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Abstract— Passivity has been the most common tool to
achieve stability in haptic and teleoperation systems; however
passivity-based approaches suffer from the conservativism of
passivity criteria. Therefore, it is essential to have an approach
which is less conservative than conventional approaches, en-
abling the user to have an immersive experience when interact-
ing with the virtual or remote environment. This paper proposes
a Lyapunov observed and controller (LOLC) which has an
improved transparency as it uses the Lyapunov boundedness
theorem that is less conservative than passivity theorem. The
proposed approach also gives the user the freedom to define
a relaxed Lyapunov candidate regarding state stability to be
chosen. Moreover, the application of the proposed control
architecture is not limited to haptic interfaces, and the proposed
control methodology could be used to stabilize any control
systems. The advantages of the proposed approach to the
passivity observer and controller are highlighted via numerical
evaluations.

I. INTRODUCTION

Significant number of researches have been done on
achieving stable haptic interaction. Most of these researches
are based on the passivity criterion [1], [2]. It is an energy-
based method where it defines a system is passive if and
only if the energy flowing in exceeds the energy flowing
out of the system for all time. It uses only the input/output
information independent of system parameters. Moreover,
passivity criterion can be used in linear and non-linear
systems, and it is a sufficient condition for system stability.
With the influence of passivity criterion, several approaches
have been proposed for stable haptic interaction. The time
domain passivity approach (TDPA) proposed by Hannaford
and Ryu [2] introduces an adaptive virtual damping to satisfy
the passivity constraints. The energy-bound algorithm which
was proposed by Kim and Ryu [3], blocks the generated
energy of a ZOH in a way that haptic system does not possess
excessive energy. Ryu and Yoon [4] proposed a memory-
based passivation approach to increase the dynamic range of
an impedance that a multiple-degree-of-freedom (multi DoF)
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haptic interface can passively render. Even though these
approaches can stabilize the haptic interaction with high
stiffness Virtual Environments (VEs), the passivity constraint
which is known to be conservative, limits the performance
each these approaches due to having a small subset of
the entire stability region. Therefore, the actual apparent
impedance is smaller than the desired impedance in a notable
way.

To address the conservatism of the passivity-based con-
trollers, several approaches have been proposed based on the
absolute stability and the input-to-state stable (ISS) criteria.
A two-port network is known to be absolute stable, if a
set of passive terminating one-port impedances for which
the system is unstable does not exist. Therefore, if the
haptic interface is designed to be absolute stable, the haptic
simulation continues to be stable unless the human operator
and VE are active. For the absolute stability of linear two-
port networks, the Llewellyns stability criterion provides
both necessary and sufficient conditions [5]. However, the
sufficient conditions of the absolute stability are represented
in frequency domain which are unable to determine in many
real-time systems. Jafari and et al. [6] proposed the ISS
approach to address this issues of absolute stability criterion
in haptic interfaces. A system is known to be ISS if and
only if it is dissipative [7], [8]. Therefore, by using a control
framework including a gain which is the max slope of the
input-output graph, the sufficient condition required for the
dissipativity is satisfied, then the system becomes input-to-
state stable [9]. This approach makes the output state of
the system bounded. However, for some applications this
bounded behaviour may be considered as unstable behaviour
for the operator. To address this issue an extra feed-forward
gain is introduced to the controller. Yet the value of the
gain of this feed forward pass is limited by noise and the
application of the system.

To overcome the aforementioned issues, this paper comes
with the idea of Lyapunov Observer and Lyapunov Controller
(LOLC). First, for the observer part, the operator must
propose a Lyapunov candidate, and for the controller part,
the satisfaction of Lyapunov boundedness theorem should be
provided. The contribution of this work not only lies on the
fact the Lyapunov boundedness theorem is less conservative
than passivity theorem, but also it gives the operator the
ability to choose whatever relaxed Lyapunov candidate in the
terms of state’ stability to be chosen. As the result, the overall
controller framework possibly could be less conservative
compared with the energy-based approaches where they have
a fixed criterion to satisfy. Note that the proposed LOLC is



different from the conventional adaptive controllers where
the adaptive law is derived from a Lyapunov candidate.
Unlike the conventional adaptive controllers, the proposed
LOLC does not use the dynamics model of the system and
it does not update the system parameters but the LC. In
addition, in this paper, the LOLC has been proposed and
demonstrated for haptic interfaces, the main idea of LOLC
is not limited to haptic interfaces, and it could be applied to
any control systems. Numerical analysis has been provided
to show the effectiveness and feasibility of the proposed
approach.

The rest of the paper is organized as follows. section II
describes the concept of Lyapunov boundedness theorem
and the sufficient conditions for a system to be output
bounded in terms of Lyapunov stability. Next, section III
proposes the Lyapunov observer and controller for stable
haptic interaction with a VE. Then, section IV provides the
numerical evaluation. Finally, Section V concludes the paper.

II. LYAPUNOV FUNCTION AND BOUNDEDNESS

Lyapunov second method for the stability introduce the
Lyapunov function V (x) which has an analogy to the poten-
tial function of classical dynamics. The following theorem
explains the necessary conditions for a Lyapunov function
candidate for any system.

Theorem 2.1: [10] Let xe = 0 be and equilibrium point
for the autonomous system ẋ = f(x) and D ⊂ Rn be a
domain containing x = 0. Let a continuously differentiable
function V : D → R such that,

V (0) = 0 and V (x) > 0 in D − {0} (1)

V̇ (x) ≤ 0 in D (2)

Then x = 0 is known to be stable. Also if;

V̇ (x) < 0 in D − {0} (3)

Then x = 0 is known to be symptomatically stable.
A continuously differentiable function V (x) that satisfy

eq. (1) and eq. (2) is known as a Lyapunov function (LF).
Fig. 1 shows the level surface of a lyapunov function V (x)

where the V (x) = c, for some c > 0. The rate of change of
the function V (x); V̇ (x) ≤ 0 implies that when a trajectory
crosses the Lyapunov Surface (LS) V (x) = c, it moves inside
the set Ωc such that; Ωc = {x ∈ Rn|V (x) ≤ c} and never
come out again. When V̇ (x) < 0, the trajectory moves from
one LS to and inner LS with a smaller c value and as the
value of c decreases, the LS V (x) = c shrink to the origin.
This phenomenon shows that, the trajectory approach toward
the origin when t→∞.

Therefore, we can redefine the Lyapunov’s theorem with
this terminology as; if there is a continuously differentiable
positive definite function V (x) so that V̇ (x) is negative semi-
definite, the origin said to be stable whereas, if V̇ (x) is
negative definite, origin is said to be asymptotically stable.

This Lyapunov approach can be used to show boundedness
of the solution of a state equation, even when there is no
equilibrium point at the origin. To testify this phenomenon;

C3

C2

V(x) = C1

V(x) = C1 < C2 < C3

Fig. 1: Level surface of a Lyapunov function [10]

Suppose there is a positive definite Lyapunov candidate
V (x) : Rn → R that satisfies,

• All sub-level sets of V are bounded
• V̇ (x) ≤ 0 for all x

then, all trajectories are bounded. For each trajectory x there
is an R such that ‖x(t)‖ ≤ R for all t ≥ 0. Therefore, it can
be defined that all the trajectories (or outputs) are bounded
if;

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ ≤ V (x(0)) (4)

Integral term in eq. (4) shows how the trajectory of the
system bounded between V (x(0)) and V (x(t)), where, V (0)
is the origin of the function. When the value of the integral
term increases with the time and since that value is minus
(according to the condition V̇ (x) ≤ 0), V (x(t)) → V (0).
Furthermore,using eq. (1), eq. (4) can be reduce to,∫ t

0

V̇ (x(τ))dτ ≤ 0 (5)

The above shows the condition that need to be be satisfied
by a continuous-time system. Therefore, for a discrete-time
system eq. (5) can be rewritten as;

4t
n∑

k=0

V̇ (x(k)) ≤ 0 (6)

where n is the sampling time of the discrete-time system,
and ∆t is the sampling time step. Because ∆t is positive,
the above equation could be reformulated as:

n∑
k=0

V̇ (x(k)) ≤ 0 (7)

III. LYAPUNOV OBSERVER AND CONTROLLER FOR
STABLE HAPTIC INTERACTION

In this section, the Lyapunov Observer (LO) and Lyapunov
Controller (LC) are proposed for a one-port network system
as shown in the Fig. 2. Then, in the following, the idea is
explained via two examples.

The control architecture of the proposed Lyapunov ob-
server/controller is based on the Lyapunov boundedness
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Fig. 3: Lyapunov controller for one-port system

theorem (eq. (7)) which is less conservative than the passivity
theorem by allowing the system to generate energy as long
as the output is bounded. Moreover, unlike the passivity
theorem, it gives the operator the opportunity to choose
whatever required relaxed Lyapunov candidate to be chosen.
Note that, the proposed is not limited for haptic interaction
and if we are able to introduce a Lyapunov candidate for any
closed loop of the system, it is possible that to extend the
proposed approach for any control architecture.

The Lyapunov candidate must be a positive definite func-
tion (eq. (1)), and the selection of the function V (z) is
arbitrary. Then, the terminology of LO is based on the
satisfaction of eq. (7). Thus, we can implement the LO as
the following to see whether it satisfy the eq. (7) or not:

Lobsv(n) =

n∑
k=0

.

V (x(k)) (8)

By considering the reaction force (−f ) of the VE which is
applied to the operator, we can say that if Lobsv(n) ≥ 0 for
every n, then the output of the system is bounded. Otherwise,
if Lobsv(n) < 0 at any instance, then possibly the system’s
output is not bounded, and the system is deviated from the
Lyapunov criterion by −Lobsv(n). Then, the LC is used to
compensate the deviation (−Lobsv(n)) through an adjustable
damping element α as shown in Fig.5. Because, we know
the exact amount of the deviation (−Lobsv(n)), by adjusting
the value of α, the energy could be dissipated leading the
system to be stable based on Lyapunov boundedness theorem
(eq. (7)) . Fig.3 shows the LC for impedance causality of
a one-port network. In the following, the formulation of
LO/LC is explained through two examples.

A. Example 1

Let’s consider a virtual mass-spring system with a mass
m and a stiffness k. To make the system more simple, the
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Fig. 4: Virtual environment with a mass and a spring

mass of the system m is neglected. Fig.4 show the schematic
diagram of the simple system. The α value for the LC, for
the impedance causality of the system can be calculated as
follows.
The force that is acting on the system could be described as:

−f = kx+ αẋ (9)

The Lyapunov candidate is selected by considering the total
energy of the system. It can be written as,

V =
kx2

2
(10)

Then, the time derivation is;

V̇ = kxẋ = −fẋ− αẋ2 (11)

Then, the value of α for the above system could be calculated
as follows:

if
n∑

k=0

V̇ > 0, and then to make the system stable;

n∑
k=0

−f(k)ẋ(k) +

n∑
k=0

−α(k)
.
x
2
(k) = 0

n∑
k=0

−f(k)ẋ(k) +

n−1∑
k=0

−α(k)
.
x
2
(k)− α(n)

.
x
2
(n) = 0

Then the α(n) can be calculated as;

α(n) =

−
n∑

k=0

f(k)ẋ(k)−
n−1∑
k=0

α(k)
.
x
2
(k)

.
x
2
(n)

(12)

Using eq. (8), eq. (11) and eq. (12);

α(n) =
−Lobsv
.
x
2
(n)

(13)

The above equation shows the α value to make the system
stable if it is not stable by itself based on the Lyapunov
boundedness theorem. It is the same result that Hannaford
and Ryu [2] obtained using the POPC approach. Hence, for
a virtual spring system, the LC could be implemented as
follows:

1) Input is such that; v1(n) = v2(n).
2) f2(n) = FV E

(
v2(n)

)
, where FV E is the output force

of the VE.
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Fig. 5: Virtual environment with a mass, spring and damper

3) Selection of the Lyapunov candidate for the LO
(eq. (8)).

4) Lobsv(n) = Lobsv(n − 1) +
(
f2(n)v2(n) + α(n −

1)v2(n− 1)2
)

5)

α(n) =

{
−Lobsv/v2(n)2 if Lobsv < 0

0 if Lobsv ≥ 0

6) Output =⇒ f1(n) = f2(n) + α(n)v2(n)

In the next example, the proposed LOLC approach is
introduced to a mass-spring-damper system to make it stable.

B. Example 2

Let’s consider a VE (Fig. 5) with a mass (m), spring (k)
and damper (b). The input for the system is velocity (v(t))
and the output is force (f(t)).

By equilibrium of the forces that acting on the system;

−f = mẍ+ (b+ α)ẋ+ kx (14)

The Lyapunov candidate is selected as,

V =
kx2

2
+
mẋ2

2
(15)

Then, the V̇ is;
.

V = kx
.
x+m

.
x

..
x = −fẋ− bẋ2 − αẋ2 (16)

Using the eq. (16), α can be calculated as follows.

if
n∑

k=0

V̇ > 0, and then to make the system stable;

−
n∑

k=0

f(k)ẋ(k)−
n∑

k=0

α(k)ẋ(k)2 −
n∑

k=0

bẋ(k)2 = 0

The above equation can be rearranged as;

V̇ (n) = −
n∑

k=0

f (k) ẋ (k)−
n∑

k=0

bẋ(k)
2

−
n−1∑
k=0

α (k) ẋ(k)
2 − α (n) ẋ(n)

2
= 0

Then, the α(n) can be calculated as;

α(n) =

−
n∑

k=0

f(k)ẋ(k)−
n∑

k=0

bẋ(k)
2 −

n−1∑
k=0

α(k)
.
x(k)

2

.
x(n)2

(17)
Using the eq. (8), eq. (16), and eq. (17);

α(n) =
−Lobsv
.
x(n)2

(18)

By considering the disspated energy by the damper (b) to
be monitored without detecting it as an active energy, the
above equation is the less conservative version of the PO.
The calculation of α for both simple and complex systems
is similar (eq. (13), eq. (18)). However, Lobsv in example
2, is the less relaxed version of Lobsv in example 1. Note
that, LC with impedance causility for this example can be
implemented as follows.

1) Input is such that; v1(n) = v2(n).
2) f2(n) = FV E

(
v2(n)

)
, where FV E is the output force

of the VE.
3) Selection of the Lyapunov candidate for the LO

(eq. (8)).
4) Lobsv(n) = Lobsv(n − 1) +

(
f2(n)v2(n) + α(n −

1)v2(n− 1)2
)

+ bv̇22(n)
5)

α(n) =

{
−Lobsv/v2(n)2 if Lobsv < 0

0 if Lobsv ≥ 0

6) Output =⇒ f1(n) = f2(n) + α(n)v2(n)

IV. EVALUATION

To evaluate the stabilizing performance of the proposed
LOLC approach in wider range of impedance, the numerical
simulation has been carried with a basic haptic interface
consisting of human operator (HO), haptic interface (HI),
and a virtual environment (VE). The VE consist of a first-
order mass spring damper model that is updated at 100 Hz.
In addition, the haptic probe was initially locate at -0.004 m
and the VE was located at 0.0 m. The HO and HI models
were modelled with following parameters.

For the human operator
mHO = 0.1 kg, bHO = 0.2 N.s/m, kHO = 50.0 N/m

For haptic interface
mHI = 0.2 kg, bHI = 0.001 N.s/m

We tuned the inertia and damping value down within a
reasonable range to reduce the energy dissipation by the
haptic device. However, it is difficult to set human operator
parameters since it is identical to operating environments,
and the control approach should assure the stability of the
system despite of human parameters. In this evaluation, the
model is tested for high stiffness values. Therefore, human
operator model is designed with a low damping value to
avoid dissipating the energy generated by the system.

First, to check the performance of the proposed approach
in face of high stiffness virtual environments, a relatively
high stiffness value (k=8 kN/m) and low virtual damping
(b=2 Nm/s) is introduced to the VE. The position response
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Fig. 6: Position response with 8 kN/m stiffness VE without the LC

shows a high instability without the LC, generating constant
oscillations in position response as show in the Fig. 6. Next,
the proposed LOLC approach is introduced to the unstable
system to stabilize the position response. As shown in Fig.
7 (a), the position response of the VE, get stabilize with less
oscillations. Fig. 7 (b), shows the un-revised force which is
the output of the VE. It has generated a peak around 3N at
the beginning and the force is reduced for t > 0 letting the
system stable. That is because, the LC has generated force
with the same magnitude, but in opposite direction as shown
in the Fig. 7(c). Hence, the force which has been leading
to instability is suppressed by the LC force. However, in the
VE m. In the Fig. 7(d),it shows that the energy of the system
has reduced for t > 0, due to the dissipating action of the
LC. Hence, the energy of the system reduced from 2×10−4

Nm to zero energy level, which is the energy threshold in
the proposed LOLC approach. In addition, the energy of the
system keep remaining in zero-level with out any oscillations
which guarantee a stable response.

Finally, LOLC approach is compared with the POPC
approach [2] in a VE with stiffness of 50 kN/m and damping
of 20 Nm/s for analysing the response for high stiffness
environments. Both the approaches were able to stabilize
the system, while POPC approach stabilized the system in
less time and show low amplitude in the oscillations before
stabilize, compared to LOLC approach (Fig. 8).

Due to the less conservativeness of the LOLC approach,
the system has dissipated less energy within one sampling
interval which causes for the longer settling time of the
response. As shown in the magnified section of Fig. 8,
after stabilizing with the LOLC, the position response has
remained smoother as the POPC approach has shown some
jittering in the position response after stabilized due to its
conservative criteria which activate the PC.

As shown in the Fig. 9, the POPC has shown a impulsive
behaviour in the energy flow while the LOLC has a smooth
behaviour in energy flow. The magnified section in Fig. 9
shows, the smoothness of energy flow in the LOLC approach
and less energy dissipation. This smooth behaviour results
in having small amount of energy remaining in the system
even after stabilizing, as shown by the small peaks in the
Fig. 9. However, this remaining energy does not affect the
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Fig. 7: System performance with stiffness 8 kN/m and damping 2 Nm/s
with the LOLC ; (a) Position response (b) Un-revised force (c) LC generated
force (d) Energy
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Fig. 8: Position response of the POPC and the LOLC at stiffness = 50
kN and damping = 20 Nm/s
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Fig. 9: Energy of the observer at stiffness = 50 kN/m and damping = 20
Nm/s in the POPC and LOLC approaches

instability of the system since it is controlled by the LC force
continuously. Hence, with the LOLC approach, the system
does not dissipates whole energy and continues to have less
energy in the system close to observer threshold. Therefore,
the position response of the system (Fig. 8) has no oscillation
and continues to have a stable response for all t > 0.

V. CONCLUSION AND FUTURE WORK

To reduced the conservatism of passivity-based ap-
proaches, this paper proposed a novel Lyapunov observer
and controller to achieve a stable haptic interaction. The
proposed approach is not limited for haptic interfaces, but
also could be used as a general control architecture with a
less-conservative criteria. By using the Lyapunov bounded-
ness theorem, a Lyapunov Observer (LO) was proposed to
check the satisfaction of the Lyapunov boundedness theorem
at each and every sampling time. If the satisfaction was not
met, a Lyapunov controller (LC) was proposed to correct the
deviation from the Lyapunov boundedness criteria using a
virtual damper. This paper also discussed implementation of
LO and LC for a one-port network. A designed VE consisting
of mass, spring and damper is used to show the numerical
evaluation of the LOLC approach. These numerical studies
show that LOLC approach is less conservative than the POPC
approach, although both approaches are well respond to high
stiffness environments.

In this paper, we demonstrated the effectiveness of the pro-
posed approach numerically. Therefore, as the next step, we

are going to evaluate the proposed approach experimentally
on a haptic device. Moreover, one of the main advantages
of the proposed approach is that it is not limited to stabilize
only the haptic devices, and the main idea could be applied to
any controlled system. As a future work, we are considering
the LOLC for stabilizing a test rig which has been designed
to test prosthetic legs.
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