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Abstract: Nonlinear rational systems/models, also known as total nonlinear dynamic systems/models, in expression of a ratio 

of two polynomials, has roots in describing general engineering plants and chemical reaction processes. The major challenge 

issue in control of such system is the control input embedded in its denominator polynomials. With extensive searching, it could 

not find any systematic approach in designing this class of control systems directly from its model structure. This study expands 

U-model based approach to establish a platform for the first layer of feedback control and the second layer of adaptive control 

of the nonlinear rational systems, which, in principle, separates control system design (without involving a plant model) and 

controller output determination (with solving inversion of the plant U-model). This procedure makes it possible to achieve 

closed loop control of nonlinear systems with linear performance (transient response and steady state accuracy). For the 

conditions using the approach, this study presents the associated stability and convergence analyses. Simulation studies are 

performed to show off the characteristics of the developed procedure in numerical tests, and to give the general guidelines for 

applications. 

 
Keywords: Rational systems/models, total nonlinear systems/models, U-model based control(U-control), control complex 
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1. Introduction 

This section justifies the reasons for designing 

controllers for rational models by introducing model 

expression and representations, achieved results in model 

identification, and a critical review of controller designing 

approaches. 

 

1.1. Nonlinear dynamic rational systems 
 

Definition [1]: Assign a triplet  , ,X f h , X  is an 

irreducible real affine variety,  ,f h  are mapping functions. 

A system  , with input 
mU and output 

rY  , is 

defined as polynomial/rational, while the functions

 f f U    and : rh X   both on X are, mappings 

from input space to state space and from state space to 

output space respectively, polynomial/rational. That is for 

polynomial systems 
ih A  for all 1, ,i r where A  is the 

algebra of all polynomials on the variety X  and for rational 

systems 
ih Q  for all 1, ,i r where Q  is the algebra of 

all rational functions on the variety X . 

For a single-input and single-output (SISO) nonlinear 

dynamic rational system, it can be generally modelled with a 

ratio of two polynomials [1, 2]. 
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where ( )y k  , ( )u k  , and ( )e k  denote measured 

output, input and model error/noise/uncertainties at time 

instant ( 1,2, )k  respectively. ( )pN k and ( )pD k  are real 

valued and smooth numerator and denominator polynomials 

respectively. 1 ( 1) ,...,  ( )n

kY y k y k n     , 

1 ( 1) ,...,  u( )n

kU u k k n     , and 

1 ( 1) ,...,  e( )n

kE e k k n     denote the delayed outputs 

inputs, and model noises respectively. ( )njp k   and 

( )djp k  for regression terms, nj   and dj   are the 

coefficients, and num and den  for numbers of total 

regression terms of the polynomials respectively. The major 

properties of the rational model (1.1) are summarised below: 

It is also defined as a total nonlinear model [2] as it 

covers many different linear and nonlinear models as its 

subsets (such as NARMAX (Nonlinear AutoRegressive 

Moving Average with eXogenous input) models [3] and 

intelligent models for neuro-fuzzy systems [4]. Rational 

systems have been observed in general engineering, 

chemical processes, physics, biological reactions, and 
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econometrics, for example, rational models are a class of 

mechanistic models in describing catalytic reactions in 

chemical kinetics [5, 6], metabolic, signal and genetic 

networks in systems biology [1], and movement of satellite 

in earth orbit [1]. There have also been reports of rational 

modelling applications [7-9]. 

This is more concise in structure than a polynomial; 

the example below uses a Taylor series expansion to 

approximate a simple rational model below. 
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The other characteristic of the rational models is the 

power in quick change of the model output while input has 

small variations. Consider a simple system output below 

 

1
( )

1 ( 2)
y k

u k


 
  

(1.3) 

 

Clearly the model output will be dramatically increased, as 

the input ( 2)u k  approaches –1. This comes from function 

of the denominator. 

Introducing a denominator polynomial, makes model 

concise in describing complexity and add more functions in 

describing nonlinearities. On the other side, contrast to 

polynomial systems, this makes identification and control 

system design noticeably different and more difficult with 

the inherent nonlinear parameters and control inputs [2]. 

Therefore, it requests comprehensive studies of this class of 

systems in theoretical and application aspects. This study 

takes the pioneer step towards to the control of the rational 

systems 

 

1.2. Model identification 
 

Model identification has been relatively mutual to 

some extent. So far, the identification aspect has gone 

through data-driven model structure detection, parameters 

estimation and model validation from noise contaminated 

input and output data. The major work on rational model 

identification is summarised in the following categories. 

