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Published online: 30 May 2018 . 1-Decanol droplets, formed in an aqueous medium containing decanoate at high pH, become

. chemotactic when a chemical gradient is placed in the external aqueous environment. We investigated

if such droplets can be used as transporters for living cells. We developed a partially hydrophobic
alginate capsule as a protective unit that can be precisely placed in a droplet and transported along
chemical gradients. Once the droplets with cargo reached a defined final destination, the association of
the alginate capsule and decanol droplet was disrupted and cargo deposited. Both Escherichia coli and
Bacillus subtilis cells survived and proliferated after transport even though transport occurred under
harsh and sterile conditions.

The development of soft matter systems that mimic the behavior of living systems' can be useful in studying
related processes in natural living systems and also in pioneering new materials? as well as technological designs®.
Soft matter systems can be driven out of equilibrium and can show large responses to external stimuli*. The
switch from equilibrium to non equilibrium systems can be driven through, for example static external fields,
externally imposed physical shear flows, or chemical potential. By increasing the distance from the equilibrium
ground state, the complexity of the system increases and active states emerge. For example, self motion is an
emergent behavior, as shown for artificial micro swimmers®. Some self-moving systems also show the ability to
move directionally in response to chemical signals in the environment and therefore such systems are capable of
chemotaxis®.

We have been developing several types of self-moving and transforming droplet systems®. We have so far
focused on taxis®, shape change’, maze-solving® (see also®), and rudimentary fission-fusion cycles'’. Through
such studies, several key processes of living systems can be recapitulated in highly simplistic chemical and physi-
cal systems, albeit abstract and artificial in reference to the natural living systems!"12.

Given the inherently artificial corporeality of these systems, the development of an interface between, for
example, a tactic droplet and a living cell becomes a challenge. The experimental conditions that support the
necessary fluid dynamics and chemical reactivity for self-motion in droplets may be detrimental for the suste-
nance and proliferation of living organisms. The harsh conditions could include chemicals such as nitrobenzene,
surfactants at levels to solubilize cell membranes, and high pH solutions (up to units of 12). Such conditions may
severely affect the viability of living cells. Although there are many droplet systems that have been reported as
transport systems, none have shown compatibility with hosting and transporting living cells outside of aqueous
droplets in a microfluidic platform”!3.

In order to integrate living cells into the chemical system, a protective shell or matrix can be used. Sodium
alginate is a compound with a broad use in biomedical applications and bio-engineering'®. Typically alginate is
prepared in water and cross-linked forming a hydrogel. Alginate hydrogels are exploited for different applications:
wound healing, drug delivery, in vitro cell culture and tissue engineering. Alginate produces safe and reliable
effects in many applications, for example in the treatment of type 1 diabetes'® and treatment of urinary incon-
tinence and vesicoureteral reflux'®. In addition, alginate hydrogels can be applied to diverse applications when
modified"’.

However, alginate is by composition too hydrophilic for stable integration into the hydrophobic 1-decanol
droplets. Several alternatives for using chemically modified hydrophobic alginate exist and require chemical syn-
thesis and purification or extreme chemical modification. For example cold plasma treatment could be used
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Figure 1. General design of droplet-mediated transport experiment and tracking. (a) The diameter of the
glass Petri dish is 90 mm. 9 ml of 5mM decanoate pH 11 solution was added to the dish. The 1-decanol droplet,
colored with Oil Red O for easy visualization, was added at position A. Salt is added at position B to create

the gradient. (b) The migration of the droplet is monitored with a video camera and the lateral movement is
recorded, see Methods. The droplet path is shown as a blue line generated by the tracking algorithm. (c) Videos
of eight droplet experiments were analyzed for the time resolved displacement (y-axis) over time. Each point
represents a 0.5 second interval. Each droplet is represented by a different colored line.

to create alginate surfaces with hydrophobic properties'®!. In addition, several alginate derivatives have been
synthesized to create an amphiphilic alginate that requires the chemical modification of the alginate backbone by
alkyl chains and other hydrophobic moieties'*.

