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ABSTRACT 

Purpose 

To compare the use of 18F-fluorodeoxyglucose positron emission tomography with computed 

tomography (FDG PET/CT) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging 

(DCE-MRI) to predict prognosis and monitor treatment in Malignant Pleural Mesothelioma. 

Methods  

FDG PET/CT and DCE-MRI studies carried out as part of the South West Area 

Mesothelioma Pemetrexed (SWAMP) trial were used. FDG PET/CT and DCE-MRI studies 

were carried out before treatment, and after two cycles of chemotherapy, on patients treated 

with Pemetrexed and Cisplatin. 73 patients were recruited, of whom 65 had PET/CT and 

DCE-MRI scans. Baseline measurements from FDG PET/CT (SUVmax, Metabolic Tumour 

Volume (MTV) and Total Lesion Glycolysis (TLG)) and DCE-MRI (Integrated Area Under the 

first 90s of the curve (IAUC90) and washout slope) were compared with overall survival (OS) 

using Kaplan Meier and Cox regression analysis, and change in imaging measurements 

were compared with disease progression. 

Results 

PET/CT and DCE-MRI measurements were not correlated with each other. SUVmax, MTV 

and TLG were significantly related to OS with Cox Regression and analysis and Kaplan-Meir 

analysis, and DCE-MRI washout curve shape was significantly related to overall survival. 

DCE-MRI curve shape can be combined with FDG PET/CT to give additional prognostic 

information. Changes in measurements were not related to progression free survival. 

Conclusions 

FDG-PET/CT and DCE-MRI give prognostic information in Malignant Pleural Mesothelioma. 

Neither PET/CT nor DCE-MRI are useful for monitoring disease progression. 

 



3 

Introduction 

Malignant Pleural Mesothelioma (MPM) is caused by exposure to asbestos 

dust. There is a long latency period, typically 30 to 40 years, between 

exposure and development of the disease, so incidence continues to rise 

long after asbestos use has finished. Death rates in Great Britain have 

continued to increase [1], from 24.6 per million for men and 3.3 per million 

for women in 1984-1986, to 68.2 and 12.7 deaths per million in 2011-2013; 

death rates are expected to level off over the next decade. Patients with 

MPM have a life expectancy of only 9-14 months following diagnosis [2]. 

Chemotherapy with Pemetrexed and Cisplatin [3] has been shown to have 

a significant survival benefit.  

The South West Area Mesothelioma and Pemetrexed Trial (SWAMP) [4] 

was designed to examine the use of imaging with 18F-Fluorodeoxyglucose 

PET/CT to predict overall survival from baseline imaging, and to correlate 

changes in PET/CT with progression free-survival. Dynamic Contrast-

Enhanced MRI (DCE-MRI) was carried out on patients on the same day as 

PET/CT, but not used as a primary or secondary outcome measure due to 

the lack of established evidence to define responders and non-responders. 

The aim of this sub-study is to compare FDG-PET/CT and DCE-MRI 

parameters at baseline, in comparison with overall survival, and compare 

change with radiological progression. 
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Materials and Methods 

Patients 

73 patients with biopsy proven MPM were recruited over three years from 

2008 to 2011 at seven centres under the South West Area Mesothelioma 

and Pemetrexed (SWAMP) trial [4]. Ethical and regulatory approval for the 

study was obtained before recruitment commenced (UK REC Reference: 

08/H0102/46), and all subjects signed a written informed consent form. The 

trial was registered in the UK national portfolio (UKCRN ID:8450). Inclusion 

criteria were a life expectancy exceeding three months, and no previous 

debulking surgery or other radical therapy.  

All patients were offered chemotherapy with Pemetrexed and Cisplatin or 

Carboplatin by the oncologist responsible for their clinical care. 58 patients 

had chemotherapy, while 15 patients who declined chemotherapy received 

best supportive care. Overall Survival (OS) was measured from recruitment 

until death or the study closed, 12 months after the last patients were 

recruited. All patients were offered imaging at study entry and after 6 

weeks, following two cycles of chemotherapy.  

Imaging 

FDG PET/CT scans and DCE-MRI scans were conducted in the same half-

day appointment at a single imaging centre; all patients were offered both. 

The DCE-MRI scan was undertaken before the FDG PET/CT to minimise 

radiation exposure of clinical staff. Trial scans were stored without direct 
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identification to the patient and results were not accessible to oncologists 

responsible for their care. 

