recognition Task407

Overall, participants were good at recognising their own signals, identifying a mean of 66% of signals408

correctly, where 25% was expected if participants performed at chance level. Using a linear regression model,409

we found that participants improved by around 10% with each phase of the experiment (F(1,76) = 9.96,410

p < 0.01).411

There was no significant difference between the recognition rates of participants who started with412

either volume or pitch (t(21.9) = −0.46, p = 0.65), suggesting that there was no difference in difficulty413

between the signal dimensions. We also used a linear regression model to test if musical proficiency predicted414

performance in the signal recognition task, and found that it did not (F(1,23) = 0.03, p = 0.86).415

If signals rely on relative iconicity, then similar signals will be used for similar meanings, causing416

more potential confusion between signals for similar squares. This confusability may cause participants to be417

worse at the signal recognition task when relative iconicity is more prevalent. We tested whether participants418

were indeed worse at the recognition task in the condition where we predicted relative iconicity (in the419

matching phases). In line with this hypothesis, we found that participants were worse at recognising their420

signals within matching phases (1:1, 2:2) (M = 61.3% correct, SD 24%), than in mismatching phases (1:2)421

(M = 69.6%, SD= 21%). However, this result was not significant (t(53.3) =−1.5, p = 0.13), and may be an422

artefact of the experiment getting more difficult as it progressed.423

We also calculated the distances between incorrect answers and target answers, as discussed in our424

methods (Signal Recognition Task section). To compare these values to a baseline, we also calculated the425

distance between the target answer and a randomly chosen incorrect answer. Comparing the actual data with426

the random data using a mixed effect linear model, and controlling for participant number as a random effect,427

and stimulus number as a fixed effect, we found that with incorrect choices produced in the matching phases428

(1:1, 2:2), participants were closer to the correct square (M = 2.6 steps away, SD= 1.4) than if they had chosen429
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at random (M = 3 steps away, SD= 1.7) (χ2(1) = 5.5, p = 0.02). However, in the mismatching phase (1:2)430

there was no difference between actual incorrect choices and random incorrect choices (both around 3.6 steps431

away, χ2(1) = 0.01, p = 0.9). Further, we found that the distance from the correct answer was much higher432

in the mismatching phases (M = 3.6 steps away, SD = 1.5), than in the matching phases (M = 2.6 steps away,433

SD = 1.4), indicating that participants were relying more on relative iconicity in the matching phases, because434

their mistakes were predicable, assuming a transparent mapping between the signal space and the meaning435

space. We tested this using a mixed effect linear model, and controlling for the same variables found the436

effect was significant (χ2(1) = 5.3, p < 0.05).437

Post-experimental questionnaire438

Nearly all participants reported strategies and they were mostly the same strategies. These strategies439

included using pitch, volume or duration directly to encode size or shade. For example, many participants440

used high pitches or short durations for small squares and low pitches or long durations for big squares.441

Participants also reported that involved different movement types, frequencies and speeds.442

As we predicted in the section on counterbalancing, participants who saw phase 1:2 before phase 2:2,443

were more likely to use the same signal strategy throughout, than to change the strategy to take advantage444

of both dimensions. 84% (SD = 37%) of strategies used for a particular meaning dimension were consistent445

throughout phases 1:2 and 2:2 by participants who saw 1:2 first. Only 54% (SD = 50%) of strategies by446

those who saw 2:2 first were consistent. Consistency rates between different phase orders were significantly447

different (χ2(1) = 8.7, p < 0.01).448

Whether a participant self-reported as having a strategy or not influenced their performance in the449

signal recognition task. Participants were significantly more likely to perform better at recognising their own450

signals in a given phase, if they reported having a strategy (M = 70% correct, SD = 20%), than if they didn’t451

(M = 40% correct, SD = 16%) (t(26.6) =−6, p > 0.001).452

Hidden Markov Models453
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Models. While our predictability values outlined in the previous sections are useful to characterise454

internal similarities in a repertoire, the clustering algorithm they are based on ignores temporal dependencies.455

To infer the structure of the signal repertoires including the temporal dependencies, we used Hidden Markov456

