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A framework for big data analytics approach to failure prediction of construction 

firms  

Abstract 

This study explored use of big data analytics (BDA) to analyse data of a large number of construction 

firms to develop a construction business failure prediction model (CB-FPM). Careful analysis of 

literature revealed financial ratios as the best form of variable for this problem. Because of 

MapReduce’s unsuitability for iteration problems involved in developing CB-FPMs, various BDA 

initiatives for iteration problems were identified. A BDA framework for developing CB-FPM was 

proposed. It was validated by using 150,000 datacells of 30,000 construction firms, artificial neural 

network, Amazon Elastic Compute Cloud, Apache Spark and the R software. The BDA CB-FPM was 

developed in eight seconds while the same process without BDA was aborted after nine hours without 

success. This shows the issue of not wanting to use large dataset to develop CB-FPM due to tedious 

duration is resolvable by applying BDA technique. The BDA CB-FPM largely outperformed an 

ordinary CB-FPM developed with a dataset of 200 construction firms, proving that use of larger sample 

size with the aid of BDA, leads to better performing CB-FPMs. The high financial and social cost 

associated with misclassifications (i.e. model error) thus makes adoption of BDA CB-FPMs very 

important for, among others, financiers, clients and policy makers.     

Key Words: Big data analytics; failure prediction models; construction businesses; machine learning; 

MapReduce/Spark.  

 

1.0 Introduction 

The construction industry remains a major player of any country’s economy. The significance of any 

country’s (or region’s) economy is such that the sustainable development of the country largely hinges 

upon it [1]. A country’s economy, alongside its military might (which is also partly based on economic 

power), have been identified as the two key necessities that must be at a relatively superior level for the 

country to be considered a ‘superpower’. A poor economy on the other hand leads to poverty which in 

turn leads to lack of basic amenities, high crime rate, low life expectancy etc. [2]. In a nutshell, the 
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absolute significance of a country’s economy cannot be overemphasized hence anything that 

contributes to, or affects, it significantly is usually of national/global concern. 

The United Kingdom’s Department for Business Innovation and Skills [3] clearly stated that the 

construction sector is among the biggest sectors of the UK economy. The department went further to 

explain that “construction also has a much wider significance to the economy. It creates, builds and 

maintains the workplaces in which businesses operate and flourish, the economic infrastructure which 

keeps the nation connected, the homes in which people live and the schools and hospitals which 

provide the crucial services that society needs. A modern, competitive and efficient CI is essential to 

the UK’s economic prosperity. Its contribution is also vital if the UK is to meet its Climate Change Act 

commitments and wider environmental and societal obligations” (p. 2). According to Rhodes [4] in a 

House of Commons Library research paper, the CI in 2014 contributed £103 billion in economic 

output, representing 6.5% of the total; it also provided 2.1 million jobs or 6.2% of the UK total in 2015. 

In the European union (EU), the CI boasts 20 million direct employees representing 15% of all EU 

employees; this equates to over 10% of the EU GDP and over 50% of its fixed capital formation [5]. It 

(i.e. the CI) represents the biggest lone economic activity and affects 44 million employees directly or 

indirectly [5]. On the global scale the CI had a staggering worth of US$7.4 trillion in 2010, has a 

projection of US$10.3 trillion in 2020 [6] (and $15.5 trillion by 2030 [7]). 

The industry has however consistently led, or been around the top of the insolvency chart by sector in 

most countries, including the United Kingdom [8, 9], thereby causing serious troubles for many 

economies. In 2012 the construction sector insolvency rate in the UK was third highest at 14.4 percent 

[9]. In England and Wales alone, construction businesses made up 23% of the total number of all 

businesses forced into compulsory liquidation in 2012 [10]. More recently, the industry again 

possessed the highest number of liquidated companies in the 12 months finishing in quarter two (Q2) of 

2016 with a total of 2976 companies liquidated [8]. This included 833 obligatory or forced liquidations 

and 2143 unforced liquidations (Figure 1.1). According to European Commission (2012), many 

construction companies in Europe are folding up, significantly downsizing or shifting attention to other 

parts of construction they did not used to deal with. In spite of a relatively bettering global economy in 

recent times, the CI still had the highest percentage of failed business in the world at 20.2 percent in 

