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ABSTRACT 9 

Long-term fatigue tests under compressive loading were performed on low-strength brick masonry prisms 10 

under laboratory conditions. The number of loading cycles to failure were recorded and used to investigate 11 

the suitability of the logarithmic normal distribution to describe fatigue test data and to develop a probability 12 

based mathematical expression for the prediction of the fatigue life of masonry. The proposed model 13 

incorporates the applied maximum stress level, stress range, number of loading cycles and probability of 14 

survival. From the mathematical model a set of curves for stress level - cycles to failure - probability of 15 

survival (S-N-P) were identified to allow the fatigue life of masonry to be predicted for any desired 16 

confidence level. Upper limit, lower limit and mean curves were proposed. The prediction curves were 17 

compared with the test data and proposed expressions from the literature and proved to be suitable to predict 18 

the fatigue life of masonry. It is surmised that S-N-P curves provide a useful tool to help evaluate the 19 

remaining service life of masonry arch bridges at different confidence levels, based on material properties. 20 

The proposed mathematical model can be incorporated into existing assessment methodologies, such as 21 

SMART to quantify the residual life of brick masonry arch bridges for failure modes associated with 22 

compressive loading. 23 
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1. Introduction 25 

Understanding and predicting the effect of fatigue 26 

for masonry is imperative for the preservation and 27 

maintenance of masonry arch bridges. Masonry 28 

arch bridges represent a significant part of the 29 

European railway and highway system. The 30 

increased weight, speed and density of traffic 31 

impose higher levels of fatigue loading on the 32 

structure and can lead to premature deterioration 33 

[1, 2, 3, 4, 5]. 34 

Models to predict the fatigue life of masonry have 35 

been proposed in the form of S-N (Stress-Number 36 

of cycles) curves [1, 2, 4]. The models were 37 

developed based on a limited number of 38 

experimental test data and no guidance has been 39 

available to apply them for different types of 40 

masonry. 41 

Roberts et al., [1] defined a lower bound fatigue 42 

strength curve for dry, submerged and wet brick 43 

masonry based on a series of quasi-static and 44 

high-cycle fatigue tests on brick masonry prisms 45 

(Equation 1). This equation relates the number of 46 

loading cycles with the maximum applied stress, 47 

the compressive strength and the stress amplitude. 48 

      
        

   

  
              (1) 

Where F(S) is the function of the induced stress, 49 

σ is the stress range, σmax is the maximum stress, 50 

fc is the quasi-static compressive strength of 51 

masonry and N is the number of load cycles. After 52 

reprocessing the test data, Wang et al., [5] 53 

suggested that Equation 1 is not a true lower 54 

bound and reflects a combination of different 55 

factors influencing the fatigue behaviour of 56 

masonry. 57 

Casas [2, 6] post-processed and analysed the 58 

experimental data of Roberts et al., [1]. Assuming 59 

the two parameter Weibull distribution for the 60 

fatigue life of masonry under a given stress level, 61 

Casas [2] proposed a probability-based fatigue 62 

model for brick masonry under compression for a 63 

range of confidence levels (Equation 2). 64 

                 (2) 

Where Smax is the ratio of the maximum loading 65 

stress to the quasi-static compressive strength 66 

(Smax = σmax/fc), N is the number of cycles to 67 

failure and R is the ratio of the minimum stress to 68 

the maximum stress (R = σmin/σmax). Coefficients 69 

A and B are given in Table 1 for different values 70 
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of the survival probability L as reported by Casas 71 