Models, or HMMs. An HMM consists of a set of states of which only one can be active at a time. The active457

state produces observable emissions (such as short stretches of time) drawn from a state-specific distribution,458

and the next active state depends only on the currently active state. In the models we derive from our experi-459

mental data, states are analogous to phonemes (or similar to building blocks), and the emission distributions460

to determine how they are realised phonetically. By training HMMs on the signal repertoires, we can estimate461

the most likely vocabulary of states across a repertoire, i.e. the most likely “phonological” alphabet. Note462

that this model does not explicitly include meanings, since our purpose is to model the structure of the signal463

repertoire.464

HMMs are very common in natural language processing applications, such as part-of-speech tagging465

and speech recognition (Baker et al., 2009). A common use for HMMs in the field is modelling phonemes,466

where typically three states represent three phoneme positions, and their emissions are very short segments467

of speech making up the observed signal (see Figure 4).468

s0 s1 s2

 e0 ~ X0

t t+1 t + 2

1.0 1.0
 e1 ~ X1  e2 ~ X2

Figure 4. A simple, three state, left-to-right HMM emitting the observation sequence e0e1e2 through the state
sequence s0s1s2. Each observation ei is a random sample from the emitting state’s emission distribution Xi
where i ∈ {0,1,2}. Transitions are annotated with their probabilities. Note how the only non-deterministic
part of the system is the emissions in this type of HMM.

HMMs are typically used with a fixed transition matrix and a fixed number of states. Each phoneme is469

modelled as a “left-to-right” HMM. These models have exactly one possible starting state, and all transitions470

are deterministic. Further, applications typically assume the number of states is already known and only471



SIGNAL DIMENSIONALITY AND THE EMERGENCE OF STRUCTURE 22

the emission distribution for each state needs to be estimated. While this is useful for modelling a signal472

whose structure is familiar (such as human speech), it is not a very useful method of discovering and/or473

characterising structure in signals where the properties of the signalling system are unknown. Most of the474

structural variation available is ruled out by the fixed architecture of the HMM. Furthermore, contrary to475

common practice, we are interested in modelling the properties of the whole signal repertoire rather than476

individual signals.477

Since we use HMM as a model of the speaker, the estimated properties of the model should be able478

to predict the participant’s performance, such as their score in the recognition task for that phase. In partic-479

ular, we are interested in whether the number of states in the HMM can predict the recognition score of a480

participant. Since the states are analogues for the phonemic inventory, we predict participants with bigger481

inventories will have worse recall. Such predictive power would indicate the model successfully captures482

aspects of participant behaviour during the experiments.483

We propose that fewer building blocks across a repertoire indicates combinatorial strategies in compar-484

ison to strategies of relative iconicity. The efficiency that combinatorial structure brings is due to its capability485

to encode multiple meanings with combinations of a limited number of fundamental building blocks (or states486

in the HMMs). We expect combinatorial strategies (represented by a smaller numbers of states) to be more487

efficient in communicating meanings, because they overcome the problem of crowding in the signal space488

resulting in less confusion between signals. On the other hand, a system with relative iconicity, which would489

have to maintain a systematic relationship between the meanings and forms, would result in many states490

within a crowded system. With a combinatorial system, encoding a newly encountered meaning dimension491

does not require the invention of a new signal dimension to provide a range of signals to encode variations on492

the meaning dimension, which is what would happen with relative iconicity. We predict that the signals from493

phases where the number of meaning dimensions is greater than the number of signal dimensions will have494

combinatorial structure, and this will manifest itself in HMMs trained on those signals having fewer states495

than signals from matching phases.496

We calculate the structure as well as the transitions of HMMs, with only an upper boundary on the497
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number of states and no constraints on transitions. We use HMMs with continuous multivariate (Gaussian)498

emissions and the standard Baum-Welch algorithm for unsupervised training. We trained a separate HMM499

on the set of signals generated by each participant at each phase of the experiment. This way, we ensured that500

all signals that went into training a particular HMM had been created to label the same meaning space.501

Because the mapping between hand position and the tones generated is non-linear, it makes a differ-502

ence to the HMM which representation we use to train it. Which one works best depends on how participants503

memorise signals. There is no way of knowing a priori whether the participants will memorise (and when504

playing as the hearer, reverse-engineer) the hand movements themselves, or the tones produced by these505

movements. So, in addition to the raw data that assumes the states emit hand coordinates, we trained the506

models on two transformed data sets that assume the emissions are tonal amplitude and frequency values.507

These two additional sets varied in their frequency units, one using the Mel scale and the other Hertz. The508

full training procedure used for each projection is presented in Algorithm 1 in Appendix A.509

A series of linear mixed effects regressions were run to see what aspects of the HMMs are most useful510

in predicting the signal recognition scores. The dependent variable and covariates we have considered are511

the number of states of the model, while the predictors were phase, phase presentation order, and whether512

the phase is matching or mismatching. The random effects were whether volume or pitch was the first signal513

dimension introduced, and the participant number. Likelihood ratio tests were used to justify every additional514

component to the regression equation, corrected for the number of comparisons. The details of the regression515

and estimated coefficients are in Appendix B. Phases are coded as p ∈ {1 : 1,1 : 2,2 : 2}, independent of516

their presentation order (see Counterbalancing in the Methods section for explanation about order of the517

phases). Order of presentation is taken into account in the analysis, and is coded as "consecutive" (when the518

matching phases appear one after the other) or "interrupted" (when the mismatching phase appears between519

the matching phases). The matching phases are p ∈ {1 : 1,2 : 2}, and the mismatching phase is 1 : 2.520