2012 (see table 1.1) according to Dun and Bradstreet [9]. 
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One main step commonly taken to reduce failure of construction firms is the development of 

construction businesses failure prediction models (CB-FPM). The reliable performance of these CB-

FPMs is however partly dependent on the size of data used to develop them. To develop a highly 

reliable CB-FPM, a relatively large dataset containing data of tens of thousands of construction firms 

might be needed. Some studies have attempted using a relatively large dataset but fall very short of tens 

of thousands of firms. Van Frederikslust [12], for example, used data of 40 (20 failed and 20 surviving) 

sample firms over a 20 year period equating to a set of nearly 800 yearly financial reports. Altman et al. 

[13] went much further by using the data of a thousand firms to develop their failure prediction models 

(FPM). More recently, Chen [14] was able to generate 1615 financial statements from 42 sample 

construction firms. Though these datasets can be considered as being relatively large, they are far too 

small to develop a very reliable CB-FPM.  

The authors of the cited studies might have well been conscious and cautious of the fact that the 

available tools will go through a long tedious computational duration when analysing really large data. 

An example of this long duration is Odom & Sharda [15] model development which took 24 hours to 

build using ANN. Altman et al. [13] also reported significant machine hours for ANN training on a 

thousand firms data. Overcoming this long, tedious duration problem is the main motivation of this 

study. It is believed that this can be done by using the novel big data analytics (BDA) technology. 

However, using BDA to develop CB-FPM is not a straight forward process because of the iterative 

process required in classification analytics, which is what is employed to develop CB-FPM. The 

objectives of this study are thus: 

 To propose a framework architecture for the development process of a big data analytics (BDA) 

CB-FPM. 

 To implement the framework in developing a BDA CB-FPM 

This main contribution of this study is the development and validation of a framework architecture for 

using big data analytics (BDA) to develop a CB-FPM. The framework will help to suppress the 

unappealing computational intensity of using large data set to develop CB-FPM. It will effectively 

eliminate the long tedious computational duration normally associated with using network algorithms 

like ANN and Bart (Bayesian Additive Regression Trees) machine with large data. 
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The next section is a literature review of CB-FPM studies. Section 3 is an explanation of what ‘big 

data’ is and the fitness of CB-FPM data for big data analytics. Section 4 discusses the suitable variable 

type, potential sources of data and data challenges for a CB-FPM to be developed with the big data 

technology. Section 5 details the BDA initiatives that might be suitable for developing CB-FPM. 

Section 6 proposes a framework architecture for developing CB-FPM while section 7 contain details of 

implementation of part of the framework to develop a CB-FPM. Section 8 draws the conclusion to the 

study.  

 

2.0  Literature Review 

The study of failure prediction of companies dates back to 1966 when Beaver [16], in a novel study, 

used a univariate system of financial ratios to attempt prediction of bankruptcy of firms. "A financial 

ratio is a quotient of two numbers, where both numbers consist of financial statement items" [16, p. 71-

72]. This study was followed by Altman’s [17] multivariate approach. Altman employed the multi-

discriminant analysis (MDA) statistical tool and a set of financial variables for his prediction and most 

failure prediction studies since then have adopted this approach. However, some of the succeeding 

studies, especially the most recent ones since around 2006, have used machine learning tools like ANN 

The first study to develop a failure prediction model for construction firms was authored by Fadel [18] 

who used profitability ratios as variables with the MDA tool in a pilot study.  Mason and Harris [19] 

later developed a proper model using MDA and six financial variables. The aim of the project, 

according to the authors, was to check Altman’s technique on predicting failure of construction firms. 

Using the data of  just 40 construction firms, Mason and Harris [19] achieved an overall accuracy of 

87% and concluded the technique was valid. Kangari and Farid [20] used a slightly different approach 

by combining six financial variables with non-financial variables like company size. As opposed to 

using MDA, they used the logistic regression (LR) statistical technique. They however did not state the 

sample size used. Langford, Iyagba and Komba (1993) tested Altman’s model on three construction 

firms, got an accuracy of 63.3% and concluded that the construction industry needed its own specific 

models. 