Linear Least Squares (LLS) algorithms for parameter 

estimation: Extended LLS estimator [10]; Recursive LLS 

estimator [11]; Orthogonal LLS structure detector and 

estimator [12]; Fast orthogonal algorithm [13]; Implicit least 

squares algorithm [14]. Nonlinear least square algorithms: 

Prediction error estimator [15]; Globally consistent 

nonlinear least squares estimator [16]. Other algorithms 

include the following categories. Back Propagation (BP) 

algorithm [17]; Enhanced Linear Kalman Filter (EnLKF) 

[18]. 

Model validation: Higher order correlation tests [19]. 

Omni-directional cross-correlation tests [20]. 

A summary of the representative publications till 

2015 can be found in a survey of rational model 

identification [2]. 

 

1.3. Controller design 
 

As surveyed above, rational models have been 

increasingly used to represent nonlinear dynamic plants. 

Consequently, the control system design should have been 

considered on agenda in the follow up studies. However, up 

to now, there is no reference found for designing such 

controllers directly referred to the model analytical 

knowledge. The paramount difficulty is that part of the 

controller output is embedded in the denominator 

polynomial ( )pD k . For example:
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extensive investigations through major academic publication 

searching engines, it can be concluded that this study is the 

first trial with analytical approaches to design a controller 

for rational systems. 

Regarding controller design approaches possibly 

referred to the rational systems, these could be the reduction 

of rational model structure complexity, which are neural 

network models, linear approximation models, linearization, 

and iterative learning control, and U-model enhanced 

control. A brief critical review of the approaches is 

presented below. 

Neural controller [21]: this is probably the first 

publication relating to control of rational models. However, 

the design approach has merely used rational models as 

extreme nonlinear examples, it has not designed controllers 

by taking the model structure into consideration (even 

known in advance), except taking the models as the 

representatives of complex nonlinear dynamic systems. 

Piecewise linearization [22, 23] around operating 

points has been widely studied to simplify controller 

designed procedures when plants are subject to mild 

nonlinear dynamics. It should be mentioned that a group of 

piecewise linear models can be admitted as a linear model, 

with varying order and parameters in different operating 

intervals. The promising property is using linear control 

design strategies directly. However, it could induce 

inaccuracy and dynamic uncertainty because of ignoring 

some inherent nonlinearities from their original nonlinear 

representations. Further this method may also increase 

computational burden/complexity while over barrowing 

piecewise linear intervals to match severe nonlinearities. 

Point-wise linearisation has been claimed by neural 

network based control and/or adaptive control, which uses 

linear models to approximate predominant dynamics around 

an operating point or every input output dynamic gain at 

each time instance, and then employs a neural network to 

determine the error induced by the linearisation [24, 25]. 

Once again, it uses linear control systems design to 

construct nonlinear control systems. However, this involves 

on-line neural network learning or online model iden 

parameter estimation, and therefore the constructed 

nonlinear control system is operated under adaptive 

principles (the controller parameters are updated with the 

neural network output), even for deterministic nonlinear 

plants. The other related issue is the selection of neural 

network topology, which has no systematic procedure 

available to find the best fitted neural network representative. 
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Feedback linearization is a well-developed subject 

[26]. A general SISO nonlinear system is described as 

 

( ) ( )

( )

x f x g x u

y h x

 

   

 (1.4) 

 

where x  is the state vector, u  and y  are input and output 

respectively. ( )f  , ( )g   and ( )h   are real valued and smooth 

mapping functions. With this model structure a series of 

analogies with some fundamental features of linear control 

systems have been established, which provides a very useful 

concept in design of nonlinear control systems using linear 

design methodologies. Obviously the model has u  in an 

explicit position. The studied nonlinear rational model has 

no such explicit expression for input u  to be designed, and 

this immediately reveals that the methodologies rooted in 

the approach, although useful references, are not directly 

applicable in designing control of nonlinear rational systems. 

The other input-output linearization techniques [27] have 

had similar requirements for an explicit u  expression and 

special skills for state variable transformation. 

Iterative learning/data-driven control/Model-free 

control is another possible control system design 

methodology in avoiding model structure complexity. The 

approaches do not require clear plant model structure, but 

still need plants with some mild conditions in control [28, 

29]. Again, if a rational model is available, it is wasteful 

without using the model information in the control system 

design. It is believed, particularly for man-made engineering 

systems/products (built up by rules/models), that any 

repetitive process and motion has model exist in operation 

even though the model is yet to identify. 

U-model based control has claimed to radically 

relieve the dependence of plant model oriented design 

foundation. The use of the plant model is effectively 

reduced as a reference for converting to U-model and 

accordingly to work out the control output [30]. U-model 

based control assumes the feasibility of using linear system 

design procedures to design the control of nonlinear 

dynamic plants with assigned response performances. The 

U-model control platform is illustrated in Fig. 1. 