Experiment 1 HMM Results and Discussion. The interaction of number of states, phase order and521

mismatch was the best predictor for participant score in each phase (R2 = 0.616). The signal representation522

most successful in predicting the recognition score was the Mel frequency and the amplitude in linear scale.523
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All results reported here come from HMMs trained on trajectories represented in Mel.524

Some combinations of the interacting components were logically excluded; for instance, the 1:1 phase525

can only take place in the first position, so there is no coefficient for the interaction between the 1:1 phase526

and phase orders other than 1. See Figure 5 for the regression coefficients.527
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Figure 5. Fixed effects from Experiment 1, for both orders of presentation of phases. Each coefficient
represents the estimated number of extra states a phase requires in that condition. Phases 1:1 and 2:2 are
matching phaes. Phase 1:2 is mismatching.

The coefficients associated with predictors reveal a somewhat complex picture (Figure 5). Considering528

that the coefficients indicate the increase or decrease in the number of states required in each condition to529

achieve the same recognition score compared to the baseline, the coefficients suggest:530

• There is a clear distinction between different orderings 1:1, 1:2, 2:2 (interrupted) and 1:1, 2:2, 1:2531

(consecutive). The required number of states is minimised for the consecutive ordering532

• For either ordering, the need for any more or fewer states when moving from the second phase to the533

third phase is insignificant.534

• Whether the second phase requires more or fewer states than the first depends on whether the second535

is a match or a mismatch.536
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Our results cannot confirm the prediction that mismatching phases would require fewer HMM states.537

It seems that our prediction only holds for the interrupted ordering where there is a monotonic (but not538

necessarily significant) increase in the number of states required.539

If the matching phases are consecutive (1:1, 2:2, 1:2), this seems to help all future phases to reduce540

the number of required states compared to the first phase (although only the difference between the first and541

the third phases is significant). However, if the matching phases are interrupted by the mismatching phase542

(1:1, 1:2, 2:2), every phase requires more states than the one it follows (both second and third phases require543

significantly more states than the first). This different behaviour based on ordering is visible in the how the544

coefficients for phases 1:2 and 2:2 have markedly different values in the left and right panels of figure 5.545

Strikingly, the phase that required the least number of states across all data seems to be phase 2:2 presented546

as the second phase. This is despite phase 2:2 mapping on to a meaning space twice as large as 1:1.547

Order of presentation causing participants to break strategy has an effect beyond whether or not a548

phase is mismatching. For instance, in the ordering 1:1, 1:2, 2:2, the participant could simply ignore the549

additional dimension on the final phase to perform at least as well as the second phase, yet there is an550

(insignificant) increase in the coefficient in the 2:2 phase. Interestingly, the opposite trend can be seen in551

the other ordering, where changing over to a mismatching phase results in an (insignificant) increase in the552

number of states required.553

Experiment 2554

Experiment 1 provided important evidence of the effects of matching and mismatching signal and555

meaning space topologies. When there is a one to one mapping between signal and meaning spaces, par-556

ticipants tend to take advantage of it. Indeed, even in our conditions designed to produce a dimensionality557

mismatch, participants used duration as another signal dimension. Despite this, we were still able to find558

significant effects of the matching phases compared to the mismatching phases on the amount of movement559

in signals, the consistency of iconic strategies and how predictable recognition mistakes were.560

Experiment 2 was a very similar signal creation experiment. It tested the same hypothesis as Experi-561
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ment 1, but the design was altered to counter two possible problems with Experiment 1:562

1) Duration was used as a dimension by some participants, meaning there wasn’t really a “mismatch"563

even with the 1:2 phase.564

2) Participants created signals for a very small meaning set in Experiment 1 (5 or 9 meanings depend-565

ing on the phase), which was seen in its entirety before the experiment. This made it easier for participants to566

create a completely holistic signal set without the need for structure. Only one participant treated meanings567

holistically in Experiment 1 (using frequencies of pitch contours to differentiate meanings). However, we568

feel that this is still a flaw in the experimental design, as this strategy would soon become maladaptive as569

meaning numbers rise. In the real world, continuous meaning dimensions are much more nuanced than only570

having 3 or 5 gradations.571

To counter these problems, two alterations have been made in Experiment 2:572

1) Phase 1:2 in Experiment 2 has been dubbed a “match" phase, and a new phase 1:3 has been instated573

to be sure there is a dimensionality mismatch.574

2) Participants do not create signals for every possible meaning, but a subset of them. This is explained575

further in the Meanings section below.576

Methods577

Participants. Participants were recruited at the VUB in Brussels. 25 participants took part in the578

experiment; 8 male and 17 female. Participants had an average age of 21 (SD = 3.2). As in Experiment 1,579

we asked participants to list the languages they speak, with level of fluency, and to self-report their musical580

proficiency (on a scale of 1-5).581

Signals. As in the first experiment, there was a continuous signal space built using the Leap Motion582

sensor to convert hand motion into sounds. However, in this experiment, signals could only be manipulated583

in pitch. Participants manipulated the pitch in the same way as in Experiment 1, along the horizontal axis.584