Later studies increased sample sizes to improve reliability. For examples Abidali and Harris [22] and 

Russell and Zhai [23] used the data of 31 and 120 construction firms and achieved accuracy values 
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70.3% and 78.3% respectively. Both studies used the MDA technique. However, Alaka et al. [24] 

noted that the MDA and LR techniques have many assumptions which the mentioned studies did not 

satisfy before using them.  

At the turn of the century, various other techniques were trialled for developing CB-FPMs. Singh and 

Tiong [25] trialled the entropy technique, while  Huang [26] trialled the Structural models of credit risk 

but none of these techniques gained wide acceptance. Sueyoshi and Goto [27] also tried a different 

variant of the MDA which they labelled Data Envelopment Analysis–Discriminant Analysis (DEA–

DA). Of these three studies, Sueyoshi and Goto [27] used the largest sample size, which consisted of 

215 sample Japanese construction firms. 

Although the first study to use machine learning tools for an FPM was in 1990 by Odom and Sharda 

[15], CB-FPM studies did not start using them until Tserng et al.[28] used an enforced support vector 

machine to develop FPMs for construction contractors on the New York Stock Exchange (NYSE), 

American Exchange (AMEX), and Nasdaq. Tserng et al.[28]  utilized only a total of 168 construction 

contractors as their sample. Although many recent CB-FPM studies (after 2010) still used the statistical 

(MDA and LR) techniques [e.g. 29–32], a few others have adopted machine learning tools[14], [e.g. 

33–35]. Of all these studies, Heo and Yang [35] used the largest sample size which consisted of 2762 

construction firms. This is despite the fact that a larger sample size helps to improve reliability [36].  

The associated long duration computation cost which comes with using a really large sample with ML 

tools, as very evident in Du Jardin’s [37] study, makes it understandable that CB-FPM researchers 

avoid it. Contemporary technology like big data analytics, which are built to deal with large data, 

should be able to reasonably reduce this long duration. This study thus sets out to use a relatively large 

sample size, and use BDA to avoid the potentially associated tedious duration. However, BDA 

executed with the popular MapReduce framework is not built for iterative process required during CB-

FPM development, hence BDA application in this field is not straight forward. This study hence sets 

out to create a framework architecture for the development process of a big data analytics (BDA) CB-

FPM, and to test the framework by implementing it. 
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3.0 Big Data Analytics and the Suitability of CB-FPM Data  

Big data has generally been defined in relation to three main feature: volume, variety and velocity [38]. 

Volume deals with size usually, but not always, in terabytes or petabytes of data and beyond. Velocity 

has to do with the speed with which data is generated while variety refers to the variability in the 

format of data (e.g. picture file, text file, audio file etc.). Apache Hadoop is probably the most popular 

and complete big data framework presently. 

Apache Hadoop, which has four major components as explained below, can be described as a 

comprehensive free of charge big data setup for distributed and scalable computing (Figure 1).  

 

Figure 1: The Hadoop network of interconnected system 

1. Hadoop common: this consist of the utilities and libraries needed by other Hadoop components  

2. HDFS: a file system with numerous nodes on which huge data can be deposited so that analysis 

can take place simultaneously on different nodes as if they are on a single computer [39]. 

3. Hadoop Yarn: a structure that takes care of how data is distributed to nodes during analysis [40] 

4. MapReduce: this “is a programming model and an associated implementation for processing 

and generating large data sets. Users specify a map function that processes a key/value pair to 

generate a set of intermediate key/value pairs, and a reduce function that merges all 

intermediate values associated with the same intermediate key” [41, p.107] (see Figure 2). 
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Figure 2: How the MapReduce function works 

There have been various advances in the field of big data analytics research. Some of the recent ones 

include improving security of the data to be analysed with big data analytics system set up on cloud 

[42, 43]. This is because cloud owners like Amazon or Microsoft, for example, have access to data 

stored in their cloud. As MapReduce is not capable of handling iteration problems very well and is thus 

unfit for developing CB-FPMs, some advances in terms of BDA initiatives fit for iteration problems 

have also been made (please see section 5 for details of these advances) 

