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I 

Abstract 

Plant pathogenic Pseudomonads are responsible for the loss of millions of 

pounds in crop revenue each year. They export effector molecules via the type 

three secretion system into the plants’ cells in order to elicit disease. If the plant 

has the corresponding resistance genes to detect the type three effector 

molecule then the plant will mount an immune response called the plant 

hypersensitive response (HR). Type three effector molecules can also supress 

the plants’ immune response including pathogen associated molecular pattern 

triggered immunity and effector triggered immunity.   

Pseudomonads can evade HR by potentially gaining different effector 

molecules using mobile DNA elements. Integrons are one such type of element. 

Integrons are elements that allow bacteria to acquire and store genes from the 

environment particularly during times of stress. They also allow differential 

expression of the captured genes dependent on the environmental conditions.  

Integron-like elements (ILEs) within Pseudomonas syringae pathovars 

and other Pseudomonads can be identified by using conserved genes such as 

the xerC integrase and the UV damage repair gene rulB. RulB encodes a DNA 

polymerase V which appears to be a hotspot for ILE insertion. Using the rulAB 

operon, the xerC gene and the ILE insertion junction, rulB-xerC, it was possible 

to identify a number of ILEs. The screening of 164 plant pathogenic 

Pseudomonas strains revealed new ILEs from 21 strains all containing at least 

one type three effector molecule. The screening also revealed that the xerC 

integrase was conserved across multiple ILEs within plant pathogens.  

Expression studies of the ILE integrase genes, type three effector genes 

and the disrupted rulB gene showed that the genes on both ILEs present in P. 

syringae pv. pisi 203 and pv. syringae 3023 are upregulated in times of cellular 

stress and DNA damage. This led to the conclusion that ILEs may be more 

active when the bacteria was in need of exogenous genes to overcome the 

cellular stress. The ILE may also be excised following DNA damage to restore 

full rulB functionality.  

It was identified that rulB was a hotspot for ILE insertion but it was not 

known why the ILEs choose this site or if any other genes were required for ILE 

insertion. Cloned versions of the rulAB operon from the pWW0 plasmid found 

in Pseudomonas putida PaW340 showed that only rulAB was required for P. 

fluorescens ILE insertion but rulAB must be intact. P. syringae ILEs were also 

tested but did not show any insertion.  

Due to ILEs inserting into and disrupting rulB their effect on UV tolerance 

was tested. A range of strains containing an intact rulB gene were tested 

alongside the ILE containing strains with increasing amounts of UVB irradiation 

applied. The results showed very minor differences in growth rates between the 

two groups with only 60 seconds UVB exposure causing a significant difference 

in growth rate at the 95% confidence interval between the two groups of strains.  

This research has contributed to the understanding of ILEs in 

phytopathogenic bacteria. It has also increased our understanding of the 

mechanisms of ILE gene expression, the mechanism surrounding ILE excision 

and insertion and the effect of ILEs on bacterial growth in high UV 

environments.  
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Chapter 1. Introduction 

1.1: Plant pathogenic bacteria. 

Plant pathogens have been responsible for severe crop losses throughout 

history and often result in human loss. The most famous human loss due to crop 

failure was the mass starvation in Ireland during the potato famine of 1845-49 

caused by Phytophthora infestans (Maloy, 2005). 

Plant pathogenic bacteria have a tremendous impact on a wide variety of 

agricultural crops ranging from fruit trees to garden ornamentals (Stavrinides, 

2009) and are responsible for the loss of millions of pounds in crop revenue due 

to crop damage each year. Understanding how these pathogenic bacteria interact 

and evolve with their host plant species is of vital importance, not only to the 

global agricultural market but also to smaller individual farmers, suppliers and 

processers. Understanding this relationship between pathogenic bacteria and 

their host is paramount to establishing effective and efficient disease 

management programs around the world (Fry, 1982; Maloy, 2005).  

  Bacterial plant pathogens are largely confined to the Gram-negative 

Proteobacteria. The most observed pathogens are represented in either the α, β 

or γ subclasses (Table 1.1). Agrobacterium tumefaciens belongs to the α-

subclass and is the causative agent of crown gall in over 140 plant species 

(Escobar and Dandekar, 2003). Within the β-subclass is Ralstonia solanacearum 

which is responsible for bacteria wilts in plants, by colonising the xylem. Erwin 

Frink Smith (1905) proved that bacterial wilts of tomato, pepper, eggplant and 

Irish potatoes were caused by Ralstonia solanacearum (Li et al., 2005). Finally 

the γ-subclass contains the largest number of plant pathogenic bacteria which 

includes 28 families (Williams et al., 2010), including the Pseudomonas genus 
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(Stavrinides, 2009). Pseudomonas syringae pathovars (pv.) cause many plant 

diseases including bacterial speck on tomatoes and halo blight on beans (P. 

syringae will be discussed further in Section 1.3). In order to better prevent plant 

disease and crop damage it is essential to understand how plant pathogenic 

bacteria behave and interact on a molecular basis. 

Table 1.1: Representatives of plant pathogenic bacteria from the three 
subclasses of Proteobacteria, alpha (α), beta (β) and gamma (γ). (adapted from 
Garnier et al. 2000; Coenye and Vanadamme, 2003; Stavrinides, 2009; Madigan 
et al., 2012).  

 

1.2: Pseudomonads. 

The Pseudomonads are a diverse genera containing over one hundred 

species, many of which are pathogenic species on either plants or animals (Özen 

and Ussery, 2012). Pseudomonads have remarkable metabolic and physiologic 

variability enabling them to colonise a diverse range of habitats and hosts ranging 

from soil and plant environments to human and aquatic environments (Palleroni, 

1992; Silby et al., 2011). Due to their variability Pseudomonads are responsible 

for many plant and human diseases across the globe (Table 1.2). Pseudomonas 

infections in humans can be fatal if not treated quickly and with targeted 

antimicrobial treatment. For example, P. aeruginosa can quickly colonise patients 

Subclass of  
Proteobacteria 

Example of Bacterial 
Species 

Example 
Disease 

Example 
Host 

α Agrobacterium tumefaciens 
 
 
Rhizobium leguminosarum 

Crown Gall 
 
 
Root Nodules 

Rhubarb, 
Walnuts 
 
Legumes 

β Burkholderia cenocepacia 
 
Ralstonia solanacearum 

Sour skin 
 
Bacterial Wilt 

Onions 
 
Tomato, 
Peppers 

γ Pseudomonas syringae 
 
 
Xanthomonas campestris 

Bacterial 
Speck 
 
Leaf Spot 

Broad 
Range 
 
Cabbage 
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who are in hospital for prolonged periods and can lead to meningitis, pneumonia, 

and septicaemia (Pai et al., 2016; Bodey et al., 1983).  

Table 1.2: Host and habitats of four different Pseudomonas species 
(adapted from Silby et al., 2011). 

Pseudomonad Host Habitat 

P. syringae Plants (tomato, bean, 

olive, tobacco, chestnut, 

soybean) 

Soil 

P. fluorescens Mostly non-pathogenic, 

Plants 

Soil, Water 

P. putida Mostly non-pathogenic, 

Plants 

Soil, Plants 

P. aeruginosa Animals, Humans, Plants 

(Arabidopsis thaliana 

[Thale cress] and Lactuca 

sativa [lettuce]) 

Soil, Water, Skin Flora 

and most man-made 

environments 

 

Pseudomonas bacteria are Gram negative and are generally aerobic with 

a few exceptions being denitrifying (Palleroni, 1984). They can be either straight 

or curved rods that are between 0.5-1 x 1.5-4 μm in size and are non-spore 

forming with one or multiple polar flagella that assist in the bacteria's motility 

(Madigan et al., 2012). 

Phytopathogenic Pseudomonads have the ability to cause many different 

plant diseases with various symptoms. These symptoms include cankers, 

blossom, kernel, leaf or twig blight, dieback, leaf spots, soft or brown rot, galls 

and mushroom blights (Schaad et al., 2001). Many of these bacterial species are 

either foliar epiphytes or rhizosphere inhabitants. The most economically 

important phytopathogenic Pseudomonas is P. syringae with over 50 pathovars 

(Berge et al., 2014). 
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1.3: Pseudomonas syringae. 

P. syringae was first isolated from a diseased lilac in 1902 (Hirano and 

Upper, 2000). P. syringae is of interest due to its importance as a plant 

pathogenic bacterium and was ranked the number one plant pathogenic bacteria 

by Mansfield et al. (2012) based on agricultural and economic impact. P. syringae 

is particularly important to plant pathogenesis studies due to the species having 

a wide host range that includes many commercially important crops (eg. tobacco 

and soybean) and its ability to cause damage. P. syringae typically attacks plant 

foliage causing the onset of chlorosis and eventually necrotic lesions on leaves 

(Madigan et al., 2012). P. syringae causes a wide variety of plant symptoms 

ranging from bacterial speck, fleck, cankers, halo blight, galls and brown spot 

(Figure 1.1). For example, P. syringae pv. syringae strain B728A causes brown 

spot disease of bean leaves (Silby et al., 2011), whereas P. syringae pv. pisi (Ppi) 

causes water-soaked lesions on pea plants (Suzuki and Takikawa, 2004).  

The P. syringae species contains many different pathovars. The term 

pathovar relates to a group of bacterial strains which exhibit distinctive 

pathogenicity towards one or more hosts and can include different symptoms. 

The term pathovar is very useful when referring to relatedness between strains 

due to their phenotypic properties, but cannot reveal how related two strains are 

based on their genetic properties (Denny et al., 1988). Pathovars can be further 

divided into different races (Young, 2008). Races are identified through the use 

of plant host differentials.  

The occurrence of P. syringae pathovars is on the increase with a 

resurgence of old diseases such as bacterial speck on tomatoes caused by P. 

syringae pv. tomato (Pto) (Shenge et al., 2007) and also the emergence of new 
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infections such as bleeding canker of horse-chestnut  caused by P. syringae pv. 

aesculi (Green et al., 2010). 

 

 

 

 

 

  

 

 

 

It is the many different pathovars of P. syringae that allow the species to 

infect a variety of host organisms. Strains within most of the pathovars have 

narrow host ranges with the exception being P. syringae pv. syringae which has 

more than 80 plant hosts listed (Bradbury, 1986). There has recently been 

genomic (Multi Locus Sequence Typing (MLST)) and phenotypic analysis of 216 

strains of P. syringae which identified more than 50 different pathovars of P. 

syringae (Berge et al., 2014). Each pathovar may only have a narrow host range, 

but due to the high diversity of pathovars multiple plant species can be infected 

by P. syringae leading to its high pathogenicity status (Hirano and Upper, 2000).  

 

 

Figure 1.1 Symptoms caused by Pseudomonas syringae. 1) Bacterial speck 

of tomato leaves (Solanum lycopersicum) caused by P. syringae pv. tomato. 2) 

Crown galls caused by P. syringae pathovars. 3) Bleeding canker of horse 

chestnut tree (Aesculus hippocastanum) caused by P. syringae pv. aesculi. 4) 

Bacterial blight caused by multiple P. syringae pathovars. (Images adapted from 

commons.wikimedia.org and used under the creative commons licence 3.0; 

https://creativecommons.org/licenses/by-sa/3.0/ or from flickr.com and used 

under the creative commons licence 2.0; 

https://creativecommons.org/licenses/by/2.0/). 
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1.4: Pathogenicity factors. 

 P. syringae produce a range of proteins to facilitate plant colonisation 

including enzymes to degrade the plant cell walls, proteins to allow adherence to 

the plant and other enzymes such as proteases, lipases and haemolysins 

(Preston et al., 2005). Many of these secreted molecules are commonly secreted 

by the type one (proteases, nucleases), two (virulence factors and toxins such as 

phospholipases) or three (effector molecules) secretion systems and these 

molecules promote virulence and enhanced fitness during colonisation. There are 

also type four, five and six secretion systems which facilitate translocation and 

autotransportation of proteins and single-stranded DNA (Figure 1.2) (Jackson, 

2009).  

 

 

 

 

 

 

 

 

  

 

Figure 1.2: Diagram showing the various secretion systems used by P. 

syringae. Types one to three are used for secreting factors that promote 

virulence and increase fitness, such as type three effectors. CWDE - Cell wall 

degrading enzymes. (Image from Jackson (2009) and used with permission 

from Caister Academic Press; http://www.caister.com/copyright). 
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P. syringae produces four primary toxins: coronatine; phaseolotoxin; 

syringomycin; and tabtoxin. It is probable that many toxins cause a change in 

plant metabolism as all of these toxins promote chlorosis (Bender et al., 1999). 

Coronatine is a molecule that mimics methyl-jasmonate, a key host signalling 

molecule within the plant, therefore disrupting normal signalling patterns (Bender 

et al., 1999). Phaseolotoxin has been shown to promote bacterial growth and 

bacterial spread once inside the plant by altering the membrane permeability to 

allow sugars and other organic compounds to move more freely (Hutchison et al., 

1995). Phaseolotoxin has also been shown to disrupt the urea cycle causing 

arginine deficiencies within the plant (Hwang et al., 2005). Phaseolotoxin is 

secreted via the type one secretion system via an oligopeptide permease 

(Staskawicz and Panopoulos, 1980). Syringomycin is also secreted by the type 

one secretion system. Syringomycin is a pore-forming toxin which causes 

electrolytes to leave the host cell and alters the permeability of the membrane 

allowing sugars and organic compounds to ‘leak’ out. These compounds favour 

bacterial growth (Rico et al., 2009). Tabtoxin inhibits glutamine synthetase which 

leads to ammonia accumulation and visible chlorosis (Turner, 1989).   

Not all P. syringae strains are pathogenic. When the link between frost 

injury in plants and ice nucleating bacteria was discovered P. syringae was the 

most frequently found bacteria (Lindow et al., 1978), but the plants did not always 

have disease symptoms depending on the pathovar and the host plant. Non-

pathogenic isolates have also been identified in the field. Pseudomonas syringae 

pv. syringae (Psy) 508 was isolated from a fallen apple tree leaf and was unable 

to cause disease on any of the plants tested (Mohr et al., 2008). It is thought that 

this isolate belongs to a monophyletic group that evolved from a pathogenic P. 

syringae strain by losing its ability to cause disease (Mohr et al., 2008).  
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1.5: Plant immunity and pathogen recognition. 

Plants react to a bacterial infection using a two pronged immune approach. 

The first approach is responsible for detecting common molecules that many 

bacterial species express (Jones and Dangl, 2006). This includes both pathogens 

and non-pathogens. For pathogens this recognition occurs on the external 

surface of the plant cells before the bacteria have entered the cell. These 

common microbial molecules, called Pathogen Associated Molecular Patterns 

(PAMPs), are recognised on the cells surfaces by Pattern Recognition Receptors 

(PRRs) and elicit PAMP-Triggered Immunity (PTI) (Jones and Dangl, 2006). This 

causes the deposition of callose to the cell wall to act as a physical barrier 

(Nicaise et al., 2009), stomatal closure to prevent entry, restriction of nutrient 

transfer from the cytosol to the apoplast to limit bacterial growth and the 

production of antimicrobials (Bigeard et al., 2015).  

The second immune response the plant has is Effector Triggered Immunity 

(ETI). This occurs in response to the pathogen exuding virulence proteins, called 

effectors, into the plant cell. ETI is commonly induced by nucleotide-binding 

leucine-rich repeat (NB-LRR) receptors recognising effector molecules either 

directly or indirectly through their effects on host targets once they are inside the 

plant cell (Dodds and Rathjen, 2010), (Figure 1.3). ETI results in the induction of 

the hypersensitive response (HR). The HR is characterised by localised cell death 

at the infection site. The cell death is triggered by gene-for-gene resistance in 

plants caused by invading pathogens carrying effector proteins encoded by 

certain avirulence (avr) genes. The Avr proteins are recognised by corresponding 

R proteins in the plant (Erbs and Newman, 2009). If the plant lacks the 

corresponding R protein no HR will occur, facilitating bacterial proliferation.  
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Many plant-pathogenic bacteria secrete a large number of different 

effector proteins into host cells to increase the chances of successful infection 

and evasion of ETI (Zhou and Chai, 2008). It is the constant battle between plant 

and pathogen that leads to the evolution of new effector molecules and new 

receptors to recognise them, the problem is that bacteria can evolve much 

quicker than the plant. In 2006 Jones and Dangl theorised the ‘zig-zag’ model for 

plant-pathogen interaction and co-evolution (Figure 1.4). Effector DNA can be re-

Figure 1.3 Outline of Plant Immune System. Bacterial plant pathogens 

propagate exclusively in the extracellular spaces of plant tissues. Molecules 

released from the pathogens into the extracellular spaces, such as 

lipopolysaccharides, flagellin and chitin (PAMPs) are recognized by cell surface 

Pattern-recognition receptors (PRRs) and elicit PAMP triggered immunity (PTI). 

PRRs generally consist of an extracellular leucine-rich repeat (LRR) domain 

(green), and an intracellular kinase domain (red). When a PAMP is recognised the 

PTI signalling pathway is triggered. Bacterial pathogens deliver effector proteins 

into the host cell by a type three secretion pilus. These intracellular effectors often 

act to suppress PTI. However, many are recognized by intracellular nucleotide-

binding (NB)-LRR receptors, which induces effector triggered immunity (ETI). 
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shuffled which leads to the NB-LRR receptor no longer being able to recognise 

the effector preventing ETI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Outline Model of Plant Immune Response. In section 1, plants 

detect PAMPs (red diamonds) via PRRs to trigger PTI. In section 2, successful 

pathogens that evaded PTI deliver effectors that interfere with PTI, or otherwise 

enable pathogen nutrition and dispersal, resulting in effector-triggered 

susceptibility (ETS). In section 3, one effector (indicated in red) is recognized 

by an NB-LRR protein, activating ETI, an amplified version of PTI that often 

passes a threshold for induction of hypersensitive cell death (HR). In section 4, 

pathogen isolates are selected that have lost the red effector, and perhaps 

gained new effectors through horizontal gene flow (in blue). These effectors 

can help pathogens to suppress ETI. Natural selection favours both new 

pathogen effectors and new plant NB-LRR alleles that can recognize one of the 

newly acquired effectors, resulting again in ETI. The cycle continues with new 

effectors and new NB-LRR receptors co-evolving. (Image adapted from Jones 

and Dangl (2006) and used under Agreement with Nature Publishing Group no. 

4052991072647). 
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1.5.1: Pathogen Associated Molecular Patterns. 

Innate immunity consists of molecules designed to prevent pathogen 

growth and facilitate removal of the pathogen from the tissue. Plants only have 

innate immunity as a line of defence against infection, unlike animals (van 

Baarlen et al., 2007). Animals also have innate immunity which is split into two 

parts. The first, humoral innate immunity, involves a variety of substances found 

in bodily fluids which interfere with the growth of pathogens. The second innate 

response is called cellular innate immunity which is carried out by cells called 

phagocytes that degrade pathogens. The difference between plants and animals 

is that animals (vertebrates) also have adaptive immunity that can recognise 

certain substances via antigens on the pathogen and remove the target. This 

response also allows the host to remember the pathogen and deliver a quicker 

response if the pathogen infects the host again. Innate immunity is nonspecific; 

it is not directed against specific invaders, but against any pathogens. Whereas 

animal adaptive immunity can recognize and destroy specific substances 

(Nürnberger et al., 2004).  

PAMPs trigger the innate immune response and are molecules that are 

presented on the surface of the pathogen. The plant recognises these molecules 

before the pathogen has invaded the cell. The four most studied bacterial elicitors 

that act as PAMPs are flagellin (Flg), elongation factor Tu (EF-Tu), 

lipopolysaccharides (LPS) and cold shock protein (CSP) (Jackson, 2009). These 

molecules all initiate the plant’s immune system (Erbs and Newman, 2009). 

Recognition of PAMPs induces plant defence systems that may include: oxidative 

burst - the rapid release of reactive oxygen species which degrade bacteria, nitric 

oxide generation – secreted as free radicals in an immune response and is toxic 

to bacteria (Hausladen and Stamler, 1998), cell wall strengthening – acts as 
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physical barrier to prevent effector molecules entering the cell, pathogenesis-

related (PR) protein accumulation – some are antimicrobial and attack the 

bacteria whereas others send signals to other areas of the plant (Ebrahim et al., 

2011). 

 The most defined PAMP is flagellin. Flagellin is a globular protein that 

arranges itself as a hollow cylinder to form the filament in bacterial flagellum. The 

role of flagellin is essential to pathogens for mobility and increased adhesion of 

the bacterial cell to the cell wall of the plant. Flagellin is a major activator of PTI 

as the majority of plant pathogens have flagella containing flagellin which makes 

it the ideal molecule for the immune system to detect (Erbs and Newman, 2009). 

The PTI response is not triggered by the entire flagellin molecule but rather a 

highly conserved domain at the N-terminal, a 22 amino acid peptide named flg22 

(Felix et al., 1999). Flagellin has its own unique PRR that allows the plant to 

trigger an immune response. The PRR was discovered by Gómez-Gómez and 

Boller (2002) and named flagellin sensing 2 (FLS2) due to it recognising the 

conserved N-terminal domain of flagellin. 

1.6: Effectors. 

P. syringae uses many virulence associated systems to infect its host. The 

most studied is the type three secretion system (TTSS) which exudes an array of 

effector proteins into the host primarily to suppress plant immune systems (Arnold 

et al., 2009). Effector proteins are delivered into the plant’s cytoplasm by the 

TTSS (see section 1.7). Effectors disrupt the plants’ cellular and signalling 

pathways to prevent defence mechanisms being triggered such as PTI, ETI and 

HR (Arnold et al., 2009). Effectors used to be split into two categories, avirulent 

and virulent depending on their ability to cause disease on a selected plant. This 
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terminology was confusing though as the same protein can function as virulent 

or avirulent depending on host, therefore the term effector is now used. The 

effectors that are specifically recognized by ‘matching’ resistance proteins 

(termed R proteins) are termed avirulence (AVR) proteins (Rouxel and Balesdent, 

2010). This formed the basis of the ‘gene-for-gene’ concept which shows that a 

plant encoding an R gene specific to an effector is resistant to the pathogen that 

produces it (Keen, 1990; Crute, 1994). 

The first effector protein to be discovered was avirulence gene A (avrA) in 

P. syringae pv. glycinea by Staskawicz et al. (1984). In 2000 a review by Vivian 

and Arnold (2000) estimated that 30 effector genes had been identified in different 

P. syringae pathovars using ‘gain-of-function’ assays (Cunnac et al., 2009). 

Effector genes can also be identified via PCR as the DNA sequences flanking 

effector genes in Ppi show high degrees of similarity and primers could be 

designed from these conserved regions (Arnold et al., 2001). 

 Effector proteins have many functions, one function is to suppress host 

defences allowing the pathogen to infect and spread inside the plant. The first 

type three secreted effector (TTSE) shown to suppress basal defence was AvrPto 

from Pto DC3000 (Nomura et al., 2005). AvrPto prevents the deposition of callose 

to the cell wall in response to the TTSE. The prevention of callose deposition 

means that the bacteria can invade the plant more easily. This is because callose-

containing cell-wall appositions act as effective physical barriers to prevent 

bacterial invasion. These appositions are induced at the sites of attack during the 

relatively early stages of pathogen invasion (Luna et al., 2010). Effector proteins 

can also suppress advanced plant defences including gene-for-gene and HR 

resistance. Effectors can also be enzymes, AvrRpt2 is a cysteine protease that 

can cleave RIN4, a molecule needed for HR signal transduction. RIN4 is broken 
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down so cannot activate the HR (Luna et al., 2010). These enzymes contain 

active sites of mono-ADP ribosyltranferases that cause RNA-binding proteins to 

change, therefore altering RNA metabolism and reducing the amount of immunity 

related mRNA’s available favouring pathogen establishment (Fu et al., 2007). 

Effectors can also block the recognition of other effectors by suppressing host 

genes responsible for receptor expression.  

Finally effector proteins can alter host pathways. For example, de Torres-

Zabala et al., (2007) demonstrated that Pto effectors can ‘hijack’ the abscisic acid 

(ABA) pathway in Arabidopsis thaliana leading to disease.  

1.7: The type three secretion system (TTSS). 

The phytopathogenic bacteria never enter the plant cells’ so a delivery 

mechanism is required to get the effector molecules into the cell. An essential 

part of bacterial pathogens is their ability to secrete proteins that facilitate 

infection and bacterial proliferation and survival. There are a total of six secretion 

systems that have either been identified or predicted to be utilised by P. syringae 

with the most emphasis being on the TTSS and the effector proteins it delivers 

(Arnold et al., 2009). The TTSS allows infection to occur by directly ‘injecting’ 

effector proteins into the cytoplasm that can suppress plant immune responses 

and block signalling pathways (Preston et al., 2005).  

 Once the bacteria have entered the extracellular space of their host 

environmental changes lead to the activation of a specific gene cluster hrp-hrc, 

responsible for encoding the TTSS (Jin et al., 2003; Kvitko et al., 2007). There is 

strict regulation of TTSS expression and it is only induced in plant tissue, 

apoplastic fluid and hrp inducing media. This results in the transcription and 

translation of multi-protein complexes which form a complex, supramolecular 
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structure with the distinctive syringe and needle-like TTSS (Figure 1.6) which has 

the ability to ‘pierce’ the host’s cell wall exporting effector proteins (Gerlach and 

Hensal, 2007). Molecular chaperones, called harpins, are required to aid the 

transport of effector molecules from the pathogen into the host cell via the TTSS. 

Harpins are a subset of TTSS substrates found in all phytopathogenic bacteria 

that utilize a TTSS (Kvitko et al., 2007).  

In P. syringae, hypersensitive response and pathogenicity (hrp) and 

hypersensitive response conserved (hrc) genes encode the TTSS pathway 

(Alfano and Collmer, 1997), and avirulence (avr) and Hrp-dependent outer 

protein (hop) genes encode effector proteins (Schechter et al., 2004). The hrp/ 

hrc genes are required for the development of the HR in non-host and resistant 

hosts and the onset of pathogenesis in susceptible plants. The hrp/ hrc gene 

cluster for the TTSS is on a pathogenicity island and is bounded by two effector 

loci, an exchangeable effector locus and a conversed effector locus (Alfano et al., 

2000). Typically in P. syringae strains the hrp/ hrc genes are clustered in a 25kb 

region organised into seven operons which can encode either regulatory, 

secretory or effector proteins. (Figure 1.5). 

 

 

 

Figure 1.5: The arrangement of the conserved hrp/ hrc genes within the 
pathogenicity island bounded by the exchangeable effector locus and the 
conserved effector locus. The letters denote the gene names, eg. P is hrp. The 
arrows indicate the direction of transcription and the boxes indicate the Hrp box. 
(Image from Alfano et al., 2000 with permission from PNAS, Copyright (2000) 
National Academy of Sciences). 
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Within the hrp/ hrc locus there are at least three classes of hrp genes. One 

class encodes both positive, HrpL, and negative, HrpV, regulatory proteins in P. 

syringae, these are responsible for the regulation of the TTSS associated genes 

(Ortiz-Martin et al., 2010). Another hrp class encodes core structural components 

of the TTSS including genes that have a high similarity to flagellum assembly 

genes and proteins that are involved in the breakdown of peptidoglycan in the 

cell wall allowing the TTSS apparatus to form into the plant cell (Alfano and 

Collmer, 1997). The final class encodes secreted proteins.  

This suggests that the PAI containing the TTSS in P. syringae was 

inherited via horizontal gene transfer (HGT) as it is also present in distantly 

related bacteria. It has also been suggested that acquisition of the PAI led in part 

to P. syringae becoming a phytopathogen (Mohr et al., 2008).  
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1.8: Effector evolution. 

Mutations in effector genes can result in evasion of host recognition. The 

mutation can be in a gene itself or the loss/gain of larger pieces of DNA. The 

antimicrobial environment created during the HR presents a strong selection 

pressure for mutants that can avoid triggering the HR. The effector could be lost 

by mutational insertions, deletions or rearrangements, even a single base pair 

Figure 1.6: The type three secretion system in action, how effector proteins 
are exported into host cytoplasm. The TTSS forms a syringe like base which 
spans the inner and outer membranes of the bacteria. This base also contains a 
pore structure through which effectors enter the secretion system aided by harpin 
molecules. The effectors then travel along the needle which forms a physical 
connection between bacteria and host. The end of the needle (pilus) ‘pierces’ the 
host’s cell wall allowing the effectors to enter straight into the cytoplasm.  
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change can lead to a non-functional effector (Arnold et al., 2009) (Figure 1.7). A 

classic example of this is the case of avrPphE. All 9 races of P. syringae pv. 

phaseolicola (Pph) have avrPphE but only races 2,4,5 and 7 have an active 

version. The remaining races have an inactivated version of avrPphE due to a 

single base pair change which confers an amino acid change (Stevens et al., 

1998). The function of avrPphE is not yet fully understood but it is a modular 

protein that acts as a virulence determinant (Nimchuk et al., 2007).   

Effector genes can also be disrupted by the insertion of mobile genetic 

elements (MGEs). The disruption can be caused by insertion sequences, 

transposons and integrons. As more genome sequences are being analysed 

more disrupted genes are being identified. The effector genes are disrupted in 

some strains but not others leading to a variation of functional effectors across 

different strains of the same species. This variation has been shown in the 

complete genome of Pto DC3000 which revealed a total of 31 effectors secreted 

by the TTSS (Buell et al., 2003). When compared to the Psy B728A genome four 

effectors appeared to be disrupted by MGE insertion. This variation prompted 

Greenburg and Vinatzer (2003) to propose that different effector profiles are the 

reason why highly related phytopathogenic strains have different host range and 

disease characteristics depending on their effector repertoire.   

 Certain phytopathogenic strains, such as Pto DC3000, contain a lot more 

transposons than other strains. The high level of transposons could be driving a 

high level of DNA shuffling in these strains resulting in novel effectors that the 

plant cannot recognise. The DNA can also be shuffled so there is a TTSS signal 

included, allowing the protein to be transported into the plant whereas before it 

could not (Greenburg and Vinatzer, 2003) (Figure 1.7).  
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Figure 1.7 The different ways in which effector genes’ functions can be 

changed, lost or suppressed. A) A simple base pair (bp) mutation can cause 

an effector to lose its avirulence (avrPphE). B) The loss of a genomic island 

(hashed lines) which contained an effector (orange box) the plant could detect, 

strain is now pathogenic on host. C) The shuffling of DNA regions, in this case 

the different ends of an effector gene leading to acquisition of TTSS signals. D) 

The insertion of base pairs (1) or transposons (2) leads to the gene no longer 

forming a correct and functional effector protein, meaning there is no effector 

for the plant to recognise. E) Integron insertion can also disrupt genes leading 

to dysfunctional proteins, but integrons can also pick-up and harbour different 

effector genes from totally different bacterial species, meaning the plant will not 

recognise the effector. 

 Effector genes can also be lost. The entire coding region could be lost 

during cell replication if the effector gene is carried on a MGE (Arnold et al., 2007). 

This was shown when the genomic island (GI), PPHGI-1, was lost from Pph race 

4 strain 1302A. The loss of the GI resulted in the loss of the effector gene, 

avrPphB (Pitman et al., 2005). The loss of the GI and subsequent effector causes 

the bacterial strain to become virulent on beans carrying the R3 resistance gene 

(Figure 1.7).  
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1.9: Integrons. 

Integrons are sections of mobile DNA characterized by their ability to 

capture and incorporate gene cassettes by site-specific recombination. Integrons 

were first discovered in the late 1980’s (Stoke and Hall, 1989) and were primarily 

thought to be unique to human clinical settings. However, integrons have now 

been isolated from bacteria in non-clinical environments including soil and water 

(Domingues et al., 2012). Integrons have been identified as major determinants 

in a bacteria’s ability to become resistant to multiple antibiotics by ‘sharing’ 

resistance genes between bacterial populations and species (Gillings et al., 

2014). This ‘sharing’ of genes is not limited to antibiotic resistance and includes 

genes that encode effector proteins responsible for plant disease (Arnold et al., 

2001). This sudden uptake of new genes could result in a quantum evolutionary 

jump for the bacteria. This evolution could result in the bacteria being able to 

potentially survive and infect new host organisms, and if successful the new strain 

will thrive.  

Integrons have been identified in approximately 17% of bacterial genome 

sequences stored on the NCBI database (Gillings, 2014). Integrons are 

commonly linked to MGEs to allow mobility between chromosomes and plasmids 

(Domingues et al., 2012). Integrons can move independent of MGEs but only as 

a result of captured genes providing and facilitating self-mobility mechanisms. 

The heritability of an integron via horizontal gene transfer (HGT), and therefore 

its spread throughout the bacterial population is reliant on two aspects, the first 

being the genetic stability of the integron and the second is the fitness cost to the 

new host.  
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 Integrons fundamentally contain three main elements that work together 

to capture and express exogenous genes cassettes (Jackson et al., 2011). The 

main elements are a tyrosine recombinase (intI) gene with its own promoter (Pint), 

an adjacent recombination site (attI) and a promoter (Pc) (Gillings, 2014) (Figure 

1.8). The integrase protein encoded by intI belongs to the tyrosine recombinase 

family and is responsible for catalysing site-specific integration and excision of 

specific gene cassettes into the attI site.  The attI site is a recombination site 

recognised by the integrase and the site where the gene cassette is inserted. The 

final element of an integron is the outward facing promoter (Pc) which is required 

for expressing captured gene cassettes (Gillings, 2014; Jackson et al., 2011; Hall 

and Collis, 1995).  

  

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Capture of a gene cassette by an integron. A) The core integron 

assembly comprising of the integrase gene (intI), the integrase promoter (Pint), 

the gene cassette promoter (Pc) and the integration site (attI). B) The 

expression of integrase occurs during SOS response and catalyses site-specific 

recombination of circularised gene cassettes between the attC site on the 

cassette and the attI site of the integron. C) Cassettes (cass) are incorporated 

into the integron complex. More cassettes can be added and they can also be 

excised. (Image adapted from Jackson et al. (2011) used under the creative 

commons license 3.0; https://creativecommons.org/licenses/by-nc/3.0/). 
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Integron activity is regulated by the transcriptional repressor LexA and the 

SOS response upstream of the tyrosine recombinase gene (Guerin et al., 2009). 

The integrase promoter (Pint) contains LexA binding sites that cause the 

expression of integrase to be down-regulated when LexA is bound. The SOS 

response causes the release and degradation of LexA from the promoter and 

therefore activates integrase expression allowing gene cassettes to be captured 

(Jackson et al., 2011). Plasmid conjugation activates the SOS response meaning 

integrase is at its highest levels when new gene cassettes are potentially more 

common. Environmental stress and DNA damage causes the formation of ssDNA 

molecules which bind non-specifically to the universal recombination protein 

RecA which in turn promotes LexA inactivation by autoproteolytic cleavage, the 

inactivation of LexA induces the SOS response and activates the integron 

integrase (Figure 1.9) (Cambray et al., 2011). It is cell stress and damage that 

activates the SOS response and allows capture and expression of new genes 

that may benefit the bacterium in stressful environments.  

 

 

 

 

 

 

 

 

Figure 1.9: How integrons use integrase genes to capture novel gene 

cassettes and how they are regulated. The diagram shows how the integron 

integrase, intl, is regulated by LexA and how a SOS inducing stress causes the 

LexA repressor to be inactivated allowing cassette capture. (Image from 

Cambray et al., (2011) used under creative commons license 2.0; 

creativecommons.org/licenses/by/2.0/). 
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1.9.1: Integron-like elements present in the plant pathogen Pseudomonas 

syringae. 

Previous work had shown integrons to be abundant in bacterial species 

that had antibiotic resistance such as Vibrio species (Clark et al., 2000). Integrons 

however are not exclusive to clinical isolates showing antibiotic resistance and 

integron-like elements have been identified in environmental isolates (Gillings et 

al., 2008). Integron-like elements (ILEs) may be like integrons and be able to 

capture, express and help spread genes within bacterial populations. However 

the term integron-like element is used because the integrase genes are forward 

facing with respect to the ILE (unlike true integrons) and because in true integrons 

the integrase gene has its own forward facing promoter and a reverse facing 

promoter for expression of cassette genes in the variable end (Gillings et al., 

2008). ILEs in P. syringae and P. fluorescens have neither of these and may be 

under the control of LexA found upstream of rulA (Rhodes et al., 2014). ILEs may 

also be more independently mobile that other integrons, such as class one 

integrons which require genetic linkage to other MGEs (Domingues et al., 2012).  

Prof. Dawn Arnold and her research group identified an integron-like 

element within the chromosome of the pea pathogen, Ppi race 2 strain 203 

(Arnold et al., 1999; 2000). An 8.5kb region of DNA was identified that was 

present in strain Ppi 203 but not in any other Ppi strains tested. The DNA was 

flanked by direct repeat sequences. The 8.5kb fragment contained a rulAB 

operon (responsible for UV tolerance and DNA repair) and the rulB gene was 

disrupted by a 4.3kb insertion of DNA which contained the avirulence gene, 

avrPpiA1, and genes with high similarity to transposase genes which may confer 

mobility (Figure 1.10) (Arnold et al., 2000). The rulAB encodes the error-prone 

polymerase V that can synthesise DNA across lesions caused by UV irradiation 
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and genotoxic compounds, resulting in bacterial survival but at the cost of genetic 

mutations in the DNA (Stockwell et al., 2013). 

 

Figure 1.10: Identified ILE within Pseudomonas syringae pv. pisi 203. The 

4.3kb ILE is present with a larger 8.3kb insertion, the ILE is inserted with the rulB 

gene (B1,2). The rulA gene is also present (G) and the ILE contains three 

integrase genes (D,E,F) along with the type three effector gene, avrPpiA1 (C). 

Image adapted from Arnold et al., 2000. (Used under agreement from John Wiley 

and Sons, no. 4138340003860). 

 

Inverted repeats also flanked the 4.3kb region meaning there was a high 

possibility further insertions had occurred. Following this work it was proposed 

that this potentially mobile region of DNA (ILE) carrying the avirulence gene, 

avrPpiA1 can move between plasmids. This was suggested as the disrupted rulB 

gene is plasmid-borne and it also explains the distribution of avrPpiA1 gene to 

plasmids in Ppi races 5 and 7 (Arnold et al., 2000).  Although it is hypothesised 

that the inserted region carrying the avrPpiA1 gene is mobile between 

chromosomes and plasmids of different races and possibly species, the 

movement of the region has never been observed in the case of Ppi. However 
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Rhodes et al., (2014) have observed a region similar to the one seen in strain 

203 move out of the chromosome and into a plasmid in a P. fluorescens strain.  

Other similar MGEs have been identified in different species of bacteria 

that also insert into rulAB orthologues such as umuDC. One recent example of 

this is in Pantoea ananatis which has an integrative and conjugative element 

(ICE) that contains stress response genes and antibiotic resistance genes was 

identified and may play a major role in diversification of Pantoea ananatis. The 

really interesting finding was that the ICE was inserted into the umuC gene of the 

umuDC operon which is an orthologue of rulAB (Maayer et al., 2015). So the 

same process as the ILE insertion appears to be happening in different species 

with different MGEs.  

1.10: Pseudomonas fluorescens.  

Pseudomonas fluorescens is a common Gram-negative, rod-shaped 

bacterium with multiple flagella and can be found in soil and water. It is an obligate 

aerobe, but certain strains are capable of using nitrate instead of oxygen as a 

final electron acceptor during cellular respiration (Palleroni, 1984). P. fluorescens 

does not cause plant disease and certain strains can actually suppress plant 

fungal diseases. The biocontrol abilities depend on root colonization, induction of 

systemic resistance in the plant and the production of diffusible antifungal 

antibiotics (Haas and Keel 2003).    
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1.10.1: An integron-like element moving from P. fluorescens chromosomes 

to plasmid pWW0 and rulAB as a hotspot for insertion. 

The ILE in P. fluorescens strain FH1 was first discovered in 1989 during 

an investigation into plasmid-encoded copper resistance in environmental 

isolates from a copper mine in the Lake District, Cumbria, UK (Pickup, 1989). It 

was whilst Pickup was attempting to cure the strains via incompatibility 

experiments using plasmid pWW0, that it was noticed that the plasmid had 

acquired an extra region of DNA (ILE) and this was repeatable. The region was 

10kb in length, and as Arnold et al. (2000) had observed, the insertion disrupted 

the rulB gene. Sequencing revealed the region had left the chromosome and 

inserted into pWW0. This ILE however contained genes responsible for efflux 

pumping of toluene allowing the bacteria to withstand high toluene levels, 

although open reading frames (ORFs) 1-3 were conserved and similar to the 

integron found in Ppi race 2 strain 203 and are integrases and recombinases 

found in most integrons (Rhodes et al., 2014).  

 It has therefore been established that ILEs can move between the 

chromosome of a bacterium and into a plasmid. The plasmid is then potentially 

transmissible to other strains and species transferring the genes the ILE has 

captured. What has also been deduced is that rulB is a hotspot for ILE insertion. 

It is not fully understood why the insertion in rulB has been selected over 

evolutionary time but one possible reason is that on many plasmids rulB is within 

the core backbone of the plasmid close to the origin of replication. This ensures 

its passage into another bacterium which may or may not be related depending 

on the host range of the plasmid (Rhodes et al., 2014).  
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1.11: Aims. 

1-To determine the frequency of integron-like elements (ILEs) and rulAB genes 

in different plant pathogenic Pseudomonas bacteria.  

An investigation of how widespread ILEs (rulAB) are in a bank of >200 plant 

pathogenic bacteria currently maintained at UWE. Followed by investigating how 

many of these ILE’s are disrupted (whether their rulB has been disrupted).  

2-To determine whether ILEs and ILE captured genes are mobile. 

An examination of whether ILEs and their captured genes are mobile between 

different integrase systems and different rulAB genes. These investigations will 

include the potential for retrotransfer of ILEs by plasmid pWW0. 

3- To identify the conditions in which integron integrase and type three effectors 

(TTE) are expressed. 

The conditions for expression of the integron integrase (intl) will be identified.  The 

focus will initially be on the sequenced ILE in P. syringae pathovar pisi 203 

(integron harbours effector avrPpiA1). Further to this any newly identified ILEs 

will also have their expression profiles analysed to assess any differences 

between them. 

4-To characterise the ILE co-localisation with rulB. 

A previous bioinformatics scan of ~25 genomes (Jackson et al., 2011) found 

evidence that rulB (or orthologues) disruption is widespread. Why does the 

integron insertion occur within rulB and does this affect the fitness of the bacteria? 

The rulAB gene may play a role in stabilising the insertion and ensure that it is 

conserved and always transferred. An investigation will look at the relationship 
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between integron insertion and the rulB hotspot to assess why rulB is favoured 

over other genes. 

5-To investigate if the disrupted RulB protein still conveys UV resistance. 

Using a bank of strains, it will be possible to compare the relative UV resistance 

phenotype of each strain. This will thus determine whether the rulB system 

remains functional even after disruption or whether the capture and integration of 

the integron represents a trade-off in bacterial fitness. 
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Chapter 2. Materials and Methods 

2.1: Bacterial Strains. 

A summary list of bacterial strains and plasmids used in this project is 

shown in Table 2.1. A complete detailed table is available in Appendix I.  

Table 2.1: Bacterial strains used in this study. Km- Kanamycin; Stm- 
Streptomycin 
 

Strain Antibiotic Resistance Reference 

Pseudomonas syringae pv. pisi   

Race 1 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Race 2 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Race 3 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Race 4 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Race 5 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Race 6 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Race 7 (all available numbered 
strains from stock) 

None (not screened) HRI culture collection 

Pseudomonas putida   

PaW340 (-) Stm Rhodes et al., 2014 

PaW340 (pWW0::kmr) Stm, Km Rhodes et al., 2014 

PaW340 (pWW0::kmr∆rulAB) Stm, Km Rhodes et al., 2014 

Pseudomonas fluorescens   

FH1 None (not screened) Rhodes et al., 2014 

FH4 None (not screened) Rhodes et al., 2014 

FH1 (pWW0::kmr::ILEFH1) Km Rhodes et al., 2014 

FH4 (pWW0::kmr::ILEFH4) Km Rhodes et al., 2014 

Pseudomonas syringae pv. 
phaseolicola 

  

Pph 1302A None HRI culture collection 

Pph races 1, 3-9 (one 
representative from each) 

None (not screened) Tsiamis et al., 2000 

Pseudomonas syringae pv. 
syringae 

  

Psy. A selection of strains  None (not screened) HRI culture collection 

Plasmids   

pWW0::kmr (large self-
transmissible plasmid with 
heavy metal resistance) 

Km Rhodes et al., 2014 
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pWW0::kmr::ILEFH1
 (large self-

transmissible plasmid with 
heavy metal resistance, also 
has the integron inserted into 
rulAB from Pf. FH1) 

Km Rhodes et al., 2014 

pBBR1MCS-2 broad host 
range vector 

Km Invitrogen 

pCR2.1 PCR cloning vector Km Invitrogen 

 

2.2: Media and culture conditions. 

All Pseudomonas strains were plate cultured on either King’s B (KB) media 

(Fluka Analytical, UK) or nutrient agar (NA) (Oxoid, UK) for 48 hours at 25oC. 

Overnight liquid cultures of Pseudomonas strains were grown in Luria Bertani 

(LB) broth (Difco, UK) for 16 hours at 25oC with shaking at two times g-force (xg). 

Selection of bacterial matings of Pseudomonas strains were carried out on M9 

minimal media (MM) (Fluka Analytical, UK) or KB. Agar plates were 

supplemented with antibiotics (Sigma, UK) at concentrations of 5 mg/ mL 

kanamycin (Km) and 10 mg/ mL streptomycin (Stm) and LB broths were 

supplemented with 2.5 mg/ mL Km and 5 mg/ mL Stm. For long term storage 

bacterial cultures were grown overnight and mixed with 40% glycerol (1:1) then 

stored in a -80oC freezer (U57085, New Brunswick Scientific, UK). The broths 

were incubated in a shaking incubator (Innova 4230, New Brunswick Scientific, 

UK) and agarose plates were incubated in a static incubator (LT2J, LEEC, UK). 

2.2.1: Making rifampicin mutants. 

The bacterial strain required to be rifampicin resistance was grown in LB 

broth overnight. One mL of liquid culture was centrifuged for one minute at 15,000 

xg, the pelleted cells were resuspended in 100 μL of LB broth and spread onto a 

KB plate containing 20 mg/ mL rifampicin. The plates were incubated at 25oC for 

approximately four days until resistant colonies appeared.   
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2.3: DNA extraction. 

2.3.1: Genomic DNA extraction. 

Overnight liquid cultures of Pseudomonas strains were grown in 10 mL LB 

broth at 25oC. Genomic DNA was extracted from 1.5 mL of liquid culture using 

the Puregene Yeast/Bact. Kit B (QIAGEN, UK) as per the manufacturer’s 

instructions. 