The U-model systematically converts smooth 

(polynomial and extended including transcendental 

functions) models, derived from principles or identified 

from measurements, into a type of u-based model to 

equivalently describe plant input/output relationship, so that 

it establishes a general platform to facilitate control system 

design and dynamic inversion. It should be mentioned that 

there is nothing lost with the derived U-models from the 

original nonlinear models. The difference between the two 

types of model expressions is that those original nonlinear 

models could be obtained from principles, such as Newton’s 

law, or identified directly from measured data, the U-models 

are derived from the original models in control design 

oriented expressions. Regarding the U-control (U-model 

based control) research status, Zhu and Guo [31] have 

brought forward a fundamental framework in terms of pole 

placement control for nonlinear systems. More recently, U-

control has been expanded to General Predictive Control [32] 

and Sliding Mode Control [30]. To accommodate U-control 

of state space models, a Backstepping algorithm is being 

expanded to extract the controller output within multi loop 

U-models. With the nature of separating control system 

design (specifying closed loop performance) and controller 

output calculation (by resolving plant dynamic inversion 

through U-model), it can be forecast that the other classical 

control issues could be similarly formulated within a general 

and concise framework. 

 
Fig. 1.U-model based control systems design 

 

1.4. Organisation of the study 
 

The remaining study is organised in five major 

sections. Section 2 is used to define a generic framework of 

control oriented U-model for representing smooth nonlinear 

dynamic plants. It is then expanded with including rational 

model and transcendental functions as its subsets to lay a 

basis for applying linear control system design techniques. 

Section 3 proposes a general pole placement controller for 

nonlinear rational systems within the U-model framework. 

Section 4 shows design of adaptive UPPC for the control of 

stochastic nonlinear rational systems. Section 5 tests a 

number of typical rational systems with the developed 

procedures and show the exemplary procedures for potential 

users. 

2. U-model --- a generic framework of control 
oriented nonlinear plant models 

 
2.1. U-model foundation --- polynomial [30] 

 

Consider a general polynomial description of. 
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where ( )y k   and ( )u k  denote the plant output and 

input at time instant ( 1,2, )k  respectively. ( )pN    is 

a real valued and smooth polynomial function, 

1 ( 1) ,...,  ( )n

kY y k y k n     and 

1 ( 1) ,...,  u( )n

kU u k k n     denote the delayed 

outputs and inputs respectively. ( )ip k  denotes the 

model structure variables, e.g. 
3( 2) ( 1)u k y k  , 

2( 1) ( 3)u k u k  , ( 2) ( 3)y k y k  , and i   denote the 

coefficients. To convert the above polynomial into U-model, 

which is a polynomial with argument of control input 

( 1)u k  (also called controller output while talking about 

control system design), it gives [30] 

 

U-model 

Linear  

control 
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Polynomial 
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where degree M is of controller output ( 1)u k  , 

  1

0( ) ( ) ( ) M

Mk k k      is the time varying 

parameter vector, a function of absorbing past inputs 
2kU 

, 

outputs 
1tY 
, and parameters nj in the original polynomial. 

An example illustrating the conversion to U-model from an 

ordinary polynomial is shown here. Consider a polynomial, 

 
2( ) 0.2 ( 1) ( 3) 0.5 ( 1) ( 3) 0.9 ( 2) ( 1)y k y k y k u k u k y k u k          

(2.3) 

 

Rearrange polynomial (2.3) with 

 
2

0 1 2( ) ( ) ( ) ( 1) ( ) ( 1)y k k k u k t u k         (2.4) 

 

where 
0 ( ) 0.2 ( 1) ( 3)k y k y k    , 

1( ) 0.5 ( 3)k u k   , and 

2 ( ) 0.9 ( 2)k y k    . 

Clearly, the time varying ( )j k  is absorbing the past 

inputs/outputs and parameters of the original polynomial, 

associated with ( 1)ju k  . 

Property 1: Assign 
1 1: L M    a U-mapping 

to convert classical polynomial expression of (2.1) to its U-

expression of (2.2) and the inverse be
1 
, that is 

 

( ,  ) ( ,  )j

i i jf p f u
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 (2.5) 

 

Thus it has good mapping properties [30]. 

 

2.2. U-mode --- rational 
 

With reference to (1.1), its deterministic parametric 

rational expression is given below. 
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Its U-model realisation can be determined by 

removing the denominator to the left hand side of (2.6), it 

gives 

 

( ) (*) (*)p py k D N
   

(2.7) 

 

Convert (2.7) into U-model form to yield 
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where ( )j k  is a function of past inputs 2kU  and 

outputs 
1kY 

, and parameters nj in the numerator 

polynomial. Similarly, ( )i k  is a function of past inputs 

2kU 
and outputs 

1kY 
, and parameters dj in the 

denominator polynomial. M and L are the degrees of the 

model input ( 1)u k  in numerator and denominator 

respectively. Here is a simple example to show the 

conversion of 

 

1
( ) ( 1)

( 1)
y k y k

u k
 


  

 (2.9) 

 

Inspection of (2.8), it gives 

 

1 0( ) ( ) ( 1) ( )y k k u t k  
  

 (2.10) 

 

where 
1 0( ) 1 ( ) ( 1)k k y k    . 