3.1 Fitness of CB-FPM Data to Big Data Analytics 

While big data used to be defined mainly around three features (volume, variety and velocity), as 

initially highlighted, a new feature that has been added to that is the nature of analysis [44, 45]. This is 

why big data is defined in some avenues as data that cannot be analysed using conventional computer 

systems. Although some data are relatively big, their size do not qualify to be big data in terms of 

volume and they can thus be processed on a normal computer. However, certain types of analyses that 

require tedious computations might not be performable on such data on normal computers.  The best 

example of this is Jacob’s [46] experiment where he was able to use a normal computer to perform 

simple analysis on a created demographic data of world population in a table of circa 10 columns and 
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over 7 billion rows which was contained in a 100 gigabyte hard disk. He was unable to load the same 

data unto enterprise grade database system (PostgreSQL6) using a super performance computer even 

before any analysis. This data is not qualified as big data for the first analysis but is qualified as big 

data in the case of the second unsuccessful attempted analysis 

The above example is what makes the data of tens of thousands of construction firms qualify as big 

data. A simple input of such data into columns and rows of Microsoft Excel and finding averages might 

not be considered as ‘Big’ in the present technological world; however, a more complex analysis with a 

machine learning tool like artificial neural network (ANN) which usually performs a tediously large 

number of iterations to achieve convergence will potentially take numerous hours on a normal 

computer as with Du Jardin’s (2010) study. Such analysis hence qualifies the data for big data 

analytics.  

4.0 Variables and Potential Data Sources for Big Data Analytics CB-FPM, and 

Challenges 

4.1 Financial ratios of Construction Firms as Variables  

The vast majority of FPMs developed for both construction and non-construction businesses have used 

only financial ratios as variables [e.g. 13, 21, 22, 47–49, among many others]. The extensive use of 

financial ratios is because some of the pioneering works used only financial ratios, the pioneers were 

account/finance professionals [16, 50] and most importantly, financial ratios are readily available from 

periodically published financial statements of firm’s making access to such data relatively easy for a 

FPM developer.   

However, countless number of non-financial indications of construction firms insolvency, such as 

management mistakes, do come up a lot earlier than the financial distress shown by financial ratios 

[22]. Financial distress only tends to be noticeable when the failure process is almost complete, around 

the last two years of failure. In fact, it is adverse managerial actions and other qualitative factors that 

normally lead to poor financial standing and in turn cause insolvency. It follows that managerial 

decisions, company activities etc. (qualitative variables) influence the results of financial ratios hence 

for early prediction, which is the aim of many prediction models in order to allow enough time for 

remedy, the employment of qualitative variables is necessary[20, 51–54, among others]. They are 

however neither readily decided nor readily available. Further, data collection for non-financial 
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variables usually involves interviewing respondents or sending out questionnaires. This can be really 

difficult where the number of respondents required is in tens of thousands. Non-financial variables will 

thus be hard to get in large volumes for the purpose of developing CF-BPM using big data analytics 

 Conclusively, for big data analytics CB-FPM, only construction firms’ financial ratios as quantitative 

variables will be viable [55].  

4.2 Potential Data Sources 

The sources for financial information (or financial ratios) for public companies are quite simple to 

identify. A data source like DataStream hosts the financial information of many public construction 

companies around the world (including US and Europe). For country-specific information, FAME 

(Financial Analysis Made Easy) Bureau Van Dijk database offers financial information of over 600,000 

construction firms in UK for example. Financial information of over 3 million companies in the UK 

can also be gotten from Company House. Over 14 years of balance sheet and financial reports of many 

US construction companies can be downloaded from Compustat, Mergent Online and 

Mergent/Moody's Online Manuals. A simple Google search using the search words ‘financial databases 

list’ will return many pages with plenty of such data sources. Virtually all these data sources can export 

data direct to excel hence exporting the required data should not be a very big problem. DataStream 

even has an excel add-in that allows some direct searches of its database and direct analysis through 

excel.  