2.3.2: Plasmid DNA extraction. 

Overnight liquid cultures of Pseudomonas strains were grown in 10 mL LB 

broth at 25oC. Plasmid DNA was extracted from 1.5 mL of liquid culture using the 

QIAprep spin mini-prep kit (QIAGEN, UK) as per the manufacturer’s instructions. 

Larger plasmids were extracted from 50 mL of liquid culture using the QIAGEN 

plasmid midi kit as per the manufacturer’s instructions. 

2.4: Polymerase chain reaction (PCR). 

All of the PCR reactions carried out were a total volume of 25 μL that 

consisted of 2 μL of DNA or overnight liquid culture, 1 μL of forward primer and 1 

μL of reverse primer (Table 2.2), 12.5 μL of mastermix (Taq PCR mastermix, 

QIAGEN, UK) and 8.5 μL of sterile deionised water. PCR was performed using a 

Flexigene thermal cycler (TECHNE, UK). Standard PCR cycling was used which 

consisted of 94oC for 10 minutes then 35 cycles of 94oC for 30 secs, Tm (-5oC) 

of primers for 30 seconds (Tm was calculated from the composition of the 

primers), 72oC for 1 min and a final extension at 72oC for 10 minutes, the samples 

were then held at 4oC until needed. PCR products were visualised following the 

method given in Section 2.5. 
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2.4.1: Semi-degenerate primer PCR. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Outline of semi-degenerate amplification of chromosomally 

inserted targets. (Image generated and used with permission from S. Godfrey). 

 

The degenerate primers (Table 2.2; CEKG) bound to multiple regions in 

the variable end of the ILE. Primer 1 was the primer to bind to rulB’’ (variRP1). 

The first round of PCR then amplified the region between Primer 1 and a mix of 

the degenerate primers (CEKG 2A, B and C). The second round of PCR uses 

Primer 1 again but Primer 4 (CEKG 4) that binds to tags on the degenerate 

primers (CEKG 2A, B and C). A sequencing primer was then used for 

sequencing. The amplicon of interest should start with the known sequence 

(rulB’’). 

2.4.2: Primer design. 

Primers were designed using Oligoanalyzer software found at: 

http://eu.idtdna.com/analyzer/applications/oligoanalyzer. The sequences were 

first obtained from the NCBI database and copied into Bioedit software where 

primer sequences were selected manually. These sequences were checked for 
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secondary structures and their melting temperatures (Tm) using the 

Oligoanalyzer software. Primers were synthesised by Eurofins (Germany).  

 

Primer Name Sequence 5’ - 3’ Target 
Gene(s) 

ILE region primers   

GRrulABFP (pWW0) 
GRrulABRP (pWW0) 

TGGCGTATGTCGATAACCAG 
CAATTCCCCGTACAAGGTGT 

rulAB  

GRxerCFP (pWW0) 
GRxerCRP (pWW0) 

AGCAGCGCAACCTGATAACT  
GCCTGCCTTCATTAGTCAGC 

xerC  

GRrulAB-xerCFP 
(pWW0) 
GRrulAB-xerCRP 
(pWW0) 

TGGCGTATGTCGATAACCAG  
 
GTACAGACGCCGTCCATAGG 

rulAB-xerC 
flank  

2015rulABFP 
2015rulABRP 

CCATCATGAAGAGCCGCTTGCAGAT 
TCATTGAAAAGACGGCTCGTGAGTT 

rulAB’ 
 

2015rulAB-xerCFP 
2015rulAB-xerCRP 

CCATCATGAAGAGCCGCTTGCAGAT 
TGGTACGACCACCTGGTGTTTCAG 

rulB’-xerC 
 

2015xerCFP 
2015xerCRP 

CTGAAACACCAGGTGGTCGTACCA 
ACCTTGATTTATGTGCACCTGTCGG 

xerC 
 

ILE variable primers   

CEKG 2A GGCCACGCGTCGACTAGTACNNNN
NNNNNNAGAG 

Degenerate 
primer 

CEKG 2B GGCCACGCGTCGACTAGTACNNNN
NNNNNNACGCC 

Degenerate 
primer 

CEKG 2C GGCCACGCGTCGACTAGTACNNNN
NNNNNNGATAT 

Degenerate 
primer 

CEKG 4 GGCCACGCGTCGACTAGTAC Binds to 
degenerate 
primers 

variFP 
variRP 

AGCCAGGAGACGCTTTGCTG 
TACACTCTCCTCGCATTGGG 

ILE variable 
end and 
rulB’’ 

 

2.5: Agarose gel electrophoresis. 

Agarose gels of 0.7% were prepared by dissolving agarose powder 

(Bioline, UK) in 1x TAE (Appendix II) via microwaving (Sanyo, UK). Agarose gels 

were supplemented with 0.01% v/v (μL) of Sybr Safe (Invitrogen, USA) with a 

concentration of 1000x. The DNA samples had 20% v/v of loading dye added 

(Appendix II). The gels were loaded with 5 μL of size ladder (Bioline, UK) and 10 

Table 2.2: Primers used for PCR and hybridisation probes. 

 



 
34 

μL of DNA sample per well. The gels were then placed in tanks containing 1x 

TAE and electrophoresed for 80 minutes at 100V for 150 mL gels and 40 minutes 

at 80V for 30 mL gels. The gels were visualised and photographed using a UV 

gel doc system (U:Genius, Syngene, UK). 

2.6: Clean-up of PCR products or PCR products from an agarose gel. 

PCR products or PCR products from an agarose gel were cleaned-up 

using the Wizard SV Gel and PCR clean-up system (Promega, UK) as per the 

manufacturer’s instructions. 

2.7: Quantifying DNA purity with a Nanodrop 1000. 

The purity of DNA samples were measured using a Nanodrop 1000 

(Thermo Scientific, UK). The Nanodrop head was cleaned twice with 2 μL of 

sterile water and lint free tissue. The Nanodrop was then blanked with 2 μL of the 

solution that the DNA was rehydrated in. The head was then cleaned again and 

2 μL of the DNA sample was added and measured. 

2.8: DNA hybridisation via vacuum dot blotting. 

All hybaid oven glass tubes (Thermo Scientific, UK) were washed with 

liquid detergent and hot water, followed by a rinse in cold water, followed by a 

vigourous rinse in deionised water and left to dry in a drying cabinet (LEEC) 

before use. The Bio-rad dot blot apparatus (Bio-rad, UK) was also washed in the 

same way but followed by autoclave treatment. 
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2.8.1: Producing chemiluminescent labelled probes. 

The plasmid pWW0::kmr was used to produce the probes for the rulAB 

regions and the plasmid pWW0::kmr::ILEFH1 was used as a probe primarily for 

xerC regions but also rulAB-xerC crossover regions. Pseudomonas putida strain 

PaW340 (pWW0::kmr) and Pseudomonas fluorescens strain FH1 

(pWW0::kmr::ILEFH1) were cultured in 10 mL of LB broth supplemented with 25 

μg/ mL Km for 20 hours with shaking at 25oC. The plasmid DNA (pDNA) was 

extracted using a mini prep extraction kit (Section 2.3.2). Following the extraction 

the purity of the pDNA was checked using a Nanodrop 1000 (Thermo Scientific, 

UK). The pDNA from the two strains was then used as a template in a PCR 

reaction (1:100 dilution of pDNA) (primers shown in Table 2.2). The PCR products 

were cleaned up using a PCR clean-up kit (Promega) (Section 2.6).  

The amount of DNA from the PCR was calculated using a Nanodrop and 

400 ng of DNA was required for the labelling process (volumes in Table 3.1). The 

DNA was added to autoclaved, double distilled (dd.) water to make a final volume 

of 16 μL in a 1.5 mL Eppendorf tube. The DNA was then denatured by heating in 

a water bath to 100oC (W14, Grant) for 10 minutes then quickly chilled in an ice 

bath. The denatured DNA then had 4 μL of well mixed DIG-high prime (Roche, 

UK) added. The mixture was centrifuged (Prism, Labnet) at 15,000 xg for 10 

seconds and incubated in a static 37oC incubator (LEEC, UK) overnight. The 

labelling reaction was stopped by heating the sample to 65oC for 10 minutes.  

2.8.2: Transferring DNA onto a nylon membrane. 

A small amount of bacterial cells from a plate culture were added to 200 

μL of 0.4M NaOH-10mM EDTA in the wells of a microtitre plate. The plate was 

sealed with autoclave tape and incubated for 15 minutes at 60oC in a Hybaid mini 
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oven (Thermo Scientific, UK). Once the incubation was complete the microtitre 

plate was chilled on ice for five minutes.  

The positively charged nylon membrane (Biotrans) was wetted with 2x 

saline-sodium citrate (SSC) buffer (Appendix II) and the dot blotter was 

assembled by placing the nylon membrane between the rubber gasket and the 

upper part of the blotter; alternate screws were tightened.  A vacuum was applied 

and the screws tightened further. The vacuum was then held and 180 μL of each 

sample was loaded. The vacuum was reapplied to draw the samples through. 

Once the samples were through, the blotter was disassembled and the nylon 

membrane was washed briefly in 2xSSC and left to air dry for 30 minutes. Once 

the nylon membrane was dry it was wrapped in Saran wrap and exposed to ultra-

violet (UV) light (302nm) for 2 minutes. 

2.9: Hybridisation of DIG-labelled probe to DNA. 

2.9.1: Prehybridisation of blot with DIG easy hyb. 

During the prehybridisation of the blot 10 mL of DIG Easy Hyb (Roche, 

UK) was used for an 8 cm by 12 cm sized blot. The blot was placed into a 110 

mL glass Hybaid oven tube along with 10 mL of DIG Easy Hyb. The blot was 

incubated at 42oC for 1 hour inside the Hybaid oven with rotation. 

2.9.2: Hybridisation of DIG labelled probe to DNA on the blot. 

At least 50 ng of labelled probe was used in the hybridisation buffer, the 

final volume of labelled probe from Section 2.81 used was 2 μL for all of the 3 

probes. The labelled probe was added to 50 μL of dd. water in a 1.5 mL Eppendorf 

tube and denatured in boiling water for 5 minutes. The probe was removed and 

chilled in an ice bath. The probe was immediately added to 5 mL of prewarmed 
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DIG Easy Hyb (42oC). The prehybridisation buffer was removed from the Hybaid 

tube and the probe buffer was added. The hybridisation reaction was left 

overnight at 42oC with rotation.  

Once the hybridisation had finished the blot was removed from the Hybaid 

tube and the buffer was kept (it can be reused five times). The blot was then 

washed in 200 mL low stringency buffer (LSB) (Appendix II) twice for 5 minutes. 

During this step high stringency buffer (HSB) (Appendix II) was prewarmed to 

65oC. The blot was then transferred to a clean Hybaid tube where 75 mL of 

prewarmed H.S.B. was added and left rotating in the Hybaid oven for 20 minutes 

at 65oC. This was repeated once more. 

2.10: Detection of hybridised probes. 

Following hybridisation the blot was transferred to a clean plastic tray 

where 200 mL of washing buffer (Appendix II) was added. The blot was gently 

shaken for 3 minutes at room temperature; the buffer was then discarded. Using 

the same tray 170 mL of blocking solution (Appendix II) was added to the blot 

and left shaking for 1 hour; the solution was then discarded. Following this 30 mL 

of antibody solution (Appendix II) was added and left shaking for 30 minutes. The 

blot was then washed in 200 mL of washing buffer for 20 minutes; this was 

repeated with fresh buffer. Finally the blot was equilibrated for 5 minutes in 30 

mL of detection buffer (Appendix II). 

Once all the washes were complete 1 mL of chloro-5-substituted 

adamantyl-1,2-dioxetane phosphate (CSPD) (Roche, UK) was evenly distributed 

to the DNA side of the blot and placed inside a hybridisation bag (Roche, UK). 

The blot was left for 5 minutes at room temperature and then excess CSPD was 

drained off. The bag was resealed and incubated at 37oC for 10 minutes to 
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activate the CSPD. Blots were then exposed to chemiluminescent X-ray film (GE 

Healthcare) for 10 minutes and developed using Carestream developer and fixer 

(Kodak, USA) inside a dark room.  

2.11: DNA sequencing. 

2.11.1: Sequencing of PCR products. 

PCR products were cleaned up using the ExoSAP protocol before 

sequencing. The ExoSAP mastermix was made up fresh and comprised of 2.5 

μL of Exonuclease 1, 25 μL of SAP and 972.5 μL of Milli Q water (Thermo-

Scientific, UK). Each PCR sample had 10 μL of ExoSAP mastermix added and 

was incubated at 37oC for 30 minutes and then at 95oC for 5 minutes in a thermal 

cycler. This was stored at -20oC until needed. The forward primer was diluted, 

1.8 μL of primer to 10.2 μL of dd. water. The diluted primer (3 μL) was then mixed 

with 12 μL of the ExoSAP cleaned PCR product. The PCR product and primer 

was sent to Eurofins, Germany for sequencing. Sequence results were used to 

confirm the PCR results using NCBI BLAST, CLUSTALW and TCOFFEE 

(ebi.ac.uk) multiple alignments. Single alignments were carried out using 

EMBOSS Water (http://www.ebi.ac.uk/Tools/psa/emboss_water/). 

2.11.2: Preparation for whole bacterial genome sequencing. 

Bacterial genome sequencing was performed by MicrobesNG, UK. DNA 

was extracted using the Puregene Yeast/Bact. Kit B (QIAGEN, UK). The DNA 

integrity and quantity was checked using a Nanodrop 1000 (Thermo-Scientific, 

UK). The DNA was eluted in elution buffer (Qiagen, UK). The sequencing was 

performed using the Illumina MiSeq and HiSeq 2500 platforms and genome 

sequence quality was verified using the Burrows-Wheeler Aligner by 

MicrobesNG, UK. The genomes were assembled and partially annotated using 
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SPAdes (Bankevich et al., 2012), available here; 

http://cab.spbu.ru/software/spades/. Subsequent analysis and annotation was 

performed using Prokka (Seemann, 2014) to annotate contigs with genes, blast 

homologs, identify domains and motifs, find tRNAs and rRNAs and CRISPR-Cas 

if present; http://vicbioinformatics.com/software.prokka.shtml. The Artemis: 

sequence visualization and annotation software (Rutherford et al., 2000); 

http://www.sanger.ac.uk/science/tools/artemis was also used for gene 

annotation.  

2.12: Bacterial mating. 

All cultures used for matings were grown in 10 mL LB broth overnight. 

2.12.1: Filter matings. 

Liquid cultures of both P. putida PaW340 (pWW0::kmr) (donor) and P. 

fluorescens FH1 (recipient) were used in a control filter mating. A sterile 

membrane filter (Supor 200, PALL, UK) was placed onto a KB plate, 10 μL of 

each of the liquid cultures was spotted onto the membrane and in the final spot 1 

culture was placed on top of the other to facilitate the mating. These were left to 

grow over 3 days at 25oC. Following this the bacterial cells from the mating were 

picked up using an inoculation loop and immersed in 1.5 mL 1/4 Ringers solution 

(Appendix II). This solution was then streaked onto M9 MM plates containing just 

Km which would select for P. fluorescens FH1 (pWW0::kmr) and incubated for 

four days at 25oC. 

2.12.2: Eppendorf tube matings. 

Liquid cultures of both P. putida PaW340 (pWW0::kmr) (donor) and P. 

fluorescens FH1 (recipient) were used in a control Eppendorf mating. Using a 
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centrifuge 0.5 mL of the donor culture and 1 mL of the recipient culture was spun 

down for one min at 15,000 xg. The supernatant was discarded and the cells 

resuspended in 0.5 mL and 1 mL respectively of 1/4 Ringers solution; the 

centrifugation and resuspension was then repeated. Following this 500 μL of 

each cell suspension was mixed together in a clean Eppendorf tube and 

centrifuged for 1 min at 15,000 xg. The supernatant was discarded and the pellet 

(~10 μL) was drawn up using a pipette. The bacterial cells were placed in the 

middle of a NA plate and left to grow for 48 hours at 25oC. Bacterial cells were 

then streaked out onto M9 MM plates containing 5 mg/ mL Km which would select 

for P. fluorescens FH1 (pWW0::kmr) and incubated for 4 days at 25oC. 

2.12.3: Electroporation of plasmid DNA into recipient cells. 

2.12.3a: Electroporation of plasmid DNA into Pseudomonas. 

Overnight liquid cultures of both donor and recipient cells were grown and 

plasmid DNA (pWW0) was extracted from the donor following method 2.3.2. One 

mL of the recipient culture was harvested and washed three times in 750 μL ice 

cold sucrose (0.5M). 100 μL of the recipient cells were incubated on ice with 10 

μL of pDNA for 30 minutes. The cell solution was then transferred to an ice cold 

cuvette and electroporated at 200Ω, 2000V and 25μF with a time constant of 

~4.4. Following this 1 mL of LB broth was immediately added and mixed via 

pipetting. The cells were centrifuged for 1 minute at 13,000 rpm and resuspended 

in 200 μL of LB broth. The suspension was plated out onto KB + Km plates and 

incubated at 25oC for 3-4 four days. 

2.12.3b: Electroporation of plasmid DNA into E. coli. 

The recipient strain was grown overnight at 37oC. 100 μL was used to 

inoculate 10 mL of fresh LB media and grown at 37oC until an OD600 of 0.5-1 was 
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reached. The culture was then chilled on ice for 30 minutes before being 

harvested and resuspended in 10 mL ice cold sterile water, this was repeated 

twice more. The cells were then washed twice in 200 μL 10% (v/v) glycerol and 

a final wash with 2.3 mL 10% (v/v) glycerol. 100 μL of the recipient cells were 

incubated on ice with 10 μL of pDNA for 30 minutes. The cell solution was then 

transferred to an ice cold cuvette and electroporated at 200Ω, 2000V and 25μF 

with a time constant of ~4.4. Following this 1 mL of LB broth was immediately 

added and mixed via pipetting. The cells were centrifuged for 1 minute at 13,000 

rpm and resuspended in 200 μL of LB broth. The suspension was plated out onto 

KB + Km plates and incubated at 25oC for 3-4 days. 

2.13: Apoplastic fluid extraction. 

Bean plants were grown for 14 days at 23oC with 80% humidity and 16 

hours of light. Following this the leaves were harvested by cutting at the base of 

the leaf. The leaf was then folded into a quarter of the size taking care not to 

break or damage the leaf. The folded leaf was placed into a large 100 mL syringe 

and filled with distilled water, any excess water and air was removed. Water was 

then forced into the leaf by placing a finger over the end of the syringe and 

pushing the syringe. Once the leaf was dark green all over it was removed from 

the syringe and placed into a smaller 20 mL syringe suspended in a Falcon tube. 

This assembly was then centrifuged at 1500 xg for 15 minutes to collect the 

expelled apoplastic fluid which was stored at -80oC. 

Apoplastic fluid concentration was measured following the method 

developed by O’Leary et al., (2014). Two volumes of distilled water (100 mL) were 

prepared with 1 containing 50 µM indigo carmine. The absorbance of both 

solutions was measured at 610 nm with the OD610 of the solution containing no 

indigo carmine subtracted from the OD610 of the indigo carmine containing 
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solution. This gave the OD610infiltrate value. Using the method above leaf infiltrations 

with both solutions was performed. The average OD610 of at least 3 replicates 

was measured with the apoplastic fluid containing no indigo carmine subtracted 

from the indigo carmine containing apoplastic fluid, this gave the OD610AWF value. 

These values were then used in the equation; Apoplast dilution factor = 

OD610infiltrate/(OD610infiltrate-OD610AWF). The fluid was then diluted and normalised to 

the same starting dilution factor for all tests (dilution factor of 1 in 5 mL).  

A check was also performed to ensure no cell lysate was present in the 

apoplastic fluid preparation. This was performed using a malate dehydrogenase 

assay (Toyobo Co., Ltd, 2010). The assay was performed on all apoplastic fluid 

extractions from the 4 different plants, TG, CW, RM and Pea. Cell lysate samples 

from the plants were also included as positive MDH samples along with distilled 

water as the negative MDH control. The enzyme activity was calculated using;  
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2.14: Quantitative reverse transcription PCR (RT-qPCR). 

2.14.1: Preparation of bacteria for gene expression studies in plant 

apoplastic fluid. 

Overnight liquid cultures of Ppi 203 and Psy 3023 were grown in LB broth 

at 25oC. Following overnight growth the cells were washed in 1/4 Ringers solution 

and 100 μL of Ppi 203 or Psy 3023 was placed into 1 mL of each of the apoplastic 

fluid preparations; Bean cv. Tendergreen, Bean cv. Canadian Wonder, Bean cv. 

Red Mexican or Pea cv. Kelvedon Wonder along with minimal media as a control. 

These were left shaking at 25oC for 6 hours. The cells were then harvested. The 

apoplastic fluid was diluted 50:50 with minimal media. 

2.14.2: Preparation of bacteria for gene expression studies in planta. 

Overnight liquid cultures of Ppi 203 and Psy 3023 were grown in LB broth 

at 25oC. Following overnight growth the cells were washed in 1/4 Ringers 

solution. These preparations were then injected into Bean cv. Tendergreen, Bean 

cv. Canadian Wonder, Bean cv. Red Mexican or Pea cv. Kelvedon Wonder plants 

and left for 6 hours before being extracted via grinding of the leaf. Minimal media 

was used as a control. 

2.14.3: Preparation of bacteria for gene expression studies following 

bacterial conjugation. 

Overnight liquid cultures of E.coli DH5α and E.coli DH5α (pRK2013) and 

either Ppi race two strain 203 or Psy 3023 were grown. The conjugation mix was 

set up by mixing 60 μL of Ppi 203 or Psy 3023, 20 μL of E.coli DH5α and 20 μL 

of E.coli DH5α (pRK2013). This mix was then placed in the middle of an LB agar 

(Appendix II) plate and incubated at 25oC for 6 hours. Following the incubation 
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the conjugated cells were scraped off the plate and resuspended in 500 μL LB 

broth. No conjugation of Ppi 203 and Psy 3023 were used as controls. 

2.14.4: Preparation of bacteria for gene expression studies following 

exposure to sub-optimal temperatures. 

Overnight liquid cultures of Ppi 203 and Psy 3023 were grown in LB broth 

at 25oC. Following overnight growth the cells were washed in 1/4 Ringers 

solution. The preparations were then incubated for 6 hours at -80oC, -20oC, 4oC, 

25oC and 37oC. The cells incubated at 25oC were used as a control. 

2.14.5: Preparation of bacteria for gene expression studies following 

exposure to mitomycin C. 

Overnight liquid cultures of Ppi 203 and Psy 3023 were grown in LB broth 

at 25oC. MM containing 0.05, 0.1, 0.5 and 1 µg/mL MMC was prepared and 200 

µL of the overnight cultures were incubated in the MMC preparations for 6 hours. 

This method was also used for bacterial growth studies following MMC exposure. 

The only difference was that the cells were plated onto KB plates and left to grow 

at 25oC for 48 hours before being counted. CFU/ mL values were also calculated 

using the following equation; CFU/ mL = (number of colonies*dilution factor) / 

volume spread on plate.  

2.14.6: RNA protect. 

Following the RT-qPCR bacterial preparation steps 500 μL of the samples 

were added to 1 mL of RNA protect reagent (QIAGEN, UK) in a 1.5 mL Eppendorf 

tube. The samples were then immediately mixed by vortexing and incubated at 

room temperature for 5 minutes followed by centrifugation at 7000 xg for 10 
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minutes. The supernatant was then decanted and the tube was drained on paper 

to dry. The pellet can be stored for up to two weeks at -20oC.  

2.14.7: RNA purification. 

The RNA pellet was thawed and 100 μL of TE buffer containing 1 mg/ mL 

lysozyme was added and incubated at 25oC with shaking for 10 minutes; the 

samples were vortexed every 2 minutes during the incubation. Following this a 

RNA purification kit was used, either the RNeasy kit (QIAGEN, USA) or the SV 

Total RNA Isolation System (Promega, USA) as per the manufacturer’s 

instructions. Following the purification the samples were checked on a Nanodrop 

1000 (Thermo Scientific, UK) to ensure purity and to get a RNA concentration to 

normalise the samples.  

2.14.8: Complementary DNA (cDNA) synthesis. 

The TaqMan reverse transcription reagents were used to generate the 

cDNA. For each sample and replicate 2 μL of 10x RT buffer, 1.4 μL of 25mM 

MgCl2, 4 μL of 10mM dNTP mix, 1 μL of RNase inhibitor and 1 μL of MultiScribe 

reverse transcriptase was used. The master mix was made up to 20 μL with the 

addition of purified DNA/RNAase free water. Each sample had 20 μL of the 

mastermix added along with 1 μL of random hexamers and less than one μg of 

template RNA. The reactions were then incubated in a thermal cycler (TECHNE, 

UK) with the following settings: 25oC for 10 minutes, 37oC for 30 minutes, 95oC 

for 5 minutes and 4oC indefinitely. The cDNA was stored at -20oC or used 

immediately for real-time quantification.   
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2.14.9: Reverse transcription quantitative PCR (RT-qPCR). 

Primers and probes used for real-time PCR quantification are in Table 2.3. 

Each well for the real-time quantification contained 12.5 μL of RT-qPCR 

mastermix, 2 μL of forward and reverse primers, 2 μL of probe, 3 μL of cDNA and 

5.5 μL of DNase, RNase free water. The samples were then subjected to 50oC 

for 2 minutes, 95oC for 10 minutes and then 40 cycles consisting of 95oC for 15 

seconds and 60oC for 1 min. DNA gyrase sub-unit B gene was used for the base 

level gene expression to normalise all other values. 

Table 2.3: Primers and fluorescent probes used for RT-qPCR. 

Primer/Probe name Sequence 5’ - 3’ Target gene 

GyrB-QF  GATGATGGAATCGGTGTCGAA DNA gyrase 
subunit B 

GyrB-QR  TTGGTGAAGCACAACAGGTTCT  

GyrB-QP  CCCTGCAGTGGAACGACAGCTTCA  

Ppi 203   

ORFA-QF  CGTCCAGGCGCAAACC Recombinase 

ORFA-QR  ACAGCACCGCACCGAGAT  

ORFA-QP  TAGGCAATGATCTGTCG  

203ILExerCF  CTGCGTCGGCCTTTGG xerC on ILE 

203ILExerCR  AATGAGTCGATGGGCGAGAT  

203ILExerCP  CGTTTCTGCGCGCACT  

203ORFDF  CATCAGCTCCATTAGCGACATG ORF D int 

203ORFDR  GCCTCGGTCGTTACTGCATT  

203ORFDP  CTGCGGAACACTCG  

203ORFEF  CGTACGAAAACCTCCCATGTG ORF E int 

203ORFER  TGGGTCGCGCCCTTT  

203ORFEP  TGCGACCGCTGCC  

AvrPpiA1-QF  GTGCAACCGAGGGATCTAGAAC TTE on ILE 

AvrPpiA1-QR  TCTAGCATTTCTGACGAGCATGTC  

AvrPpiA1-QP  TCGAGCTCAGCCCCGA  

Psy 3023   

3023ILExerCF TCCGTCGTGCCGAACTG xerC on ILE 

3023ILExerCR TCGATGGGCGAGATCCA  

3023ILExerCP TGGCCCTTAGAATCG  

3023ILEHopH1F CAGGAGGCAGCTGGAAAAGT TTE on ILE 

3023ILEHopH1R GCAATGTGCCGATTCTCGTT  

3023ILEHopH1P CGAACCAGAAAACTT  

3023ILEHopAP1F TGTGAAATGGATCCGCAGAA TTE on ILE 

3023ILEHopAP1R TCCGAGCCCTGATCTGTCTT  

3023ILEHopAP1P CGGGTGGTCATCTC  
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2.14.10: Statistics and heat map analysis of gene expression. 

A students T-test and a Tukey statistical test was performed on the raw 

qPCR data following ANOVA to obtain the level of significance between the mean 

values for each condition within a set experiment. JMP statistical package was 

used (https://www.jmp.com/). Gene expression heat maps were generated using 

the x-fold gene expression values and matrix2png software provided at 

http://www.chibi.ubc.ca/matrix2png/bin/matrix2png.cgi was used to generate the 

heat maps.  

2.15: Ultra-violet tolerance tests. 

The strains to be tested for UV tolerance in relation to their rulB profile 

were grown in liquid culture overnight at 25oC with gentle shaking at 2 xg with 

appropriate antibiotics. Following overnight growth the cells were harvested by 

centrifugation at 1500 xg for 15 minutes (MSE Mistral 2000) and the cells were 

then washed in 10 mL 10 mM magnesium chloride and were normalised to an 

optical density of 0.6 at 600nm. The washed cells were transferred to a 80mm Ø 

glass petri dish and exposed to UVB light (302nm) on a UV transilluminator (UVP, 

UK) for either 0, 30, 60, 120 or 300 seconds (UV source was allowed to warm up 

for 15 minutes prior to use). Following the UV exposure 1 mL was taken from the 

petri dish and added to the 10 mL LB broth and grown at 25oC with shaking under 

red light. The growth (optical density) was measured every hour for 8 hours and 

at 24 hours at 600nm in a Jenway 7315 spectrophotometer; growth curves were 

produced from the data. If the OD600 was above 0.6 the samples were diluted 

prior to measuring.  
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2.16: Creation of artificial rulAB containing vector. 

2.16.1: Ligation of gene into pCR2.1 vector. 

The pWW0 plasmid was extracted from P. putida PaW340 (pWW0::kmr) 

using the Qiagen midi kit (Section 2.3.2). DNA was also extracted from Psy 

B728a and Pph 1302A (PPHGI-1). The rulAB genes and promoter regions from 

the 3 strains were amplified via standard PCR primers shown in Table 2.4. 

Table 2.4: Primers used to clone various versions of rulAB. 

Primer name Sequence 5’ - 3’ 

pWW0rulAB cloning forward TTGGGGATTCAGCCTTTTACG 

pWW0rulAB cloning reverse TAGCCGTTTTTGGTGAACAGG 

pWW0rulB cloning forward TTGGGGATTCAGCCTTTTACG 

pWW0rulB cloning reverse CGACGTATTTGGCGTGGTCA 

pWW0rulAB’-60bp forward TGATCTTGTCCATCGTGGCC 

pWW0rulAB’-60bp reverse TAGCCGTTTTTGGTGAACAGG 

pWW0rulAB’-IP forward CTCAACTCAGGCCGGAAGAT 

pWW0rulAB’-IP reverse TAGCCGTTTTTGGTGAACAGG 

PphGI-1rulAB forward TGCGCTCCCGTGGCTTGGTG 

PphGI-1rulAB reverse TCGCCATCATGCGGCTCAAGC      

 

Following PCR, 10 ng of PCR product was added to 2 μL of ligation buffer, 

1 μL pCR2.1 vector and 1 μL of T4 DNA ligase (TOPO® TA cloning kit, Life 

Technologies). The mix was made up to 10 μL with water and incubated at 14oC 

overnight. 

 

2.16.2: Transformation. 

The Top10F’ competent cells (TOPO® TA cloning kit, Life Technologies) 

were defrosted and 2 μL of ligation mixtures was added. This was incubated on 

ice for 30 minutes. Following the incubation the cells were heat shocked at 42oC 
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for 30 seconds and placed back on ice for 2 minutes. The cells were then 

incubated with 250 μL of SOC medium for 1 hour at 37oC with shaking. The cells 

were then spread onto LB + Km + isopropyl β-D-1-thiogalactopyranoside (IPTG) 

(0.04 mg/ mL) + 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) (0.04 

mg/ mL) (Appendix II) plates and incubated overnight at 37oC. White colonies 

were picked and spread on LB + Km plates or placed in LB + Km broth and 

incubated overnight at 37oC.  

2.16.3: DNA digest of cloned fragments. 

Plasmid DNA extraction was performed using the Qiagen mini kit (Section 

2.3.2) from the overnight cultures. The DNA was digested using either EcoR1 or 

Xba1 and Spe1, 1 μL of restriction enzyme, 3 μL of buffer and 7 μL of water were 

added to 20 μL of DNA and incubated at 37oC for 1 hour. The digest was analysed 

on an agarose gel (Section 2.5) and the cloned DNA was cut out and purified 

(Section 2.6).  

2.16.4: Digesting and dephosphorylating the broad host range vectors. 

An overnight culture of the broad host range vector was prepared at 37oC 

and the plasmid DNA was extracted (Section 2.3.2). The plasmid DNA was 

digested as in Section 2.16.3 with both EcoR1 and Xba1 and Spe1, the digest 

was also analysed on a gel and purified as in Sections 2.16.3 and 2.16.5. The 

vector was then dephosphorylated by adding 1 μg of vector to 1 μL FastAP 

alkaline phosphatase, 2 μL reaction buffer (Thermo Scientific, UK), made up to 

20 μL with nuclease-free water and incubated at 37oC for 10 minutes.  

 

2.16.5: Purification of broad host range vectors. 

Following on from the restriction digest and dephosphorylation of the 

broad host range vector (Section 2.16.4) the vector was purified to remove 
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contaminants and residual enzymes. One volume of phenol: chloroform: isoamyl 

alcohol (25:24:1) was added to the vector and vortexed for approximately 20 

seconds, this was then centrifuged at 15,000 xg for 5 minutes at room 

temperature. Following this the upper aqueous phase was carefully removed into 

a fresh Eppendorf tube. Into the fresh tube 0.5 x sample volume of 4M NaAc was 

added along with 2x sample volume of 100% EtOH. The sample was then 

incubated either at -20oC overnight or -80oC for 30 minutes to precipitate the 

DNA. The sample was then centrifuged at 15,000 xg for 20 minutes at room 

temperature to pellet DNA and the supernatant was carefully removed. The pellet 

was washed in 150 μL 70% EtOH and centrifuged again at 15,000 xg for 5 

minutes at room temperature. The pellet was air dried for 10 minutes and 

resuspended in 50 μL TE buffer (Appendix II). The vector was then ready for 

ligation with the desired insert following the same method as in Section 2.16.1. 

2.16.6: Electroporation of construct into desired strains. 

The cloned construct containing the intact rulAB gene was inserted into a 

strain that was to be tested via electroporation following the same method 

outlined in Section 2.12.3. ILE movement was detected using PCR with primers 

listed in Table 2.5. 

Table 2.5: Primers used to confirm ILE movement into cloned rulAB 
versions in pBBR1MCS-2. 
 

Primer name Sequence 5’ - 3’ 

pWW0rulB F TGGCGTATGTCGATAACCAG 

FH1ILE xerC R GCCTGCCTTCATTAGTCAGC 

2015xerC R ACCTTGATTTATGTGCACCTGTCGG 

ILEFH1SulP F ACAAAGGCGATCACCACGGC 

ILE3023HopAP1 F TTAATGGCAGGCTGGCCGC 

pWW0rulB’’ R ATGCCGACACCAACCGGAAG 
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2.16.7: Producing chemically competent E. coli DH5α cells. 

An overnight culture of DH5α was grown and 100 μL of this was removed, 

placed into 10 mL of fresh LB media and grown at 37oC for 90 minutes. 1.5 mL 

was removed and centrifuged for 1 min at 15,000 xg. The pellet was washed 

twice in 750 μL 50mM CaCl2 (ice cold) and left on ice for 30 minutes after which 

the cells were centrifuged at 15,000 xg for 1 minute and resuspended in 100 μL 

of 50mM CaCl2 (ice cold). Cells were left on ice until required. 

 

2.16.8: Heat shock transformation of E. coli cells. 

Following the ligation of the insert into the broad host range vector 

(pBBR1MCS-2 etc) the total ligation mix (10 μL) was added to the chemically 

competent DH5α cells and left on ice for 30 minutes. Following this the cells were 

heat shocked by placing them at 42oC for 2 minutes and then rapidly cooling them 

in ice for 2 minutes. One mL LB media added and incubated at 37oC for 45 

minutes. The cells were centrifuged at 15,000 xg for 1 minute and resuspended 

in 200 μL LB and plated onto LB +X-gal + IPTG + antibiotic plates and incubated 

overnight at 37oC. 

2.17: ILE circular intermediate tests 

ILE strains were tested for ILE circularisation following stress to the cells. 

These stresses were conjugation with E. coli DH5α and E. coli DH5α (pRK2013) 

for 24 hours, cold stress for three hours, UV irradiation for 2 minutes and growth 

in minimal media broth overnight. A PCR product would only form if circularisation 

had occurred. The primer sets (Table 2.6) were developed to ascertain whether 

the ILEs circularise during their movement between rulB genes. These primers 

were used in standard PCR as set out in Section 2.4 and visualised as in Section 

2.5.  
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Table 2.6: Primers used to identify any ILEs that had formed a circular 
intermediate during movement between rulB genes. 
 

Primer name Sequence 5’ - 3’ 

FH1circ.inter F TGGCTTCCAGAAAGGCAAAG 

FH1circ.inter R AGCGATGGCTTCAGGGATC 

203circ.inter F TGTGATGGATTCAGCCTCCAG 

203circ.inter R ATACACTCTCCTCGCATTGGG 

3023circ.inter F ATCCAAAGTAGCCGGCGC 

3023circ.inter R ATTGCGAATTACCGTCCGAC 

 

2.18: Frequency of ILE movement into rulB. 

Two strains were tested to determine the frequency of ILE movement into 

two forms of rulB. The two strains were P. fluorescens FH1 (pWW0::kmr::ILEFH1) 

and P. fluorescens FH1 (pBBR1MCS-2::kmr::pWW0rulAB). Four colonies from 

both strains were grown in liquid LB media for 16 hours at 25oC. The cultures 

were diluted to an OD600 of 1.0 using fresh liquid LB media and 1 mL from each 

colony was mixed together for 1 hour. These mixtures were then serial diluted 

and spread onto LB + Km agar plates and incubated for 48 hours at 25oC. Colony 

PCR (Section 2.4) was performed on 94 colonies using the GRrulAB-xerC 

primers (Table 2.2). The PCR products were analysed using gel electrophoresis 

(Section 2.5) and converted into a percentage of ILE movement for both strains. 
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Chapter 3. Screening for integron-like elements and associated 

regions in Pseudomonas bacteria. 

3.1: Introduction 

As stated in the Introduction the first objective of this research project was 

to screen a number of Pseudomonas syringae strains and other Pseudomonas 

species to establish the frequency of integron-like elements (ILEs) and the ILE 

associated gene rulB within the Pseudomonas genus. The outcome of the screen 

via DNA hybridisation and polymerase chain reaction (PCR) are described here 

and the DNA sequence analysis in Chapter 4. 

When integrons were first discovered in the late 1980’s (Stoke and Hall, 

1989) it was thought that they were exclusive to clinical isolates of bacteria 

showing antibiotic resistance, however this was not the case. In 1999 an ILE was 

identified in the chromosome of the pea plant pathogen, Pseudomonas syringae 

pv. pisi (Ppi) race 2 strain 203 (Arnold et al., 1999). An insertion into the 

chromosome of Ppi 203 was identified to be an 8.5kb region of DNA that was not 

present in any other Ppi strains tested. The insert was flanked by direct repeat 

sequences. Within the 8.5kb insert was the resistance to ultra-violet light (rulAB) 

operon which is responsible for UV tolerance and DNA damage repair. It was 

hypothesised that the rulB gene in the operon is a hotspot for ILE insertion as it 

is disrupted by a 4.3kb insert of DNA which contains the effector gene, avrPpiA1, 

and genes with high similarity to integrase genes which may confer mobility 

(Arnold et al., 2000). The rulB gene is plasmid-borne and the ILE insert may 

explain the distribution of avrPpiA1 to Ppi races 5 and 7 (Arnold et al., 2000). 

A further ILE was observed in Pseudomonas fluorescens strain FH1 where 

a fragment of DNA excised from the chromosome and inserted into rulB on the 
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plasmid pWW0 during a heavy metal tolerance test (Rhodes et al., 2014). The 

ILE in Pseudomonas fluorescens strain FH1 harboured heavy metal resistance 

genes such as sulP (encodes heavy metal transport protein), regulatory genes 

including dksA and sdiA. A tetR gene was also present. 

The association of ILEs with rulAB is broad as similar disruptions have 

been observed in silico in orthologues of rulAB such as ruvAB, rumAB, umuDC, 

impAB, samAB and mucAB in a wide range of bacterial species (Rhodes et al., 

2014; Hochhut et al., 2001; Smith and Walker, 1998). Two examples are; the SXT 

conjugative element that inserts into rumB within Vibrio cholera, this conjugative 

element confers pathogenicity to Vibrio cholera (Hochhut et al., 2001) and the 

insertion of a non-conserved insert into the umuC section of umuDC in the 

bacterial species Pantoea ananatis (Maayer et al., 2015). The umuC insertion is 

an Integrative and Conjugative Element (ICE) and is 13.7kb. The ICE contains 

cargo genes associated with oxidative stress and acid stress responses 

(universal stress protein, UspA), chemotaxis genes and enzymes that play a role 

in energy production and conversion (Maayer et al., 2015). The ICE insertion 

event also fits the proposed model of ILE insertion as there are conserved xerC 

orthologues adjacent to the small 5’ fragment of umuC (rulB’). 

Due to the apparent association of rulAB with ILEs rulAB was included in 

the current screening process and proved valuable in identifying possible ILEs 

within the Pseudomonas species. The hybridisation screening focused on three 

distinct regions linked to ILEs (Figure 3.1; A1, B and C). The first region (A1) was 

the associated rulAB operon in its intact form with no ILE insertion; this indicated 

possible hotspots for ILE insertion. The xerC gene (B) and the ILE insertion region 

(C) were also screened during the hybridisation tests.  
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Figure 3.1: Identification of the four ILE related regions. The ILE insert is 

represented by the grey boxes. The dotted line represents the ILE insertion 

point and the yellow lines are the amplification targets. A1) Intact rulAB 

amplification; A2) Presence of rulAB but no information on its form; B) ILE xerC 

amplification; C) rulAB-xerC ILE insertion junction, presence of absence of ILE. 

PCR screening focused on a different rulAB section (A1) which would 

detect a rulAB’ gene in either its intact or disrupted form and indicate the presence 

of the rulAB operon. The next two regions, xerC and rulAB-xerC (B and C) were 

the same regions as used during the hybridisation tests. XerC is an integrase that 

is conserved in the 5’ end of the ILE. This screen gave an indication if an ILE was 

present, but not definitively as xerC integrases can be present in other areas of 

the genome due to them being broad lambda phage integrases (Blakely et al., 

1991). The insertion region between the disrupted rulB gene and the xerC gene 

at the start of the ILE would indicate that an ILE had inserted into rulB.  
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The initial screen was performed by DNA hybridisation using fluorescently 

tagged probes to target the three regions of interest (Figure 3.1; A1, B and C). 

Positive signals were more likely with hybridisation and would give a preliminary 

indication of ILE presence. The strains were also screened via PCR with primers 

derived from Ppi race 2 strain 203 (Table 2.2). The advantage of using PCR to 

screen for ILEs was the ability to sequence the amplifications and confirm the 

similarity between strains via sequence alignments. 

In total 164 plant pathogenic Pseudomonas strains were tested with 141 

belonging to Pseudomonas syringae pathovars, 82 of which were Ppi (Table 3.1). 