In the following sections of the controller design, it is 

required making dynamic inversion of (2.8) in way of root-

solving. 

There are many standard root-solving algorithms for 

such polynomial equations [30]. 

Remark 1: Compared with polynomial U-realisation, 

it can be noted that rational model U-realisation is an 

implicit expression of ( )y k  due to the multiplicative item

( ) ( )py k D k . 

 

2.3. U-model --- extended 
 

To describe more general nonlinear terms including those 

transcendental functions, define the extended U-model 

below 

 

( ) ( ( 1)) ( ( 1))b ay k f u k f u k      (2.11) 

 

where ( ( 1))bf u k    and ( ( 1))af u k   are smooth 

functions. In general, these can be expressed as 
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Here is a simple example to show its U-model 

representation, consider 

 

2
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For its U-model of (2.11), it gives 

 
2

0 1

1
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where 0 1 1( ) 1 ( ) 1 ( ) ( 1)k k k y k       

3. Pole placement controller – A show case 
of the design procedure 
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The control objective is, for a desired trajectory ( )v k

, determine a control input ( )u t  to drive the underlying 

system output ( )y k  to follow the desired trajectory ( )v k  

with an acceptable performance (such as transient response 

and steady-state error), while all the inputs and outputs of 

the control system are bounded within the permitted ranges. 

 

3.1. U-control system design 
 

In general, there are three steps in the U-control 

system design routine: 

Form a proper linear feedback control system 

structure, as shown in Fig. 2. The controller, in the dashed 

line block, is consist of two functions, invariant controller

1cG and dynamic inverter 1

pG . The plant model is 
pG . 

Design invariant controller
1cG by linear control 

system approach. By letting 1pG   , therefore, 1 1pG  , and 

specifying the desired closed loop transfer function G , it 

gives 1
1

c

G
G

G



 and the invariant controller output ( )v t is 

the desired output while the plant model is a unit constant. 

Determine dynamic inverter 1

pG to work out the 

controller output ( 1)u k  . Assuming the plant model is 

bounded-input/bounded-output (BIBO) stable and the 

inverse of
pG  exist, expressing the plant model 

pG  in forms 

of U-model, letting ( ) ( )y k v k in the U-model, it gives 

model (2.11) in expression of ( ) ( ( 1)) ( ( 1))b av k f u k f u k  

. To determine control input ( 1)u t   is to find the inverse by 

resolving the equation of ( ) ( ( 1)) ( ( 1)) 0b av k f u k f u k    . 

 

 
Fig. 2.U-model control system 

 

It should be noted that the arrow line from the plant 

to the dashed line block represents the U-model update from 

the plant model at each time instance. 

Proposition 1: Generality, U-model based control 

allows once-off design for all linear and nonlinear 

polynomial models. This is due to the controller
1cG  design 

being independent of model pG . 

Proposition 2: Simplicity, U-model based control 

requires no repeated computation if a plant model is 

changed. Again, this is due to the controller
1cG  design 

being once-off and independent of model pG , and changes 

to plant model pG only changing the U-model to resolve 

different roots. In comparison, almost all classical and 

modern control approaches are plant model based designs, 

that is, the controller design is a function of both system 

performance and plant, accordingly if the plant model is 

changed, and controller must be redesigned. 

Proposition 3: Feasibility for controller design of 

rational systems, this is can be proved directly from 

proposition 1 and U-realisation of the rational model in (2.8). 

In formality, U-adaptive control is very similar to 

deterministic U-model control. The difference is that the 

plant model is required to be estimated or updated online in 

adaptive control. 

For simplicity, but not losing generality, in 

formulation of U-model --- polynomial, once the invariant 

controller is designed, the real controller output can be 

determined by letting 
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Then resolving one of the roots from 
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3.2. Stability and robust analysis of U-model 
control systems 

 
There are two typical situations: Ideal case: 

deterministic systems without modelling error and 

disturbance. Non-ideal case: deterministic systems with 

modelling errors and/or disturbance. 

Theorem 1: Bounded-input, bounded-output (BIBO) 

stability of deterministic U-model control systems 

Regarding the U-model control system shown in Fig. 2, it is 

BIBO stable and tracks the bounded reference signal r
properly while the following conditions are satisfied: 

(i) Invariant controller
1cG is closed-loop stable, that 

is, all poles of the closed loop are located with the unit 

circle. 