 

4.3 Data Challenges  

The first main challenge is how to go about downloading or exporting data of tens of thousands of 

construction firms to excel one after the other. This will take too long or require the services of so 

many people to actualise. The same problem applies to merging the data of the tens of thousands of 

firms into one or more excel sheets in a structured way, if necessary, before uploading to the platform 

where the big data analysis will take place. One solution to this challenge is for data sources to allow a 

direct download of the financial ratios of all the companies returned in a particular search into one 

Excel sheet in a structured way. For example, a search for all the construction companies that have 

failed (receivership, dormant, dissolution, liquidation and inactive) in the UK since the start of the 
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years 2001 and 2015 on FAME yielded a result of nearly 260,000 companies (see Figure 3). Having a 

command that will allow the data of all these companies to be downloaded into their separate files at 

once, or into a single Excel sheet in a structured manner, will solve this challenge. Another option is to 

use the SQL language to query the data sources 

 

Figure 3: An example search result in FAME yields a large number of construction firms 

Another set of challenges are the potential uncertainty and incompleteness of information from data 

sources. For example, some financial ratios can be missing from some reports, the report of some 

construction firms might be missing details of a year or more etc. Also, the data might not readily 

differentiate between data for failed and existing firms as is normally needed in supervised learning 

which is more commonly used for construction CB-FPM. To overcome this challenge, it could be 

decided that only firms with complete data will be used in developing a CB-FPM. This is however 

difficult in the case of data of tens of thousands of construction firms because the total number of 

construction firms with complete financial data, as observed from data sources, is barely up to five 

thousand. An easier way of solving this problem is to employ techniques that can be used to produce 

values for missing data.  

 

 

5.0 Machine Learning Tools for Big Data Analytics CB-FPM 

The machine learning (ML) tools used for developing CB-FPMs will struggle when it comes to 

carrying out a robust analysis on any huge data that might require more than a single machine’s 

memory for analysis [56] hence it is almost impractical  to use using ML tools for a  direct analysis 

huge data [57]. Further, ML tools are not very compatible with MapReduce, especially when the 
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computation in question involves iteration [58]. Consequently, various BDA initiatives which support 

iteration have been developed 

Many of the BDA initiatives that support iteration are MapReduce based apart from Apache Mahout 

Spark model. Some MapReduce related initiatives include Indiana University's Twister, University of 

Washington's HaLoop and Microsoft's Project Daytona. These initiatives are available for use free of 

charge. 

BDA initiative selection for CB-FPM development is dependent on certain features including location 

of data, the distributed file system to be used, among others. Except for Apache Spark, all initiatives 

have this restriction. For instance, data needs to be uploaded to Azure cloud for Daytona to be able to 

perform analysis. Daytona simply will not work on data positioned elsewhere. Apache Spark is thus 

relatively flexible as it works with any set of features 

 

5.1 The Initiatives that are Based on MapReduce  

Many BDA initiatives are based on MapReduce because of its popularity. The most common initiatives 

are explained below.  

Haloop: Haloop is a modified version of the original MapReduce model. The modifications ensured 

that Haloop can perform iteration and related tasks [59]. Haloop works well with numerous ML tools 

[60] and can be used to develop CB-FPMs.  

Twister: Twister works like Haloop. It is a light MapReduce runtime which improves MapReduce 

capability of supporting iteration tasks [61]. The improvement basically has to do with helping 

MapReduce perform faster on iteration tasks, making it viable for CB-FPM development. It works well 

with a number of ML tools and is operable both on cloud and on a cluster of computers [61, 62].  

Microsoft's Project Daytona: Like Twister, Daytona is also MapReduce runtime [63] that supports 

iterative computing. It is particularly designed to operate only on Microsoft Azure which is a free cloud 

platform that allows developing, organization and administration of applications. Daytona’s inability to 
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operate on other data sources/bases happens to be its major limitation. However, its special relations 

with Azure allows efficient performance by using Azure as the data source as well as data destination 

during computations [64]. Daytona requires no distributed file system to operate.  

5.2 The Initiative Based on Spark  

Apache Spark is an efficient and effective substitute to MapReduce. Spark uses a construct called 

Resilient Distributed Datasets (RDDs) that resourcefully supports machine learning problems that 

involve iterations [65]. As against MapReduce process which reads data from and writes results to a 

distributed file system for every iteration, Spark’s RDDs help to keep data in memory for iterations 

until computation is completed thus increasing efficiency, speed and performance [65]. Speculations 

are that RDDs make Spark as many as 100 times faster than MapReduce in multi-pass analytics. 