There was an exponential relationship between hand position co-ordinates and signal frequency. The vertical585

axis was not used at all in this experiment, meaning that, including duration, the number of signal dimensions586
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could not be more than 2. However, participants were not explicitly told to use duration in order to make587

the results from Experiment 1 more comparable with Experiment 2. Again, participants were given clear588

instructions on how to use the sensor, and were given a practice period to get used to the mapping between589

the position of their hand and the audio feedback before the experiment started.590

Meanings. The meaning space again consisted of a set of squares, but in this experiment they dif-591

fered along three continuous dimensions: size, shade of orange, and shade of grey. Squares differed along592

different numbers of dimensions in each phase (Figure 6). In contrast to the first experiment, participants593

only saw a subset of the possible meanings. Each dimension was divided into 6 gradations, meaning that the594

meaning space grew exponentially with the number of dimensions (see description of phases below). Having595

6 gradations of difference on meaning-space dimensions meant the meaning space is big enough to have596

make productive systems useful, but coarsely grained enough to not make the discrimination task impossible.597

Further to the reasons given above, this aspect of the experimental design made an incentive for participants598

to create productive systems that extend to meanings they have not seen. The subset the meanings participants599

saw were randomly selected, but participants were explicitly told about all of the possible dimensions. This600

pressure to make productive systems because one has only seen a subset of a bigger meaning space has been601

demonstrated in experiments such as Kirby et al. (2008) and Kirby, Tamariz, Cornish, and Smith (2015).602

Two of the meaning dimensions in this experiment were “shade of grey" and “shade of orange". In603

pilot studies, we originally had the squares differ in shade of orange (which we controlled using the RGB604

ratio of green to red) and the brightness value. However, this made the squares at the darker and redder end605

of the scale very difficult for participants to tell apart, as they all appeared the same dark brown colour. To606

solve this, we used striped squares with alternating grey and orange stripes (see figure 6). This gives the same607

effect of squares differing in shade of orange and brightness, but squares at both ends of the spectrum can be608

distinguished just as easily.609

Procedure. The procedure in Experiment 2 was nearly the same as Experiment 1. There were still610

3 phases, each with a practice round and an experimental round, which were both the same. Each round has611

a signal creation task and a signal recognition task. However, the phases were slightly different.612
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Figure 6. The signal and meaning dimensions used in experiment 2 in each of the 3 phases.

Phases. All participants had phases presented in the same order: 1:1, 1:2, 1:3. The "1" here refers613

to 1 signal dimension (pitch), in order to make these phase labels consistent with the phases in Experiment 1.614

However, since we have learnt to expect participants to use duration as a signal dimension, it is important to615

remember that the meaning dimensions only outnumber the signal dimensions in a meaningful way in phase616

1:3.617

Phase 1:1. In phase 1:1, there were 6 squares that differed in 6 gradations of size. All 6 squares618

were presented in a random order.619

Phase 1:2. In phase 1:2, there were 36 possible meanings. Meanings differed along two dimensions,620

6 gradations of size and 6 shades of grey stripes (See Figure 6.) 12 meanings were chosen at random from621

this set of 36. Participants were then presented with them in a random order. Participants were explicitly told622

about the introduction of the new meaning dimension at the beginning of the phase.623

Phase 1:3. In phase 1:3, participants were presented with 12 squares in a random order that differed624

along three dimensions, 6 gradations of size, 6 shades of grey stripes and 6 shades of orange stripes (See625

Figure 6.) This made a possible number of 216 squares, which were chosen from at random. This does mean626
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that some participants saw more “evidence" of some dimensions than others in the subset of squares that627

they saw. However, as with phase 1:2, all participants were explicitly told about the introduction of the third628

meaning dimension at the beginning of the phase.629

Signal Recognition task. As in the first experiment, participants completed a signal recognition630

task. They heard a signal they had created, and were asked to identify its referent from an array of three631

randomly selected squares from the set of possible squares in the current phase, plus the correct referent, so632

four squares in total. They were given immediate feedback about whether they were correct, and if not, what633

the correct square had been. Their performance in this task was recorded for use in the analysis. The distance634

in the meaning space they were from the correct answer was also recorded in the same way that it was in635