Following the screening 22 potential ILE containing strains were identified.  
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No. Strain Year isolated Location Isolated from
1 Ppi R1 299A 1970 New Zealand Pea (Pisum sativum ) cv. Rondo

2 Ppi R1 4461 Unknown

3 Ppi R1 862A 1975 USA Pea (Pisum sativum ) cv. Martus

4 Ppi R1 461 1971 New Zealand Pea (Pisum sativum ) cv. Blue Prussian

5 Ppi R1 379 1969 Italy Pea (Pisum sativum )

6 Ppi R1 456A 1971 New Zealand Pea (Pisum sativum )

7 Ppi R1 2491B Unknown

8 Ppi R1 277 Unknown

9 Ppi R2 390 Unknown

10 Ppi R2 1577 1986 France Pea (Pisum sativum ) cv. Hergolt

11 Ppi R2 1759 1978 UK Pea (Pisum sativum )

12 Ppi R2 2889B Unknown

13 Ppi R2 202 1944 USA Pea (Pisum sativum )

14 Ppi R2 288 Unknown

15 Ppi R2 223 1968 New Zealand Pea (Pisum sativum ) cv. Partridge

16 Ppi R2 285 1958 Canada Pea (Pisum sativum )

17 Ppi R2 1124B 1982 USA Pea (Pisum sativum ) cv. Scout

18 Ppi R2 278 1945 USA Pea (Pisum sativum )

19 Ppi R2 1939 1987 UK Pea (Pisum sativum )

20 Ppi R2 374A 1970 New Zealand Pea (Pisum sativum ) cv. Partridge

21 Ppi R2 1924 Unknown

22 Ppi R2 1842A Unknown

23 Ppi R2 1517C 1986 UK Pea (Pisum sativum ) cv. Belinda

24 Ppi R2 1576A Unknown

25 Ppi R2 203 1969 New Zealand Pea (Pisum sativum ) cv. Small sieve freezer

26 Ppi R3 222 Unknown

27 Ppi R3 283 1970 New Zealand Unknown

28 Ppi R3 870A 1975 USA Pea (Pisum sativum ) cv. Martus

29 Ppi R3 895A 1975 USA Pea (Pisum sativum ) cv. Martus

30 Ppi R3 1125 Unknown

31 Ppi R3 1214 Unknown

32 Ppi R3 1216 Unknown

33 Ppi R3 1380A 1985 USA Pea (Pisum sativum ) (seed)

34 Ppi R3 1441 1985 UK Pea (Pisum sativum ) cv. Belinda

35 Ppi R3 1554A 1987 UK Pea (Pisum sativum ) cv. Sprite

36 Ppi R3 1892 1987 USA Pea (Pisum sativum ) cv. Avola

37 Ppi R3 2183A Unknown

38 Ppi R3 2186A Unknown

39 Ppi R3 2191A 1988 Canada Pea (Pisum sativum ) cv. Rondo

40 Ppi R3 2817A 1991 Spain Unknown

41 Ppi R3 4411 Unknown

42 Ppi R3 4574 Unknown

43 Ppi R4 1452 1985 UK Pea (Pisum sativum ) cv. Belinda

44 Ppi R4 1456A 1985 UK Pea (Pisum sativum ) cv. Belinda

45 Ppi R4 1456B 1985 UK Pea (Pisum sativum ) cv. Belinda

46 Ppi R4 1456C 1985 UK Pea (Pisum sativum ) cv. Belinda

47 Ppi R4 1456D 1985 UK Pea (Pisum sativum ) cv. Belinda

48 Ppi R4 1456E 1985 UK Pea (Pisum sativum ) cv. Belinda

49 Ppi R4 1456F 1985 UK Pea (Pisum sativum ) cv. Belinda

50 Ppi R4 1525 Unknown

Table 3.1: List of strains, including isolation information, used throughout 
the screening tests. The table includes isolation location, host organism and 
year of isolation for the majority of the strains.  
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51 Ppi R4 1528 Unknown

52 Ppi R4 1758B Unknown

53 Ppi R4 1811 1987 UK Pea (Pisum sativum ) cv. Green pearl

54 Ppi R4 1812A 1987 USA Pea (Pisum sativum ) cv. Spain

55 Ppi R4 2171A Unknown

56 Ppi R4 5143 Unknown

57 Ppi R5 974B 1978 USA Pea (Pisum sativum ) cv. Puget

58 Ppi R5 2301C Unknown

59 Ppi R5 2532A Unknown

60 Ppi R6 1683 1956 Hungary Pea (Pisum sativum )

61 Ppi R6 1688 1973 France Pea (Pisum sativum )

62 Ppi R6 1704B 1986 France Pea (Pisum sativum ) cv. Stehgolt

63 Ppi R6 1759 Spontaneous mutant from isolate 870A (race 3) no. 28

64 Ppi R6 1785A 1987 UK Pea (Pisum sativum ) cv. Countess

65 Ppi R6 1796A 1987 France Pea (Pisum sativum ) cv. Stehgolt

66 Ppi R6 1797A 1987 Netherlands Pea (Pisum sativum ) cv. Solara

67 Ppi R6 1804B Spontaneous mutant from isolate 1577 (race 2) no. 10

68 Ppi R6 1807A Unknown

69 Ppi R6 1842B Unknown

70 Ppi R6 1842C Unknown

71 Ppi R6 1745A Unknown

72 Ppi R6 1746A Unknown

73 Ppi R6 1755A Unknown

74 Ppi R6 1842D Unknown

75 Ppi R6 1942 Unknown

76 Ppi R7 1691 1976 Australia Pea (Pisum sativum )

77 Ppi R7 2491A 1976 Australia Pea (Pisum sativum )

78 Ppi R7 4298 Unknown

79 Ppi R7 4300 1991 UK Pea (Pisum sativum ) cv. Allround

80 Ppi R7 4409 1991 UK Pea (Pisum sativum ) cv. Bikini

81 Ppi R7 4426 1991 UK Pea (Pisum sativum ) cv. Allround

82 Ppi R7 4466 Unknown

83 Psy B728A Wisconsin, USA Green Bean (Phaseolus vulgaris )

84 Psy 100 1962 Kenya Butter Bean (Phaseolus lunatus )

85 Psy 1142 Unknown

86 Psy 1150 Unknown

87 Psy 1212 Pea (Pisum sativum )

88 Psy 1282-8 Unknown

89 Psy 1338A Unknown

90 Psy 2242A 1988 Zaire Green Bean (Phaseolus vulgaris )

91 Psy 2673C 1990 Lesotho Green Bean (Phaseolus vulgaris )

92 Psy 2675C 1965 Kenya Okra (Hibiscus esculentus )

93 Psy 2676C 1990 Lesotho Green Bean (Phaseolus vulgaris )

94 Psy 2677C 1990 Lesotho Green Bean (Phaseolus vulgaris )

95 Psy 2682C 1990 Lesotho Green Bean (Phaseolus vulgaris )

96 Psy 2692C 1990 Zimbabwe Green Bean (Phaseolus vulgaris )

97 Psy 2703C 1990 Zimbabwe Green Bean (Phaseolus vulgaris )

98 Psy 2732A 1990 Colombia Green Bean (Phaseolus vulgaris )

99 Psy 3023 1950 UK Lilac (Syringa vulgaris )

100 Pph 103 Unknown

101 Pph R1 1281A 1984 UK Runner Bean (Phaseolus coccineus )

102 Pph R6 1299A 1984 Tanzania Green Bean (Phaseolus vulgaris )

103 Pph R3 1301A 1984 Tanzania Green Bean (Phaseolus vulgaris )

104 Pph R4 1302A 1984 Ethiopia Green Bean (Phaseolus vulgaris )

105 Pph R5 1375A 1985 Kenya Hyacinth bean (Lablab purpureus )

106 Pph R7 1449B 1985 Ethiopia Hyacinth bean (Lablab purpureus )

107 Pph R6 1448A 1985 Ethiopia Green Bean (Phaseolus vulgaris )

108 Pph R7 1449A 1985 Ethiopia Hyacinth bean (Lablab purpureus )

109 Pph R8 2656A 1990 Lesotho Green Bean (Phaseolus vulgaris )

110 Pph R9 2709A 1990 Malawi Green Bean (Phaseolus vulgaris )
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111 Pma M4 1965 UK  Radish (Raphanus sativus )

112 Pma 65 Unknown

113 Pma 1809A Unknown

114 Pma 1813 1967 UK Cauliflower (Brassica oleracea ) cv. Danish perfection

115 Pma 1820 1966 USA  Radish (Raphanus sativus )

116 Pma 1821A 1967 UK Cauliflower (Brassica oleracea ) cv. Danish perfection

117 Pma 1838A 1987 UK Cauliflower (Brassica oleracea ) cv. Danish perfection

118 Pma 1846A 1987 UK Cauliflower (Brassica oleracea ) cv. King

119 Pma 1848B 1987 UK Cauliflower (Brassica oleracea ) cv. White rock

120 Pma 1852A 1987 UK Brussel Sprout (Brassica oleracea ) cv. Oliver

121 Pma 1855A 1987 UK Cauliflower (Brassica oleracea ) cv. Danish perfection

122 Pma 5422 1995 UK Cauliflower (Brassica oleracea ) cv. Danish perfection

123 Pma 5429 UK Cauliflower (Brassica oleracea )

124 Pma 6201 1987 Portugal Kale (Brassica oleracea )

125 Pma 6319A/1 Unknown

126 Pma 6328A/1 Unknown

127 Pto DC3000 UK Tomato (Solanum lycopersicum )

128 Pto 19 1961 UK Tomato (Solanum lycopersicum )

129 Pto 119 Unknown

130 Pto 138 Unknown

131 Pto 1108 1960 UK Tomato (Solanum lycopersicum )

132 Pto 2944 1961 UK Tomato (Solanum lycopersicum )

133 Pto 2945 France Tomato (Solanum lycopersicum )

134 Pto 6034 Unknown

135 Pat 152E 1968 UK Snapdragon (Antirrhinum majus )

136 Pat 4303 1965 UK Snapdragon (Antirrhinum majus )

137 Pla 789 Unknown

138 Pla 3988 1935 USA Cucumber (Cucumis sativus )

139 Pgy 1139 1962 Zimbabwe Soybean (Glycine javanica )

140 Pgy 2411 1971 New Zealand Soybean (Glycine max )

141 Pgy 3318 1984 Italy Soybean (Glycine max )

142 P. asplenii 959 1961 Bird's nest fern (Asplenium nidus )

143 P. asplenii 1947 1966 Bird's nest fern (Asplenium nidus )

144 P. caricapapayae 1873 1966 Brazil Papaya (Carica papaya )

145 P. caricapapayae 3080 1979 Brazil Papaya (Carica papaya )

146 P. caricapapayae 3439 1985 Brazil Papaya (Carica papaya )

147 P. savastanoi 639 1959 Yugoslavia Olive (Olea europaea )

148 P. savastanoi 2716 1975 UK Ash (Fraxinus excelsior )

149 P. savastanoi 3334 1984 France Oleander (Nerium oleander )

150 P. corrugata 2445 1972 UK Tomato (Solanum lycopersicum )

151 P. corrugata 3056 1978 USA Alfafa (Medicago sativa )

152 P. corrugata 3316 1984 S. Africa Tomato (Solanum lycopersicum )

153 P. cichorii 907 1961 USA Florist's daisy (Chrysanthemum morifolium )

154 P. cichorii 943 1961 Germany Endive (Cichorium endivia )

155 P. cichorii 3109A 1979 Brazil Coffee (Coffea arabica )

156 P. cichorii 3109B 1979 Brazil Coffee (Coffea arabica )

157 P. cichorii 3283 1983 UK Florist's daisy (Chrysanthemum morifolium )

158 P. marginalis 247 1924 USA Lettuce (Lactuca sativa )

159 P. marginalis 949 1961 USA Parsnip (Pastinaca sativa )

160 P. marginalis 2380 1971 UK Lettuce (Lactuca sativa )

161 P. marginalis 2644 1974 USA Alfafa (Medicago sativa )

162 P. marginalis 2645 1974 USA Alfafa (Medicago sativa )

163 P. marginalis 2646 1974 USA Alfafa (Medicago sativa )

164 P. marginalis 3210 1982 Canada Broad bean (Vicia faba )

Ppi  = pv. pisi            Psy  = pv. syringae       Pph  = pv. phaseolicola    Pma  = pv. maculicola   

Pto  = pv. tomato    Pat  = pv. antirrhini     Pla  = pv. lachrymans      Pgy  = pv. glycinea
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3.2: Results 

3.2.1: Confirming that P.putida PaW340 has no rulAB gene. 

Firstly, a suitable negative control against rulAB was established. P. 

putida PaW340 was used as the negative control as it is a wild type strain 

that contains no rulAB operon. This was demonstrated via PCR (Figure 

3.2) to confirm the absence of rulAB. The PCR was performed using the 

GR primers in Table 2.2.  

 

 

 

 

 

    

 

 

.  

 

 

3.2.2: Strain confirmation for DNA hybridisation probe construction. 

The strains used to produce the chemiluminescent probes had their ILE 

and rulAB properties checked via PCR to ensure the strains contained the regions 

needed for the screening (Figure 3.3). The strains were also checked via 

antibiotic resistance screening (Table 3.2) with appropriate antibiotics and media. 

The control strains were supplied by Dr Glenn Rhodes (Centre for Ecology and 

Hydrology, Lancaster). 

                              1                           2                           3 

 

 

Figure 3.2: PCR confirmation that P. putida PaW340 contains no rulAB gene. 
The PCR results confirm that P. putida PaW340 (-) contains no rulAB gene as no 
bands were visible on the gel, the only band seen was the positive control which 
was the correct size of 423bp. Hyperladder 1kb (Bioline, UK) was used a size 
marker.  

No. PCR Product 

1 PaW 340 with the GRrulAB primers. (Cell culture)  

2 PaW 340 with the GRrulAB primers. (DNA)  

3 PaW 340 (pWW0::kmr) with the GRrulAB primers. Positive control. 
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Table 3.2: Differentiation of strains used to make hybridisation probes on 
selective media.  

Bacterial Strain Probe region Antibiotic 
Resistance 

Media conditions 

P. putida PaW340 
(pWW0::kmr) 

-Intact rulAB Stm, Km requires tryptophan 
to grow  

P. fluorescens FH1 
(pWW0::kmr::ILEFH1) 

-rulB-xerC 
ILE  junction 
-xerC within ILE 

Km N/A 

  

 

 

  

 

 

 

 

 

 

 

The results from the confirmation PCR (Figure 3.3) confirmed that the 

strains show the correct rulAB (423bp), xerC (501bp) and rulAB-xerC (590bp) 

profiles for the strains as expected. P. putida PaW340 (pWW0::kmr) shows 

amplification of the rulAB region due to the strain containing an intact rulAB on 

pWW0 (Greated et al., 2002). No band was seen for the rulAB-xerC or the xerC 

primers as they are not present due to the lack of an ILE. The rulAB-xerC junction 

and xerC integrase primers show that P. fluorescens FH1 (pWW0::kmr::ILEFH1) 

                   1              2              3              4              5              6              

Figure 3.3: PCR amplification of rulAB, rulAB-xerC and xerC regions from     P. 

putida PaW340 (pWW0::kmr) and P. fluorescens FH1 (pWW0::kmr::ILEFH1). 

The PCR amplifications confirm that the strains used for hybridisation probes and 

as controls contain the correct ILE associated genes. Primers used were the GR 

primers from Table 2.2. Hyperladder 1kb (Bioline, UK) was used a size marker 

1- P. putida PaW340 (pWW0::kmr) [rulAB];  

2- P. fluorescens FH1 (pWW0::kmr::ILEFH1) [xerC];  

3- P. fluorescens FH1 (pWW0::kmr::ILEFH1) [rulAB-xerC]; 

4- P. putida PaW340 (pWW0::kmr) [xerC];  

5- P. putida PaW340 (pWW0::kmr) [rulAB-xerC];  

6- P. fluorescens FH1 (pWW0::kmr::ILEFH1) [rulAB].  
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contains an ILE as expected. No band was present for the intact rulAB as it was 

disrupted by the ILE.  

3.2.3: DNA hybridisation screening for ILEs and associated regions. 

The first objective was to identify how widespread ILEs are amongst plant 

pathogenic Pseudomonas strains. Initial screening were carried out using a 

colony dot blot hybridisation method that used a chemiluminescent probe for 

detection. 

3.2.4: Producing DIG labelled probes. 

Firstly the relevant DNA regions were amplified to create the hybridisation 

probes. The rulAB gene, the xerC gene and rulAB-xerC junction region (Figure 

3.3; lanes1, 2 and 3 respectively) were amplified via standard PCR. The amplified 

products were cleaned up and their purity and quantity measured via a Nanodrop 

1000 to ensure effective labelling as described in Section 2.8. 

 
3.2.5: Control hybridisations to ensure rulAB, xerC and rulAB-xerC 

probes hybridise. 

The rulAB, xerC and rulAB-xerC probes were first tested on control strains 

of known ILE content and the strains used to produce the hybridisation probes, 

P. putida PaW340 (pWW0::kmr) and P. fluorescens FH1 pWW0::kmr::ILEFH1) 

respectively (Figure 3.3). The control tests comprised of one blot per probe 

(Figure 3.4). It was essential to carry out these control hybridisations to check 

that the labelling reaction had been successful and to ensure that the 

hybridisation method was a viable approach to screening for ILEs amongst the 

Pseudomonas strains. 
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The rulAB control dot blot:  
1- P. putida PaW340 (no rulAB, no signal); 
2- P. putida PaW340 (pWW0::kmr) (positive control, rulAB intact on plasmid);  
3- P. putida PaW340 (pWW0::kmr∆rulAB) (rulAB has been deleted, no signal);  
4- P. fluorescens FH1 (pWW0::kmr::ILEFH1) (disrupted rulAB present, signal 
present);   
5- P. fluorescens FH4 (pWW0::kmr::ILEFH4) (disrupted rulAB present, signal 
present);  
6- P. fluorescens FH1 (disrupted different form of rulAB on chromosome, no 
signal);  
7- P. fluorescens FH4 (disrupted different form of rulAB on chromosome, no 
signal).   
 

 

 

 

 
The xerC control dot blot: 
8- P. putida PaW340 (no ILE xerC, no signal);  
9- P. putida PaW340 (pWW0::kmr) (no ILE xerC, no signal);  
10- P. putida PaW340 (pWW0::kmr∆rulAB) (no ILE xerC, no signal);  
11- P. fluorescens FH1 (pWW0::kmr::ILEFH1) (positive control, xerC present in  
      plasmid ILE);  
12- P. fluorescens FH4 (pWW0::kmr::ILEFH4) (positive control, xerC present in  
      plasmid ILE);  
13- P. fluorescens FH1 (positive control, xerC present in chromosomal ILE);  
14- P. fluorescens FH4 (positive control, xerC present in chromosomal ILE). 
 
 

 

 

 

The rulAB-xerC ILE insert junction control dot blot: 
15- P. putida PaW340 (no ILE, no signal);  
16- P. putida PaW340 (pWW0::kmr) (no ILE, no signal);  
17- P. putida PaW340 (pWW0::kmr∆rulAB) (no ILE, no signal);  
18- P. fluorescens FH1 (pWW0::kmr::ILEFH1) (positive control, ILE present);  
19- P. fluorescens FH4 (pWW0::kmr::ILEFH4) (positive control, ILE present);  
20- P. fluorescens FH1 (positive control, ILE present);  
21- P. fluorescens FH4 (positive control, ILE present). 
 Figure 3.4: Hybridisation of the three ILE probes on control P. putida and                   

P. fluorescens strains. N- Negative control. 
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In the control hybridisations (Figure 3.4) the negative controls (position N) 

showed no hybridisation signals. The rulAB probe successfully hybridised to the 

strain it was constructed from (position 2). P. fluorescens FH1 

(pWW0::kmr::ILEFH1) (position 4) and P. fluorescens FH4 (pWW0::kmr::ILEFH4) 

(position 5) showed some signal from the rulAB probe. The xerC probe 

successfully hybridised to strains that were known to contain xerC regions 

(positions 12, 13 and 14) and the strain that the probe was constructed from 

(position 11). The P. putida strains lacking a xerC site showed no hybridisation 

as expected. The final probe, rulAB-xerC showed hybridisation signals from the 

strains with an ILE present either in the plasmid (positions 18 and 19) or on the 

chromosome (positions 20 and 21). No hybridisation occurred in strains that did 

not contain an ILE (positions 15, 16 and 17). The control hybridisations confirmed 

the probes had been labelled correctly and that the probes were hybridising as 

expected.  

3.2.6: Hybridisation of rulAB, xerC and rulAB-xerC probes to 

Pseudomonas syringae pv. pisi strains. 

A total of 82 Ppi strains were screened with a selection of representatives 

from all seven races. All of the Ppi races provided hybridisation signals with 

varying intensity across the three probes. Races three and four provided some 

variation in signal strength (Figure 3.5). The example dot blots (Figure 3.5) 

showed that multiple Ppi strains from both races three and four share some 

degree of identity with either the rulAB region on pWW0::kmr, the P. fluorescens 

FH1 ILE xerC region or the P. fluorescens FH1 (pWW0::kmr::ILEFH1) rulAB-xerC 

junction region. Some signals appear darker due to the probes sharing more 

identity to the strain being screened which results in more of the probe 

hybridising.  
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 1 2 3 4 5 

A Ppi race 3 
strain 222 

Ppi race 3 
strain 1441 

Ppi race 3 
strain 4574 

Ppi race 4 
strain 1525 

Positive 
control 

B Ppi race 3 
strain 283 

Ppi race 3 
strain 
1554A 

Ppi race 4 
strain 1452 

Ppi race 4 
strain 1528 

Negative 
control 

C Ppi race 3 
strain 870A 

Ppi race 3 
strain 1892 

Ppi race 4 
strain 
1456A 

Ppi race 4 
strain 
1758B 

 

D Ppi race 3 
strain 895A 

Ppi race 3 
strain 
2183A 

Ppi race 4 
strain 
1456B 

Ppi race 4 
strain 
1811A 

 

E Ppi race 3 
strain 1125 

Ppi race 3 
strain 
2186A 

Ppi race 4 
strain 
1456C 

Ppi race 4 
strain 
1812A 

 

F Ppi race 3 
strain 1214 

Ppi race 3 
strain 
2191A 

Ppi race 4 
strain 
1456D 

Ppi race 4 
strain 
2171A 

 

G Ppi race 3 
strain 1216 

Ppi race 3 
strain 
2817A 

Ppi race 4 
strain 
1456E 

Ppi race 4 
strain 5143 

 

H Ppi race 3 
strain 
1380A 

Ppi race 3 
strain 4411 

Ppi race 4 
strain 1456F 

  

1      2       3      4     5      1      2      3     4      5     1      2      3      4      5 

Figure 3.5: Dot blot hybridisations of the rulAB, xerC and rulAB-xerC probes to 

Ppi strains belonging to races three and four. The positive controls, P. putida 

PaW340 (pWW0::kmr) [rulAB] and P. fluorescens FH1 (pWW0::kmr::ILEFH1) [xerC and 

rulAB-xerC] show strong hybridisation for their respective probes. The negative 

controls remained clear. The rulAB-xerC blot has been comprised from two different 

images. 
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Following the hybridisations the signal intensity for all of the pisi strains 

was visually scored (Table 3.3). The scoring was zero for no hybridisation to four 

which indicated strong hybridisation in line with the positive control. 

 

  

 

Region intact rulAB  region xerC  region disrupted rulB  region

Probe rulAB xerC rulAB-xerC
No. Strain Rep. 1 Rep. 2 Overall Rep. 1 Rep. 2 Overall Rep. 1 Rep. 2 Overall

1 Ppi R1 299A 1 2 1.5 1 2 1.5 0 1 0.5

2 Ppi R1 4461 0 1 0.5 1 1 1 1 2 1.5

3 Ppi R1 862A 0 0 0 1 1 1 1 1 1

4 Ppi R1 461 1 1 1 1 1 1 1 3 2

5 Ppi R1 379 1 1 1 2 0 1 0 0 0

6 Ppi R1 456A 0 1 0.5 1 1 1 0 4 2

7 Ppi R1 2491B 0 0 0 1 1 1 0 0 0

8 Ppi R1 277 0 1 0.5 2 2 2 1 0 0.5

9 Ppi R2 390 3 3 3 0 0 0 2 0 1

10 Ppi R2 1577 2 2 2 0 0 0 0 1 0.5

11 Ppi R2 1759 2 2 2 0 0 0 0 0 0

12 Ppi R2 2889B 1 1 1 1 1 1 0 1 0.5

13 Ppi R2 202 3 2 2.5 3 1 2 1 0 0.5

14 Ppi R2 288 1 1 1 1 1 1 0 1 0.5

15 Ppi R2 223 1 2 1.5 1 1 1 0 3 1.5

16 Ppi R2 285 0 0 0 1 1 1 1 2 1.5

17 Ppi R2 1142B 3 2 2.5 0 0 0 2 0 1

18 Ppi R2 278 1 1 1 0 0 0 0 0 0

19 Ppi R2 1939 0 2 1 2 2 2 0 2 1

20 Ppi R2 374A 2 2 2 0 1 0.5 0 2 1

21 Ppi R2 1924 2 2 2 1 0 0.5 0 0 0

22 Ppi R2 1842A 2 0 1 0 0 0 0 4 2

23 Ppi R2 1517C 1 0 0.5 0 0 0 0 0 0

24 Ppi R2 1576A 0 1 0.5 2 2 2 1 0 0.5

25 Ppi R2 203 3 2 2.5 3 3 3 1 2 1.5

26 Ppi R3 222 2 2 2 1 1 1 2 1 1.5

27 Ppi R3 283 2 2 2 4 4 4 0 4 2

28 Ppi R3 870A 0 0 0 4 3 3.5 1 3 2

29 Ppi R3 895A 2 0 1 1 1 1 0 0 0

30 Ppi R3 1125 0 0 0 1 0 0.5 0 1 0.5

31 Ppi R3 1214 1 1 1 2 2 2 0 1 0.5

32 Ppi R3 1216 1 1 1 3 1 2 1 1 1

33 Ppi R3 1380A 2 2 2 1 1 1 1 1 1

34 Ppi R3 1441 2 2 2 4 4 4 0 1 0.5

35 Ppi R3 1554A 1 1 1 4 4 4 0 3 1.5

36 Ppi R3 1892 0 0 0 3 1 2 1 2 1.5

37 Ppi R3 2183A 0 0 0 1 1 1 1 2 1.5

38 Ppi R3 2186A 1 3 2 2 2 2 0 0 0

39 Ppi R3 2191A 1 1 1 2 2 2 0 0 0

40 Ppi R3 2817A 0 0 0 1 1 1 0 0 0

41 Ppi R3 4411 0 1 0.5 2 2 2 0 0 0

42 Ppi R3 4574 1 1 1 1 1 1 2 0 1

43 Ppi R4 1452 0 0 0 1 1 1 0 3 1.5

44 Ppi R4 1456A 1 1 1 1 0 0.5 0 1 0.5

45 Ppi R4 1456B 0 0 0 3 1 2 0 2 1

Table 3.3: Hybridisation result with rulAB, xerC and rulAB-xerC probes from  
P. syringae pv. pisi. strains. Visual scoring 0 to 4 with 0 representing no signal and 4 
representing strong hybridisation equal to positive control. Red numbers are considered 
as showing strong hybridisation. 
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46 Ppi R4 1456C 0 0 0 3 3 3 0 1 0.5

47 Ppi R4 1456D 0 0 0 3 3 3 0 2 1

48 Ppi R4 1456E 0 0 0 4 2 3 0 2 1

49 Ppi R4 1456F 4 2 3 2 2 2 1 2 1.5

50 Ppi R4 1525 4 2 3 4 2 3 1 2 1.5

51 Ppi R4 1528 1 1 1 0 0 0 0 2 1

52 Ppi R4 1758B 1 0 0.5 3 1 2 1 0 0.5

53 Ppi R4 1811 4 2 3 3 2 2.5 0 0 0

54 Ppi R4 1812A 0 0 0 2 2 2 0 1 0.5

55 Ppi R4 2171A 0 0 0 1 1 1 0 1 0.5

56 Ppi R4 5143 1 1 1 3 3 3 0 0 0

57 Ppi R5 974B 4 2 3 2 2 2 4 2 3

58 Ppi R5 2301C 4 2 3 1 1 1 3 3 3

59 Ppi R5 2532A 3 1 2 2 1 1.5 0 2 1

60 Ppi R6 1683 2 1 1.5 3 2 2.5 4 0 2

61 Ppi R6 1688 3 1 2 1 1 1 1 0 0.5

62 Ppi R6 1704B 1 1 1 2 0 1 2 1 1.5

63 Ppi R6 1759 2 2 2 0 0 0 0 1 0.5

64 Ppi R6 1785A 3 1 2 1 0 0.5 0 1 0.5

65 Ppi R6 1796A 4 4 4 1 1 1 2 2 2

66 Ppi R6 1797A 1 0 0.5 0 0 0 1 1 1

67 Ppi R6 1804B 2 1 1.5 1 1 1 1 4 2.5

68 Ppi R6 1807A 1 1 1 1 1 1 0 2 1

69 Ppi R6 1842B 4 0 2 3 3 3 0 0 0

70 Ppi R6 1842C 1 1 1 0 0 0 0 1 0.5

71 Ppi R6 1745A 2 1 1.5 0 0 0 0 1 0.5

72 Ppi R6 1746A 3 3 3 0 0 0 0 3 1.5

73 Ppi R6 1755A 1 1 1 2 1 1.5 3 3 3

74 Ppi R6 1842D 0 0 0 1 1 1 2 3 2.5

75 Ppi R6 1942 0 0 0 1 1 1 1 2 1.5

76 Ppi R7 1691 3 1 2 3 2 2.5 1 3 2

77 Ppi R7 2491A 3 1 2 2 2 2 0 1 0.5

78 Ppi R7 4298 2 1 1.5 2 2 2 0 0 0

79 Ppi R7 4300 3 1 2 1 0 0.5 0 2 1

80 Ppi R7 4409 2 1 1.5 1 0 0.5 0 3 1.5

81 Ppi R7 4426 4 4 4 1 0 0.5 1 3 2

82 Ppi R7 4466 3 1 2 0 1 0.5 2 2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The Ppi results showed that there is a wide variety of rulAB, xerC and 

rulAB-xerC profiles among the strains. The minority of the screened strains 

showed no hybridisation signals for the probes, meaning the target gene was not 

identified. This occurred for 20.7% (17) of the strains screened with the rulAB 

probe; 15.9% (13) of the strains showed no hybridisation with the xerC probe and 

18.3% (15) had no hybridisation with the rulAB-xerC probe. However, the majority 

of strains did display hybridisation. Strong hybridisation was determined as any 

strain that had a hybridisation score of three or four on replicate blots (indicated 

by red numbering in Table 3.4). Of the 82 Ppi strains screened 14.6% (12) 

presented strong rulAB hybridisation, 17.1% (14) of strains presented strong xerC 

hybridisation and 4.9% (4) presented strong rulAB-xerC hybridisation. The 
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remaining strains did show hybridisation, but with weaker signal levels. The most 

interesting strains were ones that had strong signals for the rulAB-xerC probe as 

this indicated the potential presence of an ILE. 

3.2.7: Hybridisation of rulAB and xerC probes to P. syringae pv. 

syringae and P. syringae pv. phaseolicola strains.  

P. syringae pv. syringae (Psy) and P. syringae pv. phaseolicola (Pph) 

strains were screened for the same three regions as above. Hybridisation of the 

probes was observed in 17 Psy strains and 11 Pph strains (Figure 3.6). The 

signals were scored in the same manner as the Ppi strains (Table 3.5). 
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 1 2 3 4 

A Psy strain 
B728a 

Psy strain 
2673C 

Psy strain 
3023 

Pph race 6 
strain 1448A 

B Psy strain  
100 

Psy strain 
2675C 

Pph strain 
103 

Pph race 7 
strain 1449A 

C Psy strain 
1142 

Psy strain 
2676C 

Pph race 1 
strain 1281A 

Pph race 8 
strain 2656A 

D Psy strain 
1150 

Psy strain 
2677C 

Pph race 6 
strain 1299A 

Pph race 9 
strain 2709A 

E Psy strain 
1212 

Psy strain 
2682C 

Pph race 3 
strain 1301A 

Positive  
control 

F Psy strain 
1282-8 

Psy strain 
2692C 

Pph race 4 
strain 1302A 

Negative 
control 

G Psy strain 
1338A 

Psy strain 
2703C 

Pph race 5 
strain 1375A 

 

H Psy strain 
2242A 

Psy strain 
2732A 

Pph race 7 
strain 1449B 
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Figure 3.6: Hybridisations of the rulAB, xerC and rulAB-xerC probes to Psy and 

Pph strains. The positive controls, P. putida PaW340 (pWW0::kmr) [rulAB] and P. 

fluorescens FH1 (pWW0::kmr::ILEFH1) [xerC and rulAB-xerC] show strong hybridisation 

for their respective probes. The negative no DNA spots remained clear. The rulAB-

xerC blot has been comprised from two different images. 
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Region intact rulAB  region xerC  region disrupted rulB  region

Probe rulAB xerC rulAB-xerC
83 Psy B728A 1 1 1 2 2 2 0 1 0.5

84 Psy 100 1 1 1 1 1 1 1 1 1

85 Psy 1142 3 1 2 1 1 1 2 1 1.5

86 Psy 1150 3 3 3 2 2 2 1 0 0.5

87 Psy 1212 2 1 1.5 1 1 1 2 0 1

88 Psy 1282-8 1 1 1 3 3 3 0 1 0.5

89 Psy 1338A 1 0 0.5 0 0 0 0 0 0

90 Psy 2242A 4 4 4 0 0 0 2 2 2

91 Psy 2673C 0 0 0 0 0 0 1 0 0.5

92 Psy 2675C 1 1 1 2 2 2 1 1 1

93 Psy 2676C 3 1 2 1 1 1 3 1 2

94 Psy 2677C 1 1 1 4 4 4 3 2 2.5

95 Psy 2682C 1 1 1 0 0 0 2 1 1.5

96 Psy 2692C 1 1 1 2 3 2.5 2 1 1.5

97 Psy 2703C 0 0 0 0 0 0 0 0 0

98 Psy 2732A 1 1 1 2 2 2 0 0 0

99 Psy 3023 2 2 2 1 1 1 1 1 1

100 Pph 103 1 0 0.5 3 2 2.5 0 0 0

101 Pph R1 1281A 1 0 0.5 4 4 4 3 2 2.5

102 Pph R6 1299A 4 4 4 4 4 4 3 2 2.5

103 Pph R3 1301A 2 1 1.5 4 4 4 2 2 2

104 Pph R4 1302A 3 3 3 4 4 4 2 2 2

105 Pph R5 1375A 3 1 2 4 4 4 3 4 3.5

106 Pph R7 1449B 2 2 2 1 2 1.5 2 0 1

107 Pph R6 1448A 1 1 1 4 4 4 3 2 2.5

108 Pph R7 1449A 2 2 2 4 4 4 3 2 2.5

109 Pph R8 2656A 1 1 1 4 4 4 3 1 2

110 Pph R9 2709A 1 2 1.5 4 4 4 4 2 3

 

 

 

 

 

 

 

 

 

 

 

The hybridisation results from both Psy and Pph (Table 3.4) show clear 

differences between the strains from both pathovars in regard to their ILE and 

rulAB profiles. In the Psy strains 88% (15) showed hybridisation of the rulAB 

probe with 12% (2) showing strong hybridisation. The xerC probe hybridised to 

71% (12) of the Psy strains with 18% (3) showing strong hybridisation of the xerC 

probe. The final probe, rulAB-xerC, hybridised to 82% (14) of the Psy strains but 

only 6% (1) showed strong hybridisation.  

Of the Pph strains, 100% (11) of the strains showed hybridisation of the 

rulAB probe with 18% (2) showing strong hybridisation. The same was also true 

for the xerC probe as 100% (11) of strains showed hybridisation to the probe, but 

unlike the rulAB probe 91% (10) showed strong hybridisation of the xerC probe. 

Table 3.4: Hybridisation results with rulAB, xerC and rulAB-xerC probes from  
P. syringae pv. syringae and phaseolicola strains. Visual scoring 0 to 4 with 0 
representing no signal and 4 representing strong hybridisation equal to positive control. 
Red numbers are considered as showing strong hybridisation. 
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The rulAB-xerC probe also hybridised to the Pph strains with 91% (10) showing 

hybridisation and 55% (6) showing strong hybridisation.  

3.2.8: Hybridisations of rulAB, xerC and rulAB-xerC probes to P. 

syringae pathovars maculicola, tomato, antirrhini, lachrymans and 

glycinea.  

The results from the remaining Pseudomonas syringae pathovars (Table 

3.5) show varying degrees of hybridisation between the different pathovars. P. 

syringae pv. maculicola (Pma) showed 63% (10) hybridisation of the rulAB probe, 

19% (3) of which was strong hybridisation. The xerC probe successfully 

hybridised to 88% (14) of the Pma strains with 31% (5) being stronger 

hybridisations. Finally 81% (13) of the Pma strains showed hybridisation of the 

rulAB-xerC probe with 19% (3) being strong hybridisations. 

The four remaining pathovars, tomato (Pto), antirrhini (Pat), lachrymans 

(Pla) and glycinea (Pgy) all showed some hybridisation to the probes with 

between 33% and 100% hybridisation of the rulAB probe, between 75% and 

100% hybridisation of the xerC probe with the exception of the Pat strains which 

showed 0% hybridisation of the xerC probe. The majority of the remaining strains 

also showed hybridisation of the rulAB-xerC probe with values ranging between 

66% and 100%, again with the exception of the Pat strains which showed 0% 

hybridisation of the rulAB-xerC probe. Although there was some degree of 

hybridisation of the three probes across the four remaining pathovars, none of 

the results provided strong hybridisation.  
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Region intact rulAB  region xerC  region disrupted rulB  region

Probe rulAB xerC rulAB-xerC
111 Pma M4 1 1 1 1 1 1 0 0 0

112 Pma 65 1 1 1 1 2 1.5 0 1 0.5

113 Pma 1809A 4 4 4 3 3 3 1 0 0.5

114 Pma 1813 1 1 1 3 3 3 1 0 0.5

115 Pma 1820 0 0 0 1 1 1 1 1 1

116 Pma 1821A 0 0 0 2 1 1.5 0 0 0

117 Pma 1838A 1 0 0.5 1 1 1 1 0 0.5

118 Pma 1846A 1 0 0.5 0 1 0.5 2 1 1.5

119 Pma 1848B 2 1 1.5 4 4 4 4 4 4

120 Pma 1852A 3 2 2.5 4 4 4 4 4 4

121 Pma 1855A 0 0 0 0 2 1 0 0 0

122 Pma 5422 4 4 4 1 2 1.5 0 1 0.5

123 Pma 5429 0 0 0 1 1 1 0 1 0.5

124 Pma 6201 2 1 1.5 4 3 3.5 3 4 3.5

125 Pma 6319A/1 0 0 0 0 0 0 1 2 1.5

126 Pma 6328A/1 0 0 0 0 0 0 0 4 2

127 Pto DC3000 1 1 1 2 1 1.5 0 4 2

128 Pto 19 0 1 0.5 0 1 0.5 0 3 1.5

129 Pto 119 1 1 1 2 1 1.5 1 2 1.5

130 Pto 138 1 0 0.5 2 1 1.5 1 1 1

131 Pto 1108 1 0 0.5 0 0 0 1 0 0.5

132 Pto 2944 0 1 0.5 1 0 0.5 0 1 0.5

133 Pto 2945 1 0 0.5 0 0 0 0 0 0

134 Pto 6034 1 0 0.5 2 1 1.5 0 1 0.5

135 Pat 152E 0 1 0.5 0 0 0 0 0 0

136 Pat 4303 1 0 0.5 0 0 0 0 0 0

137 Pla 789 1 1 1 0 1 0.5 1 1 1

138 Pla 3988 2 1 1.5 1 2 1.5 0 2 1

139 Pgy 1139 1 0 0.5 1 1 1 1 2 1.5

140 Pgy 2411 0 0 0 1 1 1 0 1 0.5

141 Pgy 3318 0 0 0 1 1 1 0 0 0

Table 3.5: Hybridisation results with rulAB, xerC and rulAB-xerC probes 
from various P.syringae pathovars. Visual scoring 0 to 4 with 0 representing 
no signal and 4 representing strong hybridisation equal to positive control. Red 
numbers are considered as showing strong hybridisation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.9: Hybridisation of rulAB, xerC and rulAB-xerC probes to different 

Pseudomonas species. 

The final set of hybridisation screening consisted of screening strains 

belonging to six different plant pathogenic Pseudomonas species (Table 3.6). 

The six species were Pseudomonas asperii, P. caricapapayae, P. savastanoi, P. 

corrugata, P. cichorii and P. marginalis. These species of Pseudomonas showed 

weak hybridisation, no strong hybridisation was observed with any of the probes. 

The total number of hybridisations of the rulAB probe across the six different 
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Region intact rulAB  region xerC  region disrupted rulB  region

Probe rulAB xerC rulAB-xerC
142 P. asplenii 959 1 1 1 1 0 0.5 1 0 0.5

143 P. asplenii 1947 0 0 0 0 0 0 0 0 0

144 P. caricapapayae 1873 0 0 0 1 1 1 0 0 0

145 P. caricapapayae 3080 1 0 0.5 1 1 1 0 2 1

146 P. caricapapayae 3439 0 0 0 1 2 1.5 0 2 1

147 P. savastanoi 639 0 0 0 0 0 0 0 0 0

148 P. savastanoi 2716 1 0 0.5 1 1 1 1 1 1

149 P. savastanoi 3334 0 1 0.5 1 1 1 0 0 0

150 P. corrugata 2445 1 1 1 1 1 1 0 0 0

151 P. corrugata 3056 2 1 1.5 1 0 0.5 0 0 0

152 P. corrugata 3316 1 1 1 0 0 0 0 0 0

153 P. cichorii 907 1 1 1 0 0 0 0 0 0

154 P. cichorii 943 1 1 1 1 1 1 0 1 0.5

155 P. cichorii 3109A 1 1 1 1 1 1 1 2 1.5

156 P. cichorii 3109B 0 1 0.5 0 0 0 0 0 0

157 P. cichorii 3283 0 0 0 0 1 0.5 0 0 0

158 P. marginalis 247 1 1 1 0 1 0.5 0 0 0

159 P. marginalis 949 0 0 0 1 0 0.5 0 0 0

160 P. marginalis 2380 0 1 0.5 0 0 0 0 0 0

161 P. marginalis 2644 0 0 0 0 0 0 0 0 0

162 P. marginalis 2645 1 1 1 1 0 0.5 0 1 0.5

163 P. marginalis 2646 0 0 0 0 0 0 0 1 0.5

164 P. marginalis 3210 1 1 1 0 0 0 1 1 1

species was 65% (15), the xerC probe hybridised to 61% (14) of the strains and 

39% (9) showed hybridisation of the rulAB-xerC probe.  

Table 3.6: Hybridisation results with rulAB, xerC and rulAB-xerC probes 
from various Pseudomonas strains. Visual scoring 0 to 4 with 0 representing 
no signal and 4 representing strong hybridisation equal to positive control.  
 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

3.2.10: PCR screening for ILEs and associated regions in 

Pseudomonas syringae pathovars and Pseudomonas species. 

The same Pseudomonas strains that were screened via hybridisation were 

also screened for potential ILEs and rulAB, via PCR. PCR was used alongside 

DNA hybridisation due to PCR being more specific and having the ability to 

sequence the results downstream. The regions screened for via PCR were similar 

to the regions screened in the hybridisation screens, rulAB, xerC and rulAB-xerC, 

the only difference from the hybridisation being that the rulAB’ primer only 
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indicated partial rulAB presence. The primers used were derived from Ppi race 2 

strain 203. Ppi race 2 strain 203 is known to harbour an ILE inserted into rulAB 

(Arnold et al., 2000). The PCR screening was carried out for two reasons, firstly 

to double check the hybridisation results and secondly to allow downstream 

sequence analysis. 

3.2.11: PCR screening of rulAB genes in Pseudomonas syringae 

pathovars. 

PCR screening of the rulAB’ region produced varying results across the 

different pathovars and species. Figure 3.7 shows an example of the PCR results 

from Ppi races one and two. The majority of the positive amplifications came from 

the pisi pathovar with 12% (10) showing amplification. A further 6% (1) of the Psy 

strains showed amplification and 9% (1) of the Pph strains showed amplification 

(Table 3.7). The remaining P. syringae pathovars showed no amplification of the 

rulAB’ region when using the pisi derived primers, this was also true for the 

different Pseudomonas species. 
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2000bp 
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250bp 
100bp 

1      2      3       4      5      6      7      8      9      10    11   12     13    14    15 

16    17    18    19     20     21   22     23    24    25     26    27    28    29   30 

No. Screened strain No

. 

Screened strain 

1 Ppi race 1 strain 299A 16 Ppi race 2 strain 285 

2 Ppi race 1 strain 4461 17 Ppi race 2 strain 1142B 

3 Ppi race 1 strain 862A 18 Ppi race 2 strain 278 

4 Ppi race 1 strain 461 19 Ppi race 2 strain 1939 

5 Ppi race 1 strain 379 20 Ppi race 2 strain 374A 

6 Ppi race 1 strain 456A 21 Ppi race 2 strain 1924 

7 Ppi race 1 strain 2491B 22 Ppi race 2 strain 1842A 

8 Ppi race 1 strain 277 23 Ppi race 2 strain 1517C 

9 Ppi race 2 strain 390 24 Ppi race 2 strain 1576A 

10 Ppi race 2 strain 1577 25 Ppi race 2 strain 203 (+) 

11 Ppi race 2 strain 1759 26 PaW 340 (-) 

12 Ppi race 2 strain 2889B 27 Ppi race 3 strain 283 

13 Ppi race 2 strain 202 28 Ppi race 3 strain 370A 

14 Ppi race 2 strain 288 29 Ppi race 3 strain 895A 

15 Ppi race 2 strain 223 30 Ppi race 3 strain 1125 

 

 

Figure 3.7: PCR Amplification of the rulAB’ region before the ILE insertion point 

from P. syringae pv. pisi races 1, 2 and 3. The primers used produce an amplified 

fragment of 273bp in length. Amplification using these primers indicate the presence of a 

rulAB operon in the bacteria but not whether it is intact or disrupted and therefore no 

indication if an ILE is present. The positive control was Ppi race 2 strain 203 containing a 

disrupted rulB gene and the negative control, PaW 340(-), contains no rulAB. Easyladder 

1 (Bioline, UK) was used a size marker. 
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No. Strain PCR amp. No. Strain PCR amp. No. Strain PCR amp. 

1 Ppi R1 299A - 38 Ppi R3 2186A - 75 Ppi R6 1942 -

2 Ppi R1 4461 - 39 Ppi R3 2191A - 76 Ppi R7 1691 -

3 Ppi R1 862A - 40 Ppi R3 2817A - 77 Ppi R7 2491A -

4 Ppi R1 461 - 41 Ppi R3 4411 - 78 Ppi R7 4298 -

5 Ppi R1 379 - 42 Ppi R3 4574 - 79 Ppi R7 4300 -

6 Ppi R1 456A - 43 Ppi R4 1452 - 80 Ppi R7 4409 -

7 Ppi R1 2491B - 44 Ppi R4 1456A - 81 Ppi R7 4426 -

8 Ppi R1 277 - 45 Ppi R4 1456B - 82 Ppi R7 4466 -

9 Ppi R2 390 + 46 Ppi R4 1456C - 83 Psy B728A -

10 Ppi R2 1577 - 47 Ppi R4 1456D - 84 Psy 100 -

11 Ppi R2 1759 - 48 Ppi R4 1456E - 85 Psy 1142 -

12 Ppi R2 2889B - 49 Ppi R4 1456F - 86 Psy 1150 -

13 Ppi R2 202 - 50 Ppi R4 1525 - 87 Psy 1212 -

14 Ppi R2 288 + 51 Ppi R4 1528 - 88 Psy 1282-8 -

15 Ppi R2 223 + 52 Ppi R4 1758B + 89 Psy 1338A -

16 Ppi R2 285 - 53 Ppi R4 1811 - 90 Psy 2242A -

17 Ppi R2 1124B - 54 Ppi R4 1812A - 91 Psy 2673C -

18 Ppi R2 278 - 55 Ppi R4 2171A - 92 Psy 2675C -

19 Ppi R2 1939 - 56 Ppi R4 5143 - 93 Psy 2676C -

20 Ppi R2 374A + 57 Ppi R5 974B - 94 Psy 2677C -

21 Ppi R2 1924 - 58 Ppi R5 2301C - 95 Psy 2682C -

22 Ppi R2 1842A - 59 Ppi R5 2532A - 96 Psy 2692C -

23 Ppi R2 1517C - 60 Ppi R6 1683 - 97 Psy 2703C -

24 Ppi R2 1576A - 61 Ppi R6 1688 - 98 Psy 2732A -

25 Ppi R2 203 + 62 Ppi R6 1704B - 99 Psy 3023 +

26 Ppi R3 222 - 63 Ppi R6 1759 - 100 Pph 103 -

27 Ppi R3 283 + 64 Ppi R6 1785A + 101 Pph R1 1281A -

28 Ppi R3 370A - 65 Ppi R6 1796A - 102 Pph R6 1299A -

29 Ppi R3 895A - 66 Ppi R6 1797A - 103 Pph R3 1301A -

30 Ppi R3 1125 - 67 Ppi R6 1804B - 104 Pph R4 1302A -

31 Ppi R3 1214 - 68 Ppi R6 1807A + 105 Pph R5 1375A +

32 Ppi R3 1216 - 69 Ppi R6 1842B - 106 Pph R7 1449B -

33 Ppi R3 1380A - 70 Ppi R6 1842C - 107 Pph R6 1448A -

34 Ppi R3 1441 - 71 Ppi R6 1745A - 108 Pph R7 1449A -

35 Ppi R3 1554A - 72 Ppi R6 1746A + 109 Pph R8 2656A -

36 Ppi R3 1892 - 73 Ppi R6 1755A - 110 Pph R9 2709A -

37 Ppi R3 2183A - 74 Ppi R6 1842D -

Table 3.7: PCR screening of the rulAB’ region for P. syringae pathovars. 
The remaining 74 strains screened have been omitted due to zero amplification 
observed. 
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3.2.12: PCR screening of xerC genes in Pseudomonas syringae 

pathovars. 