Apache Mahout is the lone initiative on Spark.  

Apache Mahout is a free scalable Machine learning tools library in BDA ecosystem. Mahout supports 

numerous ML tools (e.g. support vector machine, artificial neural network, among others) in executing  

clustering, filtering and  classification analysis on huge data on a cluster of computers, cloud or a 

standalone computer [66]. Mahout used to be Hadoop based, using MapReduce model and 

consequently supported only ML tools that performed linear classifications e.g. linear support vector 

machine [67]. Presently a Spark base model, Mahout is now way more efficient and flexible as 

previously explained, and is fault tolerant. Table 1 is presentation of the requirements and/or features of 

the discussed initiatives while Figure 4 presents a framework model that can be used to select an 

initiative for a problem. 

Table 1: Features of Big data initiatives capable of building FPM for construction firms  

Big Data 

Analytics 

Initiative 

Type/ 

Processing 

systems 

Implementation 

platform 

Distributed 

file system 

(Data Access) 

Single or 

cluster/cloud  

Support 

ML tools 

 Fault 

tolerance 

(FT) 

Old Apache 

Mahout 

MapReduce Hadoop 

platform 

HDFS Both Yes
¬
 Yes  

Daytona MapReduce 

runtime 

Microsoft Azure Not required
+ 

 Cloud based 

only 

Yes Yes 

Twister MapReduce 

runtime 

Twister platform Twister tool
#
  Both Yes No^ 

Haloop Modified 

Hadoop 

Hadoop 

Platform 

HDFS Cluster/cloud 

only 

Yes Yes 
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MapReduce 

New Apache 

Mahout 

Spark Any platform` Any system Both Yes Yes 

¬    
Supports linear computation only 

+
  Microsoft Azure cloud provides a distributed file system by default 

^  It is not fault tolerant for iterations   

# 
  Twister provides a tool which manages data across distributed disks [61]  

` Stand alone will require a distributed file system e.g. NFS mounted at the same path on each node 

 

Figure 4: A framework model for selection of suitable BDA initiative for developing CB-FPM 

Self-management: The platform takes on the job of managing the file system 

Code managed: The nodes need input code in order to manage file system 

Any (file management system): This initiative is compatible with all file management systems  

 

 

6.0 Proposed Framework Architecture for Construction Firms Failure Prediction 

using Big Data Analytics  

Considering the highlighted potentials and challenges of CB-FPM development with BDA, a 

framework architecture for developing a BDA CB-FPM is proposed in Annex 1 figure. The framework 

begins with construction firms’ data collection from databases into a single computer or a cluster of 

computers. This is followed by conversion of the data into the Key-Value Pair structure as sometimes 
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required [55]. The required platform for the selected BDA initiative is installed. The data is then 

deposited on the conforming distributed file system. For example, this can be the 

installation/application of HDFS for Haloop, code implemented for Twister, or the data simply moved 

to Microsoft Azure cloud for Microsoft Daytona. With these steps the big data initiative can be 

executed to carry out the iterative classification analysis required for developing the BDA CB-FPM.  

 

7.0 Framework implementation to develop BDA CB-FPM 

 

7.1 The Data 

The data of tens of thousands of construction firms were painstakingly downloaded from FAME 

Bureau Van Dijk. As a test of the proposed BDA CB-FPM framework, data of 30,000 construction 

firms was extracted from the downloaded data. The proportion of failed to healthy construction firms in 

the extracted data was 50-50 to avoid the unequal data dispersion problem [68]. To aid quick model 

development, the five financial ratios used by Altman (1968) were used in this study, as done in some 

CB-FPM studies like Horta & Camanho [49], leading to 150,000 datacells. The ratios are as listed 

below 

V1 = Working capital/Total assets  

V2 = Retained Earnings/Total assets 

V3 = Earnings before interest and taxes/Total assets 

V4 = Market value equity/Book value of total debt 

V5 = Sales (contacts values)/Total assets 

ANN was the choice ML tool for this study because it usually requires a large number of iterations to 

achieve convergence, thereby causing long duration complex computations. The data was loaded onto 

two different computers. One was used to develop the CB-FPM without BDA while the other was set 

up to use BDA to develop the CB- FPM 
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7.2  The Big Data Analytics Path Selected and its Set Up 