[2]. 72 

Table 1 Parameters for Casas [2] fatigue equation for 73 

different survival probabilities 74 

L 0.95 0.90 0.80 070 0.60 0.50 

A 1.106 1.303 1.458 1.494 1.487 1.464 

B 0.0998 0.1109 0.1095 0.1023 0.0945 0.0874 

 75 

During analysis of the test data, Casas [2] ignored 76 

the values for two maximum stress levels (Smax = 77 

0.65 and Smax = 0.6) and for high values of 78 

survival probability, the values of regression 79 

coefficient are quite low, suggesting that the 80 

correlations are not very good [5]. Based on Casas 81 

[2], and on the review performed by Wang et al., 82 

[5], it is suggested that the suitability of the 83 

Weibull distribution to describe fatigue needs to 84 

be further investigated, due to the fact that the 85 

correlations are not very good (low) and because 86 

the number of samples that was used was limited. 87 

Finally, Tomor and Verstrynge [4] developed a 88 

joined fatigue-creep deterioration model. A 89 

probabilistic fatigue model was suggested by 90 

adapting the model proposed by Casas [2, 6]. A 91 

correction factor C was introduced to allow 92 

interaction between creep and fatigue phenomena 93 

to be taken into account and to adjust the slope of 94 

the S-N curve (Equation 3). 95 

                   (3) 

Where Smax is the ratio of the maximum stress to 96 

the average compressive strength, N the number 97 

of cycles, R the ratio of the minimum stress to the 98 

maximum stress, parameter A was set to 1, 99 

parameter B was set to 0.04 and C is the 100 

correction factor. This model also includes quasi-101 

static tests and was intended to represent the mean 102 

fatigue life of masonry. The correction factor C, 103 

however, depends on the set of experimental data 104 

and the equation may not be used as a prediction 105 

model. 106 

The aim of this research is to investigate the 107 

suitability of the logarithmic normal distribution 108 

to describe fatigue test data and to propose a 109 

model for S-N curves to predict the fatigue life of 110 

masonry at any required confidence level. A 111 

family of S-N curves are generated with mean, 112 

lower limit and upper limit for the fatigue life. 113 

 114 
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2. Materials and experimental test data 115 