Following on from the screening of the rulAB’ region in the Pseudomonas 

strains the same strains were subjected to PCR screening for the xerC gene. The 

xerC gene gives a possible indication to ILE presence within the strain, but does 

not confirm it. An example of the PCR results is shown in Figure 3.8. The results 

were different to the rulAB’ PCR screening as more strains were positive for xerC 

genes. In this screen both pathovars pisi and maculicola had positive 

amplification of the xerC gene across 50% (41 and 8 respectively) of the screened 

strains. This was not the highest percentage as Pto showed 63% (5) amplification 

of the gene. Pgy 2411 also showed amplification. The final pathovar to show 

amplification was the syringae strains which had 12% (2) amplification of the xerC 

gene. Outside of the P. syringae pathovars two different Pseudomonas species 

had amplification of the xerC gene with one P. cichorii strain and one P. 

marginalis showing amplification. Full xerC results can be found in Table 3.8. 

 

 

 

 

 

 

 

 

 

 



 

78 

 

 

 

 

 

 

 

 

 

 

 

 

1000bp 
800bp 
600bp 

400bp 

No. Screened strain No

. 

Screened strain 

1 Ppi race 1 strain 299A 16 Ppi race 2 strain 285 

2 Ppi race 1 strain 4461 17 Ppi race 2 strain 1142B 

3 Ppi race 1 strain 862A 18 Ppi race 2 strain 278 

4 Ppi race 1 strain 461 19 Ppi race 2 strain 1939 

5 Ppi race 1 strain 379 20 Ppi race 2 strain 374A 

6 Ppi race 1 strain 456A 21 Ppi race 2 strain 1924 

7 Ppi race 1 strain 2491B 22 Ppi race 2 strain 1842A 

8 Ppi race 1 strain 277 23 Ppi race 2 strain 1517C 

9 Ppi race 2 strain 390 24 Ppi race 2 strain 1576A 

10 Ppi race 2 strain 1577 25 Ppi race 2 strain 203 (+) 

11 Ppi race 2 strain 1759 26 PaW 340 (-) 

12 Ppi race 2 strain 2889B 27 Ppi race 3 strain 283 

13 Ppi race 2 strain 202 28 Ppi race 3 strain 370A 

14 Ppi race 2 strain 288 29 Ppi race 3 strain 895A 

15 Ppi race 2 strain 223 30 Ppi race 3 strain 1125 

 

Figure 3.8: PCR Amplification of the xerC gene from P. syringae pv. pisi 

races 1, 2 and 3. The primers used produce an amplified fragment of 804bp 

in length. Amplification of the xerC may indicate the presence of an ILE. The 

positive control was Ppi race 2 strain 203 which contains a xerC gene. The 

negative control, PaW 340(-), contains no xerC. Hyperladder 1kb (Bioline, 

UK) was used a size marker. 

1      2      3       4      5      6      7      8       9     10    11    12    13   14   15 

16    17    18    19     20     21   22     23    24    25     26    27    28    29   30 

1000bp 
800bp 
600bp 

400bp 
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No. Strain PCR amp. No. Strain PCR amp. No. Strain PCR amp.

1 Ppi R1 299A - 50 Ppi R4 1525 - 99 Psy 3023 -

2 Ppi R1 4461 - 51 Ppi R4 1528 - 100 Pph 103 -

3 Ppi R1 862A - 52 Ppi R4 1758B - 101 Pph R1 1281A -

4 Ppi R1 461 - 53 Ppi R4 1811 - 102 Pph R6 1299A -

5 Ppi R1 379 - 54 Ppi R4 1812A - 103 Pph R3 1301A -

6 Ppi R1 456A - 55 Ppi R4 2171A - 104 Pph R4 1302A -

7 Ppi R1 2491B - 56 Ppi R4 5143 - 105 Pph R5 1375A -

8 Ppi R1 277 - 57 Ppi R5 974B - 106 Pph R7 1449B -

9 Ppi R2 390 + 58 Ppi R5 2301C + 107 Pph R6 1448A -

10 Ppi R2 1577 - 59 Ppi R5 2532A + 108 Pph R7 1449A -

11 Ppi R2 1759 + 60 Ppi R6 1683 - 109 Pph R8 2656A -

12 Ppi R2 2889B + 61 Ppi R6 1688 - 110 Pph R9 2709A -

13 Ppi R2 202 + 62 Ppi R6 1704B - 111 Pma M4 -

14 Ppi R2 288 + 63 Ppi R6 1759 - 112 Pma 65 +

15 Ppi R2 223 + 64 Ppi R6 1785A + 113 Pma 1809A -

16 Ppi R2 285 + 65 Ppi R6 1796A - 114 Pma 1813 -

17 Ppi R2 1142B + 66 Ppi R6 1797A - 115 Pma 1820 +

18 Ppi R2 278 + 67 Ppi R6 1804B - 116 Pma 1821A -

19 Ppi R2 1939 + 68 Ppi R6 1807A - 117 Pma 1838A -

20 Ppi R2 374A + 69 Ppi R6 1842B - 118 Pma 1846A -

21 Ppi R2 1924 + 70 Ppi R6 1842C - 119 Pma 1848B +

22 Ppi R2 1842A - 71 Ppi R6 1745A - 120 Pma 1852A +

23 Ppi R2 1517C + 72 Ppi R6 1746A - 121 Pma 1855A +

24 Ppi R2 1576A + 73 Ppi R6 1755A - 122 Pma 5422 +

25 Ppi R2 203 + 74 Ppi R6 1842D - 123 Pma 5429 +

26 Ppi R3 222 - 75 Ppi R6 1942 - 124 Pma 6201 -

27 Ppi R3 283 + 76 Ppi R7 1691 + 125 Pma 6319A/1 +

28 Ppi R3 870A - 77 Ppi R7 2491A - 126 Pma 6328A/1 -

29 Ppi R3 895A - 78 Ppi R7 4298 + 127 Pto DC3000 +

30 Ppi R3 1125 - 79 Ppi R7 4300 + 128 Pto 19 +

31 Ppi R3 1214 - 80 Ppi R7 4409 + 129 Pto 119 -

32 Ppi R3 1216 + 81 Ppi R7 4426 + 130 Pto 138 +

33 Ppi R3 1380A + 82 Ppi R7 4466 + 131 Pto 1108 -

34 Ppi R3 1441 + 83 Psy B728A - 132 Pto 2944 +

35 Ppi R3 1554A + 84 Psy 100 - 133 Pto 2945 -

36 Ppi R3 1892 - 85 Psy 1142 - 134 Pto 6034 +

37 Ppi R3 2183A + 86 Psy 1150 - 135 Pgy 1139 -

38 Ppi R3 2186A + 87 Psy 1212 + 136 Pgy 2411 +

39 Ppi R3 2191A + 88 Psy 1282-8 - 137 Pgy 3318 -

40 Ppi R3 2817A + 89 Psy 1338A - 138 P. cichorii 943 +

41 Ppi R3 4411 + 90 Psy 2242A - 139 P. cichorii 3109A -

42 Ppi R3 4574 - 91 Psy 2673C - 140 P. cichorii 3109B -

43 Ppi R4 1452 + 92 Psy 2675C - 141 P. cichorii 3283 -

44 Ppi R4 1456A + 93 Psy 2676C - 142 P. marginalis 247 -

45 Ppi R4 1456B + 94 Psy 2677C - 143 P. marginalis 949 -

46 Ppi R4 1456C + 95 Psy 2682C - 144 P. marginalis 2380 -

47 Ppi R4 1456D + 96 Psy 2692C + 145 P. marginalis 2644 -

48 Ppi R4 1456E + 97 Psy 2703C - 146 P. marginalis 2645 +

49 Ppi R4 1456F + 98 Psy 2732A - 147 P. marginalis 2646 -

148 P. marginalis 3210 -

Table 3.8: PCR screening of the xerC gene in P. syringae pathovars and 
Pseudomonas species. The remaining 18 strains have been omitted due to zero 
amplification. 
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3.2.13: PCR screening of the rulAB-xerC junction region in 

Pseudomonas syringae pathovars and other Pseudomonas species. 

The last set of PCR amplifications focused on the ILE insertion junction 

into rulB. Any amplification would indicate ILE insertion into rulB. Following the 

PCR tests the products were visualised on an agarose gel to identify positives 

and confirm the fragment size, an example is shown in Figure 3.9. This screening 

identified 22 potential ILEs. Again Ppi strains provided the highest percentage of 

positive results with 18.3% (15) of the strains showing amplification, the Psy 

pathovar only had one strain that showed amplification. Out of the 16 Pma strains 

tested 18.8% (3) showed amplification and Pgy which showed one strain with 

amplification of the rulAB-xerC region. Full results for these pathovars are shown 

in Table 3.9. These results were also confirmed using genome analysis on some 

strains that were previously sequenced including, Pph 1448A, Pph 1302A and 

Pto DC3000.  
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Figure 3.9: PCR amplification of the rulAB-xerC junction region from P. 

syringae pv. pisi races 1, 2 and 3. The primers used produce an amplified 

fragment 1048bp in length. Any amplification of this region would indicate the 

possible presence of an ILE inserted into the rulB gene. The positive control was 

Ppi race 2 strain 203 which contains a rulAB-xerC junction. The negative control, 

PaW 340(-), contains no rulAB and no ILE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1      2      3      4      5      6      7     8       9     10   11    12     13   14    15 

16    17    18    19    20    21     22    23     24    25    26    27    28    29    30 

1500bp 

1000bp 
  800bp 

  600bp 

 

No. Screened strain No

. 

Screened strain 

1 Ppi race 1 strain 299A 16 Ppi race 2 strain 285 

2 Ppi race 1 strain 4461 17 Ppi race 2 strain 1142B 

3 Ppi race 1 strain 862A 18 Ppi race 2 strain 278 

4 Ppi race 1 strain 461 19 Ppi race 2 strain 1939 

5 Ppi race 1 strain 379 20 Ppi race 2 strain 374A 

6 Ppi race 1 strain 456A 21 Ppi race 2 strain 1924 

7 Ppi race 1 strain 2491B 22 Ppi race 2 strain 1842A 

8 Ppi race 1 strain 277 23 Ppi race 2 strain 1517C 

9 Ppi race 2 strain 390 24 Ppi race 2 strain 1576A 

10 Ppi race 2 strain 1577 25 Ppi race 2 strain 203 (+) 

11 Ppi race 2 strain 1759 26 PaW 340 (-) 

12 Ppi race 2 strain 2889B 27 Ppi race 3 strain 283 

13 Ppi race 2 strain 202 28 Ppi race 3 strain 370A 

14 Ppi race 2 strain 288 29 Ppi race 3 strain 895A 

15 Ppi race 2 strain 223 30 Ppi race 3 strain 1125 
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No. Strain PCR amp. No. Strain PCR amp. No. Strain PCR amp.

1 Ppi R1 299A - 40 Ppi R3 2817A - 79 Ppi R7 4300 -

2 Ppi R1 4461 - 41 Ppi R3 4411 - 80 Ppi R7 4409 -

3 Ppi R1 862A - 42 Ppi R3 4574 - 81 Ppi R7 4426 -

4 Ppi R1 461 - 43 Ppi R4 1452 + 82 Ppi R7 4466 -

5 Ppi R1 379 - 44 Ppi R4 1456A + 83 Psy B728A +

6 Ppi R1 456A - 45 Ppi R4 1456B + 84 Psy 100 -

7 Ppi R1 2491B - 46 Ppi R4 1456C + 85 Psy 1142 -

8 Ppi R1 277 - 47 Ppi R4 1456D + 86 Psy 1150 -

9 Ppi R2 390 + 48 Ppi R4 1456E + 87 Psy 1212 -

10 Ppi R2 1577 - 49 Ppi R4 1456F + 88 Psy 1282-8 -

11 Ppi R2 1759 - 50 Ppi R4 1525 - 89 Psy 1338A -

12 Ppi R2 2889B + 51 Ppi R4 1528 - 90 Psy 2242A -

13 Ppi R2 202 + 52 Ppi R4 1758B - 91 Psy 2673C -

14 Ppi R2 288 + 53 Ppi R4 1811 - 92 Psy 2675C -

15 Ppi R2 223 + 54 Ppi R4 1812A - 93 Psy 2676C -

16 Ppi R2 285 - 55 Ppi R4 2171A - 94 Psy 2677C -

17 Ppi R2 1124B - 56 Ppi R4 5143 - 95 Psy 2682C -

18 Ppi R2 278 - 57 Ppi R5 974B - 96 Psy 2692C -

19 Ppi R2 1939 + 58 Ppi R5 2301C - 97 Psy 2703C -

20 Ppi R2 374A + 59 Ppi R5 2532A - 98 Psy 2732A -

21 Ppi R2 1924 - 60 Ppi R6 1683 - 99 Psy 3023 +

22 Ppi R2 1842A - 61 Ppi R6 1688 - 100 Pma M4 -

23 Ppi R2 1517C - 62 Ppi R6 1704B - 101 Pma 65 -

24 Ppi R2 1576A - 63 Ppi R6 1759 - 102 Pma 1809A -

25 Ppi R2 203 + 64 Ppi R6 1785A - 103 Pma 1813 -

26 Ppi R3 222 - 65 Ppi R6 1796A - 104 Pma 1820 -

27 Ppi R3 283 + 66 Ppi R6 1797A - 105 Pma 1821A -

28 Ppi R3 870A - 67 Ppi R6 1804B - 106 Pma 1838A -

29 Ppi R3 895A - 68 Ppi R6 1807A - 107 Pma 1846A -

30 Ppi R3 1125 - 69 Ppi R6 1842B - 108 Pma 1848B -

31 Ppi R3 1214 - 70 Ppi R6 1842C - 109 Pma 1852A +

32 Ppi R3 1216 - 71 Ppi R6 1745A - 110 Pma 1855A -

33 Ppi R3 1380A - 72 Ppi R6 1746A - 111 Pma 5422 +

34 Ppi R3 1441 - 73 Ppi R6 1755A - 112 Pma 5429 -

35 Ppi R3 1554A - 74 Ppi R6 1842D - 113 Pma 6201 -

36 Ppi R3 1892 - 75 Ppi R6 1942 - 114 Pma 6319A/1 -

37 Ppi R3 2183A - 76 Ppi R7 1691 - 115 Pma 6328A/1 +

38 Ppi R3 2186A - 77 Ppi R7 2491A - 116 Pgy 1139 -

39 Ppi R3 2191A - 78 Ppi R7 4298 - 117 Pgy 2411 +

118 Pgy 3318 -

Table 3.9: PCR screening of the rulAB-xerC junction region in P. syringae 
pathovars. The remaining 46 strains have been omitted due to zero 
amplification. 
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Region rulAB xerC rulAB'-xerC
No. Strain Hybridisation PCR Hybridisation PCR Hybridisation PCR 

1 Ppi R1 299A 2 - 2 - 1 -

2 Ppi R1 4461 1 - 1 - 2 -

3 Ppi R1 862A 0 - 1 - 1 -

4 Ppi R1 461 1 - 1 - 2 -

5 Ppi R1 379 1 - 1 - 0 -

6 Ppi R1 456A 1 - 1 - 2 -

7 Ppi R1 2491B 0 - 1 - 0 -

8 Ppi R1 277 1 - 2 - 1 -

9 Ppi R2 390 3 + 0 + 1 +

10 Ppi R2 1577 2 - 0 - 1 -

11 Ppi R2 1759 2 - 0 + 0 -

12 Ppi R2 2889B 1 - 1 + 1 +

13 Ppi R2 202 3 - 2 + 1 +

14 Ppi R2 288 1 + 1 + 1 +

15 Ppi R2 223 2 + 1 + 2 +

16 Ppi R2 285 0 - 1 + 2 -

3.2.14: Comparison of hybridisation versus PCR results. 

Both hybridisation and PCR screening methods produced different 

results with the hybridisation screen producing many more positive signals 

than the PCR screen. This is mainly due to specificity and stringency of the 

two methods with PCR being a lot more specific. A comparative analysis 

(Table 3.10) was performed on both sets of screening data to observe if 

the hybridisation was representative of the PCR and vice versa. The results 

showed that the majority of the positive PCR amplifications also produced 

a signal following the hybridisation screen for the three regions, rulAB, xerC 

and rulAB-xerC. The only exceptions were during the xerC screens where 

six strains, five Ppi and one Pma, produced no hybridisation signal but 

produced a PCR product.    

 
Table 3.10: Comparison of hybridisation and PCR amplification 
screening results from P. syringae strains. Red numbering represents 
a strong hybridisation signal. 
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17 Ppi R2 1124B 3 - 0 + 1 -

18 Ppi R2 278 1 - 0 + 0 -

19 Ppi R2 1939 1 - 2 + 1 +

20 Ppi R2 374A 2 + 1 + 1 +

21 Ppi R2 1924 2 - 1 + 0 -

22 Ppi R2 1842A 1 - 0 - 2 -

23 Ppi R2 1517C 1 - 0 + 0 -

24 Ppi R2 1576A 1 - 2 + 1 -

25 Ppi R2 203 3 + 3 + 2 +

26 Ppi R3 222 2 - 1 - 2 -

27 Ppi R3 283 2 + 4 + 2 +

28 Ppi R3 870A 0 - 3 - 2 -

29 Ppi R3 895A 1 - 1 - 0 -

30 Ppi R3 1125 0 - 1 - 1 -

31 Ppi R3 1214 1 - 2 - 1 -

32 Ppi R3 1216 1 - 2 + 1 -

33 Ppi R3 1380A 2 - 1 + 1 -

34 Ppi R3 1441 2 - 4 + 1 -

35 Ppi R3 1554A 1 - 4 + 2 -

36 Ppi R3 1892 0 - 2 - 2 -

37 Ppi R3 2183A 0 - 1 + 2 -

38 Ppi R3 2186A 2 - 2 + 0 -

39 Ppi R3 2191A 1 - 2 + 0 -

40 Ppi R3 2817A 0 - 1 + 0 -

41 Ppi R3 4411 1 - 2 + 0 -

42 Ppi R3 4574 1 - 1 - 1 -

43 Ppi R4 1452 0 - 1 + 2 +

44 Ppi R4 1456A 1 - 1 + 1 +

45 Ppi R4 1456B 0 - 2 + 1 +

46 Ppi R4 1456C 0 - 3 + 1 +

47 Ppi R4 1456D 0 - 3 + 1 +

48 Ppi R4 1456E 0 - 3 + 1 +

49 Ppi R4 1456F 3 - 2 + 2 +

50 Ppi R4 1525 3 - 3 - 2 -

51 Ppi R4 1528 1 - 0 - 1 -

52 Ppi R4 1758B 1 + 2 - 1 -

53 Ppi R4 1811 3 - 3 - 0 -

54 Ppi R4 1812A 0 - 2 - 1 -

55 Ppi R4 2171A 0 - 1 - 1 -

56 Ppi R4 5143 1 - 3 - 0 -

57 Ppi R5 974B 3 - 2 - 3 -

58 Ppi R5 2301C 3 - 1 + 3 -

59 Ppi R5 2532A 2 - 2 + 1 -

60 Ppi R6 1683 2 - 3 - 2 -
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61 Ppi R6 1688 2 - 1 - 1 -

62 Ppi R6 1704B 1 - 1 - 2 -

63 Ppi R6 1759 2 - 0 - 1 -

64 Ppi R6 1785A 2 + 1 + 1 -

65 Ppi R6 1796A 4 - 1 - 2 -

66 Ppi R6 1797A 1 - 0 - 1 -

67 Ppi R6 1804B 2 - 1 - 3 -

68 Ppi R6 1807A 1 + 1 - 1 -

69 Ppi R6 1842B 2 - 3 - 0 -

70 Ppi R6 1842C 1 - 0 - 1 -

71 Ppi R6 1745A 2 - 0 - 1 -

72 Ppi R6 1746A 3 + 0 - 2 -

73 Ppi R6 1755A 1 - 2 - 3 -

74 Ppi R6 1842D 0 - 1 - 3 -

75 Ppi R6 1942 0 - 1 - 2 -

76 Ppi R7 1691 2 - 3 + 2 -

77 Ppi R7 2491A 2 - 2 - 1 -

78 Ppi R7 4298 2 - 2 + 0 -

79 Ppi R7 4300 2 - 1 + 1 -

80 Ppi R7 4409 2 - 1 + 2 -

81 Ppi R7 4426 4 - 1 + 2 -

82 Ppi R7 4466 2 - 1 + 2 -

83 Psy B728A 1 - 2 - 1 +

84 Psy 100 1 - 1 - 1 -

85 Psy 1142 2 - 1 - 2 -

86 Psy 1150 3 - 2 - 1 -

87 Psy 1212 1 - 1 + 1 -

88 Psy 1282-8 1 - 3 - 1 -

89 Psy 1338A 1 - 0 - 0 -

90 Psy 2242A 4 - 0 - 2 -

91 Psy 2673C 0 - 0 - 1 -

92 Psy 2675C 1 - 2 - 1 -

93 Psy 2676C 2 - 1 - 2 -

94 Psy 2677C 1 - 4 - 3 -

95 Psy 2682C 1 - 0 - 2 -

96 Psy 2692C 1 - 3 + 2 -

97 Psy 2703C 0 - 0 - 0 -

98 Psy 2732A 1 - 2 - 0 -

99 Psy 3023 2 + 1 - 1 +

100 Pph 103 1 - 3 - 0 -

101 Pph R1 1281A 1 - 4 - 3 -

102 Pph R6 1299A 4 - 4 - 3 -

103 Pph R3 1301A 2 - 4 - 2 -

104 Pph R4 1302A 3 - 4 - 2 -
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105 Pph R5 1375A 2 + 4 - 3 -

106 Pph R7 1449B 2 - 2 - 1 -

107 Pph R6 1448A 1 - 4 - 3 -

108 Pph R7 1449A 2 - 4 - 3 -

109 Pph R8 2656A 1 - 4 - 2 -

110 Pph R9 2709A 2 - 4 - 3 -

111 Pma M4 1 - 1 - 0 -

112 Pma 65 1 - 2 + 1 -

113 Pma 1809A 4 - 3 - 1 -

114 Pma 1813 1 - 3 - 1 -

115 Pma 1820 0 - 1 + 1 -

116 Pma 1821A 0 - 2 - 0 -

117 Pma 1838A 1 - 1 - 1 -

118 Pma 1846A 1 - 1 - 2 -

119 Pma 1848B 2 - 4 + 4 -

120 Pma 1852A 3 - 4 + 4 +

121 Pma 1855A 0 - 1 + 0 -

122 Pma 5422 4 - 2 + 1 +

123 Pma 5429 0 - 1 + 1 -

124 Pma 6201 2 - 3 - 3 -

125 Pma 6319A/1 0 - 0 + 2 -

126 Pma 6328A/1 0 - 0 - 2 +

127 Pto DC3000 1 - 2 + 2 -

128 Pto 19 1 - 1 + 2 -

129 Pto 119 1 - 2 - 2 -

130 Pto 138 1 - 2 + 1 -

131 Pto 1108 1 - 0 - 1 -

132 Pto 2944 1 - 1 + 1 -

133 Pto 2945 1 - 0 - 0 -

134 Pto 6034 1 - 2 + 1 -

135 Pat 152E 1 - 0 - 0 -

136 Pat 4303 1 - 0 - 0 -

137 Pla 789 1 - 1 - 1 -

138 Pla 3988 2 - 2 - 1 -

139 Pgy 1139 1 - 1 - 2 -

140 Pgy 2411 0 - 1 - 1 +

141 Pgy 3318 0 - 1 - 0 -

142 P. asplenii 959 1 - 1 - 1 -

143 P. asplenii 1947 0 - 0 - 0 -

144 P. caricapapayae 1873 0 - 1 - 0 -

145 P. caricapapayae 3080 1 - 1 - 1 -

146 P. caricapapayae 3439 0 - 2 - 1 -

147 P. savastanoi 639 0 - 0 - 0 -

148 P. savastanoi 2716 1 - 1 - 1 -
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149 P. savastanoi 3334 1 - 1 - 0 -

150 P. corrugata 2445 1 - 1 - 0 -

151 P. corrugata 3056 2 - 1 - 0 -

152 P. corrugata 3316 1 - 0 - 0 -

153 P. cichorii 907 1 - 0 - 0 -

154 P. cichorii 943 1 - 1 + 1 -

155 P. cichorii 3109A 1 - 1 - 2 -

156 P. cichorii 3109B 1 - 0 - 0 -

157 P. cichorii 3283 0 - 1 - 0 -

158 P. marginalis 247 1 - 1 - 0 -

159 P. marginalis 949 0 - 1 - 0 -

160 P. marginalis 2380 1 - 0 - 0 -

161 P. marginalis 2644 0 - 0 - 0 -

162 P. marginalis 2645 1 - 1 + 1 -

163 P. marginalis 2646 0 - 0 - 1 -

164 P. marginalis 3210 1 - 0 - 1 -

 

 

 

 

 

 

 

 

 

 

3.3: Discussion 

Integron-like elements (ILEs) may provide a rapid route for plant 

pathogenic bacteria to overcome plant defence and surveillance systems 

because Ppi ILEs carry a TTE gene and this may be mobile between 

different bacterial strains. During the screening phase of this study 164 

plant pathogenic Pseudomonads were screened for ILEs by looking at the 

disruption of the resistance to ultraviolet light A and B genes (rulAB). The 

rulB gene has been identified as a possible hotspot for ILE insertion (Arnold 

et al., 2000; Rhodes et al., 2014).  

 To test the ILE profiles of different Pseudomonas strains 

chemiluminescent probes were made and used to probe for three regions 

that would give an estimation of whether an ILE was present and if the ILE 

was inserted into the rulB gene. The probe for the ILE positive strains were 

made from amplified gene products. Pseudomonas fluorescens strain FH1 
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(pWW0::kmr::ILEFH1) was used to make the ILE junction probe (rulAB-xerC) and 

the conserved ILE tyrosine recombinase probe (xerC).  The probe used to identify 

strains without an ILE inserted into the rulAB operon (intact rulAB) was made 

from Pseudomonas putida strain PaW340 (pWW0::kmr) which has no ILE present 

within rulAB.  

Although the probes were made from species that were different from the 

tested strains this was not as important for the DNA hybridisation screens 

compared to the PCR screens, depending on stringency washes and their 

component chemicals (Roche, 2014). There are advantages and disadvantages 

to the decreased identity required for DNA hybridisation tests. The advantage is 

that an overview of the potential number of ILE containing strains is given in a 

short time period, up to 94 strains could be screened on one blot per probe. The 

disadvantage is that the identity between the probes and the strains being tested 

can be relatively low and false positives can occur due to low stringency matches. 

This was the case for some of the strains that actually contained an ILE and 

disrupted rulB but presented as having an intact rulB gene due to the probe 

hybridising to either the partial rulAB sequence or another rulAB elsewhere in the 

genome. An example of this was in Ppi race 3 strain 283 (Figure 3.5, position B1) 

which provided a signal for both disrupted rulB and intact rulB, sequencing later 

showed an ILE was present and rulB was disrupted. Another example was the 

hybridisation results for the Pph strains when using the rulAB-xerC probe. When 

using the probe all of the strains produced a hybridisation signal (Figure 3.6); 

however, when the same strains were screened via PCR no amplification of the 

rulAB-xerC region was seen. It was these types of discrepancies along with the 

potential for sequencing that led onto PCR tests being used. A comparison of the 

two screening methods is shown in Table 3.10.  
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The first PCR screening tests used primers designed from the same 

strains used to make the hybridisation probes. These primers also targeted the 

same regions of the genome, rulAB, xerC and rulAB-xerC. However, no 

amplification was seen apart from the positive controls. This was due to the 

sequences sharing very little identity between the Pseudomonas syringae 

pathovars and the Pseudomonas fluorescens and putida strains. The difference 

between DNA hybridisation and PCR is evident when the two are compared. With 

hybridisation probes only, >40%+ identity is required with very low stringency, 

whereas in PCR primers >85%+ identity is required for amplification where the 

first ~5 nucleotides must be homologous to the target gene (Sommer and Tautz, 

1989). However the hybridisations performed in the current work were highly 

stringent. Therefore, new primers were designed from the ILE harbouring Ppi 203 

strain (Arnold et al., 2000). As the primers were designed from a different strain 

to the hybridisation probes, the PCR screen was repeated on all 164 strains. The 

PCR screening provided results that could be used in later downstream 

applications. The high identity required for PCR amplification also explains why 

no amplification was seen from the more distantly related Pseudomonas species 

such as P. asplenii, P. corrugata and P. marginalis.  

The rulAB primers that amplified the intact rulAB operon provided positive 

results for only 22 out of 164 strains screened. This number may not represent 

the true nature of UV resistance genes within these strains as there are many 

orthologues of rulAB that share similar function, but have different sequences 

(Kim and Sundin, 2000). The amount of identity between the orthologues 

determined whether the primers would bind and if amplification would occur. The 

orthologues that have the most identity to rulAB and are present in various 

Pseudomonas species include recA, uvrD, polB, recN, sulA, uvrA, uvrB, and 
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umuDC (Smith and Walker, 1998). The orthologue that most closely resembles 

rulAB the most is umuDC as this is also two separate genes that have a brief 

overlap to form a functional UV damage repair operon. ILEs have also been 

observed to integrate into umuDC forming umuDC’ and umuC’’ in the same 

manner as rulAB (Maayer et al., 2015). The diverse nature of UV damage repair 

genes and the abundance of rulAB orthologues may explain why so few rulAB 

positives were identified.  

The xerC amplifications provided the highest amount of positive results for 

all three experimental regions; 78 positives from 164 strains tested. Although 

xerC genes are found in the conserved end of all the ILEs identified so far this 

does not make them markers for ILEs. This is because xer genes are not specific 

to ILEs and are common recombinase genes belonging to the bacteriophage 

lambda integrase family found across the bacterial domain (Blakely et al., 1991). 

The fact that they are found in numerous bacterial species means that the number 

of positive amplifications will be higher than the number of ILEs present; this was 

the case as 22 potential ILEs were identified but 58 xerC genes were identified. 

In the case of ILEs xerC is conserved. This may be because the gene is required 

for ILE excision in the same manner as the genomic island, PPHGI-1. Excision 

of PPHGI-1 relies on xerC on the island being present and active (Pitman et al., 

2005; Lovell et al., 2011). When the xerC gene is knocked out excision halts.  

There are also other integrases inside and close to the ILE that contribute 

to gene cassette capture as in Vibrio species. The integrase genes within the ILE 

are regulated by the SOS pathway and are activated by the formation of ssDNA 

molecules and damage to the DNA (Cambray et al., 2011). There are rci 

recombinase genes found just outside of rulB’’ (Arnold et al., 2000) that may be 

linked to ILE excision. The rci genes require far more accessory molecules and 
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signalling to become active compared to the ILE integrase genes. The rci genes 

require accessory genome markers such as shufflons (DNA binding sites) that 

are flanked by 19-bp repeat sequences (Gyohda et al., 1997; Farrugia et al., 

2015).  

The final region was the rulAB-xerC region which encompasses the disrupted 

rulAB operon and the start of the ILE which is conserved and contains a xerC 

gene. This region was of most importance as it indicates not only the presence 

of an ILE, but also that the ILE has inserted and disrupted the rulAB gene. When 

screening with the rulAB-xerC primers 22 positive amplifications were seen 

indicating ILE insertion.  

In conclusion, this screening procedure has shown that it is highly likely 

that ILEs are abundant in P. syringae pathovars and that they share a common 

structure with a conserved end harbouring integrase genes and a more variable 

end possibly harbouring TTE genes and other virulence associated genes. 

Further work to look into the ILE sequences was carried out to obtain more 

information about these regions of DNA (Chapter 4). 
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Chapter 4. Sequence analysis of previously unidentified 

integron-like elements from Pseudomonas syringae pathovars. 

4.1: Introduction 

Once a number of potential integron-like elements (ILEs) were identified 

from a range of Pseudomonas syringae pathovars (Chapter 3) the next step was 

to obtain the sequences of these ILEs to assess if they were similar to other ILEs 

previous identified (Rhodes et al., 2014) and to also assess where they were 

inserted into rulB and whether they encoded any type three effectors (TTE). 

There were 22 ILEs identified from four pathovars of P. syringae; pisi (Pea 

pathogen), syringae (broad host pathogen), maculicola (Brassica pathogen) and 

glycinea (Soybean pathogen) (Table 4.1), indicating that the ILEs are not 

restricted to only one pathovar within P. syringae.   

The sequencing of these newly identified ILEs not only allowed their 

genetic content to be analysed, but also if the ILEs were more similar to true 

integrons in terms of their gene orientation and regulation. Integrons typically 

contain an integrase gene with its own promoter followed by a second promoter 

(Pc) to regulate the expression of captured genes in the variable end of the 

integron (Figure 4.1) (Gillings, 2014). However, if the genes are incorporated in 

the opposite orientation the Pc will not regulate the genes and another promoter 

is required for gene expression. This is the case for the previously analysed ILEs 

which have the variable genes in the opposite orientation to integrons (Figure 

4.2). The other difference between ILEs and integrons is that integrons are 

typically found in non-coding regions of the genome, however the ILEs in P. 

syringae and other Pseudomonas are present within the DNA polymerase V 

gene, rulB.     
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Figure 4.1: The genetic structure of typical integrons. These are three 

examples of the typical form of an integron. A) The Pc is within the integron 

integrase and regulates the captured genes; B) Pc is in the intergenic space 

between the integrase and the captured genes; C) Pc is within the integrase 

although the integrase is reversed in orientation, similar to ILEs, also there is a 

second promoter present to regulate genes further downstream. The cassette 

array is also termed the variable end and the att sites are the locations that genes 

cassettes are incorporated into the integron. (Image from Gillings, 2014. Used 

with permission from American Society for Microbiology).   

 

Even though there are stark differences between integrons and ILEs they 

do share similar regions and functions. There were four main regions related to 

these ILEs that were of interest (Figure 4.2). The first was the region (Figure 4.2; 

1) from the disrupted rulB’ into the xerC integrase gene on the 5’ end of the ILE. 

This area was thought to be conserved and that all ILEs contain a conserved 

integrase gene at this end. The second region (Figure 4.2; 2) falls within the first 

region and is the intergenic region between the end of the rulB’ gene and the start 

of the ILE xerC, this was thought to be conserved and the insertion point of the 

ILEs (Rhodes et al., 2014). The third region (Figure 4.2; 3) was the 3’ end of the 

ILE and assessing its variability and whether or not all ILEs contain the same 

genes. Finally the whole ILE (Figure 4.2; 4) was studied to again look for 

variability, but also ILE length and to identify genes harboured within its entirety.  
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Potential ILE containing strains Isolation location Isolated from Isolation year

Ppi R2 202 USA Pea 1944

Ppi R2 203 New Zealand Pea cv. Small sieve freezer 1969

Ppi R2 223 New Zealand Pea cv. Partridge 1968

Ppi R3 283 New Zealand Pea 1970

Ppi R2 288 Unknown Pea Unknown

Ppi R2 374A New Zealand Pea cv. Partridge 1970

Ppi R2 390 Unknown Pea Unknown

Ppi R2 1939 UK Pea 1987

Ppi R2 2889B Unknown Pea Unknown

Ppi R4 1452A UK Pea cv. Belinda 1985

Ppi R4 1456A UK Pea cv. Belinda 1985

Ppi R4 1456B UK Pea cv. Belinda 1985

Ppi R4 1456C UK Pea cv. Belinda 1985

Ppi R4 1456D UK Pea cv. Belinda 1985

Ppi R4 1456E UK Pea cv. Belinda 1985

Ppi R4 1456F UK Pea cv. Belinda 1985

Psy B728A USA Green bean 1987

Psy 3023 UK Unknown 1950

Pma 1852A UK Brussel sprout cv. Oliver 1987

Pma 5422 UK Cauliflower cv. Danish perfection 1995

Pma 6328A Unknown Unknown Unknown

Pgy 2411 New Zealand Soybean 1971

Table 4.1: The 22 ILE containing strains from Pseudomonas syringae. The 

strain name along with original isolation location, isolation date and plant host. 

Ppi - pisi, Psy - syringae, Pma - maculicola, Pgy - glycinea.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Basic outline of an ILE along with the disrupted rulAB operon. 

The figure shows the four main regions of the ILE that were studied and outlines 

the basic structure of the ILEs found in P. syringae pathovars. 1) disrupted rulB 

flank into the ILE xerC; 2) the intergenic region between rulB’ and xerC; 3) the 

variable 3’ end of the ILE; 4) the entire length of the ILE.  

 

5’ 3’ 
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The first three regions, the conserved integrase and intergenic region, 

along with the more variable 3’ end region, had their sequences obtained via 

standard PCR and chain termination sequencing with individual reads of up to 

~1000bp. This was enough coverage to establish patterns and trends amongst 

the regions using multiple alignment and homology software. However, to obtain 

sequences that were partially unknown, such as differences in the variable end, 

semi-degenerate primers were used to amplify these regions, however this 

provide no useful sequence data. To obtain unknown sequences and the entire 

sequence of the ILEs 10 ILE containing strains were sent for whole genome 

sequencing from whole DNA preparations (MicrobesNG, Birmingham, UK).  

Whole genome sequencing also allowed analysis of the genome 

surrounding the ILEs to look for any genes that may confer advantageous 

benefits to the ILE, such as additional mobility genes and integration genes. 

These may have had an impact on how the ILE moves between systems and 

how exogenous genes are incorporated. There was an established example of 

an rci integrase gene being located just outside the ILE found in Ppi 203 (Arnold 

et al., 2000) and if other ILEs shared this trait then it indicated other genes are 

crucial to ILE mechanics. 

Knowing the sequences of the newly identified ILEs and the surrounding 

genome allowed their genetic content to be known which may lead to possible 

uses of these ILEs in preventing plant diseases due to them all containing TTE 

genes.  
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4.2: Results 

4.2.1: Sequence analysis of rulAB-xerC region indicative of ILE insertion. 

PCR screening identified 22 possible ILEs, which included strains from 

four different P. syringae pathovars. All of the 22 positive strains had the 

conserved 5’ ILE xerC end sequenced. The PCR product was 804bp and the 

2015xerC primer set was used (Table 2.2). Alignment software and analysis 

confirmed that the region amplified is conserved as the sequences share a high 

degree of identity (Appendix III). Further analysis revealed that Pma 1852 is 

inserted into a rulAB homologue, umuDC, with 99% identity to the umuDC operon 

found in P. syringae pv. actinidiae. 

A phylogenetic tree (Figure 4.3) was constructed from the xerC sequences 

from all of the 22 potential ILEs. The phylogenetic tree showed that there are two 

main clusters present in regard to the xerC gene; the first contains 12 strains from 

Ppi, Pma and Psy pathovars whereas the second cluster contains eight strains 

from Ppi. These clusters are stable as 99% and 86% of the time these clusters 

would form as in Figure 4.3 if the analysis was repeated 500 times. There are two 

strains that fall outside of the clusters. The first, Pgy 2411 is in its own group and 

represents approximately a three base pair substitution in the sequence 

compared to the Ppi cluster. Although the identity between Ppi 203 and Pgy 2411 

remains high at 97.0%. The second strain that falls in its own group is Psy 3023. 

Although the phylogenetic tree shows this strain to form its own group Psy 3023 

shares 95.5% identity with Ppi 203. The long branches of the tree relate to the 

nature of the tree being constructed from sequences within the same species. 

The phylogenetic tree is stable due to the high numbers on the connecting 

branches and the main branch with all strains except Psy 3023 will cluster as 
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shown 99% of the time. All xerC genes from the 22 ILEs show very high identity 

that is greater than 95%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Molecular Phylogenetic analysis by Maximum Likelihood 

method looking at the ILE xerC.  Phylogenetic tree shows the identity between 

the multiple potential ILE containing strains in regard to their xerC content. The 

percentage of branches in which the associated strains clustered together is 

shown next to the branches. The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site and a bootstrap support of 500 

replicates, using P. syringae pv. actinidiae as an outgroup. MEGA software was 

used to generate maximum likelihood tree (http://www.megasoftware.net/). 
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4.2.2: Sequence analysis of the intergenic region between the end of rulB’ 

and the ILE start. 

There is preliminary evidence that there is a conserved intergenic region 

of DNA found in environmental ILEs (P. fluorescens FH1, FH4 and FH5) that is 

always ~119bp long (Rhodes et al., 2014). In the case of P. syringae it appears 

to be ~124bp, but is conserved across all the observed ILEs. However, the 

sequence is different to the P. fluorescens strains, with only 40.8% identity 

(Rhodes et al., 2014). The region is present between the disruption point of rulB’ 

and the start of the ILE. In the current study sequence analysis was carried out 

on the same area in the strains found to have ILEs. The PCR product used for 

sequencing was 1048bp and the 2015rulAB-xerCF primer set was used (Table 

2.2). The analysis showed that the conserved region is present in P. syringae 

pathovars and is the same sequence and size across all the strains. A possible 

promoter region was identified with predicted -10 and -35 boxes (Figure 4.4). 
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Figure 4.4: Sequence alignment of the intergenic region between rulB’ and 

the ILE and its location between rulB’ and xerC. The alignment shows that the 

intergenic region of the 22 ILE strains share high identity. Analysis performed 

using T-Coffee software available at http://www.ebi.ac.uk. -35 box and -10 box 

predicted using BProm available at http://www.softberry.com. *Image adapted 

from Rhodes et al., (2014) under the creative commons license 4.0; 

creativecommons.org/licenses/by/4.0/. 

Ppi203          GATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACT 

Ppi202          GATCAAAGAGATGCTGCGCCGCAATGGGATCAAGGTGTTCAGCAGCAACT 

Ppi223          GATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACT 

Ppi283          GATCAAAGAGATGCTGCGCCGCAATGGGATCAAGGTGTTCAGCAGCAACT 

Ppi288          GATCAAAGAGATGCTGCGCCGCAATGGGATCAAGGTGTTCAGCAGCAACT 

Ppi374A         GATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACT 

Ppi390          GATGCGTTAAGT-CTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1452         GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1456A        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1456B        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1456C        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1456D        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1456E        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1456F        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Ppi1939         GATCAAAGAGGTGCTGCGCCGCAATGGGATCAAGGTGTTCAGCAGCAACT 

Ppi2889B        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

PsyB728a        GATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACT 

Psy3023         GATCAAAGAGGTGTTGCGCCGCCACGGCATAAAGGTGTTCAGCAGCAACT 

Pma1852         GATTAAGGATGTACTGAAGCGAAACGGTATCAAGGTTTTCAGCAGCAACT 

Pma5422         GATTAAGGATGTACTGAAGCGAAACGGTATCAAGGTTTTCAGCAGCAACT 

Pma6328A        GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

Pgy2411         GATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACT 

                ***     *  *  **   **  * ** ** ***** ************* 

 

Ppi203          ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi202          ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi223          ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi283          ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi288          ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi374A         ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi390          ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1452         ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1456A        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1456B        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1456C        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1456D        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1456E        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1456F        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi1939         ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Ppi2889B        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

PsyB728a        ACGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Psy3023         ACGCGCTCTAGTAAGTTAGGTGGAATGCTTTTGGACTACGCTGATTCTGT 

Pma1852         ATGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Pma5422         ATGCGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Pma6328A        ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

Pgy2411         ATGCACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGT 

                * ** ** ********************** *** *************** 

 

Ppi203          CGACGTTCTGGGGGATCGCCCATG 

Ppi202          CGACGTTCTGGGGGATCGCCCATG 

Ppi223          CGACGTTCTGGGGGATCGCCCATG 

Ppi283          CGACGTTCTGGGGGATCGCCCATG 

Ppi288          CGACGTTCTGGGGGATCGCCCATG 

Ppi374A         CGACGTTCTGGGGGATCGCCCATG 

Ppi390          CGACGTTCTGGGGGATCGCCCATG 

Ppi1452         CGACGTTCTGGGGGATCGCCCATG 

Ppi1456A        CGACGTTCTGGGGGATCGCCCATG 

Ppi1456B        CGACGTTCTGGGGGATCGCCCATG 

Ppi1456C        CGACGTTCTGGGGGATCGCCCATG 

Ppi1456D        CGACGTTCTGGGGGATCGCCCATG 

Ppi1456E        CGACGTTCTGGGGGATCGCCCATG 

Ppi1456F        CGACGTTCTGGGGGATCGCCCATG 

Ppi1939         CGACGTTCTGGGGGATCGCCCATG 

Ppi2889B        CGACGTTCTGGGGGATCGCCCATG 

PsyB728a        CGACGTTCTGGGGGATCGCCCATG 

Psy3023         CGACGTTCTGGGGGATTGCCCATG 

Pma1852         CGACGTTCTGGGGGATCGCCCATG 

Pma5422         CGACGTTCTGGGGGATCGCCCATG 

Pma6328A        CGACGTTCTGGGGGATCGCCCATG 

Pgy2411         CGACGTTCTGGGGGATCGCCCATG 

                **************** ******* 

 

* 
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4.2.3: PCR tests of the ILE variable end to observe if variation occurs.  

Although the results showed that the conserved region of the P. syringae 

ILEs are conserved across the tested pathovars, little was known about the 3’ 

end of the ILE, i.e. the variable region which in Ppi 203 contains the avrPpiA1 

effector gene. The first stage was to identify if the variable region is indeed 

variable. This was initially performed by using Ppi 203 as a template to design 

the primers, variF and variR (Table 2.2) to produce a variable end amplicon 

(Figure 4.5). This was to see if any of the ILE containing strains showed 

amplification of the region indicating that the region was the same as Ppi 203. 

The ILE variable end tests (Figure 4.6) showed that some of the strains did have 

the same region, same size band and sequence, as Ppi 203. However, other 

strains did not show amplification indicating possible variation or unsuccessful 

amplification due to experimental error.  

 

 

 

 

 

 

 

Figure 4.5: Position of variable end primers and the amplicon produced. 

The variable end primers designed from Ppi 203 will only amplify ILE variable 

ends that are the same as in Ppi 203, thus allowing observations into the variable 

end of multiple ILEs. 

 
 
 
 

 



 

101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Identifying if all of the potential ILEs have the same variable end 

via PCR. Primers designed from Ppi 203 would indicate that the variable ILE end 

was the same if a PCR product was seen (~800bp). Only seven strains, plus the 

positive control, produced products indicating variability. This was repeated twice 

with the same results. Hyperladder 1kb (Bioline, UK) was used. (Green coloured 

box represent positive amplification). 

