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Abstract 

Patients who require platelet transfusion support but have become sensitised to Human 

Leucocyte Antigens (HLA) or Human Platelet Antigens (HPA) require suitably matched or 

selected products to ensure an adequate increase in their platelet count following transfusion. 

In England this affects approximately 1500 individuals per annum, with over 25,000 matched 

or selected platelet units provided for these patients.   

Provision of compatible products is often challenging, and requires significant resources from 

the blood service, with approximately 5000 apheresis platelet donors genotyped for HLA and 

HPA each year. Current typing technology results in restricted HLA and HPA genotypes for both 

patients and donors, thereby limiting the ability to provide fully compatible products. This 

study set out to develop and implement next generation sequencing (NGS) technology to 

enhance the HLA and HPA definition of both platelet donors and recipients. 

An NGS based method was designed and developed for high throughput, allele level HLA class I 

genotyping and used to evaluate the impact of NGS technology on the selection of platelet 

donors using HLA epitope matching (HEM). In addition, an alternative NGS approach was 

designed to simultaneously sequence the six genes that code for glycoproteins expressing HPA 

in order to define all known HPA systems in both donor and patient samples. 

Allele level HLA-A, -B and –C genotypes were generated for 519 platelet donors by NGS. A 

critical evaluation of algorithms used to predict alleles from low to medium resolution HLA 

types demonstrated that NGS was more accurate when determining HLA epitopes for the 

selection of platelets by HEM. The HLA genotyping data obtained was used to establish 

previously undefined HLA allele and haplotype frequencies in the English platelet donor 

population. This thesis also includes the first reported NGS based method for the simultaneous 

genotyping of HPA-1 to HPA-29, with the additional capability of novel HPA detection.  

NGS has been shown to significantly improve the definition of both HLA and HPA genetic 

systems and will provide a number of future benefits for laboratories and the patients they 

support, including provision of well matched transfusion products, the detection of rare or 

novel polymorphisms and increased knowledge of HLA and HPA frequencies. 
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1. Introduction 

For the majority of patients who require a transfusion of blood or blood components the main 

consideration for compatibility is likely to be the ABO and Rh blood group systems (Williamson 

and Devine, 2013). However, following exposure during transfusion, transplantation or 

pregnancy some individuals may become sensitised to other blood borne antigens such as 

those expressed on leucocytes and platelets i.e. Human Leucocyte Antigens (HLA) and Human 

Platelet Antigens (HPA), with the majority of individuals producing antibodies to HLA rather 

than HPA (Vassallo and Norris, 2016). These patients then require HLA and/or HPA matched or 

selected products to avoid adverse transfusion reactions resulting from the presence of these 

donor specific antibodies (Brown and Navarrete, 2011). The provision of these products is 

often difficult and can require significant resources from the blood service (Kopko et al., 2015). 

1.1 Human Leucocyte Antigens (HLA)  

Human leucocyte antigens (HLA) are transmembrane glycoproteins intimately involved in the 

adaptive immune response, presenting processed peptide from pathogens or altered self to 

the immune system (Dyer et al., 2013). There are two main types of HLA molecule, HLA class I 

and HLA class II, differentiated by their molecular structure and function and both 

characterised by their extensive polymorphism (Dyer et al., 2013). The genes coding for the 

HLA are located within the Major Histocompatibility Complex (MHC) on the short arm of 

chromosome 6 (Figure 1.1).  

Figure 1.1 Schematic showing the HLA regions of the human MHC. Organisation of the 

classical HLA genes contained with the class I and II regions of the human MHC with three main 

class I genes called HLA-A, -B and –C shown in red. HLA class II genes HLA-DR, -DQ and –DP are 

shown in yellow and are clustered with genes encoding molecules involved with antigen 

processing and presentation. The so-called class III region encodes other proteins associated 

with the innate immune system. Copyright © 2008 From Janeway’s immunobiology by Murphy 

et al. Adapted with permission of Garland Science/Taylor & Francis Group LLC.  