Alternatively we could consider a different type of protective capsule, for example based on hydrophobic
coatings used for liquid marbles® or more sophisticated multilayer capsules that could exploit the properties of
self-assembled short peptides?!. Such alternative capsules could be advantageous and allow for more consistent
survival of many different types of cells in our transport system.

In this paper we experimented with a simple solution to physically integrate an alginate capsule containing
live cells into hydrophobic droplets by adding a surfactant during the hydrogel crosslinking step. This method
resulted in an alginate hydrogel with definable hydrophobicity by simply titrating the amount of surfactant added.
This solution has the added benefit of being easily dissolved allowing for release of the cargo.

Here we describe a self-moving chemical droplet system for the controlled transport and deposition of living
cells. We based the experiments on the chemotactic motion of 1-decanol droplets in decanoate solution at high
pH?. We tested various cells for compatibility with the chemical system including Escherichia coli (E. coli), Bacillus
subtilis (B. subtilis), Vibrio fischeri (V. fischeri) and Saccharomyces cerevisiae (S. cerevisiae). The cells were tempo-
rarily placed in a biocompatible capsule as a protective environment but also as a measurable and well defined
unit of cargo for transport. We then used the self-moving 1-decanol droplets as vehicles to transport the hydro-
phobic alginate capsules. A droplet with one or more alginate capsules was able to move chemotactically in salt
gradients. After transport, the association between the alginate capsule and the decanol droplet was disrupted,
and the alginate capsules were harvested from the system. We show that E. coli and B. subtilis cells were alive and
proliferated following the droplet-mediated tactic transport, under otherwise sterile conditions.

Results

Chemotactic droplet experiment. Chemotaxis, the directional movement of cells or organisms in
response to chemical gradients, can be reproduced using chemical systems®?>%. The taxis system we used com-
posed a 1-decanol droplet and a surrounding environment of decanoate solution (typically 5mM, pH 11-12). A
chemical gradient is then created with the addition of sodium chloride (3 M NaCl) and the droplet moves chem-
otactically towards the source of the gradient. We tracked the droplet movement for eight experiments under
standard conditions (decanoate 5mM at pH 11; see Fig. 1) and the mean velocity of droplets after the addition of
450 pl of 3M NaCl is 0,049 £ 0,007 cm/sec.

The explanation of this motile droplet system has been published in® describing how changes in interfacial
tension govern the motion and direction on the droplets. The effect of increasing NaCl on the interfacial tension
of the droplet as employed in this paper is shown in Supplementary Fig. S1. The test system is depicted in Fig. 1:
A droplet of 1-decanol is placed at the starting point A, and then the salt is deposited in target position B. This
shows that the directional motion of the droplet is dependent on the salt gradient, as previously described® and
is consistent with the system finding the lowest energy state (Supplementary Fig. S1). In addition, this kind of
system can be exploited to transport light objects such as a conductive copper wire*. Next we tested if this droplet
system can be used to transport live cells protected in alginate capsules.
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Figure 2. Images of contact angle of water on alginate. Alginate was dissolved in different aqueous solutions:
water pH 7 (a), water pH 12 (b), decanoate 10 mM (c) and decanoate 25 mM (d). The contact angles for the
sessile drop of water (pH 7) were as follows: a. water pH 7: 14,5° +1,92°; (b). water pH 12: 38,62° £ 2,06°; (c).
decanoate 10 mM pH 12: 61,02° +2,96° (d). decanoate 25 mM pH 12: 86,04° & 2,01°. Contact angle value for
alginate dissolved in 5mM decanoate pH 12 was similar to alginate dissolved in water pH 12 (39,75° +4,6°
Supplementary Fig. S3).