No. Strain 

1 Ppi 203 (+) 

2 Ppi 202 

3 Ppi 223 

4 Ppi 283 

5 Ppi 288 

6 Ppi 374A 

7 Ppi 390 

8 Ppi 1456A 

9 Ppi 1456E 

10 Ppi 1939 

11 Ppi 2889B 

12 Psy B728a 

13 Psy 3023 

14 Pma 1852A 

15 Pma 5422 

16 Pma 6328A 

17 Negative control 
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The PCR results (Figure 4.6) showed that Ppi strains 223, 283, 288, 374A, 

1456E, 1939 and 2889B had the same variable end as Ppi 203 as they produced 

a fragment of the same length: sequencing of the PCR fragment was used to 

confirm this. The strong amplifications from the variable end PCR tests were 

sequenced including the fragments that were larger than expected. The 

sequences obtained were analysed and were identical to each other and to Ppi 

203, both in the rulB’ region and the variable end of the ILE. The only exception 

being that Pma 1852 had a variation in the conserved rulB’’ region that confirmed 

the ILE was inserted into an umuDC operon rather than rulAB.  

This was not unexpected as these results are in agreement with the 

conserved end tests. The next step was to determine why the other strains did 

not produce amplification products and how their ILE variable end was different 

from Ppi 203. This was achieved via whole genome sequencing. 

4.2.4: Analysis of bacterial genomes to assess ILE content and variability. 

Following the identification and analysis of 22 potential ILEs, 13 were 

found to contain the same genes as the ILE in Ppi 203 following PCR fragment 

sequencing. These strains included Ppi 223, 283, 288, 374A, 390, 1456A-F, 1939 

and 2889B.  The remaining eight potential ILEs were analysed following whole 

genome sequencing, except for Psy 3023 which had been previously sequenced 

by Thakur et al. (2016).  

The bioinformatics procedure following genome sequencing by 

MicrobesNG, (UK) produced numerical outputs (Table 4.2) in relation to the 

quality and read length of the sequencing. The figures were produced using the 

QUAST: Quality Assessment Tool for Genome Assemblies software 

(http://bioinf.spbau.ru/quast, Gurevich et al., 2013). This output from QUAST 
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provides the number of contigs that are above 1000bp, the total genome length, 

the number of contigs, the GC ratio and statistics associated with the genome 

assembly quality, N50 and L50. N50 is similar to the mean of the contig lengths. 

The two Pma strains that were re-sequenced had both genome reads assembled 

together to reduce the contig number and increase the length of the contigs. The 

same bioinformatic analysis was performed on this data (Table 4.3).  

Bioinformatics of the strains revealed a significant variation across six of 

the ILEs including different TTE genes (Figure 4.7). This included hopH1 and 

hopAP1 in the pathovar syringae strains and hopC1 in the glycinea pathovar. The 

genome sequences from two of the three Pma strains thought to contain an ILE 

showed that a similar pattern is present in regard to the disrupted rulB, or 

homologue, however the genome sequencing method resulted in the apparent 

ILE being split between multiple contigs. This meant that only a partial ILE map 

(Figure 4.8) for these two Pma strains could be deduced. One of the strains, Pma 

6328A, did not contain an ILE as previously thought.  

 

 

 

 

 

 

 

 

 

 

 



 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.7: Sequence analysis of ILEs from P. syringae pathovars.  ILE 

content maps from ILEs identified in P. syringae pv. pisi, pv. syringae and pv. 

glycinea which all contain at least one  type three effector molecule. Also included 

is two previously identified ILEs from P. fluorescens which both contain genes 

conferring heavy metal resistance to the host bacterium (Rhodes et al., 2014). 
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Figure 4.8: Partial ILE interpretation of genome sequence from Pma 1852A 

and 5422. Both of the Pma strains appear to have ILEs that resemble the others 

identified. The rulB homologue, umuC is disrupted by an insertion containing a 

xerC gene at the 5’ end. However due to contig breaks the entire ILE is not 

viewable in its entirety. The end of the umuC gene was identified. The variable 

end is not known and is represented by the green section and is based on other 

ILEs identified. The red slashes represent contig breaks. 
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4.3: Discussion 

In order to confirm the PCR tests that were carried out to identify potential 

ILEs (Chapter 3) the 22 potential ILEs had the conserved 5’ end amplified and 

sequenced. This showed that the ILEs were present within rulAB or a homologue 

and that all of the potential ILEs contain a conserved integrase at the 5’ end of 

the ILE (Figure 4.3). An interesting result emerged from sequencing the rulB’ to 

xerC region. Sequence analysis of P. syringae pv. maculicola 1852 returned with 

a sequence where the conserved 5’ end of the ILE was inserted into a region with 

high identity to the umuDC operon of E. coli rather than a rulAB operon. This was 

confirmed when the genome sequencing revealed the end of the disrupted umuC 

continued after the ILE insertion (Figure 4.7). This result was not unexpected as 

rulAB is a homologue of umuDC. It appears this result is not an anomaly as other 

ILEs have been identified within umuDC operons in Pantoea ananatis bacteria 

(Maayer et al., 2015). 

In addition, another piece of conserved sequence was identified that had 

been first identified by Rhodes et al., (2014). This piece of conserved sequence 

appears to always be 118/119bp in length in P. syringae pathovars and is in the 

intergenic region between the end of the disrupted rulB’ and the start of the ILE 

(xerC). This region was also present in all of the sequenced samples, but in this 

case is 124/125bp in length (Figure 4.4). It is not yet clear why this small region 

is conserved or its significance to ILE mobility and/or fitness, although it may be 

acting as an accessory genome region for site-specific recombination or as a 

promoter regulation site due to both a predicted -10 and -35 box being present. 

If this was the case it would explain the sequence conservation to facilitate 

promoter binding and gene expression. Once the abundance of ILEs was 

established and the question of whether they all have the same conserved end 
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was answered, the next step was to look at the variable end of the ILEs. This 

region of the ILE can contain a variety of genes including virulence genes. In the 

case of Ppi 203 it is avrPpiA1 (Arnold et al., 2000), antibiotic resistance in many 

bacteria including Vibrio species (Ploy et al., 2000) and heavy metal resistance 

genes such as sdiA, uspA and sulP which were all present on an ILE within P. 

fluorescens FH1 (Rhodes et al., 2014). The first step was to ensure the proposed 

variable end was variable. This was achieved by designing primers specific to the 

Ppi 203 sequence and the primers spanned a section from the end of the 

disrupted rulB, rulB’’ to inside the variable end of the ILE (~650bp).  

All of the strains that were positive for ILE insertion and had the conserved 

end sequenced were subjected to PCR amplifications, using the Ppi 203 variable 

end derived primers. Any amplification would suggest that the variable end is 

shared amongst those strains. Eight strains produced positive amplifications 

(Figure 4.6). These eight were sequenced and multiple alignment analysis 

showed that the variable ends shared high identity. The sequence analysis also 

showed that Pma 1852 had an umuDC operon rather than a rulAB operon, as 

discussed above. 

Many of the strains showed no amplification with the Ppi 203 derived 

primers, this indicated that some variation is present in the ILEs. The next step 

was to identify what was present in the variable end of these ILEs. This was not 

possible via normal PCR as the sequences were unknown so primers could not 

be designed, however the variable end was flanked by the rulB’’ region of rulAB 

and its sequence was known. This meant that a semi-degenerate amplification 

method (Manoil, 2000) could be used to try and amplify the variable end. The 

method works by using a two-step PCR and degenerate primers with target tags 

on (Section 4.2.1). 
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Once the semi-degenerate primer amplification was complete sequence 

analysis was performed to determine what genes are present in the variable end 

of the ILE. This method could be repeated to ‘walk’ further into the variable end if 

required. The semi-degenerate amplification method was ineffective at producing 

results for this study. All of the returned sequences were very short and not 

specific to any known ILEs. 

Another option to determine the variable end of an ILE was to sequence 

the entire bacterial genome and retrieve the entire ILE sequence from the data. 

Nine potential ILE containing strains, plus Ppi 203, had their genome sequenced 

using the services provided by MicrobesNG, (UK). 

Following ILE sequencing all 22 potential ILEs have been analysed. One 

strain, Pma 6328A, that was thought to contain an ILE did not contain one when 

its genome was analysed. The two Pma strain, 1852A and 5422 were re-

sequenced and the two read libraries were assembled into one genome 

sequence in the hope of reducing the number of contigs and increasing the length 

of the contigs so that the ILE sequence was not interrupted by the start or end of 

a contig. The assembly of the two read libraries resulted in a halving of the total 

number of contigs returned by SPAdes (Bankevich et al., 2012), (available here; 

http://cab.spbu.ru/software/spades/), but did not increase the length of the largest 

contigs which suggested that there were repetitive regions that prevented 

extension using paired-end short reads as used by MicrobesNG for sequencing.  

A way to overcome this would be to use mate paired end libraries or Pacific 

Biosciences sequencing which gives much longer reads of up to an average of 

10,000bp and a maximum of 60,000bp (PacBio;http://pacb.com/).  

Following this the potential ILEs in both Pma 1852A and 5422 were identified and 

it appears the ILE disrupts the rulB homologue, umuC. Due to the contig breaks 
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in the sequence caused by short read lengths it can only be hypothesised that 

the ILEs in Pma 1852A and 5422 follow the same patterns as the other ILEs 

(Figure 4.7; 4.8) and they may contain a TTE. It has been concluded that the 

identification of a potential ILE in Pma 6328A earlier in the research was a 

mistake due to cross contamination with another Pma strain. This was confirmed 

with a repeat PCR test that was negative for ILE insertion.  

The 21 available ILEs (Figure 4.7; 4.8) have been fully mapped via 

bioinformatics identifying both similarities and differences between the ILE 

content. All of the identified ILEs appear to be inserted into a rulB gene or a close 

homologue such as umuC; however, ILE insertions into other genes was not 

considered in this research. Insertion into rulB and its homologues is not 

unprecedented as multiple previous studies have shown mobile genetic elements 

to insert into these sites (Maayer, et al., 2015; Rhodes et al., 2014; Arnold et al., 

2000). This backs up the theory that the UV DNA damage repair polymerase V 

rulB gene is a hotspot for ILE insertion. At this moment it is not known why this 

site is chosen over a non-coding region, as there are no obvious genetic markers 

for an insertion event (Rhodes et al., 2014). 

Another feature that is shared across the ILEs is a conserved integrase 

gene at the start of the ILE. These integrase genes share high identity, >99%, to 

the phage integrase xerC. The integrase protein may have a role in ILE mobility 

or it may be involved in capturing and excising gene cassettes as they are 

required by the bacterium. The majority of the newly identified ILEs also have two 

further phage integrase genes following the initial xerC gene. The only exceptions 

are Ppi 1452A and Psy B728a which only contain the xerC integrase. It may be 

possible that these extra integrases have become redundant over time and have 

therefore been lost through evolution. The other possibility is that these 
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integrases play a role in ILE mobility and gene capture resulting in the ILE 

becoming fixed if these integrases are not present. This has been identified in 

other MGEs, GInts, which also have multiple integrase genes. When one 

integrase gene was non-functional the MGE was unable to integrate or excise 

itself (Bardaji et al., 2017). 

The final common feature between all of the ILEs currently analysed is that 

there is at least one TTE encoding gene present. These proteins play an 

important role in plant - microbe interactions and their presence on a potential 

mobile genetic element may indicate how bacterial plant pathogens are able to 

overcome host resistance by varying their TTE repertoire to avoid host detection 

(Jones and Dangl, 2006). For instance, if the effector on the ILE causes a plant 

immune response to be triggered then selective pressure will select for any 

bacterium that has lost the ILE and therefore the effector, resulting in a bypass of 

the plants immune response systems. This is a very similar mechanism to the 

one seen in Pph 1302A where a chromosomally located genomic island, PPHGI-

1, is excised and lost from the cell during cell division causing Pph 1302A to 

develop a disease phenotype where cells with PPHGI-1 present cause a HR 

(Neale et al., 2016). A bacterium can also become virulent by gaining TTE genes, 

such as avrRpt2 which promotes pathogen virulence on host plants lacking a 

functional RPS2 gene leading to disease proliferation in plants such as 

Arabidopsis thaliana (Chen et al., 2007). There are six different TTE genes on 

the analysed ILEs that encode AvrPpiA1, AvrPpiA2, AvrRpm1, HopH1, HopAP1 

and HopC1 (Figure 4.7). It is known that these proteins are TTEs but it is not 

known what protein family they belong to, although they are most likely enzymatic 

in nature. However AvrPpiA1, AvrPpiA2 and AvrRpm1 are homologues to each 
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other with only 10 amino acid exchanges across the 220 amino acids in the 

putative protein (Fritig and Legrand, 1993). 

The ILEs do not only vary in genetic composition, but also in length with 

the largest being 11.5kb and the smallest only 1.7kb. The smallest, Ppi 1452A, 

contains only one integrase gene and one TTE gene. However, the largest, Psy 

3023 is interesting as it is very similar to the ILE in Psy B728a and contains the 

same TTE genes. Although ILE 3023 is bigger due to the addition of genes 

related to transposons. 

The sequences surrounding the ILEs were also analysed to look for any 

genes that may benefit the ILE in terms of mobility and/or gene incorporation. 

However, no genes have been identified and also the nature of the short read 

length sequencing made it difficult to follow the entire stretch of sequence for 

some of the ILE strains. However a possible promoter region was identified within 

the intergenic region in all of the P. syringae strains (Figure 4.4). All of the strains 

showed identity with a -10 box and -35 box linked to a promoter region, TAGTAA-

N19-GGCTACGCT. This promoter region may drive ILE integrase expression.  

Following analysis the genetic makeup of the 21 newly identified ILEs is 

known. It will be possible to research them further and identify how and if they 

have the ability to move from chromosome to plasmid via rulAB sites, if there is 

a preference over which rulAB site insertion occurs at and whether a functioning 

rulAB operon is required. Expression profiles of the ILEs can also begin to assess 

what may cause the genes on the ILEs to be expressed and under what 

conditions.  
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Chapter 5. Expression studies of integrase and type three 

effector genes from two integron-like elements identified in 

Pseudomonas syringae.  

5.1: Introduction 

Following the identification of 21 ILEs from P. syringae (Chapter 4) 

research began into understanding when the ILE genes are expressed and how 

different conditions influence gene expression. The gene expression study 

focused on the integrase gene present in all of the identified ILEs, xerC, and also 

different TTE genes, avrPpiA1, hopH1 and hopAP1. All of the identified ILEs have 

at least one TTE gene present.  

 Although integrons and gene cassettes function as a combined genetic 

system, they have a two pronged approached when it comes to gene expression. 

Firstly, the integrase genes responsible for integron gene cassette excision and 

integration are controlled by the LexA mediated SOS pathway (Cambray et al., 

2011). Secondly, the expression of captured gene cassettes in the variable end 

of the integron are controlled by one of two promoters; Pc1 is located within the 

integrase gene facing the gene cassettes and Pc2 is located in the attI1 

integration site (Gillings, 2014). Promoters vary across different integrons and 

many vary in strength leading to differences in gene cassette expression (Hall 

and Collis, 1995; Lévesque et al., 1994) and integrons with weaker promoters 

often have higher excision and gene cassette turnover rates (Jové et al., 2010) 

(Figure 5.1). 
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Figure 5.1: Promoter regions in integrons belonging to classes 1, 2 and 3. 

A) Promoter, Pc1, located within the integrase gene to regulate gene cassettes, 

maximum expression of ~6 cassettes. B) Pc2, located by the attl1 integration site 

and acts the same as Pc1. C) Promoter Pc1 still present but internal gene 

cassette promoter also present to facilitate expression of genes further away from 

the Pc1 and Pc2 promoters. (Image from Gillings, 2014. Used with permission 

from American Society for Microbiology). 

There has been previous studies that show a link between stress, the 

activation of the SOS response and the expression of integron integrases 

(Cambray et al., 2011). This link may also be present in the newly identified ILEs 

in this study. An upregulation of xerC is beneficial in times of stress and DNA 

damage, as new gene cassettes may be available for the ILE to capture via xerC 

mediated integration to overcome the current environmental stress (Cambray et 

al., 2011). The integron integrase is under the control of the LexA repressor 

protein that has a binding domain (CTGTatatatatACAG) in the integrase promoter 

region of multiple integrons. The LexA repressor protein is only released following 

extreme bacterial stress such as DNA damage caused by UV irradiation. The 

ssDNA formed following DNA damage and stress causes the activation of the 

SOS/RecA pathway which induces the autoproteolytic cleavage of LexA (Sundin 

and Weigand, 2007). Integron integrases become upregulated and promote 

genetic variation by capturing and excising gene cassettes in times of stress. 

Pc1 Pc1 

Pc2 Pc2 

Internal promoter Pc1 
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However no LexA binding motif appears to be present in the ILE xerC region. The 

rulB encoded polymerase V is also under the regulation of LexA as there is a 

binding domain present upstream of the rulA gene of the rulAB operon (Kim and 

Sundin, 2000). The SOS regulation of rulB may also regulate the ILE integrase 

genes. LexA repression of integron integrases also freezes the integrons’ genetic 

content when the bacteria are in a steady environment (Cambray et al., 2011). 

Once the gene cassettes are incorporated into the integron their 

expression is under different regulation. Promoters within the integrase gene 

(Pc1) can drive the expression of gene cassettes, but promoter strength can be 

an issue. As the cassettes get further away from the Pc1/2 promoter their 

expression levels drop due to the increase in distance (Collis and Hall, 1995). 

This often leads to integrons containing no more than six separate gene cassettes 

if only Pc1/2 is present (Coleman and Holmes, 2005). Although promoters Pc1 

and 2 function sufficiently for integrons containing less than six gene cassettes 

they do not facilitate gene expression for large chromosomal super-integrons that 

often contain over 100 gene cassettes. The super-integron in Vibrio cholerae 

contains 179 gene cassettes (Rowe-Magnus et al., 1999). In larger integrons the 

gene cassettes further away from the integrase promoter are either 

transcriptionally silent and act as gene cassette reservoirs (Coleman and 

Holmes, 2005) or the gene cassettes contain their own internal promoters that 

can also regulate the expression of other gene cassettes downstream (Figure 

5.1c) (Gillings, 2014). There have also been cassettes identified that have no 

ORFs and may be promoters in their own right (Holmes et al., 2003). Some 

integrons may also overcome weak promoters by rearranging the gene cassettes 

so that when important genes are needed they are strongly expressed.  



 

117 

All of the expression studies in the literature have been done on ‘true’ class 

one, two and three integrons rather than integron-like elements (ILEs) found in 

Pseudomonas syringae. It is hypothesised that the xerC integrase gene present 

in all of the identified Pseudomonas syringae ILEs (Chapters 3 and 4) acts in a 

similar way to the integron integrase gene in terms of being regulated by the SOS 

response. This was further indicated as the rulAB promoter may control the 

expression of ILE integrase under the regulation of the LexA repressor protein, 

as a LexA binding site can be found upstream of rulAB (Jackson et al., 2011). 

The rulB gene is disrupted by ILE insertion in P. syringae and other 

Pseudomonas species. This was why rulB’ expression was also included in this 

set of experiments. 

Another difference between ILEs and integrons is the expression of 

captured genes in the ILE variable end. All of the ILEs from P. syringae pathovars 

contain TTE gene(s) in the reverse orientation of ‘true’ integrons so that 

transcription begins at the 3′ end of the ILE and therefore cannot be under the 

regulation of the Pc1 or Pc2 promoters (Figure 5.1); (Rhodes et al., 2014). In 

addition, there may be Pint promoters present in or close to the ILE xerC integrase 

gene as seen in the previous chapter by the identification of the -10 and -35 

boxes. However this promoter would not express the TTE gene(s) as they are 

transcribed in the opposite direction. The TTE genes present on the ILEs may 

have their own promoters and regulation via a hrp box, although this is not known.  

TTE gene expression was predominantly tested using plant apoplastic 

fluid and in planta growth. Three different cultivars of bean were used: 

Tendergreen (TG); Canadian Wonder (CW); Red Mexican (RM). These will all 

produce a HR reaction with Ppi 203, but disease will be seen with Psy 3023. 

Pisum sativum (Pea) cv. Kelvedon Wonder (KW) was also used which is 
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susceptible to Ppi 203 and a disease response is seen. This gene expression 

study was used to identify if there are any similarities in gene expression across 

the xerC integrases, other ILE integrases present and TTE genes from two 

characterised ILEs from P. syringae pv. pisi 203 and P. syringae pv. syringae 

3023. The study would also allow comparison to previously studied integrons and 

if any indications can be deduced about how the genes in the ILE variable end 

are expressed when the bacterium are under stresses such as UV, sub-optimal 

temperatures, DNA damaging agents, bacterial conjugation, in planta stress and 

plant apoplastic fluid (fluid around the plant cells where P. syringae colonises).  

The gene expression profiles were analysed using reverse-transcription 

quantitative PCR (RT-qPCR). RT-qPCR can be used to measure gene 

expression in relation to the base line gene expression of housekeeping genes, 

such as DNA gyrase subunit B (gyrB), citrate synthase (cts), glyceraldehyde-3-

phosphate dehydrogenase A (gapA) and RNA polymerase sigma factor (rpoD) 

(Berge et al., 2014). Although multiple housekeeping genes can be used when 

analysing bacterial gene expression, one housekeeping gene is sufficient. In 

many studies, including this one, gyrB was used as the housekeeping gene 

(Martens et al., 2008; Teramoto et al., 2007). DNA gyrB is an enzyme that 

promotes DNA supercoiling (Wigley et al., 1991) and was constitutively 

expressed to the same Ct value for all tested conditions in this study. DNA gyrB 

has also been used in previous RT-qPCR studies on phytopathogenic 

Pseudomonads (Takle et al., 2007). Using a housekeeping gene allows 

quantification and normalisation, to account for differences in bacterial strain 

gene expression.  

 The most commonly used fluorophore technologies are TaqMan, 

developed by Applied Biosystems, and SYBR Green. This study used TaqMan. 
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However, both technologies have their advantages and limitations. SYBR Green 

is produced by multiple manufacturers resulting in cheaper prices whereas 

TaqMan is more expensive. Although, TaqMan is up to 10,000 fold more sensitive 

than SYBR Green (Zhou et al., 2017) and also works with predesigned assays 

whereas SYBR Green often requires experimental optimisation. SYBR Green 

also requires more downstream analysis than TaqMan. This is due to both 

technologies using different approaches to quantify gene expression and gene 

amplification. SYBR Green is a non-specific intercalating dye that accumulates 

within the DNA as it is amplified resulting in more dye for genes that have higher 

expression levels (Figure 5.2A). TaqMan is sequence-specific and uses primers 

and a probe designed from the gene of interest. The region amplified is usually 

short, ~30/40bp, with the probe situated between the two primers (Figure 5.2B). 

TaqMan probes are labelled with a fluorescent reporter and quencher, which are 

maintained in close proximity until hybridization to the target DNA occurs. The 

reporter fluorophore, fluoroscein (FAM) and fluorescent quencher, rhodamine 

(TAMRA) are bound to the 5′ and 3′ ends of the probe respectively (van Guilder 

et al., 2008). With no amplification and low expression of the target gene the 

reporter and quencher remain in close proximity and no fluorescent signal is 

detected. Once amplification begins the reporter and quencher fluorophores are 

released from the probe and the reporter fluorescence is detected. Gene 

expression is measured by the quantity of RNA produced under defined 

conditions. The more RNA present the more the gene is being expressed. RNA 

is extracted and purified from the sample and reverse transcription forms copy 

DNA (cDNA) that can be quantified by RT-qPCR. This step is required as RNA is 

unstable and Taq polymerase is unable to recognise uracil in RNA (Alcamo, 

1999). 
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Figure 5.2: Comparison of RT-qPCR technologies; SYBR Green and 

TaqMan. Both technologies are based on the measure of fluorescence to quantify 

amplified DNA. SYBR Green (A) intercalates with dsDNA and as the target is 

amplified the SYBR Green accumulates, non-target dsDNA also accumulates 

SYBR Green resulting in further analysis needed. TaqMan (B) uses sequence 

specific primers and probes for detection. The probe contains a fluorophore 

reporter and a quencher resulting in a fluorescent signal only when the target is 

amplified; more copies of a gene the more fluorescence.  

A 
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5.2: Results 

5.2.1: Checking apoplastic fluid preparations. 

5.2.1a: Confirmation that apoplastic fluid contains no cell lysate 

contamination via a malate dehydrogenase assay. 

            Plant apoplastic fluid was used as one of the stresses during the ILE gene 

expression research. It was important to check that the apoplastic fluid 

preparations were not contaminated by cell lysate as this would change the gene 

expression due to other enzymes present inside the cell. The check was 

performed via a malate dehydrogenase assay as malate dehydrogenase is 

present in the cell cytoplasm and its activity can be measured via the oxidisation 

of NADP to NAD+ at 340nm. The results (Table 5.1) showed some enzyme 

activity for the apoplastic preparations (between 0.15-0.47 U/ mL), but this was 

far lower than the enzyme activity for the cell lysate preparations which ranged 

from 2.76-4.42 U/ mL. The positive malate dehydrogenase test which used 

standard malate dehydrogenase in place of the apoplastic fluid also showed 

higher levels of enzyme activity at 4.52 U/ mL, and the negative water only control 

was low at 0.02 U/ mL. 
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Table 5.1: Malate dehydrogenase assay on prepared plant apoplastic fluids 

and plant cell lysate preparations. Four different apoplastic fluids were 

checked for cell lysate contamination via a malate dehydrogenase assay. Cell 

lysate (CL) preparations were also included to ensure malate dehydrogenase 

was present inside the cells. Malate dehydrogenase (MDH) and water acted as 

the positive and negative controls respectively. Three replicates per preparation 

were measured. TG; Tendergreen bean, CW; Canadian Wonder bean, RM; Red 

Mexican bean. 

 

 

5.2.1b: Determining relative concentration of apoplastic fluids. 

 Before the extracted apoplastic fluids could be used for gene expression 

studies its’ concentration had to be determined and normalised to the same 

starting concentration. This ensured any differences in gene expression when 

grown in apoplastic fluid was due to the stress and not due to some reactions 

containing a higher concentration of apoplastic fluid than others. To determine 

the concentration of the apoplastic fluid preparations indigo carmine was used to 

assay the relative concentration of protein in the samples (Table 5.2). The 

apoplastic fluid preparations were then standardised to the same starting 

concentration for all experiments. 

 

   

Apo. Av. rOD340/min Activity U/mL ±S/D

TG 0.04 0.36 ±0.2

CW 0.02 0.15 ±0.1

RM 0.03 0.32 ±0.1

Pea 0.05 0.47 ±0.1

Water 0.00 0.02 ±0.0

TG CL 0.45 4.42 ±0.6

CW CL 0.40 3.88 ±0.3

RM CL 0.43 4.23 ±0.3

Pea CL 0.28 2.76 ±0.1

MDH 0.46 4.52 ±0.5
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Apoplastic fluid concentration assay using Indigo Carmine (IC) Norm. to a dil. factor of 1 in 5mL

AWF Preps. Av. OD610 without Av. OD610 with Difference between both Apo. fluid dil. AWF vol. (uL) H2O vol. (uL)

IC added IC added OD610 measurements factor

Infiltrate (H2O) 0.000 0.106 0.106 N/A N/A N/A

Tendergreen 0.057 0.069 0.011 1.119 4467.08 532.92

Canadian Wonder 0.180 0.214 0.034 1.470 3401.25 1598.75

Red mexican 0.085 0.094 0.009 1.096 4561.13 438.87

Kelvedon Wonder 0.115 0.143 0.028 1.357 3683.39 1316.61

Table 5.2: Relative concentrations of different apoplastic fluid preparations 

and normalisation data. The table shows the indigo carmine assay (IC) results 

from four different apoplastic fluid preparations (AWF) plus the infiltrate media 

(water) used as a control. Alongside the IC assay results are the results without 

any IC added. These values are then used in the following equation; Apoplast 

dilution factor = OD610infiltrate / (OD610infiltrate - OD610AWF). 

  

 

 

 

 

 

 

 

 

 

 

5.2.2: Expression of P. syringae pv. pisi 203 ILE genes. 

Gene expression experiments were performed on the ILE in P. syringae 

pv. pisi 203. The ILE contains four genes, three integrases and a TTE gene, all 

of which were studied along with a recombinase gene, rci, which is outside the 3’ 

end of the ILE and disrupted rulB’ gene present at the 5’ end of the ILE (Figure 

5.3).  

 

 

Figure 5.3: P. syrinage pv. pisi 203 ILE genetic makeup. The ILE contains 

seven open reading frames along with the disrupted rulB gene. 1; rulA, 2; rulB’, 

3; xerC, 4; ORFE int, 5; ORFD int, 6; avrPpiA1, 7; rulB’’, 8; rci. Genes 2, 3, 4, 5, 

6 and 8 were chosen for gene expression analysis. 

  

 The ILE gene expression profiles were recorded following various stresses 

and compared to no stress controls such as minimal media and no UV treatment. 
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Stresses included UV exposure, DNA damage, extreme temperatures and 

bacterial conjugation. All of the tests were replicated three times with independent 

biological replicates and standard errors of the mean were calculated based on 

these three measurements (Section 2.14). All significant differences were 

measured to p<0.05. 

5.2.2a: Expression of P. syringae pv. pisi 203 ILE genes following 

inoculation into plant apoplastic fluid. 

 ILE gene expression was measured following six hours of bacterial 

inoculation in Tendergreen bean (TG), Canadian Wonder bean (CW), Red 

Mexican bean (RM) and Kelvedon Wonder (KW) pea apoplastic fluids and 

compared to a minimal media (MM) control. All of the genes tested showed 

variations in expression depending on plant apoplastic fluid used (Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: ILE gene expression heat map from P. syrinage pv. pisi 203 

when tested in plant apoplastic fluid. Six ILE genes from Ppi 203 tested for 

expression following bacterial growth in TG, CW, RM bean and KW pea 

apoplastic fluid for six hours. The blue/ red spectrum represents increasing gene 

expression from 0 to 10 times the expression of the MM control of one. (Full X-

fold values available in Appendix IV).   

 



 

125 

 The results show some of the conditions used caused a down regulation 

in gene expression compared to the MM control, such as the effect of KW pea 

apoplastic fluid on ILE xerC expression, which decreased to below 0.5 times the 

expression compared to MM and TG apoplastic fluid on rci expression which also 

decreased to below 0.5 times the expression compared to MM (Appendix IV). 

However some conditions did upregulate genes, such as rci when in RM 

apoplastic fluid led to an upregulation of between five and ten times compared to 

MM (Figure 5.4). The ILE integrase gene xerC, for example, was downregulated 

in all of the conditions when compared to MM. However, some genes were 

upregulated. This included both ORFD and ORFE integrases being upregulated 

on treatment with TG, CW and KW pea apoplastic fluid. The rulB gene was also 

upregulated between 1 and 5 times, but only in TG or CW apoplastic fluid.  

 The TTE, avrPpiA1, showed some interesting expression profiles (Figure 

5.5). AvrPpiA1 appears to be upregulated the most; over 10 times the expression 

compared to MM, when in KW pea apoplastic fluid which is the host plant of Ppi 

203. The avrPpiA1 gene was the only gene to upregulated in all of the apoplastic 

fluid. The TTE gene had an x-fold increase of 12.7 ± 2.3 in KW pea apoplast and 

6.2 ± 2.1 fold increase in CW apoplast. TG and RM apoplast also showed an x-

fold increase of 2.5 ± 0.7 and 3.00 ± 0.9 respectively (Figure 5.5). 
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Figure 5.5: Gene expression of avrPpiA1 from P. syringae pv. pisi 203 ILE 

in plant apoplast. Gene expression was measured via RT-qPCR following six 

hours of growth in plant apoplastic fluids. X-fold differences in gene expression 

were compared to the control MM condition and normalised against DNA gyrB. 

Three replicates per condition were tested and their mean values are displayed 

with standard error of the mean. (T-test and Tukey statistical analysis was used 

for significant differences [p<0.05] shown by letters above the bars). 

5.2.2b: Expression of P. syringae pv. pisi 203 ILE genes following 

inoculation in planta. 

 The expression of ILE genes from Ppi 203 exhibited similar patterns in 

planta to the gene expression seen when the bacteria was incubated with 

apoplastic fluid. The TTE, avrPpiA1 (Figure 5.6), showed the highest expression 

in KW pea in planta of 30.8 ± 5.9 times the expression of the control as Ppi 203 

causes disease in KW pea. This was over twice the expression seen in the KW 

pea apoplastic fluid which was 12.7 ± 2.3 times. All three bean cultivars showed 

an increase in avrPpiA1 expression with CW being the highest of the three at 6.0 

± 1.0 times the control expression. RM was slightly higher than the control at 1.3 

± 0.1 times, but this was not significant.TG showed 1.9 ± 0.3 times the expression 
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of the control. These values were lower than in KW pea as Ppi 203 causes HR 

on bean cultivars. This was expected as TTEs are crucial to plant colonisation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Gene expression of avrPpiA1 from ILE P. syringae pv. pisi 203 

in planta. Gene expression was measured via RT-qPCR following six hours of 

growth in planta of three bean cultivars, TG, CW and RM and in KW pea. X-fold 

differences in gene expression were compared to the control MM condition and 

normalised against DNA gyrB. Three replicates were tested and their mean 

values are displayed with standard error of the mean. (T-test and Tukey statistical 

analysis was used for significant differences [p<0.05] shown by letters above the 

bars).  

 

The remaining ILE genes (Figure 5.7) were mostly downregulated with the 

xerC integrase gene being downregulated to below 0.5 times for all of the in 

planta conditions, this was also the case for the rci gene which was 

downregulated by all of the in planta conditions. The two further ILE integrase 

genes did show some upregulation in gene expression of between one and five 

times for TG, CW and KW pea, but was down regulated in RM. The rulB’ region 

was only upregulated in RM, to 12.0 ± 2.6 times the control, but in all of the other 
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conditions it was downregulated to 0.1 ± 0.0 times for TG, 0.5 ± 0.2 times for CW 

and 0.5 ± 0.1 times for KW pea. 

 
Figure 5.7: ILE gene expression from P. syringae pv. pisi 203 when tested 

in planta. Six ILE genes from Ppi 203 tested for expression following bacterial 

growth in TG, CW and RM beans and KW pea for six hours. The blue/ red 

spectrum represents increasing gene expression from 0 to 10 times the 

expression of the MM control (Full X-fold values available in Appendix IV).   

 

5.2.2c: Expression of P. syringae pv. pisi 203 ILE genes following bacterial 

conjugation with E. coli DH5α. 

 Ppi 203 was subjected to conjugation between Ppi 203, E. coli DH5α and 

E. coli DH5α (pRK2013) (Figure 5.8). These results were interesting as five of the 

six ILE genes were downregulated compared to the MM control and rci was 

downregulated to 0.2 ± 0.0 times the expression. The three integrase genes at 

the 5’ end of the ILE were all downregulated to similar values with both xerC and 

ORFD int being downregulated to 0.5 ± 0.1 and 0.40 ± 0.1 times expression 

respectively, which showed no significant difference between the two. The rulB’ 
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region was also downregulated a similar amount as the integrase genes. The 

ORFE integrase was also downregulated, but not as much as the other 

integrases, to 0.6 ± 0.1 times expression. As showed with the apoplastic and in 

planta tests, avrPpiA1 had the highest gene expression, although during 

conjugation it only reached 1.0 ± 0.1 times the expression of the MM control and 

was not significantly different from the MM control. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Gene expression of P. syringae pv. pisi ILE genes following 6 

hours of conjugation with E. coli DH5α and E. coli DH5α (pRK2013). Gene 

expression was measured via RT-qPCR following six hours of bacterial 

conjugation with two E. coli strains. X-fold differences in gene expression were 

compared to the control MM condition and normalised against DNA gyrB. Three 

replicates per condition were tested and their mean values are displayed with 

standard error of the mean. (T-test and Tukey statistical analysis was used for 

significant differences [p<0.05] shown by letters above the bars).  

 

5.2.2d: Effect of mitomycin C on bacterial growth. 

The effect of mitomycin C (MMC) on bacterial growth was tested to 

observe any links between growth and gene expression and to also observe if 

complete cell death was caused by any of the concentrations used which would 
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have resulted in minimal or zero gene expression. Four different MMC 

concentrations were chosen, 0.05 µg/ mL, 0.1 µg/ mL, 0.5 µg/ mL and 1 µg/ mL. 

Ppi 203 and Psy 3023 (Figure 5.9) were both tested and viable cell counts were 

performed and colony forming units (CFU) / mL were calculated (see Section 2. 

14.5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Viable counts of Pseudomonas syringae pv. pisi 203 and pv. 

syringae 3023 following growth in media containing mitomycin C for six 

hours. The cells were incubated in MM broth plus 0.05 µg/ mL, 0.1 µg/ mL, 0.5 

µg/ mL and 1 µg/ mL MMC for six hours with subsequent growth on LB agar 

plates for 48 hours at 25oC. A MM control was used as a control with no MMC 

present. All tests were performed in triplicate with standard deviation error bars 

shown.  

 

As the Ppi 203 growth results show (Figure 5.9) the MMC did have an 

impact on cellular growth as with each increase in MMC concentration CFU/ mL 

decreased. However the highest concentration of MMC, 1 µg/ mL, did not cause 

complete cell death, but cellular growth was reduced. The growth of Psy 3023 in 

MMC shows a similar trend to Ppi 203 although the CFU/ mL values for Psy 3023 
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are lower for every MMC concentration. At the highest MMC concentration of 1 

µg/ mL only one viable colony (data not shown) was present on two of the three 

plates and the third plate had no colonies present. This compared to Ppi 203 

which had an average colony count of 15 at the highest MMC concentration. This 

difference may be due to more Ppi 203 cells being present at the start of the 

experiment.   

These four concentrations of MMC were chosen as bacterial growth in 

MMC studies showed that these values caused a reduction in growth but do not 

kill all of the cells and therefore these concentrations caused a suitable bacterial 

stress (see Sections 5.2.2e and 5.2.3e for gene expression results).  

 

5.2.2e: Expression of P. syringae pv. pisi 203 ILE genes following exposure 

to increasing concentrations of mitomycin C. 

 It was hypothesised that some of the ILE genes may be regulated by the 

SOS response following DNA damage. To test this Ppi 203 was incubated for six 

hours with MMC, a DNA damaging agent which creates DNA crosslinks. The 

gene expression profiles of MMC treated cells (Figure 5.10) showed that some 

ILE gene expression appears to increase as the dose of MMC increases 
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Figure 5.10: ILE gene expression from P. syringae pv. pisi 203 when 

incubated for six hours with the addition of mitomycin C. Six ILE genes from 

Ppi 203 tested for ILE gene expression following bacterial growth in media 

supplemented with either 0.05, 0.1, 0.5 or 1 µg/ mL MMC. Cells were incubated 

for six hours prior to expression analysis. The blue/ red spectrum represents 

increasing gene expression from 0 to 35 times the expression of the zero MMC 

control (Full X-fold values available in Appendix IV).   

 

 

 The expression of rulB’ did not reach the same level as the MM control 

and stays at zero for all of the MMC doses except for 0.05 µg/ mL MMC where 

expression reaches 0.5 ± 0.1 times the control. However, for the other ILE genes, 

expression increases greatly with 0.5 µg/ mL MMC, with xerC at 9.2 ± 0.1 times 

the control expression, avrPpiA1 at 14.9 ± 1.8 and rci at 8.4 ± 0.4 times the control 

expression. The expression increases again with 1 µg/ mL MMC with xerC at 39.3 

± 0.2 times the control expression, avrPpiA1 at 30.7 ± 0.7 and rci at 28.7 ± 1.3 

times the control expression. 
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5.2.2f: Expression of P. syringae pv. pisi 203 ILE genes following exposure 

to increasing doses of UVB irradiation. 

 The UV tests on ILE gene expression were performed following a similar 

hypothesis to that of the MMC experiments. UVB causes DNA damage and 

increased ssDNA which activates the SOS response. Ppi 203 was subjected to 

four different doses of UVB irradiation (302nm), 15, 30, 45 and 60 seconds along 

with a no UVB control test (Figure 5.11). 

    

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Gene expression of ILE P. syringae pv. pisi 203 avrPpiA1 

following UVB irradiation (302nm) for different exposure times. Ppi 203 cells 

were exposed to UVB irradiation for either 15, 30, 45 or 60 seconds and 

subsequently recovered in LB broth for six hours. The x-fold expression for 

avrPpiA1 was normalised against the expression of avrPpiA1 with no UVB 

irradiation. Three replicates per condition were tested and their mean values are 

displayed with standard error of the mean. (T-test and Tukey statistical analysis 

was used for significant differences [p<0.05] shown by letters above the bars). 
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Interestingly the gene expression of avrPpiA1 increased in a dose 

dependent manner with the UVB exposure. The longer the bacterium were 

exposed to UVB irradiation the greater the expression of avrPpiA1. The 

expression of avrPpiA1 started at 1.3 ± 0.2 times the control with only 15 seconds 

of UVB irradiation, but increased with 60 seconds of UVB irradiation to 19.7 ± 2.3 

times the avrPpiA1 gene expression of the no UVB control. This dose dependent 

response to UVB irradiation was also seen for some of the other ILE genes 

including the two integrase ORFD and E along with xerC and the rci gene (Figure 

5.12). The rulB’ expression levels were different to the other genes as rulB’ had 

very low expression for the first three exposure levels with the values all equal to 

or below one. However, with the 60 seconds of UVB exposure the expression of 

rulB’ increased to 5.4 ± 1.8 times the no UVB control expression level (Figure 

5.12) 

 

 

 

 

 

 

 

 

Figure 5.12: ILE gene expression from P. syringae pv. pisi 203 following 

exposure to UVB irradiation for 15, 30, 45 and 60 seconds. The heat map 

shows the relationship between increasing UVB exposure and gene expression 

of all four ILE genes plus rci and rulB’.  The blue/ red spectrum represents 

increasing gene expression from 0 to 12 times the expression of the no UV control 

(Full X-fold values available in Appendix IV).    
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5.2.2g: Expression of P. syringae pv. pisi 203 ILE genes when stressed by 

sub-optimal growth temperatures. 

ILE gene expression tests on Ppi 203 were performed using different sub-

optimal temperatures during the growth of Ppi 203 over the course of six hours.  

The ILE gene expression results from this test did not show a lot of gene 

expression with many of the genes having lower expression levels than the 

bacterial cells grown at the optimal temperature of 25oC (Figure 5.13). There were 

some slight exceptions to this rule which included xerC expression when grown 

at 4oC. However, this was only an expression increase of 0.1 ± 0.1, from the 25oC 

control of one. The ORFD integrase also showed some slight increases in gene 

expression when subjected to -80oC and 4oC as the expression levels were 

increased to 1.2 ± 0.0 and 1.3 ± 0.0 respectively.   

 

 

 

 

 

 

 

 

 

 

Figure 5.13: ILE gene expression from P. syringae pv. pisi 203 following 

growth at different sub-optimal temperatures. This shows that many of the 

genes were downregulated compared to the control and even the one that were 

upregulated were only upregulated to a maximum of 1.4 times the control 

expression level. If the threshold was higher than 2 like in previous heat maps 

then the grid would be entirely blue due to the low expression levels.  The blue/ 

red spectrum represents increasing gene expression from 0 to 2 times the 

expression of the 25oC control (Full X-fold values available in Appendix IV).   
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5.2.3g: Summary of ILE integrase and TTE gene expression from P. 

syrinage pv. pisi 203.   

 The data for all of the gene expression levels of the ILE in Ppi 203 were 

pooled and used to create a gene expression heat map matrix to allow 

comparison of ILE gene expression under different conditions with the same 

scale (Figure 5.14). This is the same data as shown in the previous figures but 

all under the same scale bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Heat map matrix of ILE Ppi 203 gene expression following 

various bacterial stresses. The matrix comprises the expression levels of six 

different ILE associated genes under six different types of bacterial stress, plant 

apoplastic fluid, in planta, bacterial conjugation with E. coli, mitomycin C, UVB 

irradiation and sub-optimal temperature. The blue/ red spectrum represents 

increasing gene expression from 0 to 15 times the expression of the control. (A 

full report of mean X-fold values is available in Appendix IV). 
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5.2.3: Expression of P. syringae pv. syringae 3023 ILE genes. 

 Following the gene expression studies on the ILE in Ppi 203 another ILE 

was selected for the same gene expression tests. The ILE identified in P. syringae 

pv. syringae (Psy) 3023 was chosen to compare ILE gene expression across two 

different systems. Similar genes are present in Psy 3023 and Ppi 203 as both 

contain three integrase genes at the 5’ end and they both contain type three 

effector (TTE) genes. There are some differences between the ILEs as Psy 3023 

contains two TTE compared to Ppi 203 only having one and the Psy 3023 ILE 

also contains a large transposon-like insertion making it 7.2kb longer. The genes 

studied from ILE Psy 3023 were the xerC integrase, the two TTE, HopH1 and 

HopAP1 and the smaller fragment of the disrupted rulB gene, rulB’ (Figure 5.15). 

The expression of these genes was compared to gyrB. All significant differences 

were measured to p<0.05. 

    

 

 

Figure 5.15: Genetic makeup of ILE from P. syringae pv. syringae 3023. The 

ILE in Psy 3023 contains 11 open reading frames plus the disrupted rulB gene. 

1; rulA, 2; rulB’, 3; xerC, 4 and 5; int, 6; hopH1, 7; transposase, 8; recombinase, 

9; hypothetical, 10; resolvase, 11; hopAP1, 12; rulB’’. From these 12 regions 2, 

3, 6 and 11 were chosen for gene expression studies. 
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5.2.3a: Expression of P. syringae pv. syringae 3023 ILE genes following 

inoculation into plant apoplastic fluid. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: ILE gene expression heat map from P. syringae pv. syringae 

3023 when grown in plant apoplastic fluid. Four ILE genes from Psy 3023 

tested for expression following bacterial growth in bean and KW pea apoplastic 

fluid for six hours. The blue/ red spectrum represents increasing gene expression 

from 0 to 8 times the expression of the MM control (Full X-fold values available in 

Appendix IV).   

 

ILE gene expression was measured following bacterial growth in plant 

apoplastic fluid for six hours with MM as the control. The expression of the first 

ILE gene, xerC, showed no increase in gene expression when TG and RM 

apoplastic fluid was tested. TG produced an x-fold difference of 0.7 ± 0.2 and RM 

was 0.5 ± 0.1. However, expression of xerC did increase when Psy 3023 was 

grown in both CW and KW pea apoplastic fluid. CW caused an increase in 

expression to 7.5 ± 3.7 times the MM control and KW pea increased expression 

by 11.6 ± 4.0 times. CW apoplastic fluid also increased the expression of the 

other genes tested. HopH1 expression increased by 1.8 ± 0.4, hopAP1 increased 

by 2.2 ± 0.8 and rulB’ increased by 4.4 ± 1.8. The majority of the other genes 
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were either downregulated below the control expression level or were the same 

as the control. One exception of this was hopH1 expression in RM apoplastic fluid 

where the expression of hopH1 increased by 2.3 ± 1.0 times (Figure 5.16). This 

also showed uncoupled regulation between rulB’ and xerC indicating they do not 

share a promoter. 