Progression was determined from CT scans carried out separately, but 

scored centrally, using the modified RECIST criteria [5]. 

DCE-MRI 

Patients were screened for contraindications to MRI scanning by both the 

clinical trials team and experienced radiographers, and imaged on a 1 

Tesla High Field Open System (Philips Medical Systems, Best, The 

Netherlands). 

Patients were scanned using a fat-saturated T1W axial sequence covering 

the entire lungs from just above the apices to just below the bases – usually 

achieved with around 70 contiguous slices of 4mm thickness. There were 

20 phases – 1 pre-contrast and 19 post-contrast. The frame time was 45-

55s, depending on the imaging field of view. 15ml Gadolinium-based contrast (gadoteric acid) was injected 

at a rate of 1ml per sec. 

PET/CT acquisition  

PET/CT scans were performed using a Gemini – GXL scanner (Philips 

Medical Systems, Best, The Netherlands) with Brilliance 16 slice CT. 

Patients were nil by mouth for 6 hours prior to the injection of 400 MBq 

FDG. Blood sugar was checked to be within normal range prior to injection. 

A 90-minute uptake period was allowed.  PET images were corrected for 

photon attenuation using the CT scan and normalized by body weight. The 

QA of the PET/CT scanner was carried out according to best accepted 

practice in the UK. 
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DCE-MRI image and curve analysis 

A method for Region of Interest (ROI) definition was developed, based on 

Giesel et al [6, 7]. A similar method has been described for a study of 

Zoledronic acid in pleural disease [8]. The tumor was identified on the T1 

image (figure 1A), taking account of the enhancement image by a 

consensus of two radiologists experienced in DCE-MRI analysis. A 

freehand ROI was defined on a single slice around the pleural tumor at the 

level with the largest clearly definable area of tumor on the Philips 

workstation, taking care to exclude normal lung. A graph of image intensity 

against frame was generated for each ROI and image sequence (figure 

1B). 

The curve data was transferred as a text file from the Philips workstation to 

a spreadsheet programme (Microsoft Excel). The time from baseline image 

to the first enhanced image varied, so t=0 was taken to be one frame length 

before the first enhancement point.  

From the percentage enhancement-time curve the Integrated Area Under 

Curve in the first 90s (IAUC90) and the washout slope (change in percent 

enhancement/minute) from 4-8 minutes were calculated. The area under 

the curve was calculated using the trapezium rule, and the change between 

data points was assumed to be linear for calculations of area under curve. 

The washout slope was further defined as being type 1 if the enhancement 

increased by ≥1% from 4-8 minutes (slope >0.25%/minute), type 3 if the 

enhancement decreased by ≥1% from 4-8 minutes (slope < -

0.25%/minute), and type 2 if the enhancement neither increased nor 

decreased (slope between -0.25% and +0.25%/minute).  
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FDG PET/CT Image Analysis 

The tumour VOI was defined as all voxels with a Standardised Uptake 

Value (SUV) greater than 2.5 [9] within both lungs; this could include 

discontiguous volumes in diffuse disease. This was edited using tools 

within MIM software version 5 (MIMvista Corp., Cleveland, Ohio, USA), to 

remove physiological areas of uptake such as myocardium (figure 2). The 

following parameters were derived from the images: maximum SUV 

(SUVmax), Metabolic Tumour Volume (MTV) and Total Lesion Glycolysis 

(TLG = MTV x mean SUV). 

Statistical analysis 

Statistics were calculated using the statistical package R [10]. Baseline 

comparisons between DCE-MRI and PET/CT measurements were carried 

out on all patients, while survival analysis and comparison with 

progression-free survival were carried out on chemotherapy patients. 

Kaplan-Meier estimates for OS were generated using the survival package 

of R [11]. Significance of differences in Kaplan-Meier analysis was tested 

using the log-rank test. Kaplan-Meier statistics were calculated comparing 

values above and below group median for TLG, SUVmax, MTV and 

IAUC90, and comparing slope types for DCE-MRI washout curves. A p 

value of 0.05 was taken to be significant, and multiple comparisons were 

corrected for using the Holm-Bonferroni correction. 
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Results 

Patients 

73 patients were recruited between September 2008 and December 2011; 

58 were recruited to the chemotherapy arm and 15 to the comparator arm. 

Of these, 65 had baseline PET/CT (51 chemotherapy arm; 4 withdrew from 

the trial, 3 were unable to tolerate scans, and 1 was too unwell) and 61 had 

baseline DCE-MRI scans available (50 chemotherapy arm; 4 sets of data 

were unable to be analysed for technical reasons). 54 patients had follow-

up PET/CT (41 chemotherapy arm; 4 had problems with chemotherapy, 1 

was unable to tolerate scans, 3 were too unwell, 1 died, 2 corrupted scans) 

and 47 had follow-up DCE-MRI available for analysis (37 chemotherapy 

arm; 7 studies were unable to be analysed). Median follow-up time was 892 

days (IQR 605-1144 days); 12 patients were alive at the time of analysis. 

Patient characteristics are shown in table 1. 

Clinical Outcomes 

Median survival from consent to death in the chemotherapy group was 368 

days (IQR 195–526) and in the comparator group 325 days (IQR 176–458) 

equating to 12.3 and 10.8 months, respectively (p=.40). The number of 

chemotherapy cycles delivered was determined by oncologists using 

standard clinical assessment without access to serum biomarkers or 

PET/CT results. 87% of patients in the chemotherapy group received two or 

more cycles, 64% received four or more cycles and 36% received six 

cycles. Histological subtype was a strong independent predictor of survival, 

with epithelioid histology associated with a median survival of 456 (IQR 
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303–609) days compared with 197 (IQR 155–239) days (p<0.001) in 

patients with non-epithelioid histology. 

Comparison between PET/CT and DCE-MRI 

Baseline measurements from PET/CT and DCE-MRI were compared with 

each other for all patients, treated and control group. From PET/CT, 

SUVmax, TLG and MTV were correlated (p<.0001) and from DCE-MRI 

IAUC90 and Washout slope were correlated (p=.003). There were no 

significant correlations of SUVmax with IAUC90 (figure 3, r=.25, p=.055) or 

Washout Slope (figure 4, r=-.17, p=.19), MTV with IAUC90 (r=.12, p=.36) or 

Washout slope (r=-.14, p=.30), or TLG with IAUC90 (r=.15, p=.27) or 

washout slope (r=-.16, p=.22). There were no significant correlations when 

subgroups were tested with or without pleurodesis, or with epithelioid or 

non-epithelioid histology.  

Comparison with overall survival 

Baseline measurements from PET/CT and DCE-MRI were compared with 

overall survival for treated patients. 

From Univariate Cox Regression analysis, the only significant factors were 

histology and SUVmax, MTV and TLG from PET/CT (table 2). In 

multivariate analysis, if histology was included no other factors were 

significant; if histology was excluded then SUVmax was most significant. 

All PET/CT measurements showed a significant relationship with overall 

survival by Kaplan-Meier analysis, comparing values above and below 

median.  SUVmax above median (10.6) had OS 268 (177-481) days, below 
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median 525 (270-735) days (p=0.001) (figure 5); MTV above median (460 

mm3) had median OS 264 (IQR 177-439) days, below median MTV had 

median OS 562 (274-735) days (p=0.0001); and TLG above median (1806 

SUV-mm3) had OS 264 (177-439) days, below median 562 (274-735) days 

(p=0.0001). 

For DCE-MRI, baseline IAUC90 was not significantly related to OS (figure 

6); iAUC90 above median (88 %-min) gave median OS 270 (IQR 232-507) 

days, below median 506 (250-735) days (p=0.07). Washout slope was 

significantly related to OS (figure 7): type 1 (n=13) median OS 562 days 

(IQR 481-872) days, type 2 (n=6) median OS 256 days (IQR 104-498 

days), type 3 (n=31) median OS 274 (204-525) days; p=0.023. 

Combining PET/CT SUVmax and DCE-MRI Washout slope gave additional 

information (table 3). Those with SUVmax <10.6 and type 1 curves had the 

longest survival, median OS 735 days, SUVmax<10.6 and type 2 or 3 

curves had median OS 426 and 401 days, while patients with 

SUVmax>10.6 had median OS 312, 130 and 268 days for type 1, 2 and 3 

curves respectively (p=.009). Numbers in each group were too small to 

calculate confidence intervals for OS. 

There was no significant difference in OS between those who had and had 

not had pleurodesis. 

Comparison with Progression from CT  

Change in PET/CT (SUVmax, MTV and TLG) and DCE-MRI (IAUC90, 

Washout slope) were compared with progression-free survival at 8 weeks 

(table 4), 15 weeks (table 5), and 12 months (table 6). Change in washout 
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slope at 7-9 weeks and MTV and TLG at 9 months were significant at the 

p<.05 level, though correcting for multiple comparisons these were not 

significant (p<.003 required for 15 comparisons). 
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Discussion 

MRI of the lungs is difficult due to breathing-related motion artefact. As a 

consequence of this, the slice on which the analysis is carried out moves 

relative to the tumour between time-points, and so the enhancement-time 

curves were somewhat noisy. However, the advantage of using the area 

under the curve and the washout slope is that the effect of movement on 

these measurements should be limited, as movement will effectively be 

smoothed out. PET/CT is also subject to movement, which can be seen 

from the mismatch between the PET and the CT particularly at the lung 

bases. This will cause the uptake to be somewhat smoothed, with a 

potential reduction in SUVmax. This should have limited effect on the 

volumetric measures in most case, unless the uptake is close to the 

threshold. A fixed SUV threshold was used to analyse PET images as this 

is a method which is widely available, and does not require specialised 

software. The other method most widely used, a threshold at around 40% 

of maximum, would not be appropriate for diffuse tumour, as this is a 

method which has been validated for discrete solid tumours. In some cases 

there was visible tumour on PET/CT which was below the threshold of 

SUV=2.5 and so was not included in the MTV. However, these cases would 

have low FDG uptake however measured, which would be correlated with 

relatively long survival times.  

The analysis used for PET was fully 3D and took account of all active 

tumour throughout both lungs. On the other hand, the method for MRI was 

based on analysis of data from a single slice through the largest volume of 
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tumour. The largest tumour volumes corresponded for MRI and PET, 

however the SUVmax did not necessarily lie at the same point as the 

centre of the MRI ROI, although it often would have done. It would clearly 

be preferable to have used more comparable 3D analysis methods in both 

cases. However, the different measurements from PET/CT, SUVmax, MTV 

and TLG, were strongly correlated, suggesting that the overall tumour 

function can be measured using a measurement of uptake at a single 

voxel.   This suggests that the difference between 2D and 3D analysis may 

not be too significant in this case.  There was also no attempt to register 

studies before and after treatment, and image analysis was performed 

separately for pre and post-treatment studies. 

Probably of most importance is the different physiological and pathological 

meaning of the results. DCE-MRI is a measure of perfusion, while FDG-

PET/CT is a measure of metabolism. The results indicate that more active 

tumour tends to have higher perfusion, but that the metabolism from 

SUVmax or TLG is more significantly related to overall survival. SUVmax 

from PET/CT and curve-shape from DCE-MRI were combined (table 3); in 

this case, SUVmax was the most significant factor, as patients with 

SUVmax < median (10.6) had longer survival than those with SUVmax > 

median for all DCE-MRI curve shapes, but within this curve shape 1 

generally gave longer survival than curve shapes 2 or 3. 

A number of previous studies [9, 13-20], mostly retrospective and 

observational, have considered the relationship between survival and PET 

measurements at baseline. Of these, 8 studies [13-20] with a total of 594 

patients found that high SUVmax or TLG at baseline indicated worse 
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survival, and one with 41 patients [9] found no relationship. Three studies 

have considered percentage change in SUVmax, TLG and MTV after 

chemotherapy; two [9,12] with a total of 64 patients found that a percentage 

reduction in TLG was indicative of better OS, while one [20] with 131 

patients found a percentage reduction in SUVmax was related to longer 

OS. Prior pleurodesis has also been indicated as an issue, causing raised 

SUVmax in some studies [21, 22], but this was not found in our study. 

Previous work on the use of DCE-MRI in MPM used a pharmacokinetic 

modelling method to analyse studies on 19 patients with epithelioid 

histology, and showed longer OS for patients with a lower redistribution rate 

constant [6,7] though this was not significant.  

The utility of DCE-MRI in MPM with enhancement-time curves and curve-

based analysis is well established in breast cancer trials [23], while the 

curve shape and particularly the washout slope are used in clinical 

assessment of DCE-MRI studies in breast cancer [24]. Currently DCE-MRI 

is not used in routine clinical practice in evaluating lung or pleural 

malignancy. It has not been extended into clinical practice partly due to 

technical difficulties of respiration and the complex morphological 

characteristics of the lesions. In this study there was a trade-off between 

anatomical coverage and temporal resolution. Dynamic sequences were 

acquired for up to 12 minutes in order to assess washout, but shorter frame 

times would be better for analysis of initial enhancement. 

Quantification of DCE-MRI has only occasionally been carried out in MPM.  

One reason may be the complexity of the pharmacokinetic approach. We 
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have shown that it is possible to derive measurements from DCE-MRI 

without specialised software or acquisition parameters. Simple curve-based 

measurements from DCE-MRI have been shown to be related to 

pharmacokinetic measurements which can be generated from model-based 

analysis [25], while pharmacokinetic measurements have been shown to be 

correlated with microvascular density in MPM [7].  

The SWAMP study recruited patients from 7 centres. However, PET/CT 

imaging was only available at one centre, so all PET and MRI imaging was 

carried out there. This created issues for recruitment and follow-up imaging, 

due to the poor health of the participants and the distance from some 

recruiting centres. There were also some issues with archiving of image 

data, particularly for DCE-MRI. There were still sufficient numbers for 

analysis, but subgroup analysis, for example by histology, was more 

difficult. In the MRI studies due to the fairly long frame length used (45-

55s), information may have been lost about initial enhancement, although 

this should not have affected the analysis used of initial area under curve 

and washout slope significantly. The MRI studies were carried out on a 1T 

scanner, and a more modern 3T scanner would be able to image the lungs 

with a shorter frame time. Due to underlying disease, breath holding was 

difficult, so the bases of the lungs particularly were affected by movement. 

Other semi-quantitative measures for DCE-MRI have been proposed, 

including pharmacokinetic analysis, and it is possible that different 

methodology might make a difference. Alternatively, perfusion could be 

assessed by using contrast enhanced CT, which could be carried out as 

part of the PET/CT study. It would be of interest to compare the results of 
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perfusion assessment from CT and DCE-MRI in these patients. MRI will 

often be used as part of the diagnostic or patient management pathway, 

and in this case it might be appropriate to include assessment of DCE-MRI. 

Conclusion 

We have demonstrated that FDG-PET/CT and DCE-MRI can be quantified 

using relatively simple methods in a clinical setting, and that DCE-MRI 

carried out before treatment may offer prognostic information additional to 

that from FDG PET/CT. Baseline measurements of SUVmax, MTV and 

TLG from FDG PET/CT were significantly related to overall survival. 

Baseline washout curve shape from DCE-MRI was significantly related to 

overall survival, and offered additional prognostic information when 

combined with PET/CT, although the PET/CT result was more clinically 

significant. No measurements of change after treatment from FDG PET/CT 

or DCE-MRI were related to progression-free survival, so PET/CT and 

DCE-MRI are not recommended for follow-up in MPM.  

PET/CT gives prognostic information in Malignant Pleural Mesothelioma. 

DCE-MRI gives some prognostic information, but PET/CT should be used 

instead of DCE-MRI where available. 
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Figure Captions: 

Figure 1A MRI axial image showing region drawn over whole of tumour. 

Figure 1B Intensity vs frame curve from DCE-MRI study. 

Figure 2 FDG PET/CT showing axial, sagittal and coronal planes through 

the tumor, and MTV definition at above SUV threshold of 2.5 

Figure 3 Comparison of Integrated Area Under the first 90 seconds of the 

DCE-MRI enhancement-time curve (iAUC90) with the SUVmax. 

Figure 4 Comparison of Washout rate (%/minute) of the DCE-MRI 

enhancement-time curve with the SUVmax. 

Figure 5 Kaplan Meier analysis, chemotherapy patients, for SUVmax with 

Overall Survival. 

Figure 6 Kaplan Meier analysis, chemotherapy patients, for iAUC90 with 

Overall Survival. 

Figure 7 Kaplan Meier analysis, chemotherapy patients, for washout curve 

shape with Overall Survival. 

Figure 8 Kaplan Meier analysis, chemotherapy patients, for SUVmax and 

washout curve shape with Overall Survival. 
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Table Captions: 

Table 1. Patient characteristics. Key: CT – computed tomography; IMIG – 

International Mesothelioma Interest Group; TNM – Tumour Node 

Metastasis stage; WHO World Health Organisation. 

Table 2. Cox regression analysis. * indicates statistical significance. 

Multivariate analysis was carried out without Histology. 

Table 3. Kaplan-Meier analysis of a combination of SUVmax from PET/CT 

and washout slope from DCE-MRI for treated patients, based on survival 

time from trial entry to death. 

Table 4: Change of PET/CT and DCE-MRI parameters post-treatment 

compared for patients with disease progression and progression-free at 7-9 

weeks post-trial commencement. 

Table 5. Change of PET/CT and DCE-MRI parameters post-treatment 

compared for patients with disease progression and progression-free at 15 

weeks post-trial commencement. 

Table 6. Change of PET/CT and DCE-MRI parameters post-treatment 

compared for patients with disease progression and progression-free at 9 

months post-trial commencement. 
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 Chemotherapy arm Comparator arm 

Number of patients 58 (6 female) 15 (4 female) 

Age (median(IQR)) 69 (65-73) 77 (68-80) 

Talc pleurodesis before trial entry 21 (36%) 6 (40%) 

Histology   

Epithelioid 39 (67%) 11 (73%) 

Sarcomatoid 15 (26%) 0 (0%) 

Biphasic 4 (7%) 4 (26%) 

Baseline WHO PS   

0 17 (29%) 2 (13%) 

1 37 (64%) 11 (73%) 

2 4 (7%) 2 (13%) 

CT IMIG TNM stage   

I 7 (12%) 1 (7%) 

II 4 (7%) 1 (7%) 

III 28 (48%) 6 (40%) 

IV 19 (33%) 7 (47%) 

Table 1. Patient characteristics. CT – computed tomography; IMIG – International Mesothelioma 

Interest Group; TNM – Tumour Node Metastasis stage; WHO World Health Organisation. 

 Univariate  Multivariate  

OS analysis p-value HR (95% CI) p-value HR (95% CI) 

Histology - 
Sarcomatoid 

<0.0001* 3.9 (2.0-7.8)   

Histology - 
Biphasic 

0.0003* 8.5 (2.6-27.2)   

Pleurodesis 0.73 0.90 (0.49-1.64)   

SUVmax 0.005* 1.10 (1.03-1.17) 0.046 1.08 (1.00 – 1.16) 

MTV 0.0009* 1 (1-1.001) 0.12 1.0013 (0.9997-
1.003) 

TLG 0.002* 1 (1.00 – 1.00) 0.25 1.00 (1.00-1.00) 

IAUC90 0.22 1.008 (0.995-1.02)   

Washout slope 0.144 0.89 (0.77-1.04)   

Table 2. Cox regression analysis. * significant. Multivariate analysis carried out without Histology. 

 

SUVmax Washout 
Slope Type 

N Events Median OS 95% LCL 95% UCL 

<10.6 1 8 4 735 562 NA 

<10.6 2 2 2 426 355 NA 

<10.6 3 15 11 401 232 NA 

>10.6 1 4 4 312 192 NA 

>10.6 2 4 4 130 93 NA 

>10.6 3 15 14 268 250 493 

Table 3. 

 

 

PFS 7-9 weeks (after three Progression  Progression free and alive  p-value 
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cycles)  
mean change  

 
mean change  

SUVmax -1.3 -2.4 0.40 

MTV (ml) -292 -430 0.45 

TLG (SUV-ml) -1502 -2065 0.54 

iAUC90 (%-min) -0.7 -10.8 0.32 

Washout Slope (%/min) -0.4 1.2 0.03 

Table 4. 

 

 

PFS 15 weeks (after 
chemo) 

Progression  
 
mean change  

Progression free and alive 
 
Mean change  

P-value  

SUVmax -1.7 -2.1 0.81 

MTV (ml) -386 -383 0.99 

TLG (SUV-ml) -1871 -1900 0.98 

iAUC90 (%-min) -0.6 -15.5 0.14 

Washout Slope (%/min) 0.01 1.3 0.13 

Table 5. 

 

 

PFS 9 months  Progression  
 
mean change  

Progression free and alive 
 
Mean change  

p-value 

SUVmax -2.4 -0.4 0.22 

MTV (ml) -463 -151 0.02 

TLG (SUV-ml) -2304 -628 0.01 

iAUC90 (%-min) -5.8 -14.9 0.37 

Washout Slope (%/min) 0.28 1.78 0.31 

Table 6. 
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Fig 1A
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Fig 1B 

 
Fig 2 
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Fig 3 

 

Fig 4 



29 

 

Fig 5

 

Fig 6 
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Fig 7 

 

Fig 8 