Experiment 1.636

Post-experimental questionnaire. The questionnaire asked about the strategies that the participant637

adopted during each phase of the experiment. As in the first experiment, the questionnaire was free-form.638

Participants were also asked to name the 6 shades of orange used in the experiment, in order to see if they639

did indeed label them all "orange", and to see if and how they categorised the colours affected their signals.640

The shades used in the experiment had been designed to all be perceived as orange. Only 17 participants641

completed this later part of the questionnaire because of experimenter error.642

Results643

Signal Creation Task644

Descriptive Statistics645

In this experiment, signals were on average 2.3 seconds (approx. 252 frames long). The average646

duration of signals rose by about 20 frames each phase (χ2(1) = 7.9, p < 0.005).647

As in Experiment 1, meaning dimensions were coded to reflect the continuous way they differed, i.e.648

the smallest square was coded as having the value of 1 for size, and the biggest square a value of 6, while649

the lightest grey/orange stripes were given a value of 1 for shade/colour, and the darkest had a value of 6.650

Again, across all phases, the size of square was the best predictor for the duration of the signal (χ2(1) = 63.3,651
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p < 0.001), with signals for the smallest squares having a mean duration of 1.55 seconds (SD = 1.26s), and652

the largest squares having a mean duration of 2.7 seconds (SD = 1.9s). However, in this experiment size was653

also the best predictor for the mean pitch of the signals (χ2(1) = 15.7, p < 0.001). The smallest squares had654

a mean pitch of 403Hz, and the largest squares had a mean pitch of 333Hz. Again, we take this as evidence655

for the use of relative iconicity.656

We again looked at the standard deviations of individual signal trajectories to see if the degree of657

mismatch in the signals affected the amount of movement in the signals. There was no significant difference658

between the two matching phases (Phases 1:1 and 1:2), in fact, the mean standard deviation in these phases659

was nearly identical (around 28mm, SD = 31.5). However, the SDs from phase 1:3, the mismatch phase, was660

significantly higher (M = 33.8mm, SD = 34.4) than in the other two phases (χ2(1) = 6.9, p < 0.01) indicating661

more movement in the mismatch phase. Figure 7 shows how this effect manifested itself in the signals of one662

participant where the differences between phases were particularly marked.663

Predictability of signal trajectories664

We again calculated the predictability values for each of the signal trajectories in a repertoire in the665

same way as we did in Experiment 1. We were interested to see if whether a phase was matching or mismatch-666

ing had an effect on how predictable the signals were. Using a linear mixed effects model and controlling667

for duration and participant number as a random effect, and size of square as a fixed effect, we found that668

whether the signal was produced in a matching phase or not correlated with how predictable a trajectory was669

(χ2(1) = 11.2, p < 0.001). The value was closer to 0 (so more predictable) in phase 1:1 (M = 95), and got670

less predictable with each phase (phase 1:2 M = 119, phase 1:3 M = 145).671

Signal Recognition Task672

We used a linear model to test if musical proficiency predicted performance in the signal recognition673

task, and, as in Experiment 1, found that it did not (F(1,23) = 0.03,p = 0.28).674

Overall, participants were slightly worse at recognising their own signals in Experiment 2 than in675
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Figure 7. The entire signal repertoire of one participant in all three phases. The colour of the stripes in the
pitch tracks represents the colours of the squares they represent. Square size is denoted along the right-hand
side. The numbers by each pitch track are the file names of each meaning which also encode the size and
shade of orange and grey. Signals produced in phase 1:3 have visibly more movement than in the other two
phases.
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Experiment 1. They recognised their signals with a mean of 56% correct (SD = 13%), again with a chance676

level of 25%. Using a linear model, we tested whether participants improved in their performance throughout677

the experiment, as they did in Experiment 1, but found no correlation (F(1,23) = 1.39, p = 0.24). Success678

stayed constant across phases around the 56% mean. The lack of improvement as participants became more679

experienced was probably because the meaning space expanded so rapidly with each phase, making the680

recognition task much more difficult.681

Figure 8. A graph showing the distance from the correct answer participants were in each phase when
choosing incorrectly in the signal recognition task.