The path on the second row, going through Data Cloud to ‘Reliable CB-FPM using Mahout’, in the 

figure in Annex 1 was used to develop the BDA CB-FPM in this study. This path was chosen because 

of the flexibility of Apache Spark. The Amazon Elastic Compute Cloud (EC2) was used because of its 

cheap server compute ‘Instances’ which are capable of running applications. Although we had 15 

Instances subscribed for, only ten were used for this experiment. The spark-ec2 was used to launch the 

10 Instances. This ensured that the Apache Spark and HDFS on were automatically set up on the 

Instances. With the Instances running as nodes, one Instance was set as master node in the test-master 

group and the remaining nine as slave nodes in the test-slaves group. 

The ‘R’ Language was the preferred analytics software because it has an Apache Spark package, called 

‘SparkR’, which makes it easy to implement Spark. The SparkR package installed on R and the R 

program was connected to Spark using the sparkR.session command. The 150,000 datacells were 

loaded into R as a standard .csv data frame before being converted to SparkDataFrame file system 

supported by Spark.  

 

7.3  The Models and the results 

The data was divided into 70% and 30% for training and testing respectively using the sample.split 

command. On the computer without BDA set up, the model training happened in a second but did not 

achieve convergence in the ANN default setting of 100 iterations maximum, leading to a suboptimal 

model. The ANN parameters were continually tuned to allow higher number of iterations in order to 

achieve convergence but this caused the training process to consume a lot of time. After setting the 

iteration limit to a maximum of one million iterations to allow as many as required to achieve 

convergence, the computer did not complete the training in nine hours and the process had to be 

aborted. This problem was envisaged hence the point of setting up the BDA platform in the first place. 

With iterations limit set to one million from the start, training on the same data was run on the 

computer set up for BDA and it took about eight seconds for the model to converge at 460,000 

iterations, clearly indicating that BDA is useful in developing CB-FPM with large data. The result of 

the model performance on test data are given in Table 2 

Table 2: Results of the BDA CB-FPM and the ordinary CB-FPM on test data 
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Model BDA CB-FPM Ordinary CB-FPM 

on 1000a dataset 

Ordinary CB-FPM 

on 1000b dataset 

Accuracy 82.95% 70.1 70% 

AUC 0.8815536 0.7206454 0.7154232 

 

 

To check the effect of the large sample size on the results, data of 200 (100 existing and 100 failed) 

construction firms were randomly extracted from the complete dataset of 30,000 construction firms. 

Using the same five variables as before, to avoid bias during comparison, a new CB-FPM was 

developed with ANN without using the BDA platform. The model was successfully developed in about 

2 seconds after 100 iterations. To test the CB-FPM, two separate data of 1000 firms (500 existing and 

500 failed in each case) were randomly extracted from the remaining 29,800 construction firms. The 

two datasets were labelled 1000a and 1000b.  The CB-FPM was tested with these 2 datasets to allow a 

check of reliability of the result.  

The results of the BDA CB-FPM were not disappointing (see table 2) with the model having an overall 

accuracy of 82.95% on the test data. The receiver operator characteristic (ROC) curve is presented in 

Figure 5. The area under the curve (AUC) value which is used to measure the overall performance of 

an FPM came up as 0.8815536, showing a good overall performance for the BDA CB-FPM (note that 

the closer the AUC value to one, the better, with 0.5 taken as the worst value). However, a careful 

variable selection process based on the sample construction firms’ data used, an informed threshold 

modification away from the default 0.5, and further tuning of other ANN parameters like number of 

hidden nodes among others, could all have helped the model perform much better. 
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Figure 5: Receiver operator characteristic (ROC) of the ANN CB-FPM developed with BDA 

 