 

The MHC was first discovered in mice as a tumour resistant locus over 60 years ago, with its 

equivalent in humans identified and named HLA following the description of alloantibodies 
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against antigens expressed by human leucocytes (Shiina et al., 2017). The MHC has now been 

sequenced in 70 mammalian and non-mammalian species, with more than 7000 non-human 

alleles reported to the ImmunoPolymorphism Database (IPD)-MHC database (Maccari et al., 

2017). In comparison, over 16,000 HLA alleles have been recorded to date (Robinson et al., 

2015) with the majority reported in just the past eight years (Figure 1.2). Expression of HLA 

class II molecules is mainly restricted to, but not exclusively, specialized antigen presenting 

cells whereas the classical HLA class I molecules, namely HLA-A, -B & -C, are expressed by the 

majority of tissues and nucleated blood cells, (Brown and Navarrete, 2011). Non-nucleated 

platelets also express HLA class I molecules but not HLA class II, hence the focus on HLA class I 

for this study. 

 

Figure 1.2 The number of HLA alleles recorded on the IMGT/HLA database. The total number 

of HLA alleles recorded in the IMmunoGeneTics(IMGT) HLA database following each update, 

from release v1 in December 1998 to v3.27 in January 2017 (Robinson et al., 2015). 

 

1.1.1 HLA class I gene structure 

HLA class I genes code for the heavy chain of the HLA class I molecule, which is a heterodimer 

consisting of a heavy chain and light chain (beta-2 microglobulin). HLA-class I genes consist of 

seven or eight exons. Exon 1 encodes the leader sequence with exons 2 and 3 encoding the 

alpha-1 and alpha-2 domains, which form the peptide binding groove. Exon 5 encodes the 

transmembrane region with the cytoplasmic tail encoded by exons 6 and 7 (Figure 1.3).  
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Figure 1.3 Cartoon showing a typical HLA class I gene and the structures each exon encodes. 

Exons 2 and 3 encode the alpha 1 and 2 domains, which form the peptide binding grove. The 

alpha 3 domain is encoded by exon 4, with the transmembrane region and cytoplasmic tail 

encoded by exons 5 and 6/7, respectively. 

 

1.1.2 HLA class I nomenclature 

HLA nomenclature follows a prescribed format, with the naming of HLA alleles the 

responsibility of the WHO Nomenclature Committee for Factors of the HLA System (Marsh et 

al., 2010). All alleles begin with the HLA prefix, followed by the gene name. Thereafter, each 

allele is assigned at least a four digit number, with the first field indicating the allele group and 

second field the specific HLA protein (Figure 1.4).  

 

    HLA-A*01:01:01:02N 

Figure 1.4 Nomenclature of HLA alleles. All alleles begin with the HLA prefix followed by the 

gene name. At least two fields follow the separator, the first denoting the HLA allele group and 

the second the specific HLA protein. Some alleles also have a third field which represents 

synonymous nucleotide substitutions in the coding regions and the fourth field is reserved for 

differences in non-coding regions. Any suffix present relates to changes in expression. Adapted 

with permission of AMERICAN SOCIETY OF HEMATOLOGY from Definitions of histocompatibility 

typing terms, Nunes et al., 118, 23, 2011; permission conveyed through Copyright Clearance 

Centre, Inc. 

Gene 

Field 1 

Field 2 

Field 3 

Field 4 

Suffix HLA prefix 
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The third field relates to synonymous DNA substitutions within the coding region and the 

fourth field is reserved for non-coding differences in the 5’ or 3’ un-translated region (UTR) or 

introns. Some HLA alleles also have a suffix which denotes changes in expression, the most 

common being ‘N’ representing a null allele (Marsh et al., 2010). HLA can be determined at 

different levels of resolution depending on the method employed (Table 1.1).  Low resolution 

DNA based typing is defined as first field or 2-digit resolution and generally equates to 

serological antigens. Medium or intermediate resolution is the reporting of a subset of HLA 

alleles in the form of an HLA string. HLA alleles that encode the same amino acid sequence are 

said to be at high resolution and can be reported as ‘P-groups’ or ‘G-groups’, where alleles 

included have identical amino acid or nucleic acid sequences, respectively, in exons 2 and 3. 

HLA defined at the allele level has a unique DNA sequence (Nunes et al., 2011). 