Again, when participants were incorrect, we were able to measure the distance between their answer682

and the correct answer. We did this in the same way as we did in experiment 1. Using a mixed effect linear683

model, and controlling for participant number as a random effect and square number as a fixed effect, we684

found that with incorrect choices produced across phases, participants were closer to the correct square (M685

= 3.3 steps away, SD = 2) than if they had chosen at random (M = 4 steps away, SD = 2.1) (χ2(1) = 22.4,686

p < 0.001) (see figure 8), the difference between actual and random data was significant within phases 1:2687
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and 1:3 as well.688

In later phases, incorrect distances were higher because of the bigger meaning space. Therefore, 4689

meanings chosen at random would have a much bigger mean distance between them in the bigger meaning690

spaces. As a result, comparison between phases of distance from the correct answer is not indicative of691

participants having problems. However, bigger effect sizes when comparing the actual data with random data692

might indicate more reliance on iconicity. This is because choosing meanings close to the correct meaning693

indicates use of iconicity. When there is no iconicity, the answers should be more similar to the random data.694

The effect size for the comparison between the actual data and the random data in phase 1:3 was smaller695

(dr = 0.27) than in the other two phases (dr = 0.46), suggesting that in phase 1:3 there was less reliance on696

iconic strategies.697

Post-experimental questionnaire698

In Experiment 2, every participant had a strategy. Generally, participants in Experiment 2 reported the699

experiment to be more difficult than participants in the first. In phase 1:1, participants encoded size directly700

with pitch or duration (80% self-reported). Participants tended to stick with the same strategy for size, but701

developed strategies on top of that to cope with the different shade elements, and by phase 1:3, 56% of702

participants self-reported using a strategy that relied on movement, patterns or pattern frequencies.703

Responses to the colour categorisation part of the questionnaire were very variable, ranging from 2-6704

categories over the 6 squares, with a mean value of 4.2 categories, though most categories included the word705

orange, such as “light orange", “dark orange", “red orange", “sunset orange", “blood orange", but people also706

labelled the darkest shade “red". There was no interaction between the number of categories that participants707

separated the squares into and how well they did in phase 1:3, which was the only phase to use different708

shades of orange (F(1,16) = 1.56, p = 0.23).709
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Hidden Markov Models710

The data from the second experiment were processed identically to the first from continuous trajecto-711

ries to HMMs. Then, the number of states for the HMMs, i.e. the best predictor from the first experiment,712

was used to predict the recognition scores using a linear mixed effects model while controlling for participant713

number and phase.714

The second experiment did not yield the same results as the first one. The regression did not pre-715

dict recognition scores using the number of states in any representation of the signals. Further analysis was716

performed to see if any of the other candidate predictors worked for this particular data set, but no predic-717

tor performed well. In other words, we failed to demonstrate that the HMM models captured participant718

performance for this experiment.719

To investigate which aspect of the second experiment was different, we modelled a third data set from720

Little et al. (2015), summarised in the introduction of the current paper. The only difference between the721

experiment presented in Little et al. (2015) and Experiment 1 is that the former used discrete meanings that722

don’t have an intuitive, natural ordering, such as various textures or colours. This prevented the participants723

from exploiting the natural ordering of a continuous meaning space as they do in the current experiments, but724

retains any dimensionality effects.725

We modelled this data set using HMMs and analysed it in the same way as Experiment 1. The fixed726

effect coefficients show that ordering of phases is still important for the discrete case (see Figure 9). While for727

both orderings, the 2:2 phase requires more states than the 1:2 phase, this difference is only significant in the728

cases where there is no strategy change necessary (with interrupted order). This shows that the continuous729

data set is more efficiently represented using relative iconicity that doesn’t change across the experiment,730

whereas the discrete data set is most efficiently represented in the mismatching phase, but only after a strategy731

within a matching phase has been established first. This demonstrates that the types of meanings do modulate732

the efficiency of iconic and non-iconic strategies, where more continuous, ordered meaning spaces are better733

represented using relative iconicity.734
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Figure 9. Fixed effects from the discrete case for both orders of presentation of phases, covered in littlelin-
guistic. Each coefficient represents the estimated number of extra states a phase requires in that condition.

The analysis of the data from Little et al. (2015) adds to our information, giving us knowledge of how735

the model behaves using data from three different experiments. The HMMs make reasonable predictions736

about participant behaviour in Experiment 1 and in Little et al. (2015). This raises the question of what causes737

the issue with Experiment 2. The most salient different between the two experiments was the absence of a738

two-dimensional signal space in Experiment 2, as only pitch was used, as well as the 1:3 phase. Accounting739

for what exactly would cause HHMs to not be able to model this data in an intuitive way is not clear. Despite740

this, we think that HMMs are a very worthwhile method to pursue, illustrated by where we have succeeded.741

However, further work needs to focus on refining our understanding of what predictions make sense for742

different data sets.743

Discussion744

We set out to experimentally investigate two hypotheses:745

1) When the topologies of signal and meaning spaces are the same, this facilitates the emergence of746

iconic signals.747

2) When the number of meaning dimensions outnumbers the signal dimensions, this facilitates the748
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emergence of combinatorial structure.749

In both experiments, we found correlation between the structure of signal repertoires and the structure750

of the meaning space, indicating a prevalence of relative iconicity. This was particularly marked when signal751

and meaning spaces had the same number of dimensions. We also found evidence for more movement in sig-752

nals in phases where there was a mismatch between signal and meaning spaces, suggesting a departure from753

relative iconicity to a possibly more structured signalling system. Signals were also longer in later phases in754