(ii) Plant model pG is a bounded-input/bounded-

output (BIBO). 

(iii) The inverse of the plant model 1

pG exits. 

Proof: With reference to Fig. 2, it has 1 1p pG G   

from the conditions (ii) and (iii). Accordingly, the closed 

loop transfer function is given in terms of 1

11

c

c

G

G
, which is 

stable from (i) and thus the tracking performance is given by 

1

11

c

c

rG

G
.  

Remark 2: This establishes a framework for 

designing control for both linear and nonlinear dynamic 

plants. It is feasible, simple, general, and with no repetition 

of controller design on changes to the plant model, except 

the computation of the inversion of the changed plant U-

model polynomial. In the other words, this is a new 

methodology for minimising the complexity induced by the 

plant model in control system design, which is particularly 

important for nonlinear plants. U-model, as a universal 

dynamic inverter, is the key to achieve the gaols. 

Theorem 2: BIBO Stability of uncertain U-model 

control systems 

1( model)pG U 

 

1cG

 

pG

 

- 
v

 

u
 

r
 

y
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Regarding the U-model control system structured in 

Fig. 2, modelling error and/or disturbance ( )U t can be 

treated as an external disturbance as shown in Fig. 3. It is 

BIBO stable and tracking the reference signal with a 

bounded error while the following conditions are satisfied: 

(i) Invariant controller 
1cG is closed loop stable. 

(ii) Plant model pG is a bounded-input/bounded-

output (BIBO). 

(iii) The inverse of the plant model 1

pG exits. 

(iv) The upper bound of modelling error and/or 

disturbance ( )U t  is satisfied with the conditions of small 

gain robust stability [41]. 

Proof: In Fig. 3, 1 1p pG G  this gives

1

1 1(1 ) (1 )

c U

c c

rG
y

G G


 

 
. 

Then the stability of Fig. 3 is the same as in Fig. 2 

while the upper bound ( )U t  is satisfied with the small gain 

robust stability criterion. 

Remark 3: It should be noted that the tracking error is 

determined by
1(1 )

U

cG




; therefore, a properly designed 

1cG

will have a degree of robustness against 

uncertainties/disturbance. 

 

 
Fig. 3. Uncertain U-model control system 

 
3. Design of pole placement controller 

 

A classical approach [33] has been selected to 

formulate the U-model enhanced pole placement controller 

(UPPC) [30, 31]. Here a further refined version of UPPC is 

presented. Within U-model framework, closed loop control 

system performance is independently specified without 

involving the plant model. Therefore, the classical version 

involving plant model can be simplified as below. 

 

( ) ( ) ( )Rv k Tr k Sy k 
  

 (3.1) 

 

and 

 
1

1

1

0 1

1

0 1

n n

n

m m

m

l l

l

R z r z r

T t z t z t

S s z s z s







  

  

  

    (3.2) 

with ( )r k for reference, ( )v k for invariant controller 1cG

output, and ( )y k for plant output. The polynomials R, S, and 

T, with backward shift operator 
1z
 and proper orders (n, m, 

and l), are used to specify closed loop control system 

performance. 

To guarantee the control system realistically 

implementable, specify 

 

( ) ( ) ( ) ( )O S O R l n O T O R m n        (3.3) 

 

where the operator (*) (*)O Order  denotes the order of 

the concerned linear polynomial. 

With reference to (3.1), two control roles can be 

assigned with negative feedback R
S

  for stabilising closed 

loop system with requested dynamics and feedforward T
R

for reducing steady state errors. The structured control 

system is shown in Fig. 4. 

 

 

 

 

 

 

Fig. 4. Structured UPPC control system 

For designing an invariant controller, let ( ) ( )v t y t

in (3.1), thus it gives the closed loop transfer function 

 

( ) ( ) ( )
c

T T
y k r k r k

R S A
 


  

(3.4) 

 

Accordingly, the required design task is to assign the 

closed loop denominator polynomial 
cA and the numerator 

polynomial T . 

It should be noted that after cA specified (by 

customers and/or designers), a routine for resolving 

Diophantine is needed to workout the parameters of 

polynomials R  and S  from the following relationship 

 

cASR 
  

 (3.5) 

 

To achieve zero steady state, Tcan be designed with 

 

)1(cAT 
  

(3.6) 

 

The detailed design procedure and examples can be 

refereed to [31]. 

Remark 4: Compared with classical pole placement 

control design procedures [33], the UPPC is more concise 

and independent of the plant model, which results in the 

UPPC being generalised to any plant model structure and 

once off designed. For each different plant model, this task 

is merely the resolving of the U-model to obtain one of the 

roots as the operational controller output. The relevant 

comparison details can be referred in [30]. 