5.2.3b: Expression of P. syringae pv. syringae 3023 ILE genes following 

inoculation in planta. 

Following the apoplastic fluid expression tests it was important to assess 

if similar expression patterns are observed in planta. To do this Psy 3023 was 

inoculated into TG, CW, RM bean and KW pea plants and incubated for six hours. 

Some similarities were seen between the data for apoplastic fluid treatment and 

in planta studies (Figure 5.17). Changes in TTE expression may be due to Psy 

3023 causing disease in bean cultivars but HR in the KW pea.  

 

 

 

 

 

 

 

 

 

Figure 5.17: ILE gene expression from P. syringae pv. syringae 3023 when 

tested in planta. The four ILE genes from Psy 3023 had their gene expression 

profiles analysed bacterial growth in TG, CW and RM beans and KW pea for six 

hours. The blue/ red spectrum represents increasing gene expression from 0 to 

6 times the expression of the MM control (Full X-fold values available in Appendix 

IV).   
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 The xerC gene was also upregulated in both CW and KW pea in planta by 

3.6 ± 0.7 and 14.5 ± 3.4 times the control expression. Similar to the apoplastic 

fluid expression studies, CW causes both TTE genes to become upregulated to 

2.5 ± 0.3 for hopH1 and 5.3 ± 1.0 for hopAP1. Some differences do occur with 

the rulB’ expression, as in planta CW tests failed to produce the increase in rulB’ 

expression seen in the CW apoplastic fluid. A final point about the in planta test 

was that TG shows slightly higher expression of all the genes compared to the 

TG apoplastic fluid tests.  

 

5.2.3c: Expression of P. syringae pv. syringae 3023 ILE genes following 

bacterial conjugation with E. coli DH5α. 

 Bacterial conjugation between Psy 3023 and E.coli DH5α caused all of the 

genes on the ILE to be upregulated. The only gene to be downregulated by 

bacterial conjugation was the rulB’ gene (Figure 5.18). This indicates that 

bacterial conjugation may have a role in ILE movement and dissemination in the 

case of Psy 3023 as this result was not seen with Ppi 203.  
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Figure 5.18: Gene expression of ILE P. syringae pv. syringae 3023 genes 

following 6 hours of conjugation with E. coli DH5α and E. coli DH5α 

(pRK2013) together. Gene expression was measured via RT-qPCR following six 

hours of bacterial conjugation with two E. coli strains. X-fold differences in gene 

expression were compared to the control MM condition without conjugation and 

normalised against DNA gyrB. Three replicates per condition were tested and 

their mean values are displayed with standard error of the mean. (T-test and 

Tukey statistical analysis was used for significant differences [p<0.05] shown by 

letters above the bars).  

 

As figure 5.18 shows, the xerC gene present on the ILE was upregulated 

by conjugation to 12.3 ± 2.4 times the expression of the no conjugation control. 

HopH1 and hopAP1 were also upregulated by 40.4 ± 6.9 and 23.2 ± 3.8 times 

the control respectively. The rulB’ gene was slightly upregulated to 1.6 ± 0.5, 

however this increase in gene expression was not significantly different from the 

no conjugation control.  



 

143 

5.2.3d: Expression of P. syringae pv. syringae 3023 ILE genes following 

exposure to increasing concentrations of mitomycin C. 

 The gene expression of the ILE in Psy 3023 was different from the gene 

expression seen in the Ppi 203 ILE. Whereas in Ppi 203 the ILE genes increased 

in expression as the MMC concentrations increased in a dose dependent 

manner, Psy 3023 did not respond in a dose dependent way (Figure 5.19). The 

overall expression values were also far lower than seen with Ppi 203. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: ILE gene expression from Psy 3023 when incubated for six 

hours with the addition of MMC. Six ILE genes from Psy 3023 tested for ILE 

gene expression following bacterial growth in media supplemented with either 

0.05, 0.1, 0.5 or 1 µg/ mL MMC. Cells were incubated for six hours prior to 

expression analysis. The blue/ red spectrum represents increasing gene 

expression from 0 to 12 times the expression of the control containing no MMC 

(Full X-fold values available in Appendix IV).  

 

 Many of the Psy 3023 ILE genes were upregulated with the lowest 

concentration of MMC. XerC showed an increase in gene expression of 11.1 ± 

2.4 with 0.05 µg/ mL, this did not significantly change when 0.1 µg/ mL and 0.5 

µg/ mL MMC was used as xerC expression was 6.8 ± 1.4 and 8.0 ± 2.6 
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respectively, for the higher concentrations of MMC. However, a further increase 

in MMC concentration to  

1 µg/ mL caused gene expression to decrease to 1.4 ± 0.3 which was not 

significantly different to the no MMC control. The pattern of increased gene 

expression with the lower MMC concentrations continued with both TTE genes, 

but their expression was also increased following treatment with 1 µg/ mL MMC. 

HopH1 increased in expression to 3.3 ± 1.3 and hopAP1 increased to 3.8 ± 1.0 

(Figure 5.20). An interesting final point was that the expression of rulB’ was 

effectively zero for all of the MMC concentrations tested, similar to the result seen 

from Ppi 203.  

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Type three effector, hopH1, expression from Psy 3023 when 

grown in media supplemented with increasing concentrations of mitomycin 

C. Psy 3023 was grown in media containing four different concentrations of MMC, 

0.05, 0.1, 0.5 and 1 µg/ mL. Following this the expression of hopH1 was analysed 

relative to a no MMC control. X-fold differences in gene expression were 

compared to the control MM condition and normalised against DNA gyrB. Three 

replicates per condition were tested and their mean values are displayed with 

standard error of the mean. (T-test and Tukey statistical analysis was used for 

significant differences [p<0.05] shown by letters above the bars). 
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5.2.3e: Expression of P. syringae pv. syringae 3023 ILE genes following 

exposure to increasing doses of UVB irradiation. 

 The expression of ILE xerC integrase in Psy 3023 appeared to follow the 

reverse pattern of what was seen in Ppi 203 when the cells were subjected to 

increasing UVB exposure (Figure 5.21). The overall ILE expression levels seen 

in Psy 3023 following UVB exposure were lower than those seen in Ppi 203. In 

Ppi 203 the xerC expression increased as the exposure time increased whereas 

in Psy 3023 the xerC expression peaked at 30 seconds of UVB exposure before 

falling. This is clearly shown in the x-fold differences in gene expression as with 

the lowest UVB exposure level of 15 seconds xerC expression increased 4.5 ± 

2.0 fold. A similar value of 4.7 ± 0.7 was observed with 30 seconds of UVB 

exposure. However, with 45 seconds of exposure xerC expression decreased to 

2.5 ± 0.8 with a further decrease to 1.2 ± 0.3 following 60 seconds of UVB 

exposure.  

 An inverse relationship between UVB exposure and gene 

expression was also present when analysing the hopAP1 expression. HopAP1 

expression started at one with the no UVB control before peaking at 2.7 ± 1.1 

with 15 seconds of UVB exposure and decreased in expression until it reached 

0.5 ± 0.2 times the expression of the no UVB control with 60 seconds of UVB 

exposure. The two remaining genes, hopH1 and rulB’ both peaked at different 

UVB exposure levels. HopH1 was upregulated with all of the UVB exposure levels 

with no significant differences between 15, 30 and 45 seconds. Although the peak 

in expression was seen with 45 seconds of UVB exposure as hopH1 expression 

increased to 1.4 ± 0.3 times the no UVB control. The gene expression then 

decrease with 60 seconds UVB exposure to 0.2 ± 0.0. The rulB’ gene also 

showed no dose dependent response to UVB, although the shortest exposure 
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did increase its expression 2.7 ± 0.5 fold and 30 seconds of UVB exposure 

decreased expression to 0.3 ± 0.0. Both 45 and 60 seconds resulted in no 

significant difference from the no UV control condition, this may be due to Psy 

3023 being more susceptible to UVB irradiation at 30 seconds than Ppi 203 

(Chapter 7). However, with 60 seconds of UVB exposure results suggest Psy 

3023 was less susceptible than Ppi 203.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: ILE gene expression from P. syringae pv. syringae 3023 

following exposure to UVB irradiation for 15, 30, 45 and 60 seconds. The 

heat map shows the relationship between increasing UVB exposure and gene 

expression of all three ILE genes plus rulB’. The blue/ red spectrum represents 

increasing gene expression from 0 to 4 times the expression of the zero UVB 

control (Full X-fold values available in Appendix IV).   

5.2.3f: Expression of P. syringae pv. syringae 3023 ILE genes when 

stressed by sub-optimal growth temperatures. 

 The effect of temperature on the gene expression of the Psy 3023 ILE was 

interesting as only one temperature produced an increase in gene expression 

across all four genes. The increase in gene expression was caused by incubating 

the cells at 4oC for six hours. This temperature caused xerC expression to 
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increase by 4.8 ± 2.2 times the control, hopH1 (Figure 5.22) and hopAP1 to 

increase by 2.7 ± 0.4 and 2.4 ± 0.5 times the 25oC control respectively, and rulB’ 

to increase by 3.2 ± 0.7 fold. Some of the other temperatures did increase gene 

expression. For example, -20oC increased the expression of hopH1 by 1.8 ± 0.2 

fold and -80oC increased rulB’ expression by 4.8 ± 0.9 fold. HopH1 was 

downregulated 0.5 ± 0.1 fold when grown at 37oC (Figure 5.23). These 

expression results also show how rulB’ expression does not relate to xerC 

expression suggesting different regulation of the two genes. 

 

Figure 5.22: Gene expression of P. syringae pv. syringae 3023 ILE hopH1 

following growth at sub-optimal temperatures. Psy 3023 cells were grown for 

six hours at sub-optimal temperatures. The temperatures used were -80, -20, 4 

and 37oC. The x-fold expression of hopH1 was normalised against the expression 

of hopH1 when Psy 3023 was grown at its optimal temperature of 25oC. Three 

replicates per condition were tested and their mean values are displayed with 

standard error of the mean. (T-test and Tukey statistical analysis was used for 

significant differences [p<0.05] shown by letters above the bars). 
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Figure 5.23: ILE gene expression from P. syringae pv. syringae 3023 

following growth at different sub-optimal temperatures. The expression 

matrix shows how the genes were expressed in regard to the growth temperature. 

Many of the genes had low expression although 4oC does show increases for all 

of the genes tested. The blue/ red spectrum represents increasing gene 

expression from 0 to 5 times the expression of the optimal 25oC control (Full X-

fold values available in Appendix IV).   

 

5.2.3g: Summary of ILE integrase and TTE gene expression from P. 

syringae pv. syringae 3023.   

The data from all of the conditions for all of the genes was compiled to 

make one overall figure for all of the gene expression in the ILE from Psy 3023 

(Figure 5.24). This allows comparison between all of the different conditions but 

also between the two distinct ILEs on the same scale. This is the same data as 

shown in the previous figures but all under the same scale bar. 
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Figure 5.24: Heat map matrix of P. syrinage pv. syringae 3023 ILE gene 

expression following various bacterial stresses. The matrix comprises the 

expression levels of four different ILE associated genes under six different types 

of bacterial stress, plant apoplastic fluid, in planta, bacterial conjugation with E. 

coli, mitomycin C, UVB irradiation and sub-optimal temperature. The blue/ red 

spectrum represents increasing gene expression from 0 to 15 times the 

expression of the various no stress controls. (A full report of mean X-fold values 

is available in Appendix IV). 
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5.3: Discussion 

 Very little was known about the expression of genes in P. syringae ILEs 

when the bacteria are subjected to environmental stresses. It will be of interest to 

know if ILE genes are expressed and what triggers their expression. The 

expression of the integrase genes are important to study as they may indicate 

what causes the ILE to move from different rulB genes but also what stresses 

may increase the ILEs ability to capture exogenous genes. The expression of 

TTE genes is important as they play a role in disease progression. 

To mimic environmental stresses that the bacteria may encounter they 

were subjected to six different stresses. These stresses included plant apoplastic 

fluid, in planta growth, bacterial conjugation, temperature changes, ultraviolet B 

irradiation (302nm) and DNA damaging agents such as mitomycin C. These 

different conditions may act upon ILE integrase and TTE gene expression 

differently. In order to deduce if the mechanisms of gene expression was 

consistent across different ILEs, two ILEs were studied. One ILE was present in 

Ppi 203 which is a pea pathogen and causes disease on the pea cultivar 

Kelvedon Wonder (KW) and the other was present in Psy 3023 which is a 

pathogen of bean. Both ILEs belong to strains of the Pseudomonas syringae 

species and both had similar genetic content with the presence of xerC integrase 

genes and TTE genes.  

 The first condition tested was bacterial gene expression in multiple plant 

apoplastic fluids. The apoplastic fluids included three Phaseolus vulgaris 

cultivars, Tendergreen (TG), Canadian Wonder (CW) and Red Mexican (RM) and 

apoplastic fluid from Pisum sativum cv. Kelvedon Wonder (KW). Before testing 

could begin using the prepared apoplastic fluid it had to be confirmed that no cell 

lysate was present in the preparations and that all of the preparations were 
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approximately the same concentration. If this was not the case then differences 

in gene expression could be due to higher concentrations of apoplastic fluid 

relative to each other, or that cell lysate was present contaminating the apoplastic 

fluid preparation.  

To check for cell lysate contamination a malate dehydrogenase assay was 

performed as per O’Leary et al. (2016). This assay was performed as malate 

dehydrogenase is only present within the cytoplasm and mitochondria and 

therefore indicates cellular disruption (Musrati et al., 1998). All of the apoplastic 

fluid preparations contained trace levels of malate dehydrogenase activity. 

However, these levels did not significantly differ between inoculation treatments. 

Apoplastic fluid concentration was also determined using an indigo carmine 

assay which readily binds strongly to –NH groups of proteins (Roberts et al., 

1998) to give a relative protein concentration that can be measured at 610nm 

(O’Leary et al., 2014). The concentration assay was also performed with the 

apoplastic fluid preparations, but without any indigo carmine added to allow for 

the absorption of light by the apoplastic fluid, this is also the reason why the 

infiltrate media (sterile water) is tested. All of the dilutions were then standardised 

to the same starting concentration.     

Interestingly an increase in TTE gene expression only occurred in Ppi 203 

when grown in Pisum sativum KW apoplastic fluid which resulted in avrPpiA1 

being upregulated 12.7 ± 2.3 fold. However both TTE genes, hopH1 and hopAP1 

showed some increase in expression when Psy 3023 was grown in CW and RM 

apoplastic fluid. This increase in TTE gene expression was expected with Ppi 203 

growing in its host plants’ apoplastic fluid as Boch et al. (2002) demonstrated that 

TTE genes are upregulated during plant colonisation. The in vitro tests using 



 

152 

apoplastic fluid mimics the plant colonisation process resulting in the upregulation 

of avrPpiA1 (Rico et al., 2009). 

Following on from the apoplastic fluid tests both Ppi 203 and Psy 3023 

were inoculated into TG, CW, RM bean and KW pea plants for in planta testing 

of ILE gene expression. This would allow any similarities or differences in ILE 

gene expression between in vitro apoplastic fluid and in planta tests to be 

observed. The in planta tests showed similar patterns in gene expression as the 

apoplastic fluid tests. The avrPpiA1 gene in Ppi 203 was upregulated in KW pea 

along with both TTEs, hopH1 and hopAP1 being upregulated by CW as seen with 

the CW apoplastic fluid. These results were expected as Ppi 203 causes disease 

on KW pea and the HR on bean plants. The opposite is true for Psy 3023 as Psy 

3023 causes’ disease on bean with the HR being observed on KW pea plants. 

TTE genes would be upregulated during disease progression in response to host 

colonisation and suppression of host immune responses.  Similarities were 

expected between in planta and apoplastic fluid preparations due to the bacteria 

residing within the extracellular space of the plant. Previous studies have also 

shown that both TTE genes (Rico and Preston, 2008) and integrase genes (Yu 

et al., 2013) are upregulated in apoplastic fluid.  

Although apoplastic fluid may mimic what happens to the bacterium inside 

the plant there are some processes that can only happen in planta that may affect 

gene expression including the HR which cannot occur in apoplastic fluid. One 

example of this is bacterium-plant cell contact that alters bacterial gene 

expression. It has been shown that hrp genes and subsequently the TTSS in 

Ralstonia solanacearum are specifically induced when the bacterium comes into 

contact with the surface of the plant cell (Aldon et al., 2000). Although this work 

was not on P. syringae the same may be true and TTE genes may be induced by 
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plant cell contact as well as apoplastic fluid. The levels of gene expression in 

planta were lower than the apoplastic fluid tests. This could be because other 

factors inside the plant may reduce and alter gene expression such as plant cell 

contact (Aldon et al,. 2000). Another point to consider with further research would 

be having a longer incubation time up to 48 hours in apoplastic fluid rather than 

the six hours used. Studies have shown that within the first few hours of 

inoculation rapid changes occur to the bacterium including transcriptional, 

physiological and metabolic changes (O’Leary et al., 2016). Allowing a longer 

incubation time would allow gene expression to settle and allow further 

expression studies into the complex relationship between bacterium and plant. 

However the gene expression ‘window’ may also be missed. 

Bacterial conjugation was also tested as bacterial stress to observe any 

differences in ILE gene expression. Conjugation was chosen as previous ILEs in 

P. fluorescens have been shown to be mobile during conjugation events (Rhodes 

et al., 2014) which may cause an increase in integrase gene expression. An 

increase in integrase gene expression was only observed in Psy 3023 and not 

Ppi 203. This may be due to the ILE in Psy 3023 being mobile whereas the Ppi 

203 ILE may have become fixed in the chromosome (Chapter 6). There is also a 

link between ILEs and conjugative elements such as integrative conjugative 

elements (ICEs). ILEs share some similar features to ICEs. Both have been 

identified in disrupted rulB homologues (Maayer et al., 2015). An interesting result 

from the conjugation tests was that both TTE genes, hopH1 and hopAP1 from 

Psy 3023, were upregulated beyond 20 times the control although avrPpiA1 in 

Ppi 203 was not upregulated to the same scale as hopH1 and hopAP1. 

Upregulation of virulence genes in bacteria following conjugation has been 

previously shown in P. aeruginosa (Grohmann, 2013). 
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UVB stress was used to study ILE gene expression as it is known to cause 

DNA breaks resulting in ssDNA molecules that activate the SOS response 

(Sundin and Weigand, 2007) which was hypothesised to regulate ILE integrase 

expression, in a similar manner to integrons, and the rulAB operon due to a LexA 

repressor binding site being present in the rulA promoter (Ramos, 2004). 

However the results showed that this was not true as rulB’ and xerC have different 

expression patterns when subjected to UVB irradiation. This suggests that xerC 

is independently expressed from rulB’ and may have its own regulatory domain. 

The rulB gene product, DNA polymerase V is under the regulation of the SOS 

response and is actively transcribed following chemical or radiation derived DNA 

damage (Krishna et al., 2007; Bridges, 2005), (see Chapter 7 for more on the 

SOS response). Several genes that are regulated by the LexA repressor have 

been shown to be upregulated in response to UV irradiation in E. coli (Courcelle 

et al., 2001). The E. coli study also reported that the rulAB homologue, umuDC, 

was upregulated following UV irradiation. However during the current research 

expression of rulB’ was very low during UVB exposure. This could be due to 

methodical errors and needs to be repeated. There may have been some 

differences in UVB exposure due to the different glass petri dishes used. Glass 

absorbs UV irradiation and could therefore influence the results. This was 

controlled by using a new batch of petri dishes for this experiment but maintaining 

the same dishes throughout.  

As the SOS response is activated by DNA damage the DNA damaging 

agent, MMC, was also tested along with UVB irradiation on both Ppi 203 and Psy 

3023. MMC causes DNA damage via a different mechanism to UVB irradiation. 

Whereas UVB causes ssDNA breaks MMC causes DNA crosslinks between 

complementary strands and can be lethal to cells as only one crosslink per 
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genome can cause bacterial cell death (Tomasz, 1995; Szybalski and Lyer, 

1964).   

The results presented here showed that both DNA damaging events 

caused an increase in ILE xerC expression which increased as the dose of either 

UVB or MMC increased when Ppi 203 was tested. For example the highest 

concentration of MMC, 1 µg/ mL caused the expression of xerC to increase to 

39.3 ± 0.1 fold, whereas the lower concentration of 0.5 µg/ mL caused a 9.2 ± 0.0 

fold increase in expression. The same pattern was also observed when the cells 

were exposed to increasing UVB irradiation. As longer exposure times were used 

higher levels of xerC expression were reached. When the cells were exposed to 

45 seconds of UVB irradiation the expression of xerC increased 8.0 ± 1.6 fold 

compared to an increase of 17.5 ± 2.1 fold with 60 seconds of UVB exposure. 

The TTE gene, avrPpiA1, also followed a similar pattern as its expression 

increased as the dosage of MMC and exposure time of UVB increased. This was 

hypothesised to be the reason why the ILE inserts into rulB, to share its promoter 

and regulation mechanisms, although there appears to be no relationship 

between rulB’ expression and the expression of the other ILE genes so it is 

unlikely. The expression of the effector gene must be driven by another promoter. 

Although the SOS response may upregulate rulAB in its fully intact form the same 

appears not to be true for the truncated rulB’ fragment as both UVB irradiation 

and MMC caused the rulB’ fragment to be downregulated below both of the 

respective control tests. Again this needs to be repeated for certainty.   

The ILE in Psy 3023 did not show the same dose-dependent response to 

either UVB irradiation or MMC as Ppi 203 did. The ILE xerC gene in Psy 3023 

was upregulated to 4.5 ± 2.0 times the control with the lowest UVB exposure time 

of 15 seconds. The higher exposure times caused the expression of xerC to fall 
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until it reached 1.1 ± 0.3 times the control which was not significantly different to 

the control. A similar pattern was also seen with MMC on the expression of xerC 

as the lowest concentration provided the highest expression which decreased as 

the MMC concentration increased. These results may be due to Psy 3023 being 

more sensitive to UVB irradiation at lower dose levels than Ppi 203 (Chapter 7). 

The TTE gene hopH1 on the ILE of Psy 3023 was also upregulated with the lower 

levels of UVB and MMC, but the highest levels of both UVB exposure and MMC 

caused hopH1 expression to drop. Psy 3023 was more susceptible to MMC than 

Ppi 203 and may therefore be more susceptible to DNA damage overall. Bacterial 

growth studies of both Ppi 203 and Psy 3023 in MM containing MMC (see Section 

5.2.2d) showed that Psy 3023 was more susceptible to MMC as at every MMC 

concentration; the colony counts and CFU/ mL for Psy 3023 were consistently 

lower than Ppi 203. The increased susceptibility of Psy 3023 could be due to a 

number of reasons. One reason may be that Ppi 203 has more DNA damage 

repair genes present and faster turnover of DNA repair compared to Psy 3023 

(Zgur-Bertok, 2013). The susceptibility of Psy 3023 would cause the higher 

concentrations of MMC such as 1 µg/ mL to kill the majority of the cells, although 

not all of them. This may have caused the reduction in gene expression due to 

fewer cells being present to begin with compared to the Ppi 203 result which 

showed the dose dependent response to MMC.  

The final bacterial stress tested to observe differences in ILE gene 

expression was suboptimal temperatures. The range of temperatures used 

included temperatures below the bacterium’s normal laboratory growing 

temperature of 25oC and also temperatures above the norm. When Ppi 203 was 

subjected to the suboptimal temperatures many of the genes were 

downregulated below the control for the very extreme temperatures of -80oC,           
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-20oC and 37oC. However 4oC provided an increase in gene expression for all 

the genes except rulB’. This was also the case with Psy 3023 with some 

exceptions such as rulB’ was upregulated at 4oC and also -80oC while hopH1 was 

upregulated at -20oC. These differences in gene expression at different 

temperatures could be due to a number of molecular and physiological changes. 

On a molecular level temperature-mediated regulation occurs at transcription and 

translation events. This includes DNA supercoiling, changes in mRNA 

conformation and changes in protein conformation (Hurme and Rhen, 1998). As 

temperature increases, proteins begin to lose conformation and function resulting 

in denaturation, this includes many regulatory proteins including LexA which can 

no longer bind to its regulatory domain (Helene, 2012; Daniel et al., 1996). DNA 

supercoiling is also affected by temperature changes and is thought to be a 

central regulator in many virulence genes (Dorman, 1991). This is due to 

temperature altering DNA topology and histone proteins causing the DNA to 

remain supercoiled resulting in additional DNA methylation and the repression of 

transcription and translation as the DNA is unavailable for the machinery to gain 

access (Hurme and Rhen, 1998). DNA supercoiling may also be influenced by 

the denaturation of topoisomerase and / or DNA gyrase. Topoisomerase is 

important for the unwinding of DNA from its supercoil form to allow transcription 

and translation (Champoux, 2001) and DNA gyrase can reverse supercoils from 

positive to negative supercoils (Wigley et al., 1991). Temperature can also affect 

physiological parameters such as cell structure, membrane fluidity and 

membrane integrity. These often cause serious cell damage that are often lethal 

to the cells (Trevors et al., 2012).  

Overall it is clear that multiple different stresses have an impact on ILE 

gene expression from both Ppi 203 and Psy 3023. Apoplastic fluid and in planta 
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stress causes the TTE genes to be upregulated when in the bacterium’s host 

plant and also the integrase genes are upregulated in some plants when it may 

be necessary for the ILE to either excise a TTE or gain a new TTE to avoid plant 

detection. There was also a clear link between DNA damage and upregulation in 

ILE gene expression in Ppi 203 when using UVB and MMC. The expression study 

also suggested that the ILE xerC gene does not share its regulatory domain with 

the rulB gene as the expression profiles between rulB’ and xerC were 

substantially different. The rulB’ fragment showed little differences in gene 

expression compared to the ILE genes. This may be due to it being disrupted by 

the ILE and further gene expression tests on an intact rulB and rulA would be 

useful to ascertain if there are any similarities in gene expression between rulAB 

and the ILE inserted into it and whether they share the same promoters and 

regulatory domains. An important point to also consider is that not all of the cells 

will contain an ILE insertion. This could influence the expression of ILE genes if 

an unknown factor was influencing the rate of ILE insertion and excision. A final 

point to mention is the possible unspecific amplification of other xerC genes within 

the genome that are similar to the ILE xerC gene and may cause differences in 

measured gene expression across the two different strains tested. However this 

was limited by choosing primers specific to the ILE xerC gene.  

 

 

 

 

 

 



 

159 

Chapter 6. Movement of integron-like elements between different 

rulAB systems.  

6.1: Introduction 

A key aspect of integrons is their ability to move between different genetic 

loci within a species and also between different bacterial species via horizontal 

gene transfer. This allows advantageous genes present on the integron to be 

utilised by other bacterial species promoting enhanced virulence and antibiotic 

resistance in some cases (Gillings, 2014). However integrons are not known to 

be independently mobile and require other genes to facilitate movement such as 

transposase and resolvase, encoding genes which facilitate integron movement 

by transposition (Partridge et al., 2002).  

 As integron-like elements (ILEs) are similar to integrons it has been 

hypothesised that they may also be mobile within species and also between 

species of Pseudomonads. ILEs have previously been shown to be mobile in P. 

fluorescens by Rhodes et al. (2014). ILEs were identified in six environmental P. 

fluorescens strains and were denoted FH1 through FH6. All of the ILEs were 

chromosomally located into the rulB gene and harboured heavy metal resistance 

genes as they were isolated from a disused copper mine. Insertion into rulB was 

interesting as it encodes a type V DNA polymerase used for transcription 

following DNA damage which stalls the normal type III DNA polymerase 

replication fork (Hawver et al., 2015: Ohmori et al., 2001). ILEs may insert into 

rulB to disrupt DNA repair allowing self-preservation of the ILE. They may also 

insert into rulB due to its close proximity to the origin of replication on many 

plasmids.  

Following isolation and characterisation the strains were transformed 

using the IncP-9 toluene-degrading plasmid pWW0 to attempt to cure native 
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plasmids from the six strains (Rhodes et al., 2014; Pickup, 1989). Following the 

addition of pWW0 to the P. fluorescens strains FH1-FH6, an insertion event had 

occurred into the rulB gene on pWW0 which was later identified as the 

chromosomal ILE. This was the first occurrence of an ILE moving between two 

different genetic loci, although the mechanisms and genes required for ILE 

movement were not known. The same movement into rulB on pWW0 was 

observed for all six ILEs from P. fluorescens.  

 An ILE was identified by Arnold et al. (1999; 2000) in P. syringae pv. pisi 

203. This ILE was also inserted into a rulB gene present in the chromosome as 

seen in P. fluorescens. The ILE in Ppi 203 was different to the P. fluorescens 

ILEs and contained TTE genes used for plant colonisation and disease 

progression. The ILE in Ppi 203 was never shown to be mobile.  

 The identification of new ILEs in different P. syringae pathovars (Chapters 

3 and 4) raised the question of whether the P. syringae ILEs are mobile in a 

similar way to the ILEs in P. fluorescens. If this was true, virulence genes present 

on the ILEs may be disseminated across a range of P. syringae pathovars that 

infect many economically important crops and could be devastating to food and 

trade supplies. P. syringae pathovars have many host plants including; soya 

beans, peas, tobacco, tomatoes, kiwi fruit and Prunus sp. (Hirano and Upper. 

2000). If the ILEs present in P. syringae were mobile it would be the first 

documented case of this occurring.  

 To test if the newly identified ILEs in P. syringae were mobile the first step 

was to transform the cells with pWW0 to see if any ILEs move into the rulB gene 

on pWW0, this would be the same mechanism as used in the P. fluorescens 

strains. P. putida PaW340 was used as the donor strain containing the native 

pWW0, P. putida PaW340 (pWW0::kmr) and the P. syringae strains were the 
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recipients following bacterial conjugation between the two strains. Electroporation 

of the pWW0 into the P. syringae strains was also tested, although it was 

hypothesised that bacterial conjugation was the trigger for ILE movement and this 

method would yield no ILE movement onto pWW0. It may also be bacterial stress 

that is responsible for ILE movement to promote bacterial survival in times of 

environmental stress (Cambray et al., 2011).  This method was tested on two ILE 

containing strains; Ppi 203 and Psy 3023.  

 The next stage of the experiment was to clone different rulAB operons into 

a broad host vector that would easily enter the recipient cells and facilitate further 

investigation into rulAB ILE integration. This was performed by PCR amplification 

of the desired rulAB operon which was then directly ligated into pCR2.1. The 

cloned gene was digested from pCR2.1 using restriction enzymes and re-ligated 

into the broad host range plasmid pBBR1MCS-2.  

  Having tested the pWW0 plasmid containing the rulB ILE insertion point 

on both the P. fluorescens and P. syringae borne ILEs different versions of rulB 

were tested. The rulAB operon from pWW0 was used along with the rulAB operon 

from the genomic island PPHGI-1, which is present in Pph 1302A. This would 

allow any differences between rulB genes from different species to be observed. 

The two rulAB operons were cloned into a broad host range vector, pBBR1MCS-

2 (Kovach et al., 1995) and these were both ligated and electroporated into P. 

fluorescens FH1, Ppi 203 and Psy 3023.  
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Figure 6.1: Versions of rulAB from pWW0 cloned into pBBR1MCS-2 to test 

ILE movement. Three versions of rulAB from pWW0 to assess the requirements 

of ILE movement from the chromosome of P. fluorescens FH1 to a plasmid borne 

rulAB. A) Intact rulAB operon with both promoter (P) and terminator (T) present. 

B) Just the rulB gene present without a promoter but terminator (T) is present. C) 

Full rulA gene with rulB’ which is cut off at the point of ILE insertion, promoter (P) 

is present. IP refers to previously identified ILE insertion point.  

 

Following on from the P. syringae ILE experiments the focus of ILE 

movement tests shifted towards the ILE present in P. fluorescens FH1 and what 

was required for the ILE to move. Three different versions of rulAB from pWW0 

were created and cloned into pBBR1MCS-2 for testing in FH1 (Figure 6.1). The 

cloned constructs were also electroporated into FH1 to assess if conjugation was 

the trigger for ILE movement. The three rulAB versions consisted of the intact 

rulAB with promoter and terminator domains still present, to identify if any of the 

other genes present on pWW0 were required for ILE movement as they were no 

longer present in the construct. The next version was just rulB. If ILE insertion 

occurred then it would indicate that only a sequence target is needed as no 

promoter was present and the genes from pWW0 were still missing. The final 

rulAB version was rulAB’-IP which consisted of the entire rulA gene and part of 

rulB up to the previously identified ILE insertion point. Again the rulA promoter 

was present but not the rulB terminator. This construct was expected to show no 

ILE insertion as rulB is not active and the sequence site is missing.  These rulAB 
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constructs derived from pWW0 would answer the question; is the intact 

functioning form of rulAB needed for ILE insertion in the case of P. fluorescens? 

A further question to consider was do ILEs circularise following excision from rulB 

on a chromosome or a plasmid? Mobile genetic elements such as genomic 

islands have been shown to circularise following excision. One example of this is 

PPHGI-1 (Godfrey et al., 2011) which forms a circular intermediate following 

excision from the genome. This may also happen to mobile ILEs during ILE 

movement between rulB genes. To test this primers were designed (Section 2.17) 

that would only amplify a DNA product if the ILE had formed a circular 

intermediate.  
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6.2: Results 

6.2.1: ILE movement using pWW0 as a basis for rulB.  

The first step was to replicate the work of Rhodes et al. (2014) to observe 

the movement of the ILE from the chromosome of P. fluorescens into the rulB 

gene on pWW0 situated in P. putida PaW340. This was achieved by agar plate 

mating allowing conjugation to occur between the strains and the plasmid moving 

into FH1 whilst the ILE moved from the chromosome of FH1 onto the plasmid, 

pWW0. Cells without the plasmid were selected against using kanamycin as 

pWW0 confers kanamycin resistance and ILE movement was assessed using 

PCR with the GRrulAB-xerC primers (see Section 2.4.2). This showed any ILE 

insertion into the pWW0 rulB only as there was enough difference between the 

chromosomal rulAB and the pWW0 rulAB to allow specific primers to be 

developed (Figure 6.2). 

  

Figure 6.2: PCR of rulAB-xerC confirming ILE movement from FH1 

chromosome into rulB on pWW0. The PCR confirms ILE movement onto 

pWW0 following conjugation between P. fluorescens FH1 and P. putida PaW340 

(pWW0) using pWW0 rulAB derived primers. PCR product was expected to be 

590bp which was shown. Hyperladder 1kb (Bioline, UK) was used. 

 

The same experiment was tried with both Ppi 203 and Psy 3023 using 

kanamycin as the selective agent to eliminate any cells without pWW0 and PCR 

was performed using the same primers. XerC is similar across all ILEs to allow 

primer binding. However, simple agar plate mating and conjugation failed to get 

0.6kb 

0.4kb 
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pWW0 inside both P. syringae strains. Electroporation of pWW0 into competent 

Ppi 203 and Psy 3023 cells was also tried using extracted and purified pWW0 

(Figure 6.3). However conjugation and electroporation of pWW0 into Ppi 203 and 

Psy 3023 failed on multiple occasions.   

 

Figure 6.3: Midi plasmid preparation of pWW0 from P. putida PaW340. 

Following extraction and purification 10uL of the prepared pWW0 plasmid was 

run on an agarose gel along with Hyperladder 1kb. The smears at the top of gel 

show the plasmid with a high molecular weight, 117kb which is the prepared 

pWW0. Hyperladder 1kb (Bioline, UK) was used. 

 

6.2.2: Cloning two different rulAB operons into pBBR1MCS-2. 

The full version of pWW0 did not enter Ppi 203 or Psy 3023 to assess if 

the ILEs would move into the rulB gene as seen with the FH1 ILE. To overcome 

this the rulAB operon from pWW0 and also the rulAB operon from PPHGI-1 in 

Pph 1302A were cloned into the broad host range vector, pBBR1MCS-2.  
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6.2.2a: Empty cloning vectors electroporated into recipient strains.  

Before the pBBR1MCS-2 plasmid containing the cloned rulAB operons 

were electroporated into the recipient strains empty vector controls were tested 

to ensure that P. fluorescens FH1, Ppi 203 and Psy 3023 could take up the 

plasmid and produce viable kanamycin resistant colonies (Figure 6.4). 

 

 

6.2.2b: Cloning of rulAB operons. 

Following the successful electroporation of the empty vector into the three 

ILE containing strains the two rulAB operons from pWW0 and PPHGI-1 were first 

amplified via PCR before being cloned into pBBR1MCS-2 via pCR2.1 (Figure 

6.5). The pBBR1MCS-2 plasmid was also restriction digested with the 

appropriate enzymes, Spe1 and Xba1 for pWW0 and EcoR1 for PPHGI-1. 

1 2 

3 

Figure 6.4: Empty vector controls 

with pBBR1MCS-2. ILE containing 

strains 1) P. fluorescens FH1; 2) Ppi 

203; 3) Psy 3023 containing empty 

pBBR1MCS-2 broad host range vector. 

Colonies were selected for 

pBBR1MCS-2 using LB plus 

kanamycin agar. 
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Figure 6.5: Cloning of pWW0 rulAB and PPHGI-1 rulAB. 1) pWW0 rulAB 

amplified (2200bp) along with 2) PPHGI-1 rulAB (~2600bp). (3-4) shows the 

same fragments following ligation into pCR2.1 and subsequent restriction 

digestion to make the fragments ready for ligation into pBBR1MCS-2. 

Hyperladder 1kb (Bioline, UK) was used. 

 

6.2.2c: Sub-cloning of rulAB operons into P. fluorescens FH1, Ppi 203 and 

Psy 3023. 

The two rulAB operons were successfully ligated into pBBR1MCS-2 and 

then electroporated into P. fluorescens FH1, Ppi 203 and Psy 3023. Successful 

cloning and ligation into P. fluorescens FH1, Ppi 203 and Psy 3023 was 

determined by blue-white selection and resistance to kanamycin. Presence of 

both rulAB operons in all three strains was confirmed via PCR (Figure 6.6). 

  

Figure 6.6: PCR amplification of extracted pWW0 and PPHGI-1 rulAB 

operons from P. fluorescens FH1, Ppi 203 and Psy 3023. Lanes 1-3 show that 

the pWW0 rulAB operon was present in P. fluorescens FH1, Ppi 203 and Psy 

3023 in that order at a size of 2200bp and lanes 4-6 show that the PPHGI-1 rulAB 

operon was present in P. fluorescens FH1, Ppi 203 and Psy 3023 in that order at 

a size of ~2500bp. Hyperladder 1kb (Bioline, UK) was used.  
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                         pWW0 rulAB                                       PPHGI-1 rulAB            .             
                FH1       Ppi 203    Psy 3023              FH1        Ppi 203    Psy 3023 
 
 
 

6.2.2d: Identification of ILE movement into cloned constructs.  

 

The next step was to assess if any of the ILEs from the three strains had 

moved into the cloned versions of rulAB. This was performed via PCR using the 

GRrulAB-xerC primers (Section 2.4.2) for the pWW0 rulAB and the 2015rulAB-

xerC primers for the PPHGI-1 rulAB as it shares homology to the Ppi 203 rulAB. 

ILE movement was only observed with the FH1 ILE moving into the cloned pWW0 

rulAB (Figure 6.7). Both Ppi 203 and Psy 3023 failed to move into the pWW0 

rulAB and no ILEs were observed moving into the rulAB operon from PPHGI-1. 

This may be because it is a non-functional version as the fully function version of 

rulAB from PPHGI-1 proved lethal to the tested cells and could not be cloned.  

The fainter bands on the gel were later revealed by DNA sequencing to be non-

specific binding of the primers. 

 

 

Figure 6.7: ILE movement from P. fluorescens FH1, Ppi 203 and Psy 3023 

into cloned versions of rulAB from pWW0 and PPHGI-1. Lane 1 shows that 

the ILE from FH1 moved into the cloned version of pWW0 as the rulB – ILE xerC 

junction region amplified at 590bp. Lanes 2 and 3 were both negative with further 

analysis meaning the ILEs from Ppi 203 and Psy 3023 did not move into pWW0 

rulAB. Lanes 4-6 were also negative showing that no ILEs moved into the rulAB 

operon derived from PPHGI-1. Hyperladder 1kb (Bioline, UK) was used.  

 

 

6.2.3: Cloning different versions of the pWW0 rulAB operon looking for a 

specific ILE insertion target.  

As the results from the previous experiments showed that only the ILE 

from P. fluorescens FH1 appeared to move into the cloned rulAB operon from 

      1              2                3                       4               5                6 
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pWW0 it was decided to focus more on this system to identify what part of rulAB 

was needed for ILE movement and whether the ILE insertion targeted a specific 

sequence or if a functional rulAB operon was also a requirement. Three versions 

of pWW0 rulAB were constructed and ligated into pBBR1MCS-2 (Figure 6.1). 

6.2.3a: Cloning of three different pWW0 rulAB versions. 

The first step was to amplify the three rulAB versions from pWW0 via PCR 

(see Section 2.16.1) and confirm the sizes via gel electrophoresis (Figure 6.8). 

All of the amplified fragments were the correct expected size with the intact rulAB 

product at 2.2kb, just rulB at 1.5kb and rulAB’-IP at 0.8kb. 

   

Figure 6.8: PCR amplification of three different pWW0 rulAB versions. The 

three versions of pWW0 rulAB were; 1) fully intact rulAB with promoter and 

terminator, expected size was 2.2kb, 2) rulB without rulA, only terminator present, 

expected size was 1.5kb, 3) rulAB’-IP, intact rulA along with part of rulB up to the 

previously identified ILE insertion point, expected size was 0.8kb. Easyladder 1 

(Bioline, UK) was used.  

 

The amplified regions were then directly ligated into pCR2.1 following 

clean-up and chemically competent E.coli cells were transformed with the 

constructs. Following cellular growth and extraction of the pCR2.1 constructs the 

regions of interest were cut out via restriction enzyme digest (Figure 6.9) to 

facilitate ligation into pBBR1MCS-2. 
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Figure 6.9: Restriction digest of pWW0 rulAB, rulB and rulAB’-IP regions 

from pCR2.1. The gel image shows the three rulAB regions in duplicate; 1) fully 

intact rulAB with promoter and terminator, expected size was 2.2kb, 2) rulB 

without rulA, only terminator present, expected size was 1.5kb, 3) rulAB’-IP, intact 

rulA along with part of rulB up to the previously identified ILE insertion point, 

expected size was 0.8kb. The bands present at the top of the gel show the 

remaining pCR2.1 plasmid from the restriction digest, pCR2.1 without any insert 

is 3.9kb as shown on the gel. Hyperladder 1kb (Bioline, UK) was used.    

 

6.2.3b Confirmation of successful ligation and transformation of pWW0 

rulAB variants into pBBR1MCS-2 and subsequently into FH1. 

The final part of the cloning procedure was to ligate the three rulAB 

versions into pBBR1MCS-2 and then electroporated the three constructs into P. 

fluorescens FH1 cells. Successfully ligated and transformed cells would be 

resistant to kanamycin and produce white colonies when grown in the presence 

of X-gal. These white resistant colonies were picked and the construct was 

extracted to allow PCR confirmation that the cloning had worked. The PCR used 

the original primers used to amplify the three regions (Section 2.16.1) and the 

three regions were successfully amplified (Figure 6.10) indicating that FH1 now 

contained the three different rulAB versions from pWW0. This allowed further 

testing on ILE movement into the constructs to begin.  
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Figure 6.10: Amplified pWW0 rulAB regions from transformed P. 

fluorescens FH1 cells. The regions were successfully amplified following 

transformation and they were all the expected sizes. 1) Intact rulAB, 2.2kb, 2) just 

rulB, 1.5kb, 3) rulAB’-IP, 0.8kb. Hyperladder 1kb (Bioline, UK) was used.  

 

6.2.3c: Identification of any ILE movement from the chromosome of FH1 

into the three constructs containing different pWW0 rulAB variants.  

As previously shown in Section 6.2.2 the ILE on the chromosome of FH1 

will move into an intact cloned version pWW0 rulAB on pBBR1MCS-2 following 

electroporation of pBBR1MCS-2 (pWW0rulAB::kmr). This was repeated along 

with the two new constructs; pBBR1MCS-2 (pWW0rulB::kmr) and pBBR1MCS-2 

(pWW0rulAB’-IP::kmr) to assess what part of rulAB was required for ILE insertion 

into rulB. Following incubation of the FH1 cells containing the rulAB constructs, 

the constructs were extracted (see Section 2.3.2) and PCR (Figure 6.11) was 

performed using primers that would amplify a fragment from the start of rulAB into 

the start of the ILE, the 5’ end, and primers that amplified a fragment from the 3’ 

end of the ILE into the end of rulB (Section 2.16.6). This was repeated for all three 

variants of the pWW0 rulAB. The primers were still viable as the binding sites 

were still present. 
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Figure 6.11: Identification of FH1 ILE movement into cloned versions of 

rulAB, rulB or rulAB’-IP present on pBBR1MCS-2. The amplified products 

were from the 5’ end of the ILE out into rulAB and from the 3’ end of the ILE out 

into rulB. This allowed confirmation that the entire ILE had moved into the 

construct. 1) Shows that the 5’ end of the ILE (xerC) is present in pBBR1MCS-2 

(pWW0rulAB), expected size was 590bp. 2) the 3’ end of the ILE (sulP) present 

in pBBR1MCS-2 (pWW0rulAB). Bands 3-4 would show the same amplification 

but with a different 5’ end primer if an ILE had inserted into pBBR1MCS-2 

(pWW0rulB). However this was negative meaning no ILE movement. Bands 5-6 

would have also show amplification if the ILE had moved into pBBR1MCS-2 

(pWW0rulAB’-IP). However no ILE movement was seen. Hyperladder 1kb 

(Bioline, UK) was used.  

 

As shown the ILE in FH1 moved into the intact form of rulAB from pWW0 

as shown in previous tests. No ILE movement was seen into (pWW0rulB) or 

(pWW0rulAB’-IP) using the parameters of the experiment. Following the FH1 

tests the constructs were also tested in Ppi 203 and Psy 3023 although no ILE 

movement was seen for any of the three constructs. 

6.2.4 Comparison of the frequency of FH1 ILE movement into native rulAB 

on pWW0 and the cloned version on pBBR1MCS-2. 