Alginate capsule design. We prepared the alginate capsules using standard protocols starting from a
solution of sodium alginate using calcium chloride (CaCl2) to crosslink the matrix. This produced completely
crosslinked alginate capsules of roughly 2 mm diameter (see Supplementary Fig. S2). Initial trials showed that
the inherent hydrophilicity of the alginate hydrogel was incompatible with the 1-decanol droplet. The capsule
created from alginate prepared in water would not stably associate with the droplet and would be shed into the
water phase instantly. We then modified the hydrophilicity of the alginate by preparing the hydrogel in water sup-
plemented with varying concentrations of decanoate surfactant. Capsules prepared with alginate supplemented
with 5, 10 or 25 mM decanoate pH 12 showed an increasing association affinity with the decanol droplet. We
measured the contact angle of a water droplet (4 pl) on alginate hydrogel formed with increasing concentrations
of decanoate surfactant (also at pH 12). After crosslinking the hydrogel surface was washed with Milli-Q water
and the surface dried briefly using nitrogen gas. We demonstrated the increase in hydrophobicity of the alginate
surface with increasing decanoate concentration, as shown in Fig. 2. The increased hydrophobicity of the alginate
allowed for such an alginate capsule (about 1 mm in diameter after drying) to be physically embedded in a 20 il
volume 1-decanol droplet in decanoate solution. Contact angle values can be found in Supplementary Fig. S3. We
note that this is a transient surface modification. This is evidenced by long term contact angle experiments that
show that pure water droplets on alginate supplemented with decanoate surfactant eventually wet the surface,
indicating that the surfactants ultimately leave the hydrogel interface and distribute throughout the system.

Alginate capsule transport with live cells.  Figure 3 shows how droplets of 1-decanol can be used to
transport and deposit alginate capsules in our system. A capsule of alginate is placed manually inside each drop-
let of 1-decanol. The droplets successfully transport both capsules along the salt gradient. When the droplet
reaches the target destination, the alginate capsule cargo is released through the manual addition of a decanoate
solution with high molarity (0.2 M). This solution changes the interfacial tension of the droplet and the physical
interaction between the droplet and the alginate cargo is disrupted. This allows the cargo to be dropped in a spec-
ified position as shown. For a video of this system, see Supplementary Movie 1 25x https://www.youtube.com/
watch?v=zCB2bPhFoClI.

We see a relationship between the droplet volume and its carrying capacity. For example, a droplet of 10 pl can
transport only 1 capsule efficiently. Roughly with an increase of 10 42l in droplet volume, an additional capsule can
be stably transported.

Viability of cells after the encapsulation and transport. We tested four different kinds of organisms
for encapsulation and transport: three bacteria E. coli, B. subtilis and V. fischeri and one eukaryote, S. cerevisiae.
To test the sterility of the system, we performed a direct incubation of each organism in 1-decanol oil and in the
decanoate aqueous solution, see Methods. Although a few E. coli and B. subtilis survive for 5 minutes in the 5mM
decanoate solution, none of the organisms survived when placed directly in 1-decanol, confirming the sterility
of the system. We tested for the viability of each of the four organisms after being encapsulated inside the alg-
inate capsules and then after capsule transport with the droplet. For encapsulation, the cells were added to the
cross-linking step of alginate capsule formation along with their appropriate growth media and the decanoate for
modifying the hydrophobic property of the alginate (see Methods). For each organism three replicates of ten such
capsules were created, weighed, dissolved and plated on growth media to check for the survival of the organisms
during the encapsulation step. In addition, individual capsules were added to 1-decanol droplets, transported,
released and then harvested for assessment. Three replicates of ten transported capsules were dissolved and
serial dilutions were performed for survival assessment and quantification of the cells. Both E. coli and B. subtilis
survived the encapsulation steps as well as the transport and harvesting step under these conditions (Fig. 4).
Additionally, for visualization purposes, we show that single alginate capsules post transport containing E. coli
or B. subtilis, manually placed on Luria-Bertani (LB) agar plates (Fig. 4a), showed growth and colony formation.
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Figure 3. Decanol droplet transport of alginate capsule cargo. The diameter of the glass Petri dish is 90 mm.
Two 1-decanol droplets are placed in the Petri dish, each containing an alginate capsule of 1 mm diameter (the
small capsules are indicated in the inset with arrows). 0 seconds (sec, s): droplets with capsules placed in Petri
dish; 8 sec: salt gradient added with pipette (visible); 77 sec: end of droplet migration towards salt source; 85 sec:
0.2 M decanoate addition by pipette (visible) and capsule deposition; 148 sec: second salt addition; 227 sec:
droplet migration towards second salt source. See also Supplementary movie 1.