4. U-model based pole placement control 
with adaptive parameter estimation 

 

U-model based adaptive control schematic diagram is 

shown in Fig. 5. Again, this U-model adaptive control is 

different from those classical adaptive/self-tuning control 

approaches in terms of control structure. The feedback 

controller parameters are not tuned and thereafter fixed: the 

only adaptation is to update U-model parameters to 

1( model)pG U 

 
1cG  

pG

 

- 

v
 

u
 

r
 

y
 +

-

+ 

U
 

 

 Rv(k)=Tw(k)-Sy(k) 

Linear or NL 
 

plant 
 

r(k)  y ( 
 

k)  u(k-1)  v(k)  
 (v(k),u(k-1)) 
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accommodate the plant model parameter variation and/or 

external disturbance, which is consistent with propositions 1, 

2 and 4. 

 

 
Fig. 5. Adaptive U-model control system 

 

In general, an adaptive control system can be 

considered as a two layer system, that is, 

Layer 1: conventional feedback control; 

Layer 2: adaptation loop. 

In this study, the UPPC presented in section 3 is 

selected to form conventional feedback control. Thus this 

section mainly develops this adaptation loop formulation. 

In recursive formulation, there are two ways to 

estimate the U-model parameters in the adaptation loop. 

Indirect parameter estimation: Estimate the original 

rational model parameters ( ( ), ( )nj djk k  ) first and then 

convert into U-model parameters ( )j k . The challenging 

issue is that classical recursive least squares estimation 

algorithms give biased estimates and recursive rational 

model estimators need noise variance information in 

advance [11, 18]. 

Direct parameter estimation: Estimate the U-model 

parameters ( )j k  directly. The challenging issue is that the 

parameters ( )j k , while converted from a rational model, 

are time varying at every sampling time. It has been proved 

[34] that for time-varying stochastic models, the parameter 

estimation errors (PEE) with the well-known forgetting 

factor least-squares (FFLS) algorithm are bounded and the 

FFLS is capable of reducing the squared measurement error 

(the difference between measured output and model 

predicted output) even the time-varying parameter estimate 

are not converged to their real values. 

In this study a FFLS estimator [35] is selected with 

the following formulations 

 

( ) ( ) ( ) ( 1)

( 1) ( )
( )

( ) ( 1) ( )

( ) ( 1) ( ) ( )

( ) [ ( ) ( )] ( 1)

T

U

T

U

T

k y k k k

P k k
K k

k P k k

k k K k k

P k K k k P k

 



  

  

 


  

  

            (4.1) 

 

where vector
0 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
T

M

Mk k k k     
 

is 

the estimate of ( )k , ( )k   is the error, that is, the 

difference between the measured output and the model 

predicted output, ( ) ( 1) 1K t M    is the weighting factor 

vector indicating the effect of ( )t  to change the parameter 

vector, ( ) 1 ( 1) ( 1)
T

M Mk u k u k       is the 

input vector at time k-1,  is forgetting factor (a number 

less than 1, e.g. 0.99 or 0.95, represents a trade-off between 

fast tracking and noisy estimate), the smaller value of  , 

the quicker the information in previous data will be 

forgotten, and
( 1) ( 1)( ) M MP k     is the covariance matrix. 

 

In presenting the stability of the proposed adaptive 

U-control, expand the virtual equivalent system (VES) 

concept and methodology [36] for the analysis, which is an 

alternative insight and judgement of the 

stability/convergence for adaptive control systems. 

Following the similar arguments as shown before, we 

assume 1 1p pG G  , and the invariant controller 
1cG is well 

defined to stabilise conventional feedback control systems 

and track the bounded reference signal in terms of mean 

squares. Then for a slow time varying parameter model 

(because it is converted from its original time invariant 

parameter model referred to (2.1) and (2.2)), the U-model 

parameter estimation errors ( )U t  are bounded with FFLS or 

the other recursive algorithms [34, 37]. In this case, using 

Fig. 3 again, knowing ( )U t includes U-model parameter 

estimation errors as. Hence, in terms of VES, the adaptive 

control system can be treated as a summation of two sub-

systems of 

 

1

1 2

1 1(1 ) (1 )

c U

c c

rG
y y y

G G


   

 
  

(4.2) 

 

As ( )U t is bounded, the adaptive control system is 

stable and the tracking control error will converge to a 

bounded compact set around zero, whose size depends on 

the ultimate bounds of estimation error
U . 

 

Remark 5: U-model provides a platform for 

simplifying control system design and VES provides a 

platform for simplifying the analysis of stability and 

convergence of general adaptive control systems. 