Once it was confirmed that the ILE present in P. fluorescens FH1 would 

move into a cloned version of rulAB from pWW0 it was interesting to identify if the 

ILE had a preference over the native pWW0 plasmid or the cloned version of 

rulAB. This may indicate other genes and factors on pWW0 that influence the 
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frequency of ILE movement. To test this multiple FH1 cells were transformed with 

either pWW0 or pBBR1MCS-2 (pWW0rulAB) and incubated for 24 hours. 

Following this the cells were lysed and PCR (Figure 6.12) was used to identify 

any ILE inserts across 282 biological replicates for FH1 (pBBR1MCS-2 

(pWW0rulAB)) and the same number for FH1 (pWW0::kmr). From this the 

percentage of ILE movement was calculated. Each PCR contained a positive 

control with a known ILE insertion into rulB and a negative control which 

contained rulAB but no ILE. 

 

Figure 6.12: Examples of ILE movement frequency gels for both 

pBBR1MCS-2 (pWW0rulAB) and pWW0. The top gel image shows all of the 

positive amplifications for ILE movement into pBBR1MCS-2 (pWW0rulAB) for 24 

out of the 282 replicates. The bottom gel image shows the same but for ILE 

insertion into the native pWW0 for 24 out of the 282 replicates. Expected size 

was 590bp. Hyperladder 1kb (Bioline, UK) was used.    

 

As shown by the example gel images the frequency of ILE insertion is fairly 

high for both of the rulAB systems and following the analysis of all of the PCR 

amplifications there was only a small difference between the two systems as the 

pBBR1MCS-2 (pWW0rulAB) system showed a 59.2% ILE insertion frequency 

and the native pWW0 rulAB showed a 53.2% ILE insertion frequency. This was 

only a difference of 6% across the two systems and it appears the ILE has no 

preference over which rulB it inserts into. Both frequency values are not 

significantly different from each other at the 95% confidence interval. The 

complete analysis of ILE insertion frequency is in Table 6.1. 
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Table 6.1: Breakdown of ILE insertion frequency PCR test results into both 

pBBR1MCS-2 (pWW0rulAB) and pWW0. Each PCR consisted of 94 biological 

replicates plus two controls. Each PCR was also replicated three times resulting 

in 282 replicates. The frequency of ILE insertion is shown as a percentage at the 

bottom of the table.  

 

6.2.5: Testing if ILEs circularise during movement to different rulB genes.  

It was hypothesised that ILEs may form circular intermediates when 

moving from one rulB gene to another rulB gene. This was tested by PCR using 

primers (Table 2.6) that would only produce an amplification product if 

circularisation of the ILE had occurred. Six P. syringae strains containing an ILE 

were tested for the formation of ILE circular intermediates. These strains were P. 

fluorescens FH1 and FH4, Ppi. 203, Psy. 3023, Psy. B728a and Pgy 2411. The 

strains were subjected to stresses to increase the probability of ILE movement. 

These stresses were conjugation with E. coli DH5α and E. coli DH5α (pRK2013), 

cold stress, UV irradiation and growth in liquid minimal media. The first test was 

conjugation on three of the six strains, P. fluorescens FH1, Ppi. 203 and Psy. 

3023 (Figure 6.13). 

 

 

 

PCR no. Number of positive 
insertions in 
pBBR1MCS-2 
(pWW0rulAB) 

Number of 
positive insertion 
in pWW0 

Total 
number of 
colonies 
tested 

1 88 73 94 

2 34 34 94 

3 45 43 94 

Total 167 150 282 

Frequency 
of ILE 
movement 

59.2% ± 30.3% 53.2% ± 21.7% 100% 
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Figure 6.13: ILE circular intermediate PCR following conjugation of either 

P. fluorescens FH1, Ppi. 203 and Psy. 3023 with E. coli DH5α and E. coli 

DH5α (pRK2013). The results show a bright band for both FH1 and Psy. 3023, 

however Ppi. 203 had a much fainter band. The FH1 band is ~700bp, the faint 

Ppi. 203 band is ~1000bp and the Psy. 3023 band is smaller at ~400bp. 

Hyperladder 1kb (Bioline, UK) was used as a size marker. 

 

The PCR products from the first circular intermediate tests (Figure 6.13) 

were sent for sequencing (Section 2.11). The sequencing returned with a gene 

not related to ILEs for all three PCR products. This indicated unspecific primer 

binding. The test was repeated with same outcome.  The six ILE strains were 

then tested for circular intermediates following cold stress and UV irradiation 

stress (Section 2.17). This test provided faint PCR products (Figure 6.14) for P. 

fluorescens FH1, Psy. 3023 and Psy. B728a. These PCR products were also 

sequenced (Section 2.11) but also returned with a sequence not matching any of 

the ILEs. 
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Figure 6.14: ILE circular intermediate PCR of P. fluorescens FH1, P. 

fluorescens FH4, Ppi. 203, Psy. 3023, Psy. B728a and Pgy. 2411 following 

cold stress and UV irradiation stress. The PCR products were faint for many 

of the strains that showed amplification. These strains were FH1, Psy. 3023 and 

Psy. B728a. There is a brighter band for Psy. B728a following UV stress. Multiple 

bands are present for some of the strains indicating unspecific primer binding. 

Hyperladder 1kb (Bioline, UK) was used as a size marker.  

 

The results for the ILE circular intermediate tests require further work and 

hopefully future research will resolve some of these issues and potential identify 

ILE circular intermediates forming during ILE movement. 
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6.3 Discussion 

ILE movement was only previously seen in the P. fluorescens FH1 strain 

when pWW0 was introduced for plasmid incompatibility testing (Rhodes et al., 

2014). During this experiment a piece of chromosomal DNA had moved into the 

rulB gene on pWW0. Following on from this ILEs were identified in P. syringae 

pathovars (Arnold et al., 2000; Chapter 4) and it was hypothesised that these 

ILEs may also move into an exogenous rulB gene as the ILE also inserts into a 

chromosomal version of rulB. If the ILEs belonging to the P. syringae pathovars 

could move into plasmid borne rulB genes it may facilitate their dissemination to 

other bacteria and spread virulence genes present on the ILEs. This may lead to 

the development of new diseases on new host plants (Sarkar et al., 2006). 

Further to identifying if the ILEs in P. syringae would move into rulB, cloning 

experiments were designed to identify what section of rulAB is required for 

successful ILE insertion. These experiments were carried out on FH1 but future 

work hopes to include the P. syringae ILEs with different rulB genes.  

The first stage of the experiment was to replicate the ILE movement from 

the chromosome of FH1 into rulB on pWW0 and to also try the same method with 

the P. syringae strains containing an ILE. The FH1 ILE movement into pWW0 

rulB was successfully carried out. However the two P. syringae ILE containing 

strains that were selected for testing, Ppi 203 and Psy 3023, could not be 

transformed with pWW0 using conjugation, heat shock or electroporation. This 

failure to transform Ppi 203 and Psy 3023 with pWW0 may be due to three factors. 

The first may be that pWW0 is too large for the P. syringae strains. The pWW0 

plasmid is 117kb without an ILE insert and many studies using a plasmid above 

100kb often require specialised competent cells and transformation via 

electroporation for successful transformation (Addgene, 2017). Another point to 
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consider is the difference in transformation efficiency between different bacterial 

strains. A study on E. coli transformation showed that different strains can show 

up to a 30-fold difference in transformation efficiency (Sheng et al., 1995). This 

may be why P. fluorescens readily takes up pWW0. The third possible reason the 

P. syringae strains cannot be transformed with pWW0 may be because a gene 

on pWW0 is lethal to the cells preventing growth post transformation.  

To overcome these potential problems with the full form of pWW0 it was 

decided to clone the rulAB operon with promoter and terminator into the 

pBBR1MCS-2 broad host range vector. This would eliminate the two previous 

problems; the plasmid would be smaller, increasing transformation efficiency and 

any potentially lethal genes would no longer be present, providing pWW0 rulAB 

was not lethal to the P. syringae strains. Alongside cloning the pWW0 rulAB a 

rulAB operon was cloned from the PPHGI-1 genomic island in P. syringae pv. 

phaseolicola 1302A to assess any differences between rulAB operons. However 

the full version of rulAB from PPHGI-1 would not clone whereas a version of it 

missing the last 60bp of the operon would.  

Cloning was attempted with the standard pCR2.1 cloning protocol and also 

direct PCR cloning into pBBR1MCS-2 using restriction site tagged primers 

(Brown, 2006; Dallas-Yang et al., 1998).This led to the conclusion that the 

PPHGI-1 rulAB was lethal to Ppi 203 and Psy 3023 which was an interesting and 

unexpected result. Once both the pWW0 and PPHGI-1 rulAB operons were 

cloned into pBBR1MCS-2 they were electroporated into FH1, Ppi 203 and Psy 

3023. ILE movement into the cloned rulB genes was only observed for FH1 with 

the pWW0 rulAB present. This may be due to the attachment sites in the two 

different species being different and therefore not facilitating insertion. If the 

sequences are different then recombination at the attachment site will not occur. 
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This will require further work cloning a more similar rulAB operon. This was 

interesting as it meant that conjugation was not the only driving force behind ILE 

movement as previously thought. It had been previously hypothesised that the 

mechanisms of horizontal gene transfer such as conjugation may trigger the 

integration of ILEs into rulB through induction of the integron integrase (Rhodes 

et al., 2014; Baharoglu et al., 2010; 2012; Cambray et al., 2011). It also meant 

that only rulAB was needed from pWW0 with all of the other plasmid genes 

apparently not required. Further work will be needed on the P. syringae ILEs 

using different rulAB operons from strains phylogenetically closer to the ILE 

containing strains.  

Following on from the successful FH1 ILE mobility tests into the cloned 

rulAB from pWW0 the research continued to use FH1 as a model for ILE 

movement. Different versions of pWW0 rulAB were cloned to assess if the intact 

rulAB operon was required or if only a sequence target was sufficient for ILE 

insertion. To test this three versions of pWW0 rulAB were cloned: the intact 

version as used previously; just rulB; rulAB’-IP which consisted of the rulA gene 

but only up to the previously identified ILE insertion point. It was already known 

that the intact version would show ILE movement, the rulB version was unknown 

and the rulAB’-IP version was expected to show no ILE movement due to the 

whole insertion point being absent. The results showed that the ILE from FH1 

only moved into the full intact version of rulAB. The lack of ILE movement into the 

other two versions of rulAB may be due to the lack of a functioning rulAB encoded 

DNA polymerase V or the lack of both a promoter and terminator to provide some 

form of transcribed protein, as promoters and terminator domains often interact 

with one another forming hairpins and loops during gene expression (Yang and 

Lewis, 2010; Meng et al., 2001). The frequency of ILE insertion and selection into 
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either the cloned pWW0 rulB or the native rulB on pWW0 appears to remain the 

same across both systems (Table 6.1). However there were some similarities 

across all three replicate experiments in terms of the frequency of insertion and 

it was not as random as expected. This could be due to an artefact being present 

in the experiment that facilitates ILE insertion and selection in rulB. This artefact 

may have varied in the experimental preparations causing the pattern to be 

observed. Although this may alter the individual frequencies the overall 

conclusion that there is no bias between either system is still valid. Future work 

could include cloning the different versions of rulAB but including suitable 

promoters and terminator domains to see what effect this has on ILE insertion.  

This still leaves the big question, why target rulAB? It has been 

hypothesised by Rhodes et al. (2014) that the ILEs may insert into rulB on pWW0 

as it is near the origin of replication for pWW0 ensuring that it is one of the first 

regions transferred during conjugation and therefore increasing its chances of 

replication. However, another possibility is that ILEs insert into rulB to use its 

regulatory mechanisms to drive its own expression. The expression analysis 

results (Chapter 5) suggest that the ILE integrase gene, xerC, is not regulated by 

the LexA/SOS pathway as seen with integrons (Cambray et al., 2011). However 

there does appear to be a promoter signal at the start of the ILEs studied (Figure 

4.4). Another possibility is that the studied rulB gene from pWW0 whilst encoding 

a DNA polymerase V also exhibits some form of recombinase activity facilitating 

ILE integration and possibly ILE circularisation. There have been indications that 

the rulB encoded protein may function as a recombinase like protein as when 

rulB on PPHGI-1 is knocked out the genomic island loses the ability to form a 

circular intermediate (Lovell et al., 2009). This was one of the reasons for carrying 

out circularisation tests on the ILEs. 
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The ILE circular intermediate tests did not provide any DNA sequence data 

at this time. However it was important to test if and when ILEs form circular 

intermediates during movement. Other MGEs including genomic islands such as 

PPHGI-1 (Godfrey et al., 2011) form circular intermediates when excised from 

the genome. Forming a circular intermediate is beneficial as it more easily 

transferred between systems, may be self-replicative and a circular molecule is 

more stable and less likely to be degraded than a linear molecule.  

There could be multiple reasons why the ILE circular intermediate tests 

failed including low specificity primers, the wrong conditions for ILE excision or 

simply that ILEs do not form circular intermediates. This area of research requires 

further investigation. The first step would be to design new primers to amplify 

across the circular intermediate if it forms (Figure 6.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Generic outline of how ILE circularisation PCR tests work. Two 

primers are designed facing out from the ILE meaning no amplification will occur 

with the ILE in its linear form. If the ILE is excised from the genome and forms a 

circular intermediate molecule the primers will face each other and a PCR product 

will be produced.  
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It has been identified that in the case of the movement of P. fluorescens 

FH1 ILE it will only move into the rulB gene derived from pWW0, however only 

rulAB is required from pWW0 but it must be in its intact form. It also appears that 

the P. syringae ILEs are not mobile when using the same conditions. Future work 

should focus on investigating if the P. syringae ILEs are mobile by using different 

rulAB operons from different strains and species. As well as studying the relation 

between ILEs and rulB and if there is any regulatory benefit conferred by rulAB 

to the ILE.  
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Chapter 7. What effect does disruption of the rulB gene have on 

bacterial growth under ultra-violet radiation stress? 

7.1: Introduction 

One of the aims of this research was to ascertain the impact of the ILE 

disruption to the rulB gene on bacterial growth following ultra-violet irradiation 

(UVB). The rulB gene forms an operon with rulA which provides UVB tolerance 

to the bacterial cells by encoding an error-prone DNA polymerase V belonging to 

the gamma (Ɣ) family of polymerases.  

Bacteria have many mechanisms to deal with DNA damage caused by UVB 

radiation. These include the direct reversal of the damage by photoreactivation, 

removal of the damaged base by base excision repair and removal of a complete 

oligonucleotide by nucleotide excision repair (Goosen and Moolenaar, 2008). 

Other pathways are also used for DNA damage repair including homologous end-

joining and nonhomologous end-joining (Shuman and Glickman, 2007). The 

primary pathway for the repair of DNA damaged by UVB irradiation is the direct 

reversal of pyrimidine dimers that form during UVB exposure. This is called 

photoreactivation and is catalysed by the enzyme, photolyase (Lledo and Lynch, 

2009) (Figure 7.1). Photoreactivation uses photolyase to split the pyrimidine 

dimer that has formed on the DNA due to UVB irradiation. If the pyrimidine dimer 

was not rectified the replication of DNA would stop due to the polymerase III 

mechanism being unable to read the correct DNA base. Photolyase uses light at 

300 nm to split the dimer apart using a chromophore and FADH to generate the 

energy required (Weber, 2005). 
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Figure 7.1: Direct reversal of pyrimidine dimers caused by UVB DNA 

damage. UVB irradiation causes the formation of pyrimidine dimers. Dimers are 

lesions caused when two consecutive bases on one strand bind together. 

Photolyase contains two chromophores responsible for absorbing light energy. 

One of the chromophores is FADH. The energy from FADH is then used to split 

the dimer apart, returning the DNA back to its undamaged state.  

 

One of the other processes used to correct damaged DNA following either 

UVB irradiation or other DNA damaging events, such as cross-linking caused by 

Mitomycin C is a methyl-directed mismatch repair system. This system removes 

wrongly incorporated bases into the damaged DNA using the mut family of genes 

to correct gaps and mismatches in front of the stalled replication fork. The Mut 

proteins form a complex (MutS and MutL) at the hemi-methylated site, double 

stranded DNA is not entirely methylated due to the mismatch, Mut S and L cleave 

the strand with the incorrect base and the strand is resynthesized (Figure 7.2) 

(Fukui, 2010). One of the issues with this is that a defect in one of the Mut proteins 
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can cause mutation rates to be elevated up to 100-fold due to incorrect bases not 

being rectified (Sundin and Weigand, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: The Mut complex and DNA repair interaction. The MutS and L 

complex interacts with a DNA-looping mechanism. The Mut proteins cuts 

specifically on the non-methylated strand to remove mismatch base. 

Exonuclease regenerates the nucleotide gap. (Image from Fukui, 2010 used with 

the creative commons license 3.0; creativecommons.org/licenses/by/3.0/).   

Another UVB damage repair mechanism is the rulAB system. The reason 

rulB is crucial to maintaining bacterial growth during high levels of UVB exposure 

is that rulB encodes a DNA polymerase V belonging to the error-prone Ɣ family 

of polymerases which also includes DNA polymerase IV proteins (Hawver et al., 

2015: Ohmori et al., 2001). Polymerase V can synthesise DNA across lesions 

caused by UVB irradiation and have the ability to maintain DNA replication 

following DNA damage. This results in enhanced bacterial survival (Stockwell et 
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al., 2013; Cazorla et al., 2008). DNA damaging agents, such as UVB irradiation 

causes the normal dsDNA to become fragmented into single-stranded DNA that 

becomes detached from the genome. These single-stranded breaks in the 

dsDNA cause the replication process to stall until the DNA break is fixed.  

 The DNA repair process involving rulB and its protein product DNA 

polymerase V is more error prone that the photoreactivation DNA damage repair 

system. Due to the ability of Ɣ family polymerases introducing potential errors into 

the replication process their expression is highly regulated by the SOS pathway 

(Krishna et al., 2007; Bridges, 2005). This pathway is activated when the DNA 

replication fork is stalled due to dsDNA breaks. The stall causes long stretches 

of ssDNA. The ssDNA activates the RecA pathway which induces the 

autoproteolytic cleavage of LexA allowing SOS genes to be expressed. LexA is 

a repressor of rulB and is activated by LexA cleavage. This results in the 

upregulation of the RulB DNA polymerase V which has the ability to bypass the 

DNA breaks and perform translesion DNA synthesis (Figure 7.3) (Bridges, 2005; 

Sundin and Weigand, 2007). However the nature of these error prone 

polymerases produces an increase in mutation rates whilst active. This could lead 

to a trade off in the form of bacterial survival versus mutations due to the relatively 

quick activation of DNA polymerase V, compared to the time for other repair 

mechanisms to resolve the DNA damage. The DNA lesions and replication fork 

stalls cause cell division to cease and if not rectified will lead to bacterial cell 

filamentation. Cells continue to elongate but do not divide and this leads to 

eventual cell death (Charpentier et al., 2011). 
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Figure 7.3: How DNA polymerase V works. Translesion synthesis occurring in 

response to DNA damage. Induction of the SOS regulon in response to DNA 

damage includes the expression of the error-prone DNA polymerases V (RulB). 

Pol. III is a DNA polymerase that is the primary enzyme used in DNA replication. 

(Image adapted from Sundin and Weigand, (2007). Used under agreement from 

Oxford University press, no. 4138330783037) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are many homologues of the rulAB operon that encode similar DNA 

polymerase V enzymes. This includes umuDC first described in E. coil (Smith 

and Walker, 1998) and rumAB found in Vibrio species (Hochhut et al., 2001). The 

operons encode resistance to UVB radiation across many different bacteria 

(Sundin et al., 2000). Research has indicated that the rulAB homologue umuDC 

acts as a SOS response regulator when the umuD (rulA) protein is truncated to 

UmuDpR and has the same mode of action as LexA (Diaz-Magana et al., 2015). 

Could the same also be true of rulAB and could rulA have some form of regulation 

function as well as rulB encoding a DNA polymerase V? If this is the case rulAB 

may regulate its own expression following the activation of the SOS response. 



 

188 

Members of the Pseudomonas syringae species need to be able to 

withstand high levels of UVB radiation as P. syringae populations are often 

located in the phyllosphere and more usually on the phylloplane (Lindow and 

Brandl, 2003). P. syringae colonises the leaf in high numbers (~3x105 cells) 

before entering the plant via the stomata (Melotto et al., 2008: Hirano et al., 1995). 

A functional rulAB operon is very important in maintaining high bacterial 

populations on the leaf surface (Sundin et al., 2000). Although UVB levels 

experienced by P. syringae will be higher than other ecological and 

phytopathogenic bacteria, their exposure is lessened by P. syringae typically 

colonising the underside of the leaf prior to infection. However, the expression of 

rulAB in P. syringae is thought to contribute significantly to their virulence and 

ecological fitness due to the increased UVB tolerance (Tark et al., 2005). 

Therefore any bacterial population colonising the plant surface and attempting to 

infect the host must be able to withstand UVB exposure even on the underside 

of the leaf. The rulAB determinant has been described in 14 pathovars of P. 

syringae. However the rulAB positive pathovars have a wide range of UVB 

radiation tolerance (Sundin et al., 2000). 

It had not been previously considered whether the disruption to rulB affects 

the primary role of rulAB in enhancing bacterial survival in mutagenic 

environments. However there have been studies into the presence and absence 

of rulB on bacterial fitness following UVB exposure (Zhang et al., 2004). The 

results showed no significant difference in both bacterial growth rate and overall 

bacterial fitness between strains lacking a rulAB operon following UVB irradiation.  

Analysis of previously identified rulB ILE disruptions revealed a uniform 

distribution of insertions within the rulB coding sequence that result in the 

truncated rulB fragments, rulB’ (~120bp) and rulB’’ (~1080bp), remaining in frame 
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(Jackson et al., 2011). This suggests that native DNA repair functions of rulB 

encoded DNA polymerase V may be maintained through one or both of the 

individual disrupted rulB gene fragments. 

 It was essential to ascertain the functionality of the rulB protein product in 

both forms, intact and disrupted by an ILE insertion. By assessing the functionality 

of rulB in terms of bacterial growth following UVB exposure the results would 

indicate three possibilities. Firstly that an intact rulB does not confer any benefit 

to the growth of the bacteria. Secondly that an intact rulB does confer a beneficial 

trait to P. syringae and finally the possibility that rulB functions in the same way 

regardless of its form and the fragmented rulB produces a functional protein 

similar to the full protein product. In order to come to a conclusion, all of the ILE 

positive P. syringae strains with a disrupted rulB gene were irradiated with UVB 

along with P. syringae strains containing an intact rulB gene. Psy. B86-17 was 

the control for intact rulB strains as its rulAB operon has been sequenced. Ppi 

203 was the control for ILE disrupted rulB due to this disruption being sequenced 

(Arnold et al.,1999; 2000) (Table 7.1). There were also two other strains included 

as controls; P. putida PaW340 (pWW0::kmr) which had an intact, sequenced rulB 

gene and P. fluorescens FH1 (pWW0::kmr::ILEFH1) which had a sequenced 

disrupted rulB gene. These were included to observe any differences in UVB 

tolerance between Pseudomonas species. The bacterial strains were subjected 

to 0, 30, 60 and 120 seconds of UVB exposure and their growth was recorded 

every hour for eight hours and again at 24 hours via optical density at 600 nm 

(OD600). 
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Table 7.1: List of Pseudomonas strains used for the UVB stress growth 

assay along with their rulB determinant. = presence of gene  = absence of 

gene. 

Strain Intact rulB Disrupted rulB 

Pp. Paw340 (pWW0::kmr)   

Psy. B86-17   

Ppi. 1124B   

Ppi. 1746A   

Ppi. 1758B   

Ppi. 1785A   

Ppi. 1796A   

Ppi. 1807A   

Pph. 1302A   

Pph. 1375A   

Psy. 1150   

Psy. 2242A   

Pma. 1809   

/////////////////////////////////////////////// ////////////////// ////////////////////////// 

Pf. FH1 (pWW0::kmr::ILEFH1)   

Ppi. 203   

Ppi. 202   

Ppi. 223   

Ppi. 283   

Ppi. 288   

Ppi. 390   

Ppi. 1456A   

Ppi. 1939   

Ppi. 2889B   

Psy. B728a   

Psy. 3023   

Pma. 1852A   

Pma. 5422   

Pma. 6201   
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7.2: Results 

7.2.1: Assessing the impact of UVB irradiation on Pseudomonas strains 

that contain an intact rulB gene. 

The growth of 13 strains containing intact versions of the rulB gene, 

selected from strains in Chapter 2, was recorded every hour for eight hours and 

then a final time point at 24 hours with two replicates per strain. The strains were 

subjected to UVB irradiation for zero, 30, 60 and 120 seconds with subsequent 

recovery in LB liquid media. A further exposure level was used at 300 seconds 

but this resulted in all of the strains failing to grow even after 48 hours so it was 

not included in future tests. The optical densities at a wavelength of 600nm 

(OD600) were measured and used to produce a series of growth curves for the 

various UVB exposure times (Figures 7.4-7.7). The controls used were P. putida 

PaW340 (pWW0::kmr) and P. syringae pv. syringae B86-17, both have 

sequenced intact rulB genes and belong to the Pseudomonas genus.  

7.2.1a: Growth of Pseudomonas strains with intact rulB following no UVB 

exposure. 

 Zero UVB exposure tests set the base line for growth of the strains 

containing an intact rulB. The data (Figure 7.4) showed that all of the strains 

increase in cell density over the time period, all reaching an OD600 >0.1 by eight 

hours and an OD600 range of 1.4 ± 0.0 to 2.4 ± 0.3 by 24 hours. These results 

showed that intact rulB strains will grow in the given conditions of the experiment 

and any differences in individual strain growth can be normalised using this data.  
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Figure 7.4: Growth of Pseudomonas strains containing an intact rulB gene 

without UVB (302nm) exposure. Cell density via optical density at 600nm was 

measured over the course of 24 hours. PaW340 (pWW0::kmr) and Psy B86-17 

were used as control strains. Two replicates per strain were tested and their mean 

values are displayed with standard deviation error bars. 
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7.2.1b: Growth of Pseudomonas strains with intact rulB following 30 

seconds of UVB exposure. 

 

Figure 7.5: Growth of Pseudomonas strains containing an intact rulB gene 

following 30 seconds of UVB (302nm) exposure. Cell density via optical 

density at 600nm was measured over the course of 24 hours. PaW340 

(pWW0::kmr) and Psy B86-17 were used as control strains. Two replicates per 

strain were tested and their mean values are displayed with standard deviation 

error bars. 

 

Following 30 seconds of UVB exposure it was observed that some of the 

intact rulB strains had difficulty growing following the exposure for the first eight 

hours. Ppi 1124B only increased in OD600 from 0.1 ± 0.0 to 0.2 ± 0.1 over the 

eight hour period compared to other strains such as Pma 1809 which had a bigger 

growth increase from 0.1 ± 0.0 to 1.7 ± 0.00, indicating that some strains may be 

naturally more susceptible to UVB radiation that others. It was also clear that the 

growth of the strains was affected as the mean OD600 of all the strains with an 
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intact rulB at eight hours was down from 1.6 ± 0.1 with zero UVB exposure to 0.7 

± 0.1 with 30 seconds exposure and at 24 hours down from 1.9 ± 0.1 to 1.7 ± 0.1 

respectively. However, all of the strains had grown to a density of >1.0 by the 24 

hour time point.  

7.2.1c: Growth of Pseudomonas strains with intact rulB following 60 

seconds of UVB exposure. 

 

Figure 7.6: Growth of Pseudomonas strains containing an intact rulB gene 

following 60 seconds of UVB (302nm) exposure. Cell density via optical 

density at 600nm was measured over the course of 24 hours. PaW340 

(pWW0::kmr) and Psy B86-17 were used as control strains. Two replicates per 

strain were tested and their mean values are displayed with standard deviation 

error bars. 
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strains only starting to recover by the eight hour time point. The control strain, 

PaW340 (pWW0::kmr), showed minor differences to the previous test, down from 

1.4 ± 0.0 to 1.2 ± 0.0 after eight hours. However, the P. syringae control strain 

B86-17 was similar to the other P. syringae strains, meaning that UVB tolerance 

may be a species specific trait. When the mean growth density of all the intact 

rulB strains at eight hours was compared to the zero UVB exposure baseline the 

cell density had decreased by 1.2 from 1.6 ± 0.1 to 0.4 ± 0.1 and at 24 hours from 

1.9 ± 0.1 to 1.0 ± 0.2, a decrease of 0.9. It was clear from Figure 7.6 that 60 

seconds of UVB exposure had affected the cells much more than the 30 seconds 

exposure. For example three strains, Ppi 1746A, Ppi 1785A and Ppi 1124B failed 

to recover at all from 60 seconds of UVB exposure and the majority of the strains, 

11 out of 13, were below an OD600 of 0.5 at eight hours.  

7.2.1d: Growth of Pseudomonas strains with intact rulB following 120 

seconds of UVB exposure. 

Figure 7.7 highlights the impact of UVB radiation on bacterial cells. Nine 

out of the 13 strains with intact rulB failed to grow when subjected to 120 seconds 

of direct UVB exposure. None of the strains reached an OD600 of 0.3 at eight 

hours compared to all of the strains being above an OD600 of one with zero UVB 

exposure. This was also highlighted in the mean OD600 growth values both at 

eight hours and 24 hours. At eight hours the mean OD600 of all strains with an 

intact rulB with no UVB exposure was 1.6 ± 0.1 compared to 0.1 ± 0.0 with 120 

seconds of UVB exposure. The same pattern was also true at 24 hours with the 

mean value decreasing from 1.9 ± 0.1 to 0.4 ± 0.1.  
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Figure 7.7 Growth of Pseudomonas strains containing an intact rulB gene 

following 120 seconds of UVB (302nm) exposure. Cell density via optical 

density at 600nm was measured over the course of 24 hours. PaW340 

(pWW0::kmr) and Psy B86-17 were used as control strains. Two replicates per 

strain were tested and their mean values are displayed with standard deviation 

error bars. 
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As rulB encodes a DNA polymerase V which aids in DNA replication 

following UVB DNA damage it was important to investigate what effect an ILE 

disruption to rulB had on bacterial growth. A selection of strains with ILE 

insertions into rulB were tested in the same way as the strains with an intact rulB 

gene (Section 7.2.1). Two controls were used for these experiments, P. 
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fluorescens FH1 (pWW0::kmr::ILEFH1) and P. syringae pv. pisi 203 both have 

sequenced rulB disruptions caused by an ILE insertion. See Chapters 3 and 4 for 

further information on these control strains.  

7.2.2a: Growth of Pseudomonas strains with a disrupted rulB gene 

following zero UVB exposure. 

 

Figure 7.8: Growth of Pseudomonas strains containing a disrupted rulB 

gene without UVB (302nm) exposure. Cell density via optical density at 600nm 

was measured over the course of 24 hours. FH1 (pWW0::kmr::ILEFH1) and Ppi 

203 were used as control strains. Two replicates per strain were tested and their 

mean values are displayed with standard deviation error bars. 

  

The baseline growth of the strains containing ILE insertions into rulB 
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growth patterns. As Figure 7.8 shows, all of the strains followed the same growth 

pattern and also followed the same pattern as the intact rulB strains in Figure 7.4. 

There was individual growth variation present, for example at eight hours Ppi 203 

was at an OD600 of 1.6 ± 0.0 compared to Pma 5422 which was at 1.0 ± 0.1. This 

was an important factor to consider when analysing any differences in growth due 

to the UVB exposure. 
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7.2.2b: Growth of Pseudomonas strains with a disrupted rulB gene 

following 30 seconds of UVB exposure. 

 

Figure 7.9: Growth of Pseudomonas strains containing a disrupted rulB 

gene following 30 seconds of UVB (302nm) exposure. Cell density via optical 

density at 600nm was measured over the course of 24 hours. FH1 

(pWW0::kmr::ILEFH1) and Ppi 203 were used as control strains. Two replicates 

per strain were tested and their mean values are displayed with standard 

deviation error bars. 

 

From Figure 7.9 it is evident that 30 seconds of UVB exposure was enough 

to reduce the growth of the bacteria up to the eight hour time point. However as 

seen with the intact rulB graph (Figure 7.5) many of the strains regained higher 

levels of growth by the 24 hour point. Strain Ppi 1456B best showed this as its 

growth remained almost stationary between zero and eight hours increasing from 

0.1 ± 0.0 to 0.1 ± 0.0. However, it reached an OD600 of 1.5 ± 0.0 after 24 hours, 

compared to the measurement with no UVB exposure of 2.2 ± 0.1. Another 
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interesting point was that the growth of the intact rulB strains at the same 

exposure level (Figure 7.5) looked very similar to the data in Figure 7.9. This was 

backed up by the mean OD600 values as the intact rulB average at eight hours 

with 30 seconds of UVB exposure was 0.7 ± 0.1 compared to the disrupted rulB 

value of 0.8 ± 0.1. The values were also similar at the 24 hour point with 1.6 ± 0.1 

and 1.5 ± 0.1 respectively. 

7.2.2c: Growth of Pseudomonas strains with a disrupted rulB gene 

following 60 seconds of UVB exposure. 

The exposure level was increased to 60 seconds and this further reduced 

the bacterial growth (Figure 7.10). All of the strains were below an OD600 of 0.5 at 

the eight hour time point following 60 seconds of UVB exposure. The majority of 

the strains reached this OD600 or higher at eight hours following 30 seconds of 

UVB exposure. The strains were also below an OD600 of one at 24 hours following 

60 seconds of UVB exposure except for the P. fluorescens control strain. 

However with 30 seconds of UVB exposure all strains except Ppi 1939 were 

above an OD600 of one.  

These values are also significantly different to the no UVB baseline 

measurements where the average at eight hours was 1.4 ± 0.0 compared to the 

average after 60 seconds of UVB exposure at 0.2 ± 0.0. Interestingly this 

exposure level also showed some differences between the growth of bacteria 

containing the intact form of rulB and those with the disrupted form which was not 

observed at the 30 seconds exposure level. The average growth at 24 hours for 

bacteria with the intact rulB was 0.97 ± 0.18 compared to those with disrupted 

rulB value of 0.6 ± 0.1. These values were significantly different from each other 

(see details in Section 7.2.3).  
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Figure 7.10: Growth of Pseudomonas strains containing a disrupted rulB 

gene following 60 seconds of UVB (302nm) exposure. Cell density via optical 

density at 600nm was measured over the course of 24 hours. FH1 

(pWW0::kmr::ILEFH1) and Ppi 203 were used as control strains. Two replicates 

per strain were tested and their mean values are displayed with standard 

deviation error bars. 
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7.2.2d: Growth of Pseudomonas strains with a disrupted rulB gene 

following 120 seconds of UVB exposure. 

 

Figure 7.11: Growth of Pseudomonas strains containing a disrupted rulB 

gene following 120 seconds of UVB (302nm) exposure. Cell density via optical 

density at 600nm was measured over the course of 24 hours. FH1 

(pWW0::kmr::ILEFH1) and Ppi 203 were used as control strains. Two replicates 

per strain were tested and their mean values are displayed with standard 

deviation error bars. 

 

The final exposure level of 120 seconds causes most of the strains’ growth 

to remain stationary. This was also the same for the strains with a disrupted rulB 

gene with the exception of Pma 5422 which does have decreased growth 

compared to 60 seconds of UVB exposure. However the growth slightly increased 

by the 24 hour point to an OD600 of 0.34. The other exception was the 
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Pseudomonas fluorescens FH1 (pWW0::kmr::ILEFH1) control. The OD600 average 

dropped from 0.2 ± 0.0 for 60 seconds of UVB exposure to 0.1 ± 0.0 for the 120 

seconds exposure at the eight hour time point and from 0.6 ± 0.1 to 0.3 ± 0.1 

respectively for the 24 hours point. Although there was a difference between the 

different exposure levels eight hours after exposure the mean growth values for 

intact and disrupted rulB were the same after eight hours with OD600 values of 

0.13. However at the 24 hour time point there was a difference from 0.4 ± 0.1 for 

intact rulB to 0.3 ± 0.1 for the disrupted rulB. 

 7.2.3: Analysing the growth rates of Pseudomonas strains following UVB 

exposure.  

Analysis of bacterial growth rates was performed. This would identify 

whether UVB irradiation affects growth rate and if the form of rulB confers any 

advantages or disadvantages following UVB exposure in terms of overall growth 

rate. The bacterial growth data from Sections 7.2.1 and 7.2.2 were normalised 

against the zero UVB exposure growth data for all of the strains for either intact 

rulB or disrupted rulB. This removed any variation in growth. These normalised 

OD600 growth values were transformed into natural log values (Ln) and linear 

regression plots were drawn using Graphpad Prism 7 software (available at: 

https://www.graphpad.com/scientific-software/prism/). The first data set was the 

linear regressions for the UVB exposure times with intact and disrupted rulB 

(Figure 7.12). 
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Figure 7.12: Linear regressions of bacterial growth over an eight hour time 

period following UVB irradiation. OD600 values transformed to Ln after UVB 

exposure and plotted against recovery time in LB broth. A) The linear regression 

of the normalised data obtained from strains containing an intact rulB gene. B) 

Linear regression plot of the normalised data obtained from strains containing a 

disrupted rulB gene. 

 

The linear regression analysis (Figure 7.12) indicates the difference in 

growth rate following the four different UVB exposure times and indicates that 

with increasing UVB exposure growth rate diminishes over the course of eight 

hours. It is also apparent that regardless of the state of rulB the same pattern is 

observed, although this does not indicate that any significant differences have 
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been observed between intact and disrupted rulB. The analysis also gave the 

growth rate values for each slope (Table 7.2), allowing analysis of the rate. In the 

case of UVB exposure each exposure level had a significant effect on the growth 

rate of the bacteria. The values were significantly different within either the intact 

or disrupted rulB data set at the 95% CI. All of the slopes were significantly 

different from zero (p<0.0001). 

Table 7.2: Growth rate values from linear regression analysis.

 

The growth rates at the 95% CI overlap to some degree between intact 

and disrupted rulB strains. The exception being at the 60 second exposure time 

where there was a significant difference at the 95% CI meaning there was 

evidence to suggest that the disruption of rulB caused a slower growth rate after 

60 seconds of UVB exposure. Disrupted rulB had a growth rate average of 0.1039 

hr-1 compared to 0.1561 hr-1 for intact rulB. Therefore the disruption to rulB 

appeared to not have a significant impact on bacterial cell growth following zero, 

30 and 120 seconds of UVB exposure. This was also observed when analysing 

the linear regression plots with both intact and disrupted rulB values overlaid 

(Figures 7.13). 

 

 

 

           Growth rate (95% CI)       rulB form cause 

UV exposure time Intact rulB Disrupted rulB significant difference?

0 seconds 0.28-0.42 0.28-0.39 

30 seconds 0.25-0.26 0.24-0.26 

60 seconds 0.15-0.16 0.08-0.13 

120 seconds 0.03-0.05 0.02-0.04 
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Figure 7.13: Linear regressions of normalised bacterial growth OD600 with 

intact and disrupted rulB plots overlaid. The plots have both rulB versions on 

to allow comparison of growth rates. A) No UVB exposure, normal cellular growth; 

B) Growth rate following 30 seconds of UVB exposure; C) 60 seconds of UVB 

exposure; D) 120 seconds of UVB exposure.  
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Intact rulB Disrupted rulB

Recovery time 8 hours 8 hours

Exposure level

0s UVB 1.56 ± 0.07 1.43 ± 0.04

30s UVB 0.72 ± 0.14 0.79 ± 0.08

60s UVB 0.35 ± 0.09 0.24 ± 0.03

120s UVB 0.13 ± 0.13 0.13 ± 0.01

7.2.4: End point bacterial growth analysis following UVB exposure on 

strains containing either an intact or disrupted rulB gene.  

The normalised data from the OD600 growth values used in Section 7.2.3 

was used to analyse any statistical differences in end point growth eight hours 

after UVB exposure. Eight hours was chosen over 24 hours due to it being more 

representative of the relationship between UVB exposure and growth in the short 

time period where rulB may be more active. Table 7.3 shows the normalised 

growth values for the eight hour recovery time point for comparison between the 

two different rulB versions. The normalised data was also used to produce two 

growth curves to visualise the difference between exposure levels and also the 

differences between intact and disrupted rulB (Figures 7.14 and 7.15).  

Table 7.3: Comparison of normalised OD600 data for intact and disrupted 
rulB genes at eight hours after UVB exposure. Data shown with ± SEM. 
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Figure 7.14: Normalised growth curve of combined Pseudomonas strains 

with an intact rulB gene following UVB exposure. Cell density via optical 

density at 600nm was measured over the course of eight hours. All of the OD600 

growth values from 13 strains were normalised against zero UVB exposure with 

standard deviation error bars. 
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Figure 7.15: Normalised growth curve of combined Pseudomonas strains 

with a disrupted rulB gene following UVB exposure. Cell density via optical 

density at 600nm was measured over the course of eight hours. All of the OD600 

growth values from 13 strains were normalised against zero UVB exposure with 

standard deviation error bars. 
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Anova: Two-Factor With Replication

ANOVA

Source of Variation SS df MS P-value

Diff. exposures 67.89258884 55 1.234410706 8.4675E-81

Intact vs. Disrupted rulAB 0.272304018 1 0.272304018 4.8465E-07

Interaction 5.668820982 55 0.103069472 5.31168E-26

Within 1.06805 112 0.009536161

Total 74.90176384 223

The normalisation of the data allowed a two-factor ANOVA with replication 

to be performed to analyse the results and observe if there were any significant 

differences between the amounts of UVB exposure on end point growth at eight 

hours and also if there was any difference in end point growth caused by the rulB 

gene being disrupted.   

 The ANOVA was carried out using the Minitab 17 statistical software 

(Table 7.4). The ANOVA took all of the growth values into consideration. The 

same number of strains for intact and disrupted rulB were used with a random 

number generator used to remove excess strains containing a disrupted rulB. The 

outcome was based on all of the values for exposure levels and rulB variation 

whilst comparing the two for any cross over interaction between them. 

 
Table 7.4: Two-factor ANOVA of all strains tested for UVB tolerance with 

replication. This output shows the P values for any significant differences 

between different UVB exposure levels, differences between the intact and 

disrupted rulB genes and also the P value for the interaction between the two. 

Output from Minitab 17. 

 

 

 

 

 

 

 

Using the ANOVA results the different exposure levels, 0, 30, 60 and 120 

seconds were shown to produce OD600 growth values that were significantly 

different from each other. The P value for exposure level was p=8.47 x10-81 which 

is less than 0.001, therefore it was concluded that at the 99.9% confidence 
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interval (CI) there was enough evidence to suggest that changing UVB exposure 

levels corresponds to a significant difference in end point growth at eight hours. 

 The ANOVA results also showed that the difference in rulB, whether it is 

intact or disrupted, does cause a significant difference in end point growth at eight 

hours. For intact versus disrupted rulB p=4.85 x10-7 which was less than 0.001 

meaning that it was concluded that at the 99.9% CI the form of rulB corresponds 

to a significant difference in end point growth at eight hours following UVB 

exposure. 

The same result was obtained for the interaction between exposure level 

and rulB disruption with a P value of p=5.31 x10-26 meaning that there was 

enough evidence to suggest that the interaction of the exposure level and the 

form of rulB corresponds to a significant difference in growth at the 99.9% CI. 

Strains with a disruption to rulB are at a significant disadvantage in terms of 

growth at eight hours after UVB irradiation. Strains with an intact rulB gene 

appear to grow better within the first eight hours of recovery following UVB 

irradiation.  
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7.3: Discussion 

The rulB gene encodes a DNA polymerase belonging the gamma (Ɣ) 

family polymerases (Hawver et al., 2015) and is an error-prone DNA polymerase 

V. This polymerase V is a mutagenic DNA repair determinant (Zhang and Sundin, 

2004) and has the ability to maintain gene expression following a stress event 

where the DNA is damaged and strand breaks occur such as those caused by 

UVB irradiation (Sundin and Weigand, 2007). UVB radiation is a major contributor 

to the formation of DNA replication stalls as direct UVB radiation causes the 

production of DNA photoproducts, such as pyrimidine dimers, that block DNA 

replication and RNA transcription which can be lethal to bacterial cells (Tark et 

al., 2005). Previous studies have been conducted to assess the impact on cell 

growth and survival of rulAB or its’ homologues in terms of the presence or 

absence of the gene (Cazorla et al., 2008), but not whether the gene confers the 

same level of UVB tolerance if rulB is disrupted by an insert (Sundin and Murillo, 

1999), in this case an ILE. The effect of the presence or absence of rulAB on UVB 

tolerance has been studied using P. syringae. The findings showed that rulAB 

positive strains had approximately a 10-fold increase in survival following UVB 

irradiation compared to strains lacking the rulAB operon. Research has also 

revealed that rulAB positive strains maintain a significantly larger epiphytic 

populations on the leaf surface (Sundin and Murillo, 1999).  Research carried out 

with P. fluorescens also showed that when strains harbour the conjugative 

plasmid, pA506 they have a higher tolerance of UVB radiation. This was 

presumed to be due to the rulAB gene present on pA506 (Stockwell et al., 2013). 

 To investigate whether the ILE disruption to rulB caused a significant 

difference to UVB tolerance and bacterial cell growth 13 strains with intact rulB 

genes and 15 strains with a disrupted rulB gene were subjected to UVB irradiation 
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for either 0, 30, 60 or 120 seconds with subsequent recovery time of 24 hours. 

To determine the effect of UVB irradiation the OD600 of each strain was measured 

at one hour intervals for the first eight hours and then again at 24 hours. Although 

rulB is disrupted it was not known if a functional protein was still produced from 

the disrupted rulB or if another error prone DNA polymerase is present in some 

of the strains. 

 The first set of results (Section 7.2.1) revealed that the strains with an 

intact rulB gene had their growth severely reduced during the first eight hours of 

recovery following UVB exposure presumably due to the DNA damaging nature 

of UVB radiation (Schuch et al., 2017). However the effect of UVB damage was 

clearly linked to exposure time as the more UVB irradiation the greater the decline 

in growth compared to the no UVB irradiation control (Figure 7.4). This was likely 

due to the increased accumulation of DNA lesions and pyrimidine dimers that the 

bacteria was unable to repair leading to bacterial growth remaining stationary. 

This correlation between increasing UVB exposure time and decreasing bacterial 

cell growth has been shown before and is a dose dependant correlation 

(Charpentier et al., 2011).  