Experiment 2, which perhaps points to more sequential encoding. Lewis and Frank (2016) previously showed755

that longer word forms are associated with meanings with more complexity, and signal duration has also been756

used as a measure for complexity in experimental studies such as Roberts et al. (2015).757

During phases with matching dimensionalities, participants produced signals that were more pre-758

dictable, given a participant’s entire repertoire, than signals produced within mismatching phases. This is759

probably due to the mismatching phases producing signals with more movement, which is less predictable760

than static signals indicative of relative iconicity. We also found that in matching phases, when participants761

were incorrect, they were more likely to choose meanings that were closer to the correct meaning than if they762

had chosen at random, again suggesting a reliance on relative iconic strategies.763

The above results provide evidence for the first hypothesis, that matching topologies incentivise par-764

ticipants to produce signals with relative iconicity. They also show that more movement and complexity765

was present when meaning dimensions outnumbered signal dimensions. However, exactly how we can char-766

acterise this movement remains unclear. One possibility is that the movement in our signals is iconic, for767

instance, representing the stripes of meanings in Experiment 2. However, the post-experimental question-768

naires do not support this narrative. It is clear from the questionnaires that participants often used structural769

strategies, in that specific elements or dimensions of the signal refer to different dimensions of the meaning770

that are then combined to refer to the whole meaning. However, structure such as this is not indicative of771

combinatorial structure as we defined it in the introduction. That is, the building blocks are not meaningless772

but correspond to dimensions in the meaning space. However, there is very little flexibility in the way signal773

dimensions can be combined in our experiments, and parts of the signals/meanings cannot occur in isolation774
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(that is, every signal has to have both a pitch and a duration). In this respect, the structure is neither com-775

binatorial nor compositional but something in between, and possibly something that could be reanalysed by776

speakers to be combinatorial structure through the mechanisms proposed by Goldin-Meadow and McNeill777

(1999). Investigating what might cause this reanalysis to happen would make a good departure for future ex-778

perimental work, perhaps having participants creating signals for bigger and less structured meaning spaces779

to get rid of the inhibiting effects of iconicity.780

Further to the above, we also gathered evidence about structure in our signals using Hidden Markov781

Models. We found interaction between number of states, phase, and phase order in Experiment 1, but were782

not successful in doing this for Experiment 2. Despite this, we feel that with some fine-tuning Hidden Markov783

Models will be a worthwhile tool for measuring combinatorial structure in artificial signalling experiments in784

the future.785

Further Work786

One of the major difficulties we faced in the analysis of this experiment was variation in participants’787

behaviour. In a population of signallers, especially without iconicity, diversity of signalling strategies is not788

beneficial, as signallers need to settle on a shared strategy to be mutually understandable. In order to address789

this problem, our next step will be to develop this paradigm with social coordination experiments where pairs790

or groups of participants create shared communication systems. A communication game will also allow us to791

identify effects that are the result of interaction as opposed to the pressure for expressivity on its own.792

Another next step will lie in the extension of the paradigm to look at other ways to manipulate the793

mappability between signal and meaning spaces. In the current experiments, participants were describing794

a continuous ordered meaning space with a continuous signal space. Further, as the meaning space in our795

experiment was very structured, what we found was signal structure that directly corresponded to the structure796

in the meaning space. However, having meaning space dimensions that are not continuous will obfuscate the797

signal-meaning mapping in a way that will make iconic strategies much more difficult. Work in this area has798

already started (Little et al., 2015), but we are still pursuing research on how different meaning spaces can799
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affect the emergence of signal structure on different levels. In this vein, we have also run further experiments800

with less internal structure in the meaning space in order to obtain signals that have structure more analogous801

to phonological structure than compositional structure (Little, Eryılmaz, & Boer, in press).802

Finally, progressively more advanced Hidden Markov Model variants can be employed where the803

Markovian assumption is relaxed. This will both enable using new dimension types, such as duration, in the804

HMMs, and also potentially provide more theoretically justified model selection criteria, such as the implicit805

selection of the number of states in Dirichlet Process HMMs.806

Conclusion807

In conclusion, we have shown that the topology and dimensionality of a signal space will affect the808

emergence of structure and iconicity: the more closely the topologies of the signal and meaning space cor-809

respond, the easier it is to use iconic structure. If there is no good correspondence, we see more movement810

in the signals: perhaps the first steps towards structure (either combinatorial or compositional). These find-811

ings are important to understand how linguistic modality affects the emergence of structure in real world812

languages. The manual modality has more signal space dimensions than speech. This may help explain why813

some emerging sign languages go through a phase where they do not appear to use combinatorial structure,814

but do use iconicity extensively. Our experimental results indicate that having more dimensions will not only815

affect how quickly the signal-space gets overcrowded, but also to what extent signalling strategies that use816

relative iconicity can be used. It is for these reasons, we would like to argue that our two hypotheses are817

intrinsically linked as they are both tied up in the topology and dimensionality of the signal space.818