A total of 64 brick masonry prisms have been 116 

tested to failure under compressive fatigue loading 117 

at various maximum stress levels to investigate 118 

the fatigue life of masonry in relation to the stress 119 

level. Stack-bond brick masonry prisms were built 120 

from full-size bricks and mortar joints according 121 

to ASTM standards [7]. The total dimensions of 122 

the prisms were 210 x 100 x 357 mm
3
 (five 123 

handmade solid bricks and four 8 mm mortar 124 

joints). The tests were performed using a 250 kN 125 

capacity servo-controlled hydraulic actuator to 126 

apply static or long-term fatigue loading. The 127 

detailed experimental design and results are 128 

presented in [8]. 129 

The handmade low-strength solid 210 x 100 x 65 130 

mm
3 

Michelmersh bricks (denoted B1) have an 131 

average compressive strength of 4.86 N/mm
2
 and 132 

1823 kg/m
3
 gross dry density. The mortar, denoted 133 

M01, was 0: 1: 2 cement: lime (NHL3.5): sand (3 134 

mm sharp washed) mix by volume. The mean 135 

compressive strength of masonry was 2.94 N/mm
2
 136 

(0.10 N/mm
2
 Standard Deviation). 137 

Tests under compressive long-term fatigue loading 138 

were conducted at 2 Hz frequency with sinusoidal 139 

load configuration. Before commencing the 140 

fatigue tests, load was applied quasi-statically up 141 

to the mean fatigue load. The load was 142 

subsequently cycled between a minimum and a 143 

maximum stress level defined as percentages of 144 

the mean compressive strength of masonry 145 

recorded under quasi-static loading [9]. The 146 

minimum stress level represents the dead load of 147 

the structure and was set to 10% of the 148 

compressive strength of masonry (mean strength 149 

of quasi-static tests) as the worst-case scenario for 150 

fatigue loading [3, 8]. The maximum stress level 151 

represents live loading (e.g. similar to traffic on a 152 

bridge) and varied between 55% and 80% of the 153 

compressive strength of masonry. The number of 154 

load cycles until failure is shown in Table 2 for all 155 

prisms (prisms are denoted as B1M01 according 156 

to brick and mortar type). Prisms failed between 7 157 

and 3.5x10
6
 loading cycles. The experimental test 158 

data, including a specimen (B1M01-45) that did 159 

not fail up to 10
7
 loading cycles, were used to 160 

develop  the probabilistic model,. 161 

The fatigue data presented in Table 2 exhibit large 162 

scatter. The phenomenon of scatter for fatigue test 163 

data under the same loading conditions is well 164 

known and attributed to differences in the 165 
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microstructure for different specimens [10]. 166 

Potential sources of scatter could be the specimen 167 

production and surface quality, accuracy of testing 168 

equipment, laboratory environment and skill of 169 

laboratory technicians [11]. Scatter is generally 170 

larger for low stress amplitudes [11]. For the 171 

presented test data, large scatter is also observed 172 

for 80% maximum applied stress. This, however, 173 

is due to the small number of tests performed at 174 

this stress level. Similar scatter of the fatigue data 175 

in terms of magnitude is observed in the test data 176 

by Clark [12] and Tomor et al., [3]. 177 

Table 2 Fatigue tests in compression on B1M01 type prisms. 178 

Specimen 

Name 

Stress 

Range 

Number 

of Cycles 

N 

Specimen 

Name 

Stress 

Range  

Number of 

Cycles  

N 

Specimen 

Name 

Stress 

Range  

Number 

of Cycles 

N 

B1M01-18 
0.29-2.33 

N/mm2 

10-80% 

2,566 B1M01-53 

0.29-2.00 

N/mm2 

10-68% 

134 B1M01-82 

0.29-1.85 

N/mm2 

10-63% 

34728 

B1M01-48 14,073 B1M01-54 3,541 B1M01-83 3355 

B1M01-49 2,832 B1M01-55 5,994 B1M01-84 256 

B1M01-50 456 B1M01-56 212 B1M01-86 59921 

B1M01-66 

0.29-

2.14N/mm2 

10-73% 

253 B1M01-57 1,100 B1M01-87 543 

B1M01-67 200 B1M01-58 31000 B1M01-88 4809 

B1M01-68 413 B1M01-59 69537 B1M01-89 881 

B1M01-69 53 B1M01-60 34 B1M01-26 

0.29-1.76 

N/mm2 

10-60% 

 

25,342 

B1M01-70 55 B1M01-61 71342 B1M01-28 2,646,302 

B1M01-76 7 B1M01-62 11754 B1M01-29 122,762 

B1M01-77 104 B1M01-63 37938 B1M01-30 1,268,627 

B1M01-78 240 B1M01-64 33752 B1M01-31 3,528,118 

B1M01-85 93 B1M01-65 250000 B1M01-32 986,325 

B1M01-19 

0.29-2.00 

N/mm2 

10-68% 

1,800 B1M01-71 

0.29-1.85 

N/mm2 

10-63% 

718 B1M01-33 796,744 

B1M01-20 3,600 B1M01-72 11038 B1M01-34 

0.29-1.62 

N/mm2 

10-55% 

56,562 

B1M01-21 13,000 B1M01-73 269 B1M01-40 412,774 

B1M01-22 17,350 B1M01-74 2515 B1M01-41 1,088,560 

B1M01-23 18,651 B1M01-75 1104 B1M01-43 2,200 

B1M01-24 18,276 B1M01-79 266 B1M01-44 4,864 

B1M01-35 3,000 B1M01-80 19203 B1M01-45* 10,225,676 

B1M01-36 6,737 B1M01-81 54 B1M01-46 1,724,587 

      B1M01-47 1,672,237 

* No failure-Terminated 
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3. Probabilistic model 179 