5. Simulation studies 

Four case studies have been conducted to initially 

validate the new design procedure. It should be made clear 

that there is no other comparison result can be provided as 

this is the first study in controlling of such nonlinear rational 

systems. 

As described before, the design is split into two 

stages, design invariant control 
1cG (thus ( )v k ) by pole 

placement) and determination of the controller output 

( 1)u k   by resolving plant U-model equation. 

To design the pole placement controller, assign the 

characteristic equation 

 
2 1.3205 0.4966cA z z  

  
 (5.1) 

 

Factorisation of (5.1) gives the closed loop poles as

0.6603  0.2463i , this gives a decayed oscillatory 

1( model)pG U 

 

1cG

 

pG

 

- 
v

 

u
 

r
 

y

 

U-

modelpa

rest 



8 

 

response ( 1 0.7n   ), which is a commonly used 

dynamic response index. For steady state error performance, 

making its error zero gives 

 

(1) 1 1.3205 0.4966 0.1761cT A       (5.2) 

 

From the causality condition, specify the structures 

of R and S with 

 
2

1 2

0 1

R z r z r

S s z s

  

 
   (5.3) 

 

Form a Diophantine equation with polynomials 

  cA R S [30] to yield 

 

2 1

1 0

0.4966

1.3205

r s

r s

 

  
  

 (5.4) 

 

To make polynomial R stable and having the 

requested response, assign
1 0.06r   ,

2 0.0005r  , which 

gives two poles ( 0.05) ( 0.01)z z  . Then the coefficients 

of polynomial S are resolved in the Diophantine equation of 

(5.4) as follows. 

 

0 11.2605 0.4961   s s  
 

(5.5) 

 

Consequently controller (3.1) can be recursively 

implemented to calculate the virtual controller output ( )v t  

 

( 1) 0.06 ( ) 0.0005 ( 1) 0.1761 ( 1)

1.2605 ( ) 0.4961 ( 1)

v k v k v k r k

y k y k

     

    

(5.6) 

 

5.1. Case 1 --- feasibility test of U-control of 
nonlinear rational systems 

 
Consider a rational system modelled by 

 
3

2 2

0.5 ( 1) ( 1) ( 1)
( )

1 ( 1) ( 1)

y k u k u k
y k

y k u k

   


   
  

(5.7) 

 

where y(k) is the model output, u(k) is the input of the model 

or controller output. This is used to test deterministic 

feedback control. The model structure has been typically 

investigated in system identification. Accordingly, its U-

realisation can be expressed as 

 

 2 2 3( ) 1 ( 1) ( 1) 0.5 ( 1) ( 1) ( 1)y k y k u k y k u k u k        

(5.8) 

 

To obtain the dynamic inverter 1

pG  output, that is, 

the controller output ( )u t , let ( ) ( )y k v k , then it gives rise 

to 

 

 2 2 3( ) 1 ( 1) ( 1) 0.5 ( 1) ( 1) ( 1)v k y k u k y k u k u k          

(5.9) 

 

To determine the control input u(k-1), form a U-

model equation from (5.9) as 

 
2 3

0 1 2 3( ) ( ) ( 1) ( ) ( 1) ( ) ( 1) 0k k u k k u k k u k           

 (5.10) 

 

where 

 
2

0 1

2 3

( ) ( )(1 ( 1)) ( ) 0.5 ( 1)

( ) ( ) ( ) 1

k v k y k k y k

k v t k

 

 

    

 
  (5.11) 

 

In this simulation, the operation time length was 

configured with 400 sampling points, and reference was a 

sequence of multi-amplitude steps. The achieved output 

response and controller output are shown in Fig. 6(a) and 

Fig. 6(b) respectively. 

 

 
(a) Plant output response 

 
(b) Control input 

Fig. 6. Plant output and control input 

 

5.2. Case 2 --- test of external disturbance 
 

Consider a stochastic rational system modelled by 

 
3

2 2

0.5 ( 1) ( 1) ( 1)
( ) ( )

1 ( 1) ( 1)

y k u k u k
y k e k

y k u k

   
 

   
 

(5.12) 

 

where y(k) is the model output, u(k) is the input of the model 

or controller output respectively, and ( )e k  is Gaussian 

noise representing unknown an disturbance acting on the 

controlled plant output. 