As a final point, our results are also important for researchers conducting artificial language experi-819

ments with signal-space proxies. The topology of the signal space being used has significant effects on the820

iconicity and structure which emerges in the experiment which researchers need to be mindful of. Impor-821

tantly, understanding these effects, as we have attempted to do here, will put us in a better position to separate822

the effects of signal space topology from other effects under investigation in the broader literature.823
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Appendix A

HMMs

The HMMs used in this study are HMMs with multivariate continuous Gaussian emissions, using the standard892

Baum-Welch algorithm for unsupervised training. We used a slightly modified version of the Python wrappers893

for GHMM library as our HMM implementation (Schliep, Georgi, Rungsarityotin, Costa, & Schonhuth,894

2004).895

Since Baum-Welch is an expectation-maximisation algorithm, it is susceptible to getting stuck in896

locally optimal solutions. To overcome this, for each combination of parameters, we randomly initialise mul-897

tiple models, and pick the one with the highest likelihood. We chose to compare 100 random initialisations898

for each parameter set.899

Model Selection900

The parameter for the number of hidden states is the only one not estimated by the Baum-Welch901

algorithm. It also determines the size of the model since each additional state adds new parameters to the902

model. We have to perform model selection over candidate models to approximate the best number of states903

for each dataset. We do this by comparing the Bayesian Information Score (BIC) values of the competing904

models, picking the one with the lowest BIC. BIC is a measure that balances the likelihood of the model905

and the size of the model, providing a model with both a high likelihood and a minimal size (Schwarz et al.,906

1978).907

Training data908

For each HMM, the training data consists of all the signal data from a particular participant at a909

particular round. Since there are three possible data projections, three models are trained per parameter set.910

In each phase, there are 5 to 12 signals (depending on the specific phase and experiment), and all of them are911

used for training (since this is already quite a small amount of data to train these models on). The same BIC912

selection procedure is used to pick the best projection.913
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The number of states varied between 2 and 30. The number 30 is an upper limit inspired by the914

number of states that would be needed if there were one state per meaning in two dimensions (12×2 = 24),915

an inefficient, one-to-one, iconic encoding. The BIC usually stops decreasing significantly after this point as916

well, and training larger models becomes increasingly time consuming, so we capped this parameter at 30.917

In total, these add up to (30−2)×100 = 2800 HMMs trained per projection per phase per participant,918

of which the one with the lowest BIC score is used as the best model. Each phase for each participant was919

modelled by exactly three HMMs, one for each projection. The best projection for each experiment was920

chosen using the mixed effects regression outlined in Appendix B.921
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Algorithm 1 HMM training and selection for each projection

1: function FITHMM(trajectories)

2: hmm← nil

3: bic← 999999

4: nStates← 2

5: maxStates← 30

6: while nStates≤ maxStates do

7: for 1 : 100 do

8: hmm′←HMM(nStates)

9: for trajectory in trajectories do

10: hmm′←BAUMWELCH(hmm’, trajectory)

11: if BIC(hmm′)< bic then

12: hmm← hmm′

13: bic←BIC(hmm’)

14: nStates← nStates+1
return hmm

15: function ANALYZEDATA(participants, data)

16: models←{}

17: for pr in participants do

18: for phase in 1:3 do

19: tra jectories← data[pr][phase]

20: models[pr][phase]←FITHMM(trajectories)
return models

Appendix B

Mixed Effect Linear Regression

922
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Let O(p) ∈ {1,2,3} be the order of phase p. Then the regression equation can be expressed as:923

scoreid,p = α0 +αid + ε

+Nstates× slope(p)

(B-1)

where924

slope(p) =



β1 if p = 1 : 1

β2 if p = 1 : 2 & O(p) = 2

β3 if p = 1 : 2 & O(p) = 3

β4 if p = 2 : 2 & O(p) = 2

β5 if p = 2 : 2 & O(p) = 3

(B-2)

The coefficient values were calculated as α0 = 0.640, β1 = 0.077, β2 = 0.193, β3 = 0.053, β4 = 0.000,925

and β5 = 0.241, where α0,β1,β2,β5 are found to be the predictors for which p < 0.05. The αid intercepts for926

each participant varied in the range [−0.237,0.189].927

On Figures 5 and 9, the coefficients plotted as Ordering 1 are β1, β2, β5, and the ones plotted as928

Ordering 2 are β1, β4, β3.929