Fatigue test data are normally presented as stress - 180 

number of cycles (S-N) curves. Due to the 181 

relatively large variation and statistical nature of 182 

the test data, results may be more conveniently 183 

presented in a three-dimensional format using 184 

stress- number of cycles- probability of failure or 185 

probability of survival (S-N-P) curves. The S-N-P 186 

relationship indicates curves for the lower bound, 187 

upper bound and the mean of the data points. 188 

Logarithmic normal distribution has been used by 189 

several researchers to indicate the fatigue life of 190 

metals and concrete [12, 13, 14, 15, 16] at 191 

constant stress amplitude. To identify the 192 

suitability of logarithmic normal distribution to 193 

describe the fatigue data for masonry, the 194 

probabilities of failure for each stress level were 195 

calculated. Equation 4 gives the probability 196 

density function (PDF) of the fatigue life for the 197 

logarithmic normal distribution [16]. 198 

        
    

     

 
 
 
 
          

      

 
 
 
 

 (4) 

Where N is the number of loading cycles to 199 

failure, σ is the standard deviation and μ is the 200 

mean of logN. The cumulative density function 201 

(CDF) can be obtained by integrating the 202 

probability density function (Equation 5). 203 

 

 

               
    

  

 (5) 

The probability of failure Pf can be calculated as a 204 

function of fatigue life by ranking the fatigue lives 205 

at each load level from low to high and by 206 

dividing the order of corresponding fatigue life by 207 

n+1, where n is the total specimen number for 208 

each loading level. In Figure 1 the calculated 209 

probabilities of failure at every stress level are 210 

plotted against the number of loading cycles to 211 

failure (N) in a semi-logarithmic scale (N-P plot), 212 

together with the cumulative density function 213 

curves. The CDF curves were extrapolated to 214 

cover the whole probability range. The curves 215 

provide a good approximation of the fatigue test 216 

data and suggest a logarithmic normal distribution 217 

is suitable for describing the probability of failure. 218 
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 219 

Figure 1 Variation of failure probability with the loading cycles for different stress levels 220 

The fatigue lives corresponding to various 221 

probabilities of failure at each stress level can be 222 

calculated from the N-P plot in Figure 1 to 223 

generate the S-N-P curves. S-N-P curves are 224 

shown in Figure 2 for 0.05, 0.1, 0.5, 0.9 and 0.95 225 

probabilities of failure. The S-N curves were 226 

identified based on a power law best fit according 227 

to Equation 6. 228 

 

 

          (6) 

Where Smax is the ratio of the maximum loading 229 

stress to the quasi - static compressive strength 230 

(Smax = σmax/fc) and N is the number of cycles to 231 

failure. A and B are parameters depending on the 232 

probability of failure (Table 3). 233 

Table 3 Parameters A and B for different probabilities of 234 

failure 235 

(Pf) 

Parameter 

0.05 0.10 0.50 0.90 0.95 

A 0.779 0.802 0.868 0.905 0.925 

B 0.028 0.030 0.030 0.028 0.027 

 236 

Even though the 50% failure probability curve 237 

provides a good approximation of the mean test 238 

data, the 5% and 10% failure probability curves 239 

do not represent reliable lower bounds. This could 240 

be due to the fact that only a few specimens were 241 

tested at 80% maximum stress and results 242 

indicated greater fatigue lives than for 73% stress 243 

level. Additionally, extrapolation of the 244 

distributions to low probabilities resulted in 245 

intersection of the cumulative density function 246 



8 

 

curves. This intersection produced the anomaly 247 

that below a certain probability, specimens tested 248 

at lower stress levels have shorter fatigue lives. 249 

More test data are required for high stress levels 250 

to develop more accurate relationships for lower 251 

bound S-N curves. 252 

 253 

 254 

 255 

Figure 2 Experimental data and predicted S-N curves for different probabilities of failure 256 