Resolution Description Example 

Low First field only  B*39 

Medium ‘String’ of possible HLA alleles B*39:01:07/39:06:01/39:06:02/39:34/39:4
2/39:62/39:64/39:73 

High  ‘P group’ – alleles with  identical 
amino acid sequence in exons 2 & 
3 

B*39:02P 
(B*39:02:01/39:02:02:01/39:02:02:02/39:0
2:02:03) 

High ‘G group’ – alleles with identical 
nucleotide sequence in exons 2 & 
3 

B*39:06:02G 
(B*39:06:02:01/39:06:02:02/39:06:02:03) 

Allele Unique nucleotide sequence B*39:01:01:01 

Table 1.1 Levels of resolution for HLA typing. HLA types can be reported at low, medium, high 

or allele level, depending on the method used to define and the resolution required. The alleles 

included in the example ‘P’ and ‘G’ groups are shown in parenthesis (Marsh et al., 2010). 

 

1.2 Human platelet antigens (HPA) 

Platelets are anuclear cell fragments derived from large precursor cells called megakaryocytes 

in the bone marrow that express numerous cell surface receptors and adhesion molecules 

which assist interaction with white blood cells (leucocytes) and damaged endothelium 

(George, 2000). Some of the most important molecules expressed on platelets are integrins, 

formed by heterodimeric transmembrane polymorphic glycoproteins involved in cell signaling 

(Jenne et al., 2013). These glycoproteins include GPIa/IIa and GPIIb/IIIa which bind collagen 

and fibrinogen respectively as well as the GPIb-V-IX complex that mediates binding to von 

Willebrand factor, a critical factor in the maintenance of haemostasis by promoting platelet 

aggregation (Jenne, Urrutia and Kubes, 2013). Defects in GPIIIa and its associated glycoprotein 

IIb can lead to the rare autosomal recessive bleeding disorder, Glanzmann thrombasthenia 
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(Buitrago et al., 2015). The glycoproteins expressing HPA are encoded by six genes, detailed in 

Table 1.2.  

Glycoprotein Gene Chromosome  No. of exons Size of gene 
 

GPIIIa ITGB3 17 15 97,541bp 
GPIIb ITGA2B 17 30 24,324bp 
GP1a ITGA2 5 30 112,454bp 
GP1bα GP1BA 17 2 9734bp 
GP1bβ GP1BB 22 2 8232bp 
CD109 CD109 6 33 132,533bp 

Table 1.2 Genes that encode glycoproteins (GP) expressing human platelet antigens. Includes 

details of the respective chromosomes, number of exons present and total number of bases per 

gene. 

 

According to the ImmunoPolymorphism Database (IPD) there are currently 29 HPA systems 

described (Robinson et al., 2013). The majority of HPA  are localised on the IIIa subunit of the 

highly abundant glycoprotein, GPIIb/IIIa (Curtis and McFarland, 2014), as represented in Figure 

1.5. With the exception of HPA-14bw, which is defined by a 3 base pair (bp) deletion, each HPA 

system is characterised by a single nucleotide polymorphism (SNP) resulting in an amino acid 

substitution in the corresponding protein (Lucas, 2013), summarised in Table 1.3. HPA 

nomenclature is sequential, based on the order of discovery and the development of 

alloantibodies produced by exposed individuals lacking the respective antigen. The major allele 

of each system is designated ‘a’ and the minor, less frequent allele called ‘b’; for example HPA-

1a and HPA-1b with a frequency of 98% and 28% respectively in Caucasian populations (Curtis 

and McFarland, 2014). The ‘w’ assignation after the antigen name (e.g. HPA-14bw) indicates 

no reported alloantibody against the antithetical antigen (Metcalfe et al., 2003).  

 

 

 

 

 

 

 

 

 



20 
 

 

 

Figure 1.5. Cartoon representing the glycoprotein GPIIIa/GPIIb and respective HPA systems. 

The approximate location of 16 of the 29 human platelet antigen (HPA) systems expressed on 

glycoprotein GPIIIa/GPIIb. PSI=plexin/semaphoring/integrin; IEGF =Integrin epidermal growth 

factor domain; β-TD=β terminal domain. Adapted with permissions from Transfusion and 

Transplantation Science 2003, Page 192, Oxford University Press, and Practical Transfusion 

Medicine Third Edition, 2009, John Wiley and Sons, Inc. 
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System Gene Antigen Amino acid Nucleotide rs number 
(dbSNP) 

Exon  Chr position 
(GRCh37) 

HPA-1 ITGB3 HPA-1a Leu33 176T rs5918 3 45360730 

HPA-1 ITGB3 HPA-1b Leu33>Pro 176T>C rs5918 3 45360730 

HPA-1 ITGB3 HPