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Abstract: 12 

In response to increasing pressures on water resources, watershed-services management 13 

programs are implemented throughout the tropics. These programs aim to promote land 14 

management activities that enhance the quantity and quality of water available to local 15 

communities. The success of these programs hinges on our ability to i) understand the impacts of 16 

watershed interventions on ecohydrology; ii) model these impacts and design efficient 17 

management programs; and iii) develop strategies to overcome barriers to practical policy 18 

development, including resource limitations or the absence of baseline data. In this paper, we 19 

review opportunities in ecohydrological science that will help address these three challenges. 20 

The opportunities are grouped into measurement techniques, modeling approaches, and access to 21 

resources in our hyperconnected world. We then assess management implications of both the 22 

knowledge gaps and the new research developments related to the effect of land management. 23 

Overall, we stress the importance of policy-relevant knowledge for implementing efficient and 24 

equitable watershed-services programs in the tropics.  25 

 26 
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 31 

1 Introduction 32 

The humid tropics cover one-fifth of the Earth’s land surface and generate the greatest amount of 33 

runoff of any biome globally (Fekete et al., 2002; Wohl et al., 2012). Three billion people 34 

worldwide live in humid tropical regions and depend on available water resources of tropical 35 

watersheds (State of the Tropics, 2014). Therefore, we need to properly manage watershed 36 

‘services’, defined as the benefits that humans obtain from ecosystems at the scale of single 37 

watersheds or that are derived from processes occurring within the physiographic boundaries of a 38 

watershed. These services are essential to humans and range from water supply (e.g. for 39 

municipal, agricultural, or environmental uses) to water-risk mitigation (e.g. flood reduction and 40 

regulation of erosion) to cultural benefits (e.g. religious, recreation) and ecological functions 41 

(e.g. ecological flow regimes, contribution to the nutrient cycling or habitat creation). 42 

Integration of landscape and water resources management is increasingly focused on the role of 43 

watershed services in tropical regions. Investment in Watershed Services (IWS) programs, land 44 

management planning based on watershed services such as national land use zonation, and 45 

natural capital assessments are well established or now emergent in these regions (Goldman-46 

Benner et al., 2012; Bhalla et al 2013; Bremer et al., 2016). Here, we refer to these programs as 47 

“watershed-services programs”, to encompass both IWS programs and other ecosystem-based 48 

planning processes. A successful example of IWS in the tropics is the Latin American Water 49 

Funds Partnership, which was created in 2011 to support the development of IWS programs in 50 

the region (Bremer et al., 2016). More than 20 land conservation programs participate in this 51 

initiative, producing and exchanging knowledge to improve the design and implementation of 52 

local programs. In India, the large scale watershed development initiative is an important 53 

component of the country’s poverty alleviation and rural development programs with livelihoods 54 

being considered a “core objective” (Joshi, 2006). Globally, the advent of the sustainable 55 

development goals in the international political agenda also promotes the management of 56 

hydrologic services, in particular the objective to “protect and restore water-related ecosystems, 57 



4 
 

including mountains, forests, wetlands, rivers, aquifers and lakes by 2020” (Target 6.6).   58 

Despite the progress in existing IWS programs, practical barriers remain to the implementation 59 

of these programs around the world, often due to the lack of standardized assessment 60 

methodologies (e.g. Dougill et al., 2012; Bhalla et al 2015). Interventions promoted by 61 

watershed-services programs, such as conservation and protection of natural vegetation or 62 

restoration, including tree and grass planting, need to be carefully designed to account for local 63 

geology and ecohydrology. In particular, understanding the strength of the ‘hydrologic signal’ 64 

imposed by changes in land use is key to the implementation, monitoring, and success of 65 

watershed services programs (Guswa et al., 2014). For this, the scientific community needs to 66 

work closely with policy-makers to support the development of efficient and equitable 67 

management programs that rely on our best understanding of ecohydrological processes in a 68 

watershed.  69 

What is unique about ecohydrology in the tropics? First, the tropics are home to unique 70 

ecosystems, influential climatic patterns, and distinct ecological processes. For example, the 71 

páramo ecosystem is a tropical alpine grassland found primarily in the Andes that has the 72 

capacity to provide reliable water supply to many Andean urban centers without the need for 73 

storage reservoirs (Buytaert et al., 2006; Figure 1). This function is largely dependent on the 74 

persistent low flux of liquid precipitation at high elevation, and the extremely porous soil-75 

vegetation complex highly enriched in organic carbon – characteristics nearly unique to the 76 

tropics. Similarly, the unique meteorological processes of the Andean montane forests impose 77 

ecosystem dependence on fog drip precipitation, which is strongly influenced by geographic 78 

position relative to Amazonian forests (Célleri et al., 2009; Buytaert et al., 2006). Other unique 79 

mountain ecosystems include the Simien mountain ecosystems in Ethiopia (Liu et al 2008; 80 

Buytaert et al., 2011) and the montane shola forest-grassland ecosystems in the Western Ghats of 81 

India, which are perhaps 40,000 years old with endemic species whose closest relatives are found 82 

in the Himalayas (Bunyan et al., 2012; Das et al., 2015). Monsoonal precipitation in the Western 83 

Ghats in India can exceed 10,000 mm yr-1 and over 500 mm day-1 without significant overland 84 
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flow (Krishnaswamy et al., 2006; Krishnaswamy et al., 2013).   85 

Second, addressing the concerning issues of tropical land-use change in the tropics is challenging 86 

as most hydrologic research infrastructure and efforts remain located in temperate regions, with 87 

less attention toward tropical ecosystems (Wohl et al., 2012). This uneven geographic focus 88 

introduces substantial uncertainty in climate and hydrologic models within the tropics, and 89 

further exacerbates our lack of understanding of ecohydrological processes in tropical regions 90 

(Ponette-Gonzáles et al., 2014). 91 

Third, the humid tropics are also hotspots of global biodiversity, thus providing a unique 92 

opportunity and challenge to link ecology with hydrology. Ecosystems in tropical mountains are 93 

also particularly vulnerable to climate change and loss of distinct ecohydrological moisture 94 

regimes (Beniston, 2003; Krishnaswamy et al., 2014). 95 

This paper provides an overview of current challenges and opportunities in managing watershed 96 

services in tropical regions discussed at the AGU Chapman Conference on “Emerging Issues in 97 

Tropical Ecohydrology”, held in Cuenca, Ecuador, June 5-9, 2016. Here we argue that growth in 98 

the study of tropical ecohydrology offers a great opportunity to i) evaluate the underlying 99 

biophysical processes that are responsible for current and future changes in watershed services in 100 

tropical regions; ii) assess the performance of existing hydrologic service-based management 101 

programs, including IWS programs; and iii) conceive and promote better practices to design, 102 

implement, and monitor such programs in the future. Importantly, we recognize that progress in 103 

ecohydrology has been made in very distinct areas thanks to advances in modeling capabilities, 104 

new technologies, and recent developments in social sciences. We seek to summarize key 105 

advances in each of these areas to improve the dialogue within the community and advance 106 

hydrologic services science. 107 

In the next sections, we review the key challenges in ecosystem management to enhance or 108 

protect watershed services. We then provide a brief state of the art of ecohydrological techniques 109 

and approaches that can be used to inform the development of watershed-services programs. We 110 
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conclude with management implications related to the design, implementation, and evaluation of 111 

watershed-services programs.   112 

  113 

 114 

 115 

Figure 1. (A and B) Illustrations of the páramo ecosystem in Ecuador, and(C) high elevation Shola-116 

grasslands in the Western Ghats, India, which generate streams providing hydropower and other 117 

hydrologic services despite a long dry season. These ecosystems unique to the tropics are hotspots of 118 

endemism. 119 

 120 
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2 Challenges for ecosystem management based on hydrologic services 121 

Understanding the challenges and opportunities associated with watershed-based management is 122 

crucial to produce actionable science and develop efficient and equitable programs. Recently, the 123 

ecological and hydrological communities have summarized challenges and opportunities 124 

provided by the ecosystem services framework for their respective disciplines (Guswa et al., 125 

2014; Birkhofer et al., 2015; Naeem et al., 2015). Associated knowledge gaps, with a focus on 126 

the tropics, can be grouped in three areas: 1) fundamental knowledge gaps on tropical 127 

ecohydrological processes; 2) integrated process modeling, including developing modeling 128 

frameworks and testable hypotheses specific to tropical regions; and 3) implementation and 129 

monitoring of watershed-services programs at local and global scales.   130 

We summarize these gaps in Figure 2. Fundamental knowledge gaps in ecohydrology encompass 131 

the understanding of biological, chemical, and physical hydrological processes that occur at the 132 

multiple spatial and temporal scales of interest to management programs. Local-scale processes 133 

include the partitioning of precipitation between interception, infiltration, and evapotranspiration, 134 

as well as the biogeochemical exchanges between plants and their surrounding environment, 135 

above and below ground. Large-scale processes consider the watershed as a system and focus on 136 

the aggregated effects of biophysical processes that can be measured as water or nutrient flows 137 

(see Figure 2). At both scales, these processes need to be understood dynamically, i.e. under the 138 

influence of rapidly changing conditions such as land use or climate change. The temporal scales 139 

at which these processes occur are both short term (e.g. sub-hourly to daily) and long term (e.g. 140 

years to decades), and must be included when assessing ecohydrological change, field 141 

monitoring, and policy implications.  142 

Next, reducing the limitations of current modeling approaches remains a major area of research. 143 

Modeling is often needed to implement and monitor programs. The multiplicity of models found 144 

in the literature, ranging from conceptual to hybrid to fully-distributed process-based models 145 

shows that multiple approaches are both possible and complementary. A major challenge for 146 

analysts is to decide on a tool with a structure and level of complexity aligned with modeling 147 
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objectives and data availability, which are specific to each project. In addition, assessing the 148 

uncertainty in model outputs is difficult given the often limited number of available observations 149 

and inherent uncertainties in available data.  150 

Finally, implementing ecosystem-based watershed management programs remains a challenge 151 

because the benefits provided by these programs is inherently site-specific. While these 152 

programs have obvious similarities (e.g., by using ecosystem knowledge to inform land 153 

management policies), they also, inevitably, range in their specific goals and decision contexts 154 

(Bremer et al., 2016). For instance, some programs may be concerned with the absolute value of 155 

groundwater recharge under a given land use change to structure their payment system, while 156 

others may only require a general assessment of best places to target their interventions (Guswa 157 

et al., 2016). In addition, designing ecosystem-based program requires interpretation of 158 

ecohydrological knowledge to derive relevant information to policy-makers: scientific 159 

breakthroughs do not serve policy needs if “knowledge brokers” are not translating them into 160 

practical terms (Partidario and Sheate, 2014; Lehmann et al., 2014). Monitoring and evaluation 161 

of these programs can further add complications given the costs of instrumentation or personnel 162 

needs, despite these steps being recognized as fundamental to the success of watershed-services 163 

programs as the structure itself (Naeem, et al., 2015).  164 

Figure 2. List of challenges in applying ecohydrological knowledge to the design and 165 

implementation of watershed-services programs, from fundamental science gaps, to modeling, to 166 
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practical implementation challenges. 167 

 168 

 169 

 170 

3 Opportunities in ecohydrology of tropical systems 171 

In the following sections, we highlight new opportunities in ecohydrology that offer potential to 172 

inform watershed-services programs in the tropics. We organize these opportunities around three 173 

major themes: measurement techniques, modeling frameworks, and access to information in our 174 

hyperconnected world.  175 
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3.1 Measurements for ecohydrology  176 

Plot-scale measurements 177 

Plot-scale measurements and field observations represent the cornerstone of ecohydrology. 178 

Typically, plot-scale observations are made by direct observations of various components of the 179 

water cycle (e.g., rainfall, discharge, storage), quantification of chemical fluxes (e.g., sediment 180 

and nutrient export), and characterization of plant-soil interactions (e.g., including quantification 181 

of mass exchange). Tropical soils differ from temperate soils in that they are often highly 182 

weathered, often deep, have unique macropores (Putty and Prasad, 2000) and current 183 

pedotransfer functions are not appropriate for use in tropical soils (Hodnett and Tomasella, 2002) 184 

given that micro-aggregation in high-clay ferrosols results in much more rapid drainage 185 

compared to soils of similar clay contents in temperate regions. 186 

Key insights in the tropics relate to the hydrological functions of undisturbed soil (Bruijnzeel, 187 

2004) and their evolution with land use change (Molina et al., 2007; Roa-García et al., 2011). 188 

Direct implications for land management can be drawn from empirical data, for example on the 189 

impact of land use change on runoff (Tobón et al., 2010; Ghimire et al., 2014). In addition, plot-190 

scale studies have been used to understand soil-vegetation interactions in tropical ecosystems. A 191 

recent study suggested that plant water use is more strongly related to nutrient distribution in the 192 

soil than water availability in montane cloud forests (Goldsmith et al., 2012). Other researchers 193 

have observed that upslope tree water use was more strongly coupled with environmental 194 

variables than low-slope trees in a tropical montane cloud forest (Berry et al., 2016), highlighting 195 

that caution is needed when upscaling such processes from single trees to forest stands to 196 

catchments (Seyfried and Wilcox, 1995). With regards to the seasonality of flow, studies have 197 

shown that tropical seasonality can induce a shift to a more stable deep soil water source along 198 

dry seasons (Romero-Saltos et al., 2005) and exhibit hydraulic redistribution (Oliveira et al., 199 

2005).  200 

In general, an increasing number of studies show that the magnitude of hydrologic processes or 201 
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their responses to change may significantly differ from intensively-studied ecosystems (e.g. in 202 

temperate climates). Therefore, plot-scale efforts should be sustained to provide mechanistic 203 

explanations of patterns observed at the watershed scale, which are critical to improve spatially 204 

distributed catchment models (Wohl et al., 2012).  205 

Isotope tracing 206 

Hydrologic studies involving water isotope ratios (18O/16O, 2H/1H) over the past 60 years have 207 

led to a number of key advances in our understanding of tropical hydrologic processes. Tropical 208 

isotope hydrology has helped pinpoint plant water sources and assess water mixing in soil 209 

profiles (Meinzer et al., 1999; Lamontagne et al., 2005; Goldsmith et al., 2012; Evaristo et al., 210 

2016), quantify threshold rainfall intensities that must be exceeded to recharge groundwater 211 

aquifers (Vogel and Van Urk, 1975; Jones and Banner, 2003; Jasechko and Taylor, 2015; 212 

Sánchez-Murillo and Birkel, 2016), partition vapor flows into physical evaporation and plant 213 

transpiration fluxes (Dincer et al., 1979; Yepez et al., 2003), calculate fractions of streamflow 214 

comprised of recent rainfall (Buttle and McDonnell, 2005; Mosquera et al., 2016; Muñoz-Villers 215 

et al., 2016), and calibrate models of flow processes at the subsurface (Windhorst et al., 2014; 216 

Birkel and Soulsby, 2016). The usefulness of isotopic tracer data in ecohydrology relies on 217 

measurable differences in the isotopic compositions of waters in a study area. Regional isotopic 218 

variations are produced by variable isotopic compositions of catchment inputs (i.e., rain, fog, and 219 

snow), or modifying processes that take place within the catchment or aquifer such as 220 

evaporation, mixing, and water-rock interactions. Unlike the extratropics, where precipitation 221 

δ18O is often linearly related to atmospheric temperatures, tropical precipitation δ18O is often 222 

related significantly to precipitation rates (Dansgaard, 1964). Further, intra-annual variations in 223 

precipitation isotope contents are generally more subdued in the tropics relative to sites at higher 224 

latitudes (Jasechko et al., 2014). 225 

These tropical-extratropical differences in precipitation isotope variations indicate that some of 226 

the isotope-related tools developed in the extratropics may require adaptations prior to 227 

application in the tropics. For example, isotope-based approaches designed for regions with 228 
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distinct winter versus summer precipitation δ18O variations may be inappropriate for regions 229 

with multi modal precipitation (e.g. Jasechko et al., 2014; Jasechko and Taylor, 2015). Adapting 230 

approaches applied in the extratropics—where the great majority of published field studies have 231 

taken place (Burt and McDonnell, 2015)—may help to accelerate development of isotope-based 232 

approaches targeted for low latitude settings. With further experience, isotopic techniques may 233 

prove valuable to understand processes in the field of tropical hydrology: in particular, they will 234 

support the re-evaluation of some long-standing conceptualizations of water and solute mixing 235 

and movements within the critical zone (McDonnell, 2014), and an improved understanding of 236 

the impacts of land clearing on recharge, runoff and nutrient fluxes may benefit from isotope-237 

based approaches that are designed to calculate the age of water and solutes (Butman et al., 238 

2015).  239 

Remote sensing 240 

Remote sensing and geographical information science serve to capture, process, and analyze 241 

spatially-referenced observations, obtained from sensors in space and on the ground (Chen et al., 242 

2016). They provide a cost-effective source for biophysical variables and methods for 243 

characterizing spatial patterns of climate, soil and vegetation in the tropics (Vivoni, 2012). For 244 

example, new satellite products have been used to better quantify precipitation patterns, a key 245 

input in the watershed-scale water balance (Campozano et al. 2016; Carrillo-Rojas et al., 2016). 246 

This is particularly important for the tropics, which tend to be less well instrumented than the 247 

temperate zone. Satellite images can also be coupled with ground observations to facilitate 248 

downscaling spatial data (Hunink et al., 2014), to test and improve quality of satellite images 249 

(Glenn et al., 2007; Manz et al., 2016), and to characterize the interplay among different sources 250 

of information. 251 

In the past two decades, observations from space have experienced significant and ongoing 252 

improvement. Spatial resolution of images decreased from 80 m for Landsat 1 in 1970s, to 30 m 253 

for Landsat 7 in 1990s, and recently to 0.31 m for WorldView 3 in 2015 (Chen et al., 2016). 254 

Temporal returns decreased from 16 days (Landsat series) to daily returns for MODIS (spatial 255 
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resolution of 250m to 1000m). Spectral bandwidth has increased from panchromatic (1 band, 256 

black and white images), to multispectral (4+ bands) and hyperspectral bands (100+ bands). 257 

Sensors are now designed to capture a wide range of the electromagnetic spectrum ranging from 258 

the visible to the infrared, thermal and microwave wavelengths. 259 

Although there is great potential for use of remotely sensed information in tropical regions, its 260 

application faces several challenges. As in other regions, it is important to conduct ground 261 

validation of remotely-sensed information since algorithms used globally may yield large errors 262 

(e.g. for precipitation, as shown by Manz et al. 2017). One impediment is the frequent cloud 263 

coverage over the tropics, which reduces the capacity of several techniques to consistently 264 

collect useful observations at regular time intervals. To address this issue, unmanned aerial 265 

vehicle (UAV) systems offer a promising technology since they fly below cloud coverage. In 266 

addition, their spatial resolution is sub-centimeter, the temporal resolution can be managed on-267 

demand, and the spectral resolution is continuously improving with the miniaturization of 268 

multispectral and hyperspectral cameras (Anderson and Gaston, 2013; Colomina and Molina, 269 

2014; Teodoro and Araujo, 2016). Early initiatives using UAVs for ecohydrological research 270 

include high-resolution data within eddy covariance footprints, spatial distribution of terrain 271 

attributes related to vegetation conditions (Vivoni, 2012; Vivoni et al., 2014), biomass (Bendig et 272 

al., 2015), and vegetation health monitoring (Michez et al., 2016). 273 

New sensors and data loggers 274 

With an increasing awareness of the value of long-term datasets (Burt, 2003; Holmes, 2006) and 275 

high-resolution data to improve our understanding of hydrological processes and management of 276 

water resources (Bowes et al., 2009; Neal et al., 2012; Lloyd et al., 2016), a growing number of 277 

studies deploy in-situ sensors to measure relevant parameters with high temporal frequency 278 

(Sandford et al., 2007; Pellerin et al., 2009; Sherson et al., 2015). Recently, the cost of 279 

commercially available sensors has stimulated the development of alternative low-cost, robust 280 

sensors and data loggers: open-source software, electronics and off-the-shelf hardware store 281 

items, combined with low-cost microcontrollers (Pearce, 2012). For example, low-cost water 282 
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quality sensors have been developed and tested for parameters such as pH and conductivity, 283 

temperature, toxicity and turbidity (Tuna et al., 2013; Banna et al., 2014; Chapin et al., 2014; 284 

Murphy et al., 2015; Yagur-Kroll et al., 2015), although few sensors have actually been deployed 285 

in the field. Off-the-shelf cameras have also been applied successfully to record water level 286 

(Gilmore et al., 2013) and discharge (Bradley et al., 2002; Tsubaki et al., 2011), plant phenology 287 

(Crimmins and Crimmins, 2008; Nijland et al., 2014) and cloud cover (Scholl, 2015).  To 288 

compile data, wireless sensor networks can also be used to provide connected and sometimes 289 

real-time data on a range of environmental parameters within an area (Kido et al., 2008; Zia et 290 

al., 2013). 291 

Currently, the application of low-cost sensors in the tropics remains limited (Cama et al., 2013; 292 

Hund et al., 2016). Examples include the FreeStations, an open source hardware weather 293 

stations, which have been deployed in more than a dozen sites across the tropics 294 

(www.policysupport.org/freestation). Because they are low cost, lightweight, easily installed and 295 

modular, they remove many of the barriers to deployment and maintenance in tropical (montane) 296 

environments.  Data from these FreeStations are uploaded to the server and contribute to the 297 

temporal and spatial open-access database used in policysupport.org tools such as WaterWorld1. 298 

Another example is the Trans-African Hydro-Meteorological Observatory (TAHMO2) project, 299 

which seeks to install 20,000 robust, low-cost ground-based weather stations in partnership with 300 

schools, communities and national meteorological services across Africa.  301 

Due to their versatility and low cost, new sensors offer great promise to address knowledge gaps 302 

in ecohydrology (Brown et al., 2016), including monitoring of the effect of land use change (e.g. 303 

interventions in IWS programs). Low-cost but robust sensors are particularly important now that 304 

official hydrological monitoring networks are in decline in many countries (Lanfear and Hirsch, 305 

1999; Vorosmarty et al., 2001) and in tropical montane settings where sensor networks remain 306 

sparse (Jarvis and Mulligan, 2011). Barriers to implementation include the lifetime, statistical 307 

                                                
1 www.policysupport.org/waterworld 
2 tahmo.org 
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validation, robustness and accuracy, which remain in many cases low compared to commercial 308 

sensors. In addition, wireless sensors relying on batteries can be limited due to the short lifetime 309 

of batteries at high altitude.  310 

 311 

3.2 Modeling change in ecohydrology 312 

A major challenge in modeling relates to the available data to test and calibrate these models, 313 

which is the focus of the next section on watershed monitoring. Next, we present the advances in 314 

the field of socio-ecohydrology, which provides a novel perspective on modeling needs and 315 

objectives, and conclude with some examples of model adaptation for the tropics. 316 

Monitoring change: Paired-watershed experiments and regional studies 317 

 318 

Understanding watershed behavior is a major objective of hydrologic research and paired-319 

watershed experiments have long been used for that purpose. These experiments began in the 320 

early 20th century as a mechanism to understand the effects of land use and/or land cover change 321 

(particularly forest cover) on the water balance at the catchment scale (Bosch and Hewlett, 1982; 322 

Neary, 2016) by comparing two catchments with similar biophysical characteristics (Brown et 323 

al., 2005). After a calibration period, one of the catchments is subjected to a treatment (e.g. 324 

deforestation or afforestation) and the other remains as a control. Paired-watershed studies have 325 

been useful to “substitute space for time” in hydrological monitoring, for example to understand 326 

the effects of forest regeneration (Bren et al., 2010) or watershed development on water and 327 

sediment fluxes (Wemple et al., 2007; Neary, 2016; Ochoa-Tocachi et al., 2016b), the function 328 

of riparian buffers (Scott, 1999), or for developing appropriate hydro-biogeochemical models 329 

(Cosby et al., 1996). 330 

The objective of paired-watershed studies conducted in the tropics include research on the 331 

conversion of rainforest to forest plantations (Bruijnzeel, 1990; Malmer, 1996), deforestation 332 
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(Bruijnzeel, 1990; Neill et al., 2001; Le Tellier et al., 2009; Wilcke et al., 2009; Deegan et al., 333 

2011), water yield of forest and non-forest native vegetation (Chandler and Walter, 1998; Mark 334 

and Dickinson, 2008), impacts of agriculture and grazing (Chandler, 2006; Ogden et al., 2013), 335 

impact of roads and logging operations (Grayson et al., 1993; Sidle et al., 2006), impact of 336 

shifting cultivations (Gafur et al., 2003), hydrologic function of wetlands (Mosquera et al., 337 

2015), ecohydrologic controls on runoff (Crespo et al., 2011), nutrient fluxes (Câmara et al., 338 

2000; Stallard, 2011; Gücker et al., 2016;), water quality and macroinvertebrates (Ometo et al., 339 

2000), and in general about the effects of land use change (Ochoa-Tocachi et al., 2016b). As the 340 

these studies reveal, paired-watershed studies can be useful for informing watershed-services 341 

programs as they help identify the potential changes in hydrological services through land 342 

degradation or land use change, e.g. reduction in annual and seasonal flows, or degradation of 343 

water quality (e.g. sediment and nutrient fluxes) that can increase the cost of downstream water 344 

treatment.  345 

A well-known limitation of paired-catchment studies is that it may be difficult to separate the 346 

effect of land intervention from other watershed characteristics, which inevitably slightly differ 347 

between two watersheds. Using a nested catchment approach and regional studies help to 348 

overcome this issue and reduce uncertainty about the effect of the intervention. Measuring 349 

internal fluxes within the catchments, with nested catchments, can prove useful to explain the 350 

differences in observations at the outlets (Mosquera et al., 2015; Salemi et al., 2015). An 351 

integration of point, hillslope and watershed observations can provide stronger evidence of 352 

ecohydrologic processes, and nested watershed approaches can provide information at different 353 

spatial scales (Mori et al., 2015; Correa et al., 2016). At a larger scale, ecohydrologists can use 354 

regionalization approaches, gaining insights on the hydrological behavior of watersheds over 355 

large areas. Regionalization approaches allow watershed-services programs to benefit from 356 

insights gained in similar environmental settings (e.g. iMHEA network, Célleri et al., 2009; 357 

Ochoa-Tocachi et al., 2016a).  358 

 359 
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Approaches developed in socio-ecohydrology  360 

The importance of interactions among human, land uses and ecosystems has been widely 361 

recognized in ecology (Elmhagen et al., 2015). The notion of ecosystem services itself assumes a 362 

set of values that are shared by groups of “beneficiaries”. Socio-hydrology is an emerging field 363 

aiming to understand co-evolution between human and water systems (Troy et al., 2015). It 364 

focuses on the development of interdisciplinary approaches to provide options for addressing 365 

competing interests at the science–policy interface (Wheater and Gober, 2013; Gober and 366 

Wheater. 2014), which makes its development relevant to watershed-services programs.  367 

In an early effort, Falkenmark and Folke (2002) set out important themes of socio-ecohydrology. 368 

They stressed the importance of “doing things right” but also “doing the right thing” in an 369 

environmental ethics perspective (Falkenmark and Folke, 2002). Therefore, in addition to the 370 

ecohydrological properties of ecosystems, socio-economic, culture, and governance factors are 371 

crucially important (Calder, 2000; Ostrom, 2009). To support this change, neo-classical 372 

economic development perspectives are complemented by ecological economics approaches, 373 

which incorporate a broader range of values in ecological services assessments (Matthews, 2002; 374 

Farber et al., 2006). New participatory methods are also being developed for generating 375 

democratic options based on social-ecological system dynamics (Walker et al., 2002; Kok, 2009; 376 

Gober et al., 2010; Bakker, 2012). Examples of these approaches are emerging, although 377 

evaluation of long-term effects is still rare (Gómez-Baggethun et al., 2014), given the recent 378 

history of this field. IWS programs in the Latin American Water Funds Partnership will provide 379 

useful empirical data for socio-ecohydrology since a number of the explicitly state community 380 

engagement in the key objectives of their programs (Bremer et al., 2016). In addition, citizen 381 

science and the recent trends in distributed monitoring and hydrological information systems 382 

(Buytaert et al., 2016) provides opportunities to better understand the dynamics between 383 

traditional water managers and the civil society.  384 

 385 
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Adapting ecohydrologic models to the tropics 386 

Insights gained from all the techniques presented above, from small-scale measurements to 387 

watershed and regional studies, allow for the development of new models in the tropics. 388 

Ecohydrologists have long recognized that many modeling tools were inadequate for 389 

applications in tropical watersheds (Ponette- González et al., 2014), due to the differences in 390 

dominant processes in this region. For example, the Soil Water Assessment Tool (SWAT) 391 

commonly relies on the curve number method to estimate runoff generation, without recognition 392 

that this empirical method has not been extensively tested in tropical watersheds, where 393 

infiltration excess runoff is rarely dominant (White et al., 2017). Similarly, fog capture is a 394 

significant input to the water balance in many montane tropical regions (Mulligan, 2013), but is 395 

rarely represented in models due to its insignificance in temperate climate. 396 

These model inadequacies may be addressed by modifying existing model structures, e.g. 397 

enhancing the SWAT model with different runoff generation routines, as illustrated by White et 398 

al. (2010) in the Ethiopian highlands and more recently by Hoang et al. (2017). Alternatively, 399 

new models can be developed that focus on dominant processes in the tropics, for example fog 400 

capture is a major component of the FIESTA model, which was later incorporated in the 401 

WaterWorld model (Mulligan, 2013). 402 

 403 

3.3 Ecohydrology in a hyperconnected world 404 

Citizen science 405 

An alternative to the traditional methods of data gathering is the involvement of citizens or the 406 

non-scientific community – also called citizen science. Involvement ranges from participatory 407 

process in research design and on-site monitoring to creating large online communities for data 408 

collection and performing scientific tasks. This method has successfully been applied in many 409 

conservation projects, especially in ornithology (Sullivan et al., 2009; Dickinson et al., 2012; 410 

Tulloch et al., 2013), but is increasingly applied in hydrology as well (e.g. Breuer et al., 2015; 411 
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Lowry and Fienen 2013).  412 

The majority of citizen science projects in hydrology are located in non-tropical countries 413 

(Buytaert et al., 2014), but there are some examples of projects whereby the local community is 414 

actively involved in tropical environments, including several projects in Ethiopia (Liu et al., 415 

2008; Zemadim et al., 2013; Walker et al., 2016), Tanzania (Gomani et al., 2010), South Africa 416 

(Kongo et al., 2007), the Andean region (Célleri et al., 2009) and in Bolivia (Le Tellier et al., 417 

2009). In most cases, studies conclude that the involvement of the local community improves the 418 

positive perception of local communities towards research and avoids issues such as vandalism. 419 

Furthermore, local knowledge is useful in the design of a monitoring network (Gomani et al., 420 

2010; Zemadim et al., 2013) and involvement also often raises awareness of environmental 421 

issues and encourages active participation in sustainable management of their resources (Liu et 422 

al., 2008; Walker et al., 2016). 423 

One of the challenges of citizen science is engagement and motivation of data collectors. 424 

Whereas in developed countries, the motivation mainly comes from increasing one’s personal 425 

scientific knowledge, environmental concern or curiosity (Buytaert et al., 2014), in tropical 426 

ecosystems located in developing countries, where livelihoods depend on natural resources, 427 

information on individual benefits may be sought before citizens invest their time and resources. 428 

Therefore, careful planning on how to engage these people and keep them motivated on the long 429 

term is required. However, combining citizen science monitoring with an IWS program, from 430 

which the local community will benefit in the long run, could significantly increase the 431 

willingness of people to participate. Despite concerns about quality of collected data (Le Tellier 432 

et al., 2009; Conrad and Hilchey, 2011), data collected through citizen science has proven to be 433 

of significant value in increasing understanding of how a system works (e.g., Kongo et al., 2010; 434 

Walker et al., 2016) and is a good alternative to high-cost or labor and maintenance intensive 435 

monitoring programs. A key implication of the shift to a “polycentric monitoring and governance 436 

approach” is that knowledge and power relationships are redistributed from traditional water 437 

management actors to the civil society, including non-technical advocacy groups (Buytaert et al., 438 
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2016). 439 

Leveraging globally-available data 440 

Another opportunity in our hyperconnected world is the enhanced international collaboration, 441 

with scientists being able to share knowledge and contribute to global data platforms. Examples 442 

include the CUAHSI3 platform, which offers access to hydrologic datasets from universities 443 

around the world, or the iMHEA4 network, collecting and curating hydrologic information in the 444 

Andes. Global datasets allow researchers to gain new insights into the water balance and its 445 

evolution through time (e.g. Jaramillo and Destouni, 2015). They also serve to develop and test 446 

global models, such as WaterWorld (Mulligan, 2013) or WaterGAP (Alcamo et al., 2003), which 447 

can then be modified to represent the particular dynamics found in tropical ecosystems. For 448 

example, a new module is currently being developed to represent cloud forest dynamics in 449 

WaterGAP, for its application in Latin America. 450 

The development of information networks and platforms has implications for the design of 451 

monitoring and experimental strategies, which should facilitate regional comparisons and 452 

therefore generalization of local findings (Ochoa-Tocachi et al., 2016a). Robust and consistent 453 

methodology for data analyses is critical to interpret these datasets (Adams and Fowler, 2006). 454 

As noted earlier, wireless and low-cost sensor networks are also becoming more common, 455 

facilitating the development of dense network deployment and real-time monitoring (Jin et al., 456 

2014; Krause et al., 2015). Recent advances in user platforms to access satellite imagery open up 457 

a wide range of possible research topics. For example, Google Earth Engine users can access 458 

archival data from a large number of sources (Donchyts et al., 2016). This promises a “golden-459 

age” for data fusion (combining satellite with UAV and ground-based measurements) to enable 460 

researchers to integrate disparate data sources to identify ecohydrological functions and 461 

processes. This is especially important in tropical ecohydrology given the pace of land use 462 

change and the profound interannual differences that can result from climate variability (e.g. 463 

                                                
3 www.cuahsi.org 
4 www.condesan.org/imhea 
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ENSO cycles) and climate change. 464 

 465 

4 Management implications  466 

4.1 Managing complex ecosystems 467 

Designing efficient and equitable watershed-services programs in the tropics requires extensive 468 

knowledge of local ecohydrologic systems. Many ecosystems are unique to these regions and 469 

their behavior significantly differs from better-studied temperate systems. For example, northern 470 

South America is unlike any other tropical region because of the unique combination of climatic 471 

and orographic forcings.  First, due to the elevations imposed by the Andes, mean annual air 472 

temperatures can be as low as 4ºC (Hofstede et al., 1995).  Second, similar to other humid 473 

tropical systems, the annual distribution of precipitation in the region is controlled by the 474 

meridional oscillation of the intertropical convergence zone, leading to a bi-modal distribution of 475 

precipitation throughout the year and an average annual precipitation above 2000 mm/year 476 

(Poveda et al., 2006).  Ecosystems like the páramo regulate the water resources of communities 477 

at lower elevations yet they remain poorly characterized and managed in an ad-hoc way 478 

(Ponette-González et al., 2014; Ochoa-Tocachi et al., 2016b). They remain poorly characterized 479 

and studies that systematically combine direct observations, modeling, and citizen science are 480 

virtually not existent. We believe that it is feasible to use techniques that are already at hand – 481 

and widely applied in temperate regions – to examine both the hydroclimatic responses and the 482 

coupling of human-natural dynamics of this unique ecosystem. Because ecosystem services from 483 

páramos are often being managed by local entities (e.g., local water supply companies or 484 

community-level associations), it is of vital importance to engage such entities in meaningful 485 

discussions and long-term planning for research.  486 

While maintaining or restoring water is usually the primary objective for land management, soil 487 

management is often considered important. Mossy and other organic rich soils are naturally 488 

dominant of high-elevation regions of the tropics and mediate shallow subsurface storage and the 489 
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spatial and temporal delivery of water (Mosquera et al., 2016), carbon (C), nitrogen (N), and 490 

phosphorous (P) to streams. When these soils are disrupted by conversion to, or intensification of  491 

agriculture and grazing, there is an associated change in shallow subsurface storage, hydrologic 492 

flowpaths, and the delivery of sediments and nutrients to streams. 493 

For both water services and soil conservation, the key implication of these knowledge gaps is to 494 

provide incentives to better characterize these systems, with metrics that are relevant to 495 

management. In fact, the complexity of hydrological processes means that the management of 496 

hydrologic services is unlikely to be efficient with the use of simple land-use and land-cover 497 

proxies (Ponette-González et al., 2014). Progress has been made towards utilizing global data 498 

products towards catchment classification in data-scarce regions (Auerbach et al., 2016), which 499 

provides a key organizational framework for modeling tropical ecohydrological processes and 500 

managing tropical watersheds. On the contrary, local knowledge on water fluxes and robust 501 

modeling approaches need to be used to design programs. As argued in Section 3.1, a number of 502 

measurement methods are available to improve our knowledge of surface and subsurface flow 503 

processes, climate drivers, soil-vegetation-water exchanges, and the impact of land-use or 504 

climate change on these processes.  505 

4.2 Producing policy-relevant knowledge 506 

In addition to fundamental knowledge gaps in tropical ecohydrology, two other barriers hinder 507 

the design of efficient and equitable watershed-services programs: the inevitable limitations of 508 

existing monitoring networks and the scarcity of modeling tools that address specific program 509 

needs. In both cases, the target variables include both biophysical (e.g. flow rates, water quality) 510 

and socio-economic variables (e.g. water use from relevant parties, costs and benefits from water 511 

services). In line with the scope of this paper, we focus here on the biophysical data only but note 512 

that new approaches developed in socio-ecohydrology will be critical to guide ecohydrological 513 

research. For example, the development of indicators and proxies to quantify human impacts on 514 

the biosphere is critical to help translate ecohydrologic science into actionable knowledge. 515 
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Monitoring networks are key to the design and implementation of management programs. First, 516 

local monitoring data help overcoming the barriers related to incomplete system understanding 517 

and low confidence in models. The availability of monitoring data prior to the establishment of a 518 

program is extremely useful to design robust plans and increase the chances of success for the 519 

program (Naeem et al., 2015). An example of such pro-active and data-based planning is the 520 

Latin American Water Fund Partnership, whose members helped establish or connect monitoring 521 

networks in Latin America, with the aim to improve management and make the case for the 522 

importance of watershed investments (Higgins and Zimmerling, 2013; LAWFP, 2016). Second, 523 

monitoring networks have long been recognized as essential assets for adaptive management 524 

(Higgins and Zimmerling, 2013). Acquiring data and continuously testing the key assumptions 525 

underlying a program may help redirect funding or focus areas for interventions. Socio-economic 526 

data on the impact of the program on livelihoods also help assess that programs promote equity 527 

in the area. 528 

In parallel to acquiring of monitoring data, producing robust predictions of future water 529 

resources is critical to the successful program development. As noted in Figure 2, successful 530 

ecohydrologic modeling is hindered by data availability and the challenges associated with 531 

assessing uncertainty in ecosystem services modeling (Hamel and Bryant, 2017). It is indeed 532 

difficult to leverage the accessibility of recent research, if model outputs essentially cannot be 533 

compared to each other. Therefore, consistency in the data and types of models used regionally 534 

would dramatically accelerate the generation and reuse of information. This approach was taken 535 

by a recent project, ClimateWIse5, which aims to improve our understanding the value of 536 

ecohydrological tools to inform the design of watershed-services programs in tropical mountains. 537 

4.3 Practical challenges 538 

In practice, the transfer of ecohydrological knowledge to policy and management is limited by 539 

several constraints, which we summarize as follows: 540 

                                                
5 environment.umn.edu/discovery/gwi/our-work/climatewise 
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1. The complexity of managing hydrologic services for various spatial scales: for example, 541 

evapotranspiration is associated with reduction in usable water at local spatial and 542 

temporal scales (Bruijnzeel, 2004) but contributing to vital hydro-climatic services at 543 

larger spatial scales due to contribution to rainfall (Spracklen et al., 2012). In addition, 544 

extrapolating from small homogeneous areas to large mixed landscapes is challenging 545 

because of scale effects and spatial thresholds of hydrologic processes such as ground-546 

water contribution to baseflow (Bruijnzeel, 2004). 547 

2. The complexity of managing hydrologic services for various temporal scales: for 548 

example, forest degradation may increase water availability in the short-term (e.g. 549 

through an increase in surface runoff that fills irrigation tanks) but it leads to complex 550 

trade-offs and reduction in other ecosystem services in the future (Lele et al., 2008; 551 

Mehta et al., 2008). 552 

3. The trade-offs between water services and other services (e.g. carbon, nutrients), given 553 

the increasing demand for climate change mitigation using vegetation (Malmer et al., 554 

2010). 555 

4. The uncertainty introduced by climate change, e.g. the shifts in hydrologic pathways 556 

under diverse land use/land cover due to intensification of the hydrological cycle (Bonell 557 

et al., 2010; Krishnaswamy et al., 2013). 558 

5. The legal and ethical limits to manipulating vegetation for water services in biodiversity 559 

hotspots or landscapes that provide multiple ecosystem services.  560 

6. Socio-economic feasibility of managing for water services at local scale (farm) versus 561 

using economic productivity at larger scales (e.g. basin) to divert management of 562 

ecosystem services at local scales (e.g. Le Maitre et al., 2007).  563 

Despite these challenges, there are a few examples of existing knowledge of land management 564 

effects on ecohydrology informing policy and management, some of them dating back to several 565 

decades. In the Western Ghats mountains of South West India, concerns over reduced dry-season 566 

flow has led to policy decisions to discourage plantations of exotic Acacia and eucalyptus on 567 

montane grassland and elsewhere (Sikka et al., 2003; Rangan et al., 2010). The tropical forested 568 
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Western Himalayan Uhl catchment, situated between 2133 m to over 4900 m and upstream of a 569 

hydropower project, was the site of an important forest hydrologic experiment between 1934 and 570 

1947. In this period, grazing by over 95,000 sheep and goats was stopped, and river discharge 571 

and rainfall gauged. Although no conclusive evidence for the negative impact of grazing on 572 

winter discharge was found, important lessons were drawn related to robust monitoring design 573 

(Saberwal, 1999).  574 

The experience of transforming landscapes or sites (grassland or degraded/deforested land) for 575 

ecosystem services such as some form of wood product or biomass and for watershed protection 576 

has usually been attempted with quick growing non-native species, and in other cases with 577 

species that have become invasive well beyond the sites where they were initially introduced.  In 578 

India, this has resulted in serious concerns about impacts on soil moisture, groundwater table and 579 

dry-season flow (Sikka et al., 2003; Srinivasan et al., 2015). These concerns are finally starting 580 

to influence policy and management of landscapes for enhancing hydrologic services in India.  581 

5 Conclusions 582 

In this paper, we synthesized the current knowledge gaps and barriers to the implementation of 583 

successful land management programs in the tropics. Key knowledge gaps span all scales of 584 

study for ecohydrology: from soil-vegetation-atmosphere interactions to land surface hydrology 585 

and groundwater dynamics. This lack of knowledge in tropical ecohydrology is in part explained 586 

by the disproportionate amount of studies available in these regions compared to temperate areas. 587 

Fortunately, the variety of tools developed for ecosystems globally can be used to rapidly expand 588 

ecohydrological knowledge in the tropics. In particular, the extensive use of remote sensing data, 589 

isotope techniques, and new sensors, combined with more traditional plot-scale monitoring and 590 

modeling, will help researchers to comprehend the potential impact of watershed-services 591 

management. We also argued that our hyperconnected world increases accessibility to data at an 592 

unprecedented rate: in addition to leveraging citizen engagement, researchers may use globally 593 

available data and benefit quasi-instantly from lessons learnt in other tropical environments. 594 

However, these opportunities do not come without a cost: making use of these data is contingent 595 
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on scientific knowledge to be presented in an effective way to their peers. Given the potential of 596 

watershed-services program in the tropics, we call for ecohydrologists to consider the 597 

implications of their work for watershed-services programs. The challenges summarized here 598 

may help situate their work and make their findings directly relevant to a sustainable 599 

management of natural ecosystems. 600 
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