In contrast we found that both V. fischeri and S. cerevisiae were more sensitive to such manipulations and did
not consistently survive to the end of the transport step. However, we detected that V. fischeri survived at least
the encapsulation step as evidenced by the autoluminescence (Supplementary Fig. S4). For yeast, the cells survive
both the encapsulation and droplet-mediated transport. However the survival of the yeast is not consistent even
within the same set of replicate experiments and therefore the results are not quantifiable. Summary of all cell
viability assays is found in Table 1.

Confirmation of sterile and aseptic conditions. We confirm that at least two cell types consistently sur-
vive both the encapsulation in alginate hydrogel and droplet-mediated transport. To confirm that this system of
transport is aseptic and would prevent cell cross-contamination from capsule to capsule or from droplet to drop-
let within the same environment, we performed ten transport experiments for each organism (B. subtilis, V. fis-
cheri, E. coli and S. cerevisiae). The test involved transporting two capsules per time using two droplets with only
one capsule containing cells. The capsules not hosting cells however did contain the appropriate growth media.
The capsules with and without cells were transported as described in the same experiment. After transport, each
alginate capsule was harvested and placed in a falcon tube containing 5 ml of fresh media. The alginate hydrogel
capsules spontaneously dissolve under these conditions. Following overnight incubation, only the tubes in which
capsules containing cells were placed showed any cell growth.

In addition, each solution was spread on specific selective growth plates and only samples derived from cap-
sules originally containing cells showed colony formation. We note that E. coli, B. subtilis and even S. cerevisiae
consistently survived the experiment. All controls from capsules containing growth media but no cells showed
no growth after transport. Therefore cross-capsule and cross-droplet contamination was prevented under these
aseptic conditions. Results of all sterility, cross-contamination, and viability tests are summarized in Table 1 with
control capsules labeled as ‘Capsule only’
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Figure 4. Bacterial encapsulation, transport and survival. Panel a shows cell growth from transported capsules
placed on grown media in Petri dishes. Panel b shows a bar plot that represents the Colony Forming Units
(CFU) of each of 10 capsules pre and post transport. CFU values are normalized for the dry weight of the
capsules (dwc) (error bars correspond to standard errors for experimental triplicates).

V. fischeri no growth no growth growth no growth

E. coli no growth growth quantified growth quantified growth
B. subtilis no growth growth quantified growth quantified growth
S. cerevisiae no growth no growth growth growth

Capsule only

(control) no growth no growth no growth no growth

Table 1. Summary of cell viability tests.

Discussion and Conclusions

We have shown an integration of an artificial chemotactic droplet system with the directional transport of living
cells. Since the chemotactic droplet system itself is functional under conditions that are incompatible with the
viability of cells, a hosting capsule was developed that provided a favorable environment for the cells. In addition,
the alginate hydrogel capsule supplemented with decanoate surfactant was able to interface with the droplet sys-
tem, did not disrupt the droplet dynamics, was implantable and retrievable, and was able to release the live cell
cargo for analysis and proliferation.

The droplet containing a capsule with live cargo could be manipulated with salt gradients several times with
the capsule remaining stably attached to the droplet. In addition, several capsules can be stably fixed to a single
decanol droplet. However, capsules placed in the droplet without drying or capsules larger than 1.5mm in diam-
eter tend to be dropped by the droplet during transport. This is presumably due to high water content of such
capsules. Therefore the capsule size - more than the capsule number - is a limitation of the system.

Once the living cells are introduced to the system, they are subject to several steps of manipulation which
could result in cell death: crosslinking in alginate with decanoate surfactant, drying of the capsules over time,
placement in the toxic 1-decanol droplet, transport of the droplet with capsule over the course of minutes, release
of the capsule from the droplet with additional surfactant, manual retrieval of the capsule from the system,
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and dissolution of the alginate capsule in fresh growth media. We therefore tested for cell viability at two key
steps: after encapsulation and after transport, see Fig. 4 and Table 1. The best results were with B. subtilis and E.
coli encapsulation and transport. These findings were reproducible and consistent. We see consistent viability
of V. fischeri in the surfactant-alginate capsules due to detection of their quorum-sensing autoluminescence,
see Supplementary Fig. S4. However, these cells do not consistently survive the recovery after encapsulation.
Additionally we had mixed success with S. cerevisiae which survive encapsulation but do not consistently survive
transport. Although we follow the protocol strictly and often perform many replicates (up to 10 per experi-
mental condition, see Methods), there is some inherent noise in the system when transporting yeast that is not
yet controlled. We therefore will investigate alternative encapsulation methods, such as those mentioned in the
Introduction, to allow consistent viability of transported cells including yeast and other eukaryotic cells.

This type of system is presented for the first time and is a proof of principle demonstration including system
dynamics and limitations. This represents an alternative platform to live cell manipulation using microfluidics®.
In our case we take advantage of an open system that can be manipulated easily by hand but also using a robotic
interface?. The structurally heavy architecture typically used in microfluidic systems for control is not strictly
necessary when the actuation of the fluids is performed by the fluids themselves due to dynamic sensory-motor
coupling?. Therefore such systems could be developed and applied to real world complex environments for the
directed motion and delivery of cargo without the need for microfluidic superstructures and support systems.
This proof-of-concept demonstration can be further developed for the transport of live cargo due to other con-
trolling signals such as pH®, heat and light®®. Transportation of cargo such as organisms or chemicals from one
environment to another can also have wider applications. For example, a sulphur-reducing microbial commu-
nity produces electroactive metabolites such as thiosulphate and hydrogen sulphide®® and in some cases, all the
way to elemental sulphur®’. These electroactive metabolites can be transported from the sulphur-contaminated
environment to a non-contaminated environment and stored. Under the right conditions, this chemical energy
can be converted to electrical energy® and so in a way this transport system can result in a novel energy storage
technology, customised for specific applications. We are currently developing this system towards these targeted
outcomes. For example, we are developing a system for droplet mediated cargo transport under physiological
conditions, which will expand greatly the potential applications of fluid droplet based transport.

Materials and Methods

Materials. All reagents for the chemotaxis experiments were supplied by Sigma Aldrich: decanoic acid,
1-decanol, Oil red O, sodium hydroxide, sodium chloride, sodium alginate, LB broth, agar, yeast extract, peptone
and dextrose. Glass DURAN Petri dishes were supplied by Fisher, syringes from PIC and Glass slides from Prestige.

Methods. Unless otherwise specified, experiments were carried out at room temperature.

Droplet motion analysis.  For velocity analysis of droplet movement during chemotaxis, eight experiments were
performed under standard conditions: 9 ml of decanoate 5mM pH 11, 450 yl of sodium chloride 3 M, 20 pl of 1
decanol colored with 0.2 mg/ml Oil Red O. The tracking of the droplet position lasts for one minute and begins
when the 1-decanol droplet starts to move from its initial position. The initial position is defined by a circle with
a specific diameter of 3x the droplet diameter surrounding the point where the droplet is initially placed. This
is necessary to avoid measuring initial fluctuations in droplet position that are common before the chemotactic
movement begins. The tracking algorithm calculates the droplet velocity for each time frame and the mean of the
calculated values was used to obtain the droplet mean velocity. The standard deviation was obtained from the 8
experimental replicates.

The eight experiments were tracked using EVOBOT (see https://real.itu.dk/people/afaina/attachment/20/) and
the results were analyzed using a free software: Tracker - Video Analysis and Model Tool’ (see https://physlets.org/
tracker/). The video analysis has been performed by setting a reference measure from the’real object; in this case the
90 mm of the Petri dish diameter. The changes of position of the droplet are registered in each frame. Data are shown
in Fig. 1, where droplet displacement from the origin to the point of salt addition are plotted against time.

Surface tension measurement. 1-decanol inverted pendant drop surface tension was analysed inside different
water phases: decanoate 5mM pH 11.5 and decanoate 5mM pH 11.5 mixed 1:1 with NaCl 1, 3, or 5 M. Data were
obtained for ten droplets (of 4-5 ul) for each condition using a hooked needle (gauge 22), Theta-lite tensiom-
eter Attension by Biolin Scientific (Nordtest Srl, Italy) and a high precision cell with optical path of 10 mm by
Hellmark analytics.

Alginate hydrogel and capsule formation.  Alginate hydrogel for contact angle analysis was first prepared with
water or varying amounts of decanoate solution at pH 12. Sodium alginate was dissolved (5% w/v) in water
(pH 7), water (pH 12, adjusted with 3 M NaOH), or decanoate solution (5, 10, 25mM at pH 12, adjusted with
3 M NaOH). 1 ml of hydrogel with or without additional surfactant was placed on a glass slide (Prestige Micro
slides 26 x 76 m), crosslinked with 1% w/v CaCl2 for 5 minutes and dried briefly with a stream of nitrogen gas.
Pure water was then placed on the hydrogel and the contact angle measured for five droplets (of 4 pl) for each
condition using a Theta-lite tensiometer Attension, Biolin Scientific (Nordtest Srl, Italy). In parallel with the con-
tact angle experiments, we prepared alginate capsules of roughly 2 mm diameter by crosslinking either alginate
in water or alginate in the above surfactant solutions with 1% w/v CaCl2 (see Supplementary Fig. S2). Capsule
size depends on the dimensions of the needle used for the pre crosslinking extrusion. We tested different types
of needles and empirically determined that the 25 gauge, 16 mm needle produced the most consistent spheroi-
dal alginate capsules of the desired diameter. These capsules were dried, using nitrogen gas flush for 5 minutes,
dehydrated at room temperature for 3 hours, and then tested empirically for their association with a droplet of
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1-decanol (20 pl). After it was determined that alginate supplemented with 25 mM decanoate associated most
stably with the decanol droplet and alginate capsules for transport were prepared. Sodium alginate (5% w/v)
was dissolved in a decanoate solution (25mM at pH 12, adjusted with 3 M NaOH). Cells to be transported were
grown to a specific optical density (O.D.) and then pelleted and resuspended in fresh medium to a concentrated
volume of roughly 1:10 (centrifugation: 1500 rpm 2 min for S. cerevisiae, 10000 rpm 10 min for V. fisheri and
15000 rpm 5 min for B. subtilis and E. coli). Nanodrop ND 2000 by Thermo Fisher was used to analyze optical
density. The concentrated cells were then mixed with the alginate-decanoate solution (1:5v/v). The alginate solu-
tion containing cells was loaded into a syringe (10 ml, needle 25 gauge, 16 mm) and dropped slowly by hand into
1% w/v CaCl2 for cross-linking. Round capsules were instantaneously formed. The capsules were cross-linked
for five minutes and then washed once using Milli-Q water. Nitrogen gas was then flushed over the capsules for
five minutes. Capsules were at this point consistent with typical alginate hydrogel crosslinked with CaCl2. We
note that the outer surface of the capsule became more stiff after drying and capsules had an average diameter
of 2mm. Supplementary Fig. S2 shows four alginate capsules with 2mm mean diameter on a black background.
Optical image was taken using an iphone SE camera. The capsules were afterwards left to dry for three hours in an
incubator at the temperature required for the growth of the organism encapsulated. The drying step was necessary
to allow for surfactant assembly at the hydrogel surface to ensure consistent physical association between the alg-
inate capsule and the decanol droplet. After this drying step, the average diameter of the capsules was 1 mm. After
drying, the capsules were ready for transport. For capsules prepared without cells as controls, the same procedure
was followed except instead of pelleted cells added to the alginate mixture, fresh sterile growth media was added.
For capsules containing live cells, the system was prepared as follows: Escherichia coli (expressing pEGFP-N1) was
taken from glycerol stock and grown overnight at 37 °C in LB broth. The same was done for Bacillus subtilis 168
strain. Aliivibrio fischeri MJ11 was resuspended in Luria-Bertani salt medium (LBS) and Saccharomyces cerevisiae
BY4741 was instead resuspended in Yeast Extract-Peptone-Dextrose (YPD) and grown overnight at 30 °C. Before
the encapsulation, the yeast strain BY4741 was diluted and reincubated for three hours to avoid the plateau of
yeast growth. V. fischeri was instead resuspended in LB until O.D. 0.5. The grown cells were centrifuged and the
pellets resuspended in fresh media to a concentrated volume of 1:10 for all four organisms. The obtained mixes
were added to alginate 5%, mixed and capsules were prepared, as above.

Droplet-mediated alginate capsule transport. ~ Glass Petri dishes of 9 cm diameter were filled with a volume of 9 ml
5mM decanoate solution pH 11 (adjusted with 3 M sodium hydroxide (NaOH)). Droplets of (20 ul) 1-Decanol
were manually added to the system. Then dehydrated alginate capsules were placed manually on the decanol
droplets. The chemotactic movement of the droplets was obtained through 3 M sodium chloride (NaCl) addition
of 450 yl, as previously described in Cejkova et al. 2016°. Alginate capsule deposition was effected though the
addition of a decanoate solution (300 1) with a higher molarity (0.2 M pH 12) near the droplet. Droplets were
then moved a second time through the addition of 600 u1 NaCl. Capsules were retrieved from the system using
tweezers and further analyzed, as detailed below.

Cell viability. For assessing the viability of cells after encapsulation but before the transport, 3 biological repli-
cates of 10 alginate capsules were created for each cell culture, dried and dissolved using sodium isocitrate 50 mM
solution under continuous shaking for 15 minutes. The recovered samples were then centrifuged (1500 rpm 2 min
for S. cerevisiae, 10000 rpm 10 min for V. fisheri and 15000 rpm 5 min for B. subtilis and E.coli). The pellets were
resuspended in 1 ml growth media, plated after serial dilution (100 yl, from 1:10 to 1:10%, three plating replicates
each dilution) and incubated overnight. The plates were counted for colony forming units (CFU). Transport
experiment were afterwards performed again with 3 biological replicates of 10 capsules prepared from the grow-
ing cell cultures and transported for an average time of 5 minutes. After transport, the capsules were washed
with fresh media, dissolved (using sodium isocitrate 50 mM solution) and centrifuged (as above). Dilutions in
appropriate growth media (1 ml) were plated (100 ul) and CFU counted by eye after growth. For each biological
replicate of ten capsules, values for three plating replicas were obtained and plotted in Fig. 4b.

To record luminescence and check for V. fisheri viability, Tecan Infinite M200 plate reader (luminescence
mode) and NUNC 96 multiwell polystyrene white plates were used.

Capsule dry weight. To determine the dry weight of the alginate capsules, 5 replicates of 10 capsules, were cre-
ated, weighed and left drying for overnight in Petri dishes open to air. 10 capsules were used for each assay to
average over the capsule to capsule variation in weight and volume. The day after, each replicate was weighed a
second time. The mean ratio of capsule weight reduction before and after drying was 0.05 w/w. For each organism
5, 10 capsules replicates, were analyzed.

Confirmation of sterile and aseptic conditions. To test for cross-contamination of the transport platform, 10
experiments of double transport (a capsule with and a capsule without cells on two different droplets) were per-
formed. After the transport capsules were picked up using a sterile tweezer and placed in 5ml of fresh medium.
The capsules dissolved spontaneously in falcon tubes over few hours and the tubes were monitored for cell
growth (exploiting O.D.). In addition the recovered samples were plated on selective agar plates and monitored
for growth (CFU formation). As an additional test for sterility, aliquots from overnight cultures of all four organ-
isms were directly incubated in 1-decanol or decanoate (10 gl in 5 ml of decanoate or 1 ml of 1-decanol) for a time
period corresponding to a typical transport step (5 minutes). To enable phase separation 4 ml of Milli-Q water
were added in each falcon tube. Falcon tubes were centrifuged, supernatant discarded, and pellets resuspended in
appropriate fresh media. Samples from the media were then plated and visually monitored for growth. B. subtilis
and E. coli were plated on LB agar plates, S. cerevisiae on YPD plates and V. fischeri on LBS agar plates.
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Data availability. The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.
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