The effect of increasing UVB irradiation on bacterial growth was clearly 

shown. When subjected to 30 seconds of UVB exposure all of the strains 

regained a similar level of growth to the zero UVB controls after 24 hours of 

recovery. However the same was not true when the exposure was increased to 

60 seconds (Figure 7.6) as four strains failed to regain the same level of growth 

and the growth of three strains remained stationary. The same pattern continued 

with 120 seconds of UVB exposure as only four strains increased in growth after 

24 hours. A similar pattern was observed with the strains that contained a 
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disrupted rulB gene (Section 7.2.2). Increasing UVB exposure reduced the 

bacterial growth of all of the strains.  

An interesting set of results was the normalised growth rates of the strains 

to observe any difference in overall growth rate between intact and disrupted rulB. 

Linear regression growth rates were constructed from the natural log of the OD600 

values following normalisation. The growth rates in Figure 7.12 show that both 

rulB forms follow the same pattern; as UVB exposure increases, growth 

decreases and that as recovery time increases so does growth.  

Statistical analysis on the growth rates for all of the exposure levels found 

that at the 95% CI, the form of rulB only has a significant impact on bacterial 

growth rate when the cells are exposed to UVB irradiation for 60 seconds. This 

may be due to the 30 second exposure level not being high enough to damage 

the DNA sufficiently to activate rulB expression. The 120 seconds exposure level 

appears to be the threshold for bacterial cell survival and may provide too much 

DNA damage for the cells to compensate. Future work could involve looking at 

exposure levels closer to 60 seconds to investigate if there is a cut-off point where 

disrupted rulB fails to cause a significant decrease in bacterial growth rate.  

However the statistics on the normalised data (Figures 7.14 and 7.15) 

revealed that at the eight hour recovery time point there was enough evidence to 

suggest a significant difference in bacterial growth due to intact or disrupted rulB. 

This result was expected as over a relatively short period of time the strains with 

an intact rulB encoded DNA polymerase V may be able to bypass the UVB 

damaged DNA and continue DNA replication. The growth of the strains with a 

disrupted rulB stalls as the DNA is repaired using mechanisms such as 

photoreactivation, nonhomologous end-joining or homologous end-joining 

(Figure 7.16) (Shuman and Glickman, 2007; Alberts et al., 2008), methyl-directed 
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mismatch repair (Fukui, 2010) or homologous recombination using the RecBCD 

pathway (Yu et al., 1998), allowing DNA polymerase III to continue DNA 

replication. This also happens in the intact rulB strains but rulB provides another, 

more error prone solution to aid cellular growth following severe UVB induced 

DNA damage.  

By 24 hours the majority of the DNA damage should have been resolved. 

DNA repair is estimated to take between 24 and 72 hours (Clancy, 2008) if the 

initial UVB irradiation did not kill the bacterial cells. This means that by 24 hours 

there may be no advantage to have a functioning rulB encoding the error prone 

DNA polymerase V.  

Another point to consider was although other DNA repair mechanisms are 

present some strains may contain multiple copies of rulB or its homologues in a 

similar way to bacteria having multiple copies of housekeeping genes 

(Klappenbach et al., 2000). This would give strains with multiple UVB tolerance 

genes or multiple DNA repair genes an advantage over other strains and would 

make the disputed rulB redundant. It may also be possible for a bacterium to 

utilise horizontal gene transfer as a mechanism for cells containing a disrupted 

rulB gene to acquire an intact version (Fall et al., 2007).  
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Figure 7.16: Nonhomologous and homologous end-joining to repair DNA 

lesions. The DNA break is caused by UVB irradiation and a section of DNA is 

lost. Two pathways are used to repair the break. The first is nonhomologous end-

joining which joins the two ends back together causing alterations to the original 

DNA and may be deleterious to the bacterium. The second is homologous end-

joining which uses a template DNA strand to copy. This method is far more 

specific but harder to accomplish. (Image obtained from: 

upload.wikimedia.org/wikipedia/commons/d/de/Repair_outcomes_of_a_genomi

c _double-strand_break_for_ZFN_cleavage.jpg, used under the creative 

commons license 3.0; https://creativecommons.org/licenses/by/3.0/). 

  

Although significant differences between intact rulB and disrupted rulB 

were observed at the end point growth analysis when looking at the bacterial 

growth rates the only significant difference between the two rulB versions was 

after 60 seconds of UVB exposure. All of the other exposure times indicated that 

there was no significant difference to bacterial growth rate influenced by a 

disrupted rulB gene caused by ILE insertion. This showed that ILE insertion into 

rulB may not be as detrimental to the bacteria as previously thought. However, 

bacterial growth rate is only one measure of overall bacterial fitness and not 

representative of the full impact a disrupted rulB gene may have on bacterial cells.  
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Chapter 8. General discussion and conclusions. 

8.1: Discussion 

The main aim of this research was to identify and characterise integron-like 

elements (ILEs) in a range of phytopathogenic Pseudomonas syringae strains 

and conduct further research into the ILEs’ insertion into the DNA polymerase V 

encoding gene, rulB. Additional research aims included: characterising the 

genetic expression of the ILE integrase genes and the TTE genes present on the 

ILEs; investigating the relationship between ILE insertions into rulB and the ability 

of rulB to maintain its DNA damage repair capabilities and finally to assess what 

target the ILE requires for insertion into rulB. These aims, as set out in Section 

1.11 were: 

1- To determine the frequency of integron-like elements (ILEs) and rulAB 

genes in different plant pathogenic Pseudomonas bacteria.  

2- To determine whether ILEs and ILE-captured genes are mobile. 

3- To identify the conditions in which integron integrase and type three 

effectors (TTE) are expressed. 

4- To characterise the ILE co-localisation with rulB. 

5- To investigate if the disrupted RulB protein still conveys UV resistance. 

The ILE research stemmed from previous work by Arnold et al. (2000) and 

Rhodes et al. (2014). Both identified sections of DNA that had inserted into and 

disrupted the DNA polymerase V encoding rulB gene crucial for DNA damage 

repair (Cazorla et al., 2008). Rhodes et al. (2014) identified a chromosomal ILE 

from P. fluorescens FH1 that had inserted into a plasmid borne rulB gene on 

pWW0 whereas Arnold et al. (2000) identified an ILE in P. syringae pv. pisi 203, 

but no ILE movement was observed. There have been other instances of 
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genomic inserts into rulB homologues; for example integrative and conjugative 

elements (ICE) were identified in Pantoea ananatis and they also insert into the 

umuC gene of the umuDC operon which is a homologue of rulAB (Maayer et al., 

2015). It was hypothesised that ILEs and possible further genomic insertions into 

rulB homologues may be present in other pathovars and strains of P. syringae 

along with other bacterial species.  

The first aim and the largest part of this research project was identifying 

and characterising potential ILEs from a range of P. syringae pathovars which 

included pisi, syringae, tomato and glycinea. This was primarily conducted via 

DNA hybridisation blots, but progressed onto PCR to identify ILEs and whole 

genome sequencing to characterise the content of the ILEs and the surrounding 

genome. 

Using PCR to identify ILEs (Chapter 3) 164 P. syringae strains were 

screened for three distinct ILE associated regions. The first region was the rulAB 

gene as it appeared to be a hotspot for ILE insertion. The second was a xerC 

gene that appears to always be present at the 5’ end of the ILE, although this 

position is not exclusive to ILEs, and the final region was the rulB-xerC junction 

region at the point of previously identified ILE insertion into rulB. The ILE 

screening began with DNA hybridisation using probes from P. fluorescens. This 

method worked well for the large sample size and was also able to detect the ILE 

regions even though many of the genes had slight but noticeable differences in 

their sequences to the probe. However PCR was used for a second screening as 

sequence analysis can be performed following PCR. The PCR primers could not 

use the same sequences as used for the hybridisation probes. This was due to 

the sequences not being homologous between the Pseudomonas fluorescens 

and putida strains used for the hybridisation probes and the Pseudomonas 
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syringae pathovars that were being screened. This was where the difference 

between DNA hybridisation and PCR was noticed. Hybridisation probes require 

>40%+ identity between them and the sample whereas PCR primers require 

>85% identity for amplification and the first 5 nucleotides need to be homologous 

to the target gene (Sommer and Tautz, 1989).  Using PCR, 21 strains containing 

ILEs were identified from the 164 screened.  

Following on from the identification of the ILEs they were characterised 

using a combination of PCR, using primers developed from Ppi 203 to identify 

ILEs that were the same as the Ppi 203 ILE, and whole genome sequencing to 

characterise ILEs that were different. The characterisation of the ILEs revealed 

that all of the 21 ILEs contained a 5’ xerC integrase gene and TTE genes in the 

3’ variable end, although not all of the ILEs contained the same TTE genes 

(Chapter 4). For example Ppi 390 contained avrPpiA1, Psy 3023 contained 

hopH1 and hopAP1, and Pgy 2411 contained hopH1 and hopC1. TTEs play an 

important role in bacterial – plant interactions and therefore ILEs may also play a 

role in disseminating TTEs across multiple strains. ILEs may also have the ability 

to silence and excise certain TTEs if it is not beneficial to the bacterium or the 

plant may recognise the TTE and mount a HR. This could lead to ILEs containing 

TTEs contributing directly to the zig-zag theory of bacterial and plant co-evolution 

(Jones and Dangl, 2006) and act as a reservoir of TTEs for bacteria to pick and 

choose from. As a plant becomes resistant to a bacteria it can recognise a 

repertoire of TTEs. However bacteria have the ability to excise, silence or gain 

new TTEs that the plant host will no longer recognise. ILEs may be acting as a 

TTE reservoir facilitating disease progression.   

Due to ILEs being potentially important to plant colonisation and plant 

disease symptoms, research was performed to assess how and when ILEs 
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become mobile and what their target site was within rulB and whether any other 

genes are required for ILE excision and insertion (Chapter 6). Previous studies 

by Rhodes et al. (2014) showed that the chromosomal ILEs present in P. 

fluorescens FH1-FH6 are mobile into the rulB gene present on the TOL plasmid 

pWW0, which is native to P. putida. The first stage to assess the mobility of ILEs 

was to repeat the experiment of Rhodes et al. (2014) and to also apply the same 

technique to the P. syringae strains containing ILEs. However, this did not work 

for the P. syringae ILEs due to pWW0 not inserting into the strains. The pWW0 

plasmid is 117kb without an ILE insert and many studies using a plasmid above 

100kb often require specialised competent cells and transformation via 

electroporation for successful transformation (Addgene, 2017). This may be the 

reason why the plasmid did not transfer into the P. syringae strains. 

To overcome this rulAB from pWW0 and PPHGI-1, a genomic island from 

P. syringae pv. phaseolicola 1302A, were cloned into pBBR1MCS-2 to reduce 

the size of the plasmid and to also assess if any genes other than rulAB present 

on pWW0 are required for ILE insertion (see Section 6.2.5). The results were 

similar with ILE insertion into the cloned rulB only seen in P. fluorescens FH1. 

However, this did answer the question that only rulAB from pWW0 is required for 

ILE insertion in P. fluorescens. The other ILEs in P. syringae may require different 

conditions for movement or the ILEs may be fixed in the genome if they are 

beneficial. The ILE movement experiments progressed into looking at pWW0 and 

P. fluorescens FH1 in more detail to assess if the entire rulAB operon was 

required or if only rulB was required. The results indicated that the entire rulAB 

operon may be required for ILE movement in P. fluorescens FH1. The entirety of 

rulAB may be required as the ILE may use its regulatory mechanisms or its 

possible function as a recombinase gene. It has also been shown that umuD 
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(rulA) can regulate other SOS genes which may include self-regulation of the 

umuDC (rulAB) operon (Diaz-Magana et al., 2015). The rulB gene from pWW0 

whilst encoding a DNA polymerase V may also exhibit some form of recombinase 

activity facilitating ILE integration and possibly ILE circularisation. A similar 

interaction has been observed in the past as when rulB on PPHGI-1 is knocked 

out the genomic island loses the ability to form a circular intermediate (Lovell et 

al., 2009). This was one of the reasons for carrying out circularisation tests on 

the ILEs. ILE circularisation tests were performed on P. fluorescens FH1, Ppi 203 

and Psy 3023 with FH1 showing a positive result (Figure 6.13). However this area 

of research needs to be continued.  

Analysing the expression of ILE genes may lead to a better understanding 

of when ILEs are active and also when they are more likely to be mobile. In order 

to observe ILE gene expression different conditions were chosen to stress the 

bacteria. The stresses included plant apoplastic fluid which mimics the bacteria’s 

host environment, changes in temperature and also included two stresses, UVB 

irradiation and MMC, that would activate the SOS response as both treatments 

cause DNA damage (Krishna et al., 2007; Charpentier et al., 2011). Both UVB 

and MMC caused all of the ILE genes tested to be upregulated compared to their 

respective controls, except rulB which was only upregulated with the UVB 

treatment. This was an unexpected result as rulB would be expected to be 

upregulated during UVB exposure as rulB encodes a DNA polymerase V that has 

the ability to continue DNA synthesis following DNA damage and stalling of the 

replication fork (Tark et al., 2005). The gene expression results also showed that 

unlike integrons the expression of the ILE integrase is uncoupled from the 

expression of rulB and xerC is unlikely to be under the regulation of the SOS 
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response. If xerC were under the same regulation as rulB it would be expected 

that a similar gene expression profile would be observed, this was not the case.  

All of the identified ILEs are inserted into rulB and therefore disrupts the 

gene and causes a truncated protein product to be formed. Research was 

undertaken to assess if the disrupted rulB gene by an ILE was deleterious to 

bacterial survival following exposure to UVB irradiation. This research was 

important as P. syringae colonises the leaf surface which is exposed to high 

levels of UV radiation (Lindow and Brandl, 2003). Therefore it is important that 

the bacterial cells can withstand UV radiation and maintain a viable bacterial 

population. The disrupted rulB results were compared to strains with an intact 

rulB gene and the difference in bacterial survival between the two sets of strains 

was minimal with only one exposure level showing a slight but significant 

difference (Chapter 7). The lack of difference between the two groups tested 

could be due to the strains containing other genes that repair damaged DNA or 

even other copies of rulB elsewhere in the genome. Another possibility is that the 

truncated rulB gene is still active, but this requires further investigation. 

 

8.2: Conclusions from research. 

Conclusions can be drawn from this research on ILEs in P. syringae and 

their potential impact on bacterial evolution. The first conclusion to be drawn was 

that ILEs are abundant in P. syringae pathovars and that they all follow a similar 

genetic makeup. All of the ILEs identified contained a xerC integrase, at least one 

TTE gene and they were all inserted into rulB.  

The second conclusion was that although all the ILEs were inserted into 

rulB the P. syringae ILEs appear to be not as mobile under the conditions tested 

as the P. fluorescens FH1 ILE. This was shown as the FH1 ILE moved into a 
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cloned version of rulB without any of the genes from pWW0 being present, 

however the entirety of rulAB may be required.   

The expression analysis showed a variation in ILE integrase and TTE 

expression. One interesting result was that the ILE xerC integrase appears to not 

be under the regulation of the SOS response as differences in gene expression 

were observed between xerC and rulB (known to be under SOS regulation). The 

overall finding was that gene expression increases in times of stress. This is most 

likely because different beneficial genes are required to support the bacteria in 

stressful environments. These beneficial genes may be present in the 

environment and ILEs may be able to capture and express them. This also linked 

into the UVB irradiation work on the intact and disrupted rulB containing strains. 

This showed that although the ILE insertion disrupts the rulB gene and truncates 

the DNA polymerase V protein there was only a slight difference in growth 

between the two groups and this may indicate that other mechanisms of DNA 

damage repair are present to compensate for the loss of rulB.  

 

8.3: Future research. 

The current study left many questions unanswered. These questions 

include: do ILEs circularise during excision and integration; are the ILEs identified 

in P. syringae strains mobile as seen with the ILE in P. fluorescens FH1; will the 

ILEs act in a similar way to integrons and capture exogenous TTE genes to 

overcome plant resistance? 

 The ILE circularisation work has been started in this study, but requires 

further work with new primers and different stresses to observe any possible ILE 

circularisation. Future research on this could also include a time series 
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experiment to identify how long after excision an ILE circularises and whether or 

not the circularised form is always present in the cell.     

 The ILE mobility work has also been started but needs to be continued 

with the focus on the P. syringae ILEs and different versions of rulAB. This would 

also identify if these ILEs are true integrons. This question would be investigated 

by introducing various rulB genes from different bacterial strains and observing if 

ILE movement occurs during cell stress. The question would then be, is the fully 

functional rulB gene required or is it just a certain sequence site required for ILE 

insertion? This would be answered by cloning different versions of rulB to use as 

a capture target in the same way as used for the previous studies on P. 

fluorescens FH1 (Chapter 6).   

 The final question that is that will the ILEs behave the same as true 

integrons and capture exogenous genes from the environment to overcome plant 

resistance. It would be expected that a bacterial pathogen would undergo severe 

cell stress during plant interaction. This work could use the tomato pathogen, Pto 

DC3000, which encodes: (i) a potential ILE insertion site (rulB gene) and (ii) a 

suite of 28 key effectors for suppressing host resistance. Pto D28E lacks all 28 

effectors compared to the wild-type and D28E is avirulent and unable to cause 

disease in tomato (Cunnac et al., 2011). Two effectors hopM1 and avrPtoB are 

solely able to convert this strain back to virulence. Therefore using D28E carrying 

hopM1 in a series of experimental evolution experiments where sole avrPtoB and 

an ILE carrying avrPtoB are provided as genetic material for capture by the ILEs 

virulence on tomato will show that the ILE has captured the gene. This will 

encompass two mechanisms of ILEs, firstly will an ILE be incorporated to 

overcome host resistance and secondly will an existing ILE capture and express 

an effector?  
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Bacterial strain Resistance Reference

Pseudomonas fluorescens

Pseudomonas fluorescens strain FH1 N/A Rhodes et al., 2014

Pseudomonas fluorescens strain FH4 N/A Rhodes et al., 2014

Pseudomonas fluorescens strain FH1 (pWW0::km
r
::ILEFH1) Km Rhodes et al., 2014

Pseudomonas fluorescens strain FH4 (pWW0::km
r
::ILEFH4) Km Rhodes et al., 2014

Pseudomonas putida

Pseudomonas putida  strain PaW340 Stm Rhodes et al., 2014

Pseudomonas putida strain PaW340 (pWW0::km
r
) Stm, Km Rhodes et al., 2014

Pseudomonas putida  strain PaW340 (pWW0::km
r
∆rulAB ) Stm, Km Rhodes et al., 2014

Pseudomonas syringae pv. pisi

Pseudomonas syringae  pv. pisi  race 1 strain 277 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 299A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 379 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 456A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 461 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 862A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 2491B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 1 strain 4461 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 202 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 203 N/A Arnold et al., 2000

Pseudomonas syringae  pv. pisi  race 2 strain 223 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 278 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 285 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 288 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 374A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 390 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 1124B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 1517C N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 1576A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 1577 N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 2 strain 1759 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 1842A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 1924 N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 2 strain 1939 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 2 strain 2889B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 222 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 283 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 870A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 895A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1125 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1214 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1216 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1380A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1441 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1554A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 1892 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 2183A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 2186A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 2191A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 2817A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 4411 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 3 strain 4574 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1452 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1456A N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 4 strain 1456B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1456C N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1456D N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1456E N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 4 strain 1456F N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1525 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1528 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1758B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 1811A N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 4 strain 1812A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 2171A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 4 strain 5143 N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 5 strain 974B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 5 strain 2301C N/A HRI cuture collection

Pseudomonas  syringae  pv. pisi  race 5 strain 2532A N/A HRI cuture collection

Pseudomonas  syringae  pv. pisi  race 6 strain 1683 N/A HRI cuture collection

Pseudomonas  syringae  pv. pisi  race 6  strain 1688 N/A HRI cuture collection

Appendix I: Bacterial strains & plasmids used during research.  
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Pseudomonas  syringae  pv. pisi  race 6 strain 1704B N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 6 strain 1745A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1746A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1755A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1759 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1785A N/A HRI cuture collection

Pseudomonas syringae pv. pisi  race 6 strain 1796A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1797A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1804A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1807A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1842B N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1842C N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1842D N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 6 strain 1942 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 1691 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 2491A N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 4298 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 4300 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 4409 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 4426 N/A HRI cuture collection

Pseudomonas syringae  pv. pisi  race 7 strain 4466 N/A HRI cuture collection

Pseudomonas syringae pv phaseolicola

Pseudomonas syringae pv. phaseolicola strain 103 N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 1 strain 1281A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 6 strain 1299A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 3 strain 1301A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola  race 4 strain 1302A N/A HRI cuture collection

Pseudomonas syringae pv. phaseolicola race 5 strain 1375A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 6 strain 1448A Rif Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola  race 7 strain 1449A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 7 strain 1449B N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 8 strain 2656A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. phaseolicola race 9 strain 2709A N/A Tsiamis et al., 2000

Pseudomonas syringae pv. syringae

Pseudomonas syringae pv. syringae strain B728A N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 100 N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 1142 N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 1150 N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 1212 N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 1282-8 N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 1338A N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2242A N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2673C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2675C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2676C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2677C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2682C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2692C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2703C N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 2732A N/A HRI cuture collection

Pseudomonas syringae pv. syringae strain 3023 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola

Pseudomonas syringae pv. maculicola strain M4 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain  65 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain  1809A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain  1813 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1820 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1821A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1838A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1846A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1848B N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1852A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 1855A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 5422 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 5429 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 6201A N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 6319A/1 N/A HRI cuture collection

Pseudomonas syringae pv. maculicola strain 6328A/1 N/A HRI cuture collection
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Pseudomonas syringae pv. tomato

Pseudomonas syringae pv. tomato  strain DC3000 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 19 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 119 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 138 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 1108 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 2944 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 2945 N/A HRI cuture collection

Pseudomonas syringae pv. tomato  strain 6034 N/A HRI cuture collection

Pseudomonas syringae pv. antirrhini

Pseudomonas syringae pv. antirrhini  strain 152E N/A HRI cuture collection

Pseudomonas syringae pv. antirrhini  strain 4303 N/A HRI cuture collection

Pseudomonas syringae pv. lachrymans

Pseudomonas syringae pv. lachrymans  strain 789 N/A HRI cuture collection

Pseudomonas syringae pv. lachrymans  strain 3988 N/A HRI cuture collection

Pseudomonas syringae pv. glycinea

Pseudomonas syringae pv. glycinea  strain 1139 N/A HRI cuture collection

Pseudomonas syringae pv. glycinea  strain 2411 N/A HRI cuture collection

Pseudomonas syringae pv. glycinea  strain 3318 N/A HRI cuture collection

Pseudomonas asperii

Pseudomonas asperii strain 959 N/A HRI cuture collection

Pseudomonas asperii strain 1947 N/A HRI cuture collection

Pseudomonas caricapapayae

Pseudomonas caricapapayae strain 1873 N/A HRI cuture collection

Pseudomonas caricapapayae strain 3080 N/A HRI cuture collection

Pseudomonas caricapapayae strain 3439 N/A HRI cuture collection

Pseudomonas savastanoi

Pseudomonas savastanoi  strain 639 N/A HRI cuture collection

Pseudomonas savastanoi  strain 2716 N/A HRI cuture collection

Pseudomonas savastanoi  strain 3334 N/A HRI cuture collection

Pseudomonas corrugata

Pseudomonas corrugata  strain 2445 N/A HRI cuture collection

Pseudomonas corrugata strain 3056 N/A HRI cuture collection

Pseudomonas corrugata strain 3316 N/A HRI cuture collection

Pseudomonas cichorii

Pseudomonas cichorii strain 907 N/A HRI cuture collection

Pseudomonas cichorii  strain 943 N/A HRI cuture collection

Pseudomonas cichorii  strain 3109A N/A HRI cuture collection

Pseudomonas cichorii  strain 3109B N/A HRI cuture collection

Pseudomonas cichorii  strain 3283 N/A HRI cuture collection

Pseudomonas marginalis

Pseudomonas marginalis strain 247 N/A HRI cuture collection

Pseudomonas marginalis strain 949 N/A HRI cuture collection

Pseudomonas marginalis strain 2380 N/A HRI cuture collection

Pseudomonas marginalis strain 2644 N/A HRI cuture collection

Pseudomonas marginalis strain 2645 N/A HRI cuture collection

Pseudomonas marginalis strain 2646 N/A HRI cuture collection

Pseudomonas marginalis strain 3210 N/A HRI cuture collection

Pseudomonas used during cloning

P. putida PaW340 (pBBR1MCS-2::pWW0 rulAB) Km This study

P. putida  PaW340 (pBBR1MCS-2::pWW0 rulB) Km This study

P. putida  PaW340 (pBBR1MCS-2::pWW0 rulAB'-IP) pWW0 rulAB upto ILE insertion point Km This study

P. putida  PaW340 (pBBR1MCS-2::PphGI rulAB) Km This study

P. flourescens FH1 (pBBR1MCS-2::pWW0 rulAB) Km This study

P. flourescens FH1  (pBBR1MCS-2::pWW0 rulB) Km This study

P. flourescens FH1  (pBBR1MCS-2::pWW0 rulAB'-IP) pWW0 rulAB upto ILE insertion point Km This study

P. flourescens FH1  (pBBR1MCS-2::PphGI rulAB) Km This study

Ppi 203  (pBBR1MCS-2::pWW0 rulAB) Km This study

Ppi 203  (pBBR1MCS-2::PphGI rulAB) Km This study

Psy 3023  (pBBR1MCS-2::pWW0 rulAB) Km This study

Psy 3023  (pBBR1MCS-2::PphGI rulAB) Km This study

E.coli

DH5α, non pathogenic E.coli used during cloning N/A Taylor et al., 1993

DH5α (pBBR1MCS-2::pWW0 rulAB) Km This study

DH5α (pBBR1MCS-2::pWW0 rulB) Km This study

DH5α (pBBR1MCS-2::pWW0 rulAB'-IP) pWW0 rulAB upto ILE insertion point Km This study

DH5α (pBBR1MCS-2::PPHGI rulAB) Km This study
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Plasmids Resistance Reference

pWW0::km
r 
(large self-transmissible plasmid with heavy Km Rhodes et al., 2014

metal resistance)

pWW0::km
r 
(large self-transmissible plasmid with heavy metal Km Rhodes et al., 2014

resistance, also has the integron inserted into rulAB from Pf. FH1)

pRK2013, kanamycin resistance helper vector from E. coli DH5α Km Ditta,  1980

pBBR1MCS-2, kanamycin resistance broad host range vector Km Kovach, 1995

pBBR1MCS-5, gentamicin resistance broad host range vector Gm Kovach, 1995

pCR2.1, cloning vector for PCR products Km Invitrogen circa 1999
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Appendix II: Chemical composition of media, buffers and 
solutions. 

 
KB Media 
 
15.2 g Pseudomonas powder, 400 mL distilled water, 4 g glycerol.  Autoclaved. 
 
LB agar 
 
10 g LB powder per 400 mL distilled water, 5.5 g bacteriological agar per 400 
mL. Autoclaved. 
 
LB Broth 
 
50 g LB powder, 2 L distilled water, dispensed into 10 mL aliquots.  Autoclaved. 
 
NA Media 
 
11.2 g nutrient agar powder, 400 mL distilled water, bring to the boil. 
Autoclaved. 
 
M9 Minimal Media agar 
 
4.2 g M9 powder, 400 mL distilled water, 5.5 g bacteriological agar. Autoclaved.  
Then add 1 mL 1 M magnesium sulphate (MgSO4), 10 mL 20% glucose 
(C6H12O6). 
 
M9 Minimal Media broth 
 
4.2 g M9 powder, 400 mL distilled water. Autoclaved.  
Then add 1 mL 1 M magnesium sulphate (MgSO4), 10 mL 20% glucose 
(C6H12O6). 
 
¼ Ringers solution 
 
1 tablet per 500 mL of distilled water. Autoclaved. 
 
Loading Dye for PCR samples 
 
25 mg bromophenol blue, 25 mg xylene cyanol, 3.3 mL glycerol, 6.7 mL distilled 
water. 
 
50x TAE 
 
242 g Tris base dissolved in 750  mL deionized water. Add 57.1  mL acetic acid 
and 100  mL of 0.5 M EDTA (pH 8.0) and adjust the solution to a final volume of 
1 L with distilled water.  
 
1xTAE 
 
Dilute 20 mL 50x TAE with 1980 mL distilled water to make a 2 L stock. 
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2x Saline-Sodium Citrate (SSC) buffer 
 
Dilute 20x SSC (Roche, UK) with distilled water with a ration of 1:10. Eg. 50 mL 
20x SSC in 450 mL distilled water. 
 
Low Stringency Buffer (L.S.B.)  
 
2x SSC containing 0.1% w/v Sodium Dodecyl Sulfate (SDS). 
 
 
High Stringency Buffer (H.S.B.)  
 
0.5x SSC containing 0.1% w/v SDS. 
 
Washing Buffer  
 
0.1 M maleic acid, 0.15M sodium chloride (NaCl), pH 7.5 with sodium hydroxide 
(NaOH). Autoclaved. Add 0.3% v/v Tween 20. 
 
Maleic Acid Buffer  
 
0.1 M maleic acid, 0.15 M NaCl, pH 7.5 with NaOH. Autoclaved. 
 
Blocking Solution  
 
Dilute 10x blocking solution (Roche, UK) 1:10 with maleic acid buffer. Prepare 
fresh. 
 
Antibody Solution  
 
Centrifuge Anti-Digoxigenin-AP (Roche, UK) for 5 mins at 10,000 rpm before 
each use. Pipette the necessary volume carefully from the surface. Dilute the 
Anti-Digoxigenin-AP 1:10,000 in blocking solution. Prepare fresh (2 hours, 4oC). 
 
Detection Buffer  
 
0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5. Autoclaved. 
 
Isopropyl β-D-1-thiogalactopyranoside (IPTG)  
 
25 mg of IPTG powder (Sigma) to 1 mL of sterile water. 800 μL per 400 mL 
agar. 
 
5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal)  
 
20 mg of x-Gal (Sigma) to 1 mL of Dimethylformamide (DMF). 800 μL per 400 
mL agar. 
 
Rifampicin  
 
10 mg/ mL of methanol. 
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Kanamycin  
 
10 mg/ mL of water, filter sterilise. 
 
Streptomycin 
 
200 mg/ mL of water, filter sterilise. 
 
1x TE buffer pH8 
 
Stock solution of 1 M Tris-HCl: 12.1 g in 100 mL SDW and pH 8.0 with HCl 
Stock solution of 0.5 M EDTA: 18.6 g in 100 mL SDW and pH 8.0 with NaOH 
1 x TE; Mix: 100 mL 1 M Tris-HCl and 20 mL 0.5 M EDTA 
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Appendix III: Sequence alignment of conserved ILE junction. 

CLUSTAL O(1.2.2) multiple sequence alignment 

 

 

Ppi203        ---------------TCCGCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi202        -----------------CGCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi223        ----------------GCCCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi283        ----------------CCGCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi288        -----------------CCCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi374A       -----------------CGCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi390        -----------------CGCAGCT-ATGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi1452       ------------------GTAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1456A      -------------------TAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1456B      ---------------AAAGTAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1456C      -------------------TAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1456D      ----------------CCGTAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1456E      ---------------GACGTAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1456F      ------------------GTAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

Ppi1939       -----------------------T-CTGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Ppi2889B      ---------------AACGTAGCT-ACGACGCCAGCCATTTGTGAAAATGGGCGCTCCCT 

PsyB728a      -----------------------T-CTGACGCCAGCCATTTGTGAAAATGGGGGCTCCGT 

Psy3023       GACGGTGCGTCATCGCCCGTAGCTACGACGCCAAGCCATTTGTGAAGATGGGGGCTCCCT 

Pma1852       ---------------GACGGAGCT-ACGACGCCAACCGTTTGTGAAAATGGGCGCGCCCT 

Pma5422       ----------------CCGGAGCT-ACGACGCCAACCGTTTGTGAAAATGGGCGCGCCCT 

Pma6328A      --------------------------CGACGCCAACCGTTTGTGAAAATGGGCGCGCCCT 

Pgy2411       --------------------------CGACGCCAACCGTTTGTGAAAATGGGCGCGCCCT 

                                             * * ** ******** ***** ** ** * 

 

Ppi203        ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Ppi202        ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Ppi223        ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Ppi283        ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Ppi288        ATTTCCAGATCAAAGAGATGCTGCGCCGCAATGGGATCAAGGTGTTCAGCAGCAACTACG 

Ppi374A       ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Ppi390        ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Ppi1452       ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1456A      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1456B      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1456C      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1456D      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1456E      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1456F      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

Ppi1939       ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGGATCAAGGTGTTCAGCAGCAACTACG 

Ppi2889B      ATTTTCAGATCAGAGAGGTGTTGCGCCGCAACGGCATCAAGGTGTTCAGCAGCAACTATG 

PsyB728a      ATTTCCAGATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGGTGTTCAGCAGCAACTACG 

Psy3023       ATTTTCAGATCAAAGAGGTGTTGCGCCGCCACGGCATAAAGGTGTTCAGCAGCAACTACG 

Pma1852       ATTTTCAGATTAAGGATGTACTGAAGCGAAACGGTATCAAGGTTTTCAGCAGCAACTATG 

Pma5422       ATTTTCAGATTAAGGATGTACTGAAGCGAAACGGTATCAAGGTTTTCAGCAGCAACTATG 

Pma6328A      ATTTTCAGATTAAGGATGTACTGAAGCGAAACGGTATCAAGGTTTTCAGCAGCAACTATG 

Pgy2411       ATTTTCAGATTAAGGATGTACTGAAGCGAAACGGTATCAAGGTTTTCAGCAGCAACTATG 

              **** ***** *  **  *  **   **  * ** ** ***** ************** * 

 

Ppi203        CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi202        CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi223        CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi283        CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi288        CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi374A       CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi390        CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1452       CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1456A      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1456B      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1456C      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1456D      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1456E      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1456F      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi1939       CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Ppi2889B      CACTCTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

PsyB728a      CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Psy3023       CGCTCTAGTAAGTTAGGTGGAATGCTTTTGGACTACGCTGATTCTGTCGACGTTCTGGGG 

Pma1852       CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Pma5422       CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

Pma6328A      CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 
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Pgy2411       CGCTTTAGTAAGTTAGGTGGAATGCTTCTGGGCTACGCTGATTCTGTCGACGTTCTGGGG 

              * ** ********************** *** **************************** 

 

Ppi203        GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi202        GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi223        GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi283        GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi288        GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi374A       GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi390        GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1452       GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1456A      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1456B      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1456C      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1456D      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1456E      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1456F      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi1939       GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Ppi2889B      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

PsyB728a      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Psy3023       GATTGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTCACCGCTACCCCAGCGTTC 

Pma1852       GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Pma5422       GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Pma6328A      GATCGCCCATGGCCTCTACTGCCTCTTATGAGCACGTGCTTAACCGCTATCCTGACGTTC 

Pgy2411       GATCGCCCATGGCCTCTACTGCCTCTTATGAGGACGTGCTTCACCGCTACCCCAGCGTTC 

              *** **************************** ******** ******* **   ***** 

 

Ppi203        AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi202        AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi223        AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi283        AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi288        AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi374A       AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi390        AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1452       AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1456A      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1456B      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1456C      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1456D      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1456E      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1456F      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi1939       AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Ppi2889B      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

PsyB728a      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Psy3023       AGGAATGGCTGACACTGCTCGATAACCTGGGAAGAGCGCCGGCTACTTTGGATGCGTACG 

Pma1852       AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Pma5422       AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Pma6328A      AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCGTCTGCTACCTTGGAGGCGTATG 

Pgy2411       AGGAATGGCTGGCGCTGCTCGGTAACCTGGGAAGAGCACCGGCTACCTTGGATGCCTACG 

              *********** * ******* ***************  * ***** ***** ** ** * 

 

Ppi203        GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi202        GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi223        GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi283        GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi288        GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi374A       GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi390        GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1452       GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1456A      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1456B      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1456C      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1456D      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1456E      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1456F      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi1939       GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Ppi2889B      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

PsyB728a      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Psy3023       GCAGGGGATTGGCGCATTACTTGCTCCACTGCGAAGCCTCCGGTCTGGAGGCTGAATCCA 

Pma1852       GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Pma5422       GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Pma6328A      GCCGGGGGTTGGCGCACTACCTGCTCCACTGCGAGGCCTCCGGTCTGGAGGCTGAATCCA 

Pgy2411       GCAGGGGATTGGCGCATTACTTGCTCCACTGCGAAGCCTCCGGTCTGGAGGCTGAATCCA 

              ** **** ******** *** ************* ************************* 
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Ppi203        TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi202        TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi223        TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi283        TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi288        TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi374A       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi390        TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1452       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1456A      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1456B      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1456C      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1456D      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1456E      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1456F      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi1939       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Ppi2889B      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

PsyB728a      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Psy3023       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACTGCCCGGGCAAGAAAACGCGG 

Pma1852       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Pma5422       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Pma6328A      TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

Pgy2411       TCACATTTGAGCAAGTCACGCTCTACATCCGTCGGCTACAGCCCGGGCAAGAAAACGCGG 

              *************************************** ******************** 

 

Ppi203        TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi202        TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi223        TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi283        TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi288        TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi374A       TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi390        TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1452       TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1456A      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1456B      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1456C      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1456D      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1456E      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1456F      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi1939       TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Ppi2889B      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

PsyB728a      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Psy3023       TGGCGAGTTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Pma1852       TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Pma5422       TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Pma6328A      TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

Pgy2411       TGGCGAATTCGACCTTGCACCAGCGCCTCACCGCGATCCGCCTGTGGTACGACCACCTGG 

              ****** ***************************************************** 

 

Ppi203        TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi202        TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi223        TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi283        TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi288        TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi374A       TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi390        TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1452       TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1456A      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1456B      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1456C      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1456D      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1456E      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1456F      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi1939       TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Ppi2889B      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

PsyB728a      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Psy3023       TTTTTCAGGGGCGTTGCGCACGGAATCCGGTACCTCGCGGTCAGCACGGCCGCTTGTGTC 

Pma1852       TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Pma5422       TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Pma6328A      TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

Pgy2411       TGTTTCAGGGGCGTTGCGCACAGAATCCGGTACCTCGCGGCCAGCACGGCCGCTTATGTC 

              * ******************* ****************** ************** **** 

 

Ppi203        AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi202        AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi223        AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 
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Ppi283        AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi288        AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi374A       AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi390        AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1452       AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1456A      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1456B      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1456C      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1456D      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1456E      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1456F      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi1939       AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Ppi2889B      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

PsyB728a      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Psy3023       AGGTCCCTGGACATTCAGGCTTTGTGAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Pma1852       AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Pma5422       AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Pma6328A      AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGGTACCTCGCTTGATAAAGCTGCCCG 

Pgy2411       AGGTCCCTGGACATTCAGGCTTCGTAAGAGGGCTGATACCTCGCTTGATAAAGCTGCCCG 

              ********************** ** ********* ************************ 

 

Ppi203        ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi202        ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi223        ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi283        ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi288        ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi374A       ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi390        ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1452       ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1456A      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1456B      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1456C      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1456D      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1456E      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1456F      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi1939       ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Ppi2889B      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

PsyB728a      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Psy3023       ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTCAGCATCGCGGCCAGGTCGTCTATTC 

Pma1852       ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Pma5422       ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Pma6328A      ACATCCCCACGGATGAGCAGTGGCGTTACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

Pgy2411       ACATCCCCACGGATGAGCAGTGGCGATACTTTCTGAGTATCGCGGCCAGGTCGTCTATTC 

              ************************* ******** ** ********************** 

 

Ppi203        GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi202        GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi223        GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi283        GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi288        GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi374A       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi390        GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1452       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1456A      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1456B      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1456C      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1456D      GTGATCGGCTTATGCTCTCGTTGGCGTACAGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1456E      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1456F      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi1939       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Ppi2889B      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

PsyB728a      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Psy3023       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Pma1852       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Pma5422       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Pma6328A      GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

Pgy2411       GTGATCGGCTTATGCTCTCGTTGGCGTACTGCGGTGCGCTCCGTCGTGCCGAACTGGTGG 

              ***************************** ****************************** 

 

Ppi203        CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi202        CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi223        CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi283        CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi288        CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi374A       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 
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Ppi390        CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1452       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1456A      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1456B      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1456C      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1456D      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1456E      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1456F      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi1939       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Ppi2889B      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

PsyB728a      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Psy3023       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Pma1852       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Pma5422       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Pma6328A      CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

Pgy2411       CCCTTAGAATCGAAGACCTGGATCTCGCCCATCGACTCATTTCAGTGCGCGCAGAAACGA 

              ************************************************************ 

 

Ppi203        CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi202        CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi223        CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi283        CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi288        CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi374A       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi390        CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1452       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1456A      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1456B      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1456C      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1456D      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1456E      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1456F      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi1939       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Ppi2889B      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

PsyB728a      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Psy3023       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Pma1852       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Pma5422       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Pma6328A      CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

Pgy2411       CCAAAGGCCGACGCAGCCGTGTCGTGTGCTACAGCCCTGACATTGCGCCGATACTTGGAA 

              ************************************************************ 

 

Ppi203        CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi202        CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi223        CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi283        CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi288        CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi374A       CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi390        CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1452       CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1456A      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1456B      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1456C      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1456D      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1456E      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1456F      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi1939       CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Ppi2889B      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

PsyB728a      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Psy3023       CGCATCTTCATGCCCTTCGTCTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Pma1852       CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Pma5422       CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Pma6328A      CGCATCTTCATGCCCTTCGTTTGGCCGGTTGGTCGAAAGGAGCCCTGTTTCGATCCGAGT 

Pgy2411       CGCATCTTCATGCCCTTCGTCTGGCCGGTTGTTCGAAAGGAGCCCTGTTTCGATCCGAGT 

              ******************** ********** **************************** 

 

Ppi203        CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Ppi202        CTGATCGCAATCGAGGTTCGGCACTCAC-------------------------------- 

Ppi223        CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Ppi283        CTGATCGCAATCGAGGTTCGGCACTCACGC------------------------------ 

Ppi288        CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Ppi374A       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGG--------- 

Ppi390        CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Ppi1452       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAAC----------- 

Ppi1456A      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACG---------- 
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Ppi1456B      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Ppi1456C      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGT--------------------- 

Ppi1456D      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGG------------------- 

Ppi1456E      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Ppi1456F      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGGGGAG----------------- 

Ppi1939       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACG---------------------- 

Ppi2889B      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

PsyB728a      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAAC----------- 

Psy3023       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Pma1852       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Pma5422       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Pma6328A      CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

Pgy2411       CTGATCGCAATCGAGGTTCGGCACTCACGCGGTGGACGTGGAGTAAAACGGTAGAAAGAT 

              ****************************                                 

 

 

 

Ap.3.1 Sequence alignment of conserved ILE end from rulB’ into ILE 

xerC/D. 

Multiple alignment of DNA spanning from rulB’ into the ILE xerC/D gene 

(conserved end of the ILE.) The highlighted sequence shows the region 

between the end of rulB’ and the start of xerC/D on the ILE. Stars represent 

complete identity between all of the sequenced strains at that loci. Analysis was 

carried using ClustalOmega software available at 

http://www.ebi.ac.uk/Tools/msa/clustalo/. 
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Appendix IV: Mean X-fold values of gene expression from Ppi 

203 and Psy 3023.  

The values below are the X-fold increases/ decreases in gene expression for 

ILE and ILE associated genes from Ppi 203 and Psy 3023. These values were 

used to construct the heat map figures in Chapter 5.  

P. syringae pv. pisi 203: 

 

 

 

 

 

 

 

 

Gene Control Rci xerC ORFD int ORFE int avrPpiA1 rulB'

Condition

TG apoplastic fluid 1 0.38 0.50 3.47 1.90 2.45 1.04

CW apoplastic fluid 1 0.35 0.72 5.06 4.02 6.22 2.37

RM apoplastic fluid 1 6.70 0.00 0.01 0.00 3.00 0.18

Pea apoplastic fluid 1 0.38 0.46 2.92 1.43 12.70 0.30

TG in planta 1 0.64 0.38 1.01 1.60 1.92 0.13

CW in planta 1 0.11 0.41 2.94 3.97 6.06 0.51

RM in planta 1 0.41 0.00 0.00 0.00 1.25 11.99

Pea in planta 1 0.42 0.43 1.04 2.83 30.78 0.49

Conjugation 1 0.23 0.46 0.40 0.64 0.97 0.37

0.05ug/mL MMC 1 0.70 0.76 0.91 1.10 0.86 0.48

0.1ug/mL MMC 1 0.45 0.52 0.72 0.59 0.55 0.00

0.5ug/mL MMC 1 8.41 9.18 12.92 13.07 14.96 0.00

1ug/mL MMC 1 28.67 39.26 31.17 33.48 30.65 0.01

UV 15sec. Exp. 1 1.86 1.58 0.97 1.44 1.30 0.70

UV 30sec. Exp. 1 7.33 8.69 2.57 4.43 5.79 0.21

UV 45sec. Exp 1 12.68 7.97 9.72 6.24 8.83 1.01

UV 60sec. Exp. 1 11.87 17.45 7.99 15.71 19.69 5.36

-80oC 1 0.28 0.57 1.20 0.19 0.61 0.04

-20oC 1 0.20 0.24 0.22 0.14 0.11 0.11

4oC 1 0.92 1.14 1.35 0.76 1.01 0.36

37oC 1 0.18 0.15 0.32 0.07 0.14 0.18
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P. syringae pv. syringae 3023: 

 

  

 

 

Gene Control xerC hopH1 hopAP1 rulB'

Condition

TG apoplastic fluid 1 0.72 0.24 0.52 0.45

CW apoplastic fluid 1 7.51 1.84 2.17 4.43

RM apoplastic fluid 1 0.49 2.25 0.56 0.01

Pea apoplastic fluid 1 11.56 0.45 1.00 0.02

TG in planta 1 1.20 1.03 2.68 0.79

CW in planta 1 3.59 2.50 5.25 0.74

RM in planta 1 0.63 1.07 0.34 0.01

Pea in planta 1 14.51 0.55 1.07 0.09

Conjugation 1 12.28 40.41 23.21 1.62

0.05ug/mL MMC 1 11.08 6.38 8.79 0.01

0.1ug/mL MMC 1 6.79 6.65 3.19 0.01

0.5ug/mL MMC 1 8.04 5.30 11.40 0.04

1ug/mL MMC 1 1.42 3.30 3.76 0.03

UV 15sec. Exp. 1 4.51 1.05 2.66 2.73

UV 30sec. Exp. 1 4.65 1.07 1.77 0.35

UV 45sec. Exp 1 2.45 1.43 1.41 1.35

UV 60sec. Exp. 1 1.17 0.23 0.49 0.64

-80oC 1 0.48 1.09 0.68 4.76

-20oC 1 0.66 1.78 0.87 0.40

4oC 1 4.76 2.72 2.39 3.15

37oC 1 0.53 0.50 0.79 1.16