The results of the ordinary CB-FPM were poorer than those of the BDA CB-FPM (see table 2) with the 

model having overall accuracies of 70.1% and 70% on the test data 1000a and 1000b respectively, 

compared to 82.95% of the BDA CB-FPM. To contextualise this, it is very important to understand that 

the cost of misclassifying a single construction firm can be devastating. A construction firm that is 

wrongly predicted as healthy when it is failing will cause the management team to carry on as normal, 

thereby causing the firm to eventually fail. Such failure will lead to financial loss for the firm’s owner, 

job losses for the workers, revenue losses for office space renters, financial losses for owners of 

projects the firm is developing, various legal disputes, trauma for owner and workers, non-payment of 

suppliers among many other social and financial cost. The ROC curves of the ordinary CB-FPM 

performance on datasets 1000a and 1000b are presented in Figures 6 and 7 respectively. The AUCs are 

much lesser than that achieved by the BDA CB-FPM (see Table 2), depicting a much lesser capability 

to perform well on new data. 
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The overall superiority of the BDA CB-FPM, and the associated reduction of great financial and social 

cost, shows that construction firm owners, financiers, government bodies and policy makers need to 

adopt them. 

 

 

 

Figure 6: Receiver operator characteristic (ROC) of the ordinary CB-FPM on test data 1000a 
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Figure 7: Receiver operator characteristic (ROC) of the ordinary CB-FPM on test data 1000b 

Following the development and test of the ordinary and BDA CB-FPMs, a quick analysis was run to 

check the influence the financial ratios used as predictor variables. The analysis was done with the 

‘information gain’ selector algorithm. The result is presented in Table 3. The higher the information 

gain value of a variable, the more the positive contribution of that variable to the predictive power of 

the CB-FPM. It is not surprising to see working capital/total assets as the chief contributor since it has 

to do with liquidity of the firm. Construction firms are known to always need high liquidity if they are 

to keep their projects running [29, 49, 69, 70]. Poor liquidity is what led to the recent failure of Carilion 

construction firm in the United Kingdom. Although, V4 (see table 3), which has something to do with 

the firm’s debt, is tightly associated with liquidity, it did not come out as the second most important 

variable as expected. Instead, V5, which basically measures the rate at which a firm wins contracts, 

took that position. This is not too surprising as general knowledge cannot always be used to decide the 

level of positive contribution of the variables to the CB-FPM hence the use of selector algorithms like 

‘information gain’. 
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Variable 

codes 

Variable names Information gain 

values 

Ranking 

V1 Working capital/Total assets 0.31071137 1st 

V5 Sales (contacts values)/Total assets 0.21711454 2nd 

V4 Market value equity/Book value of total debt 0.20187683 3rd 

V2 Retained Earnings/Total assets 0.20813130 4th  

V3 Earnings before interest and taxes/Total assets 0.17103339 5th  

 

 

 

 

8.0 Conclusion 

This study aimed to propose a framework architecture for developing a BDA CB-FPM and 

implementing it, using data of tens of thousands of construction firms. The readily available nature of 

financial data of hundreds of thousands of construction firms made them the ideal variable choice. It 

was discovered that MapReduce, which is the traditional big data analyser, is not fit to develop BDA 

CB-FPM because of its poor support for iteration. Many BDA initiatives consequently developed to 

support iteration were highlighted to include Haloop, Daytona, Twister and Spark among others. Based 

on the support features of each initiative, a framework clearly showing the path through which a 

reliable CB-FPM could be developed with each initiative was proposed. With Spark emerging as the 

most flexible, one of its paths was adopted to develop a BDA CB-FPM in this study using 150,000 

datacells from financial statements of 30,000 construction firms. Using ANN with maximum number 

of iteration set to one million, a normal computer was unable to develop a CB-FPM in over nine hours. 

With BDA, the CB-FPM was developed in about eight seconds, achieving convergence at 460,000 

iterations. The BDA CB-FPM outperformed an ordinary CB-FPM developed with a dataset of 200 

construction firms randomly extracted from the 30,000 used for the BDA CB-FPM. It can thus be 

concluded that the problem of not being able to use a large dataset to develop CB-FPM is resolvable by 

applying BDA to CB-FPM development and that the framework proposed is valid. It can also be 

concluded that the use of a larger sample size, with the aid of BDA, can lead to be performance of CB-

FPMs. Future studies should look to use data of much more construction firms since larger data 
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improves reliability. Effort should also be made to try other paths and initiatives in the proposed 

framework, and use of other ML tools. 
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