This case study was used to test adaptive feedback 

control. The feedback control loop has been designed as in 
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Case 1, that is, all configurations for feedback control were 

kept as those used in Case 1. For the adaptation loop, the 

disturbance was configured with ( ) ~ (0,0.01)e k N , the 

initial covariance matrix with 
6

4( ) 10P k I , the forgetting 

factor with 0.95   to deal with fast time varying 

parameter estimation, the initial parameter vector was 

randomly assigned with 

 0 1 3 4
ˆ ˆ ˆ ˆ ˆ(0) (0) (0) (0) (0) 0.3 0.2 0.1 0.1

T T
      

 

, and the input vector was specified with 

2 3( ) 1 ( 1) ( 1) ( 1)
T

k u k u k u k       . The achieved 

output response and controller output are shown in Fig. 7(a) 

and Fig. 7(b) respectively. 

 

 
(a) Plant output 

 
(b) Control input 

Fig. 7. Plant output and control input 

 
5.3. Case 3 --- test of internal parameter variation 

 

The same model structure as Case 1 is used, but the 

parameter associated with y(k-1) u(k-1) is time varying 

representing internal parameter disturbances, such as worn 

parts in mechanical and electrical systems. 

 
3

2 2

( ) ( 1) ( 1) ( 1)
( )

1 ( 1) ( 1)

a k y k u k u k
y k

y k u k

   


   
  

 (5.13) 

 

In simulation, all the setups were the same as those 

used in Case 1. The parameter variation was configured as 

 

0.9 120 250
( )

0.5

k
a k

otherwise

 
 
  

 (5.14) 

 

The adaption loop, specified as in Case 2, was used 

to follow the plant model internal structure variation. The 

achieved output response and controller output are shown in 

Fig. 8(a) and Fig. 8(b) respectively. Inspecting the 

simulation results, the output of the systems are seen to track 

the reference signals after a short transient phase. U-model 

parameter estimation is shown in Fig. 9. It should be noted 

that this estimated parameter vector is to achieve smaller 

squared error between measured output and model predicted 

output. Therefore the estimates are not converged to those 

real time varying parameters in the U-model. In the future 

studies to deal with time varying parameter estimation will 

be conducted in terms of reducing both squared 

measurement errors and squared dynamic errors [40]. 

 
(a) Plant output 

 
(b) Control input 

Fig. 8. Plant output and control input  
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Fig. 9. U-model parameter estimates 

 

5.4. Case 4 --- feasibility test of U-control of 
extended nonlinear rational systems 

 

This study is used to test the U-control of extended 

rational systems with transcendental input and delayed 

output. 

 

2

0.5 ( 1) sin( ( 1)) ( 1)
( )

1 exp( ( 1))

y k u k u k
y k

y k

    


  
  

(5.15) 

 

where ( )y k  is the model output, ( )u k  is the input of the 

model or controller output. Accordingly, the extended U-

model can be expressed as 

 

 2( ) 1 exp( ( 1)) 0.5 ( 1) sin( ( 1)) ( 1)y k y k y k u k u k        

(5.16) 

 

With the same controller designed in (5.16) above, assign 

the output ( )y k of (5.16) with the desired output ( )v k  of 

(5.6) gives 

 

 2( ) 1 exp( ( 1)) 0.5 ( 1) sin( ( 1)) ( 1)v k y k y k u k u k          

(5.17) 

 

Therefore the control input ( 1)u k   can be solved by 

 

 2( ) 1 exp( ( 1)) 0.5 ( 1) sin( ( 1)) ( 1) 0v k y k y k u k u k         

 

(5.17) 

The achieved output response and controller output are 

shown in Fig. 10(a) and Fig. 10(b) respectively. Once again 

the computational experiment confirms the feasibility of U-

control. 

 

 

 

 

 

 

 

 
 

(a) Plant output 

 

 
 

(b) Control input 

Fig. 10. Plant output and control input 

6. Conclusions 

A fundamental question is raised in this study and 

those for the other U-model enhanced controls: after two 

generations of plant model (polynomial and state space) 

centered control system design research/applications, what 

is the next generation of development? Should the research 

for new model structures continue, or should control 

systems be designed without such plant model requirements 

(possibly implying separation of control system design and 

controller output determination)?  

One of the feasible choices in the future progression 

could be the U-control design methodology, which radically 

reduces the complexity of plant model oriented design 

methods. The proposed U-control method provides a 

platform with 1) a universal control oriented structure to 

represent existing models; 2) separating closed control 

system design from plant model structure (no matter linear 

or nonlinear, polynomial or state space); 3) all well-

developed linear control system design methods can be 

expanded in parallel to nonlinear plant models, 4) a 

supplementary to all existing control design methods. 

Accordingly, this study is a show case using the U-model 

framework to design the control of the nonlinear rational 
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systems with classical linear design approaches. Further 

study on the rational model control could be deriving 

concise algorithms for robust and adaptive control with 

reference to the recent research development [38-39]. 

This foundation work has put an emphasis on 

formulation of structure in a systematic approach. Rigorous 

mathematical considerations should be followed to establish 

a comprehensive description and explanation. 
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