McCall [13] used a logarithmic mathematical 257 

model to describe the S-N-P relationship for 258 

fatigue of plain concrete under reverse bending 259 

loading (Equation 7). 260 

            
         (7) 

where L is the probability of survival, a, b and c 261 

are experimental constants, Smax is the ratio of the 262 

maximum applied stress over the quasi-static 263 

compressive strength, N is the number of cycles 264 

for fatigue failure. The probability of survival L is 265 

equal to 1-Pf (Pf is the probability of failure) and 266 

is used instead of the probability of failure to 267 

simplify the equation. In Equation 7 the following 268 

limits are valid: 269 

L = 1 for N = 1 270 

L → 0 for N → ∞ 271 

L = 1 for Smax = 0 272 

L → 0 for Smax → 1 273 

To investigate the suitability of this model to 274 

describe the behaviour of masonry under fatigue 275 
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compressive loading, parameters a, b and c have to 276 

be calculated based on available experimental data. 277 

To account for different stress ranges ΔS, as well 278 

as for the maximum stress level, the term SmaxΔS 279 

will be used, instead of Smax. Equation 7 can, 280 

therefore, be transformed to Equation 8. 281 

                
         (8) 

Where L is the probability of survival, Smax is the 282 

ratio of the maximum applied stress over the quasi-283 

static compressive strength, ΔS is the stress range 284 

and N is the number of cycles for fatigue failure. 285 

To transform Equation 8 into a linear form, the 286 

logarithms of the logarithms of each side of the 287 

equation were taken. 288 

                                

             
(9) 

By substituting log(-logL) by Y, loga by A, 289 

log(SmaxΔS) by X and log(logN) by Z the 290 

following linear form is obtained: 291 

           (10) 

or 292 

              (11) 

where      
  ,      

   and     
  . 293 

In order to work with the variables measured from 294 

the samples, the following equation was derived 295 

from Equation 11. 296 

                   

 
 

 
        

  

 
   

  

 
  

                 (12) 

By subtracting Equation 12 from Equation 11, the 297 

subsequent expressions are attained: 298 

                         

or 299 

           (13) 

where   ,   , and    are the average values of X, Y 300 

and Z respectively and in Equation 13,       , 301 

       and       . 302 

Using least square normal equations, expressions 303 

(14) and (15) are obtained: 304 

                 (14) 

                 (15) 

Analysing the experimental fatigue data based on 305 

this set of equations, the required statistical terms 306 

were calculated. 307 
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Substitution of these statistical terms in Equations 308 

14 and 15 allows the calculation of parameters    309 

and   . Equation 13, using the calculated   and    310 

parameters will become, therefore: 311 

                     

Parameter    can now be calculated by 312 

substitution of    and   , as well as,   ,    and    in 313 

Equation 12. Equation 11 is now expressed as: 314 

                           

Finally, after having computed all the required 315 

parameters, Equation 8 may be rewritten for 316 

masonry under compressive fatigue loading in the 317 

following form (Equation 16): 318 

                   
             

      

 (16) 

Equation 16 can be used to evaluate the S-N 319 

curves for masonry under compressive cyclic 320 

loading for any preferred confidence level of 321 

survival. It can also be used to evaluate the mean, 322 

upper limit and lower limit fatigue life of masonry. 323 

 324 

4. Application 325 

In Figure 3, the S-N-P curves for 99%, 95%, 50%, 326 

5% and 1% probabilities of survival are indicated 327 

for the experimental fatigue data under study. The 328 

curve for 0.50 probability is a reliable estimate of 329 

the mean cycles to failure for each stress level and 330 

curves for 0.01 and 0.99 probability are good 331 

upper and lower limits as well. The 0.05 and 0.95 332 

probability curves could also be used for upper and 333 

lower limits if a less conservative solution is 334 

desired. 335 
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 336 

Figure 3 S-N-P curves for masonry under compressive fatigue loading at 2Hz, 10% Smin and various Smax levels  337 

To establish the suitability of the proposed model 338 

to describe masonry under fatigue compressive 339 

loading for various masonry types and loading 340 

conditions, fatigue data were collected and 341 

analysed from the literature. Figure 4 presents the 342 

experimental data by Clark [17] on brick masonry 343 

prisms under fatigue loading. Dry and wet 344 

masonry prisms were loaded at 5 Hz frequency up 345 

to 5 million cycles under 5% minimum stress. 346 

Prisms that did not fail were subsequently tested 347 

under quasi-static loading to failure. The S-N-P 348 

curves proposed in Equation 16 are also included 349 

in Figure 4. The proposed model seems to be a 350 

reliable estimate for dry masonry prisms but is 351 

less representative for saturated specimens that 352 

fall under the 0.50 probability of survival curve. 353 

Test data for saturated specimens should, 354 

therefore, be analysed separately and a modified 355 

equation should be proposed. The available 356 

experimental data are, however, too limited to 357 

perform statistical analyses and propose a 358 

modified model. Additionally, the test data were 359 

performed under different loading rates. The 360 

effect of frequency has not been, however, 361 

specifically studied for masonry [5] and 362 

designated experimental data are required to 363 

incorporate this effect within a mathematical 364 

model. 365 
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 366 

Figure 4 Experimental data by Clark [17] coupled with the proposed S-N-P curves. 367 

Tomor et al., [3] tested a series of masonry prisms 368 

under fatigue loading at 2 Hz frequency and 10% 369 

minimum stress. Prisms tested under stress levels 370 

lower than 58% did not fail and testing was 371 

terminated. The test data are presented in Figure 5 372 

together with the S-N-P curves. Disregarding the 373 

prisms that did not fail under fatigue loading, the 374 

0.50 probability curve is a reliable estimate of the 375 

test data, while the 0.95 probability of survival 376 

curve consists a lower limit. The 0.99 probability 377 

curve may also be used as a more conservative 378 

lower limit. 379 
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 380 

Figure 5 Experimental data by Tomor et al., [3] coupled with the S-N-P curves. 381 

Comparison of available experimental data with 382 

the proposed prediction model indicates Equation 383 

16 can be satisfactorily used to predict the fatigue 384 

life of brick masonry under compressive loading 385 

at any desired confidence level. In every case, the 386 

curve corresponding to 0.50 probability of 387 

survival indicated the mean fatigue life of dry 388 

brick masonry. As a lower limit, the 0.95 389 

probability curve can be considered as a good 390 

representation, while the 0.99 curve offers a more 391 

conservative solution. For the upper limit, the 0.01 392 

probability curve generally provided a reliable 393 

estimate. For wet and saturated masonry, further 394 

experimental data are needed to develop 395 

probability models. 396 

The presented masonry prisms were tested under 397 

slightly different minimum stress levels, 398 

σmin/fc=5% by Clark [17] and σmin/fc=10% by 399 

Tomor et al., [3], although the proposed S-N-P 400 

model appears to be a good estimate for all test 401 

data, regardless of the minimum stress level. 402 

Further test data is needed for identifying the 403 

effect of minimum stress on the probability of 404 

survival. 405 

Comparison of the proposed S-N-P model with 406 

models presented in the literature is carried out 407 

separately for the lower limit and mean fatigue 408 

life. 409 

For lower limit the current test results (Table 2) 410 

and proposed model for 0.95 probability of 411 
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survival (Equation 16) are shown in Figure 6 412 

together with proposed models by Casas [2] for 413 

0.95 probability and Roberts et al., [1]. The linear 414 

lower limit by Roberts does not seem to be a 415 

satisfactory fit for the data, underestimating the 416 

data in some regions and overestimating in other 417 

regions. The model by Casas [2] displays a better 418 

fit but does not provide a lower bound, especially 419 

for maximum stress levels 60-80%. The proposed 420 

prediction model in Equation 16 presents a 421 

satisfactory fit, lower limit, as well as offers the 422 

flexibility of identifying any suitable probability 423 

of survival. 424 

 425 

Figure 6 Test data (Table 2) with lower limit from a) Equation 16 for Pf=0.95, b) Casas [2] for Pf=0.95 and c) Roberts et al., [1] 426 

For prediction of the mean fatigue life the current 427 

test results (Table 2) and proposed model for 0.5 428 

probability of survival (Equation 16) are shown in 429 

Figure 7 together with proposed models by Casas 430 

[2] for 0.5 probability and Tomor & Verstrynge 431 

[4]. The model by Casas [2] is notably 432 

overestimating the fatigue life of masonry prisms 433 

at any stress level. The model by Tomor & 434 

Verstrynge [4] with correction factor C=-1.5 435 

(identified to best fit current set of test data) 436 

seems to provide a good estimate of the mean test 437 

data but the curve does not follow the data points 438 

very closely. The model cannot be considered as a 439 

prediction model as parameter C depends on the 440 

data set. The proposed prediction model in 441 

Equation 16 presents a satisfactory fit of the mean 442 

fatigue life, following the test data closely. 443 
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 444 

Figure 7 Test data (Table 2) mean fatigue life from a) Equation 16, b) Casas [2] and c) Tomor & Verstrynge [4] 445 

 446 

5. Discussion 447 

The prediction model by Casas [2] can provide S-448 

N curves for a limited set of survival probabilities 449 

(between 0.50 and 0.95) but does not offer an 450 

upper limit or flexibility of adjusting the 451 

confidence level for best fit. The S-N curves by 452 

Roberts et al., [1] and Tomor & Verstrynge [4] do 453 

not account for confidence levels. Roberts et al., 454 

[1] offer a lower bound limit for the fatigue life of 455 

masonry, while Tomor and Verstrynge [4] offer an 456 

expression for the mean fatigue life. The proposed 457 

model is currently the only model that allows the 458 

S-N curves to be identified for masonry at any 459 

confidence level. 460 

For bridge management, information on the rate 461 

of deterioration and remaining service life is 462 

essential to optimise assessment and inspection 463 

techniques and minimise the cost of maintenance. 464 

S-N-P curves can provide a useful tool to help 465 

evaluate the remaining service life of masonry 466 

arch bridges at different confidence levels, based 467 

on material properties and traffic load levels. 468 

Optimising the weight, speed and frequency of 469 

traffic could also help reduce deterioration and 470 

extend the remaining service life, particularly in 471 

older and weaker bridges. 472 

The proposed mathematical model for the S-N 473 

curves can also be fed into the SMART method 474 



16 

 

(Sustainable Masonry Arch Resistance Technique) 475 

[18] for failure modes associated with 476 

compressive loading (crushing). The SMART 477 

method can be used, therefore, to quantify the 478 

residual life of brick masonry arch bridges. 479 

 480 

6. Conclusions 481 

A mathematical model is proposed to describe the 482 

fatigue life of masonry using S-N-P curves, based 483 

on the model used for concrete by McCall [13]. 484 

The model, given in Equation 16, takes the stress 485 

range and maximum stress level into account and 486 

allows the prediction of the fatigue life 487 

expectancy of masonry to be defined for any 488 

desired confidence level. 489 

The proposed model is presented together with the 490 

experimental test data [17, 3] and is compared 491 

with models from the literature [1, 2, 4]. The 492 

model provides a good estimate for the S-N-P 493 

curves for dry masonry. The curve corresponding 494 

to 0.50 probability of survival can be used to 495 

predict the mean loading cycles to failure, while 496 

curves corresponding to 0.95 or the 0.99 497 

probabilities of survival can be used to predict 498 

lower limits for any type of dry masonry. In 499 

addition, the shape of the proposed curve seems to 500 

fit the exponential configuration of the 501 

experimental data. Further test data is needed to 502 

adapt Equation 16 for wet or submerged masonry 503 

specimens. 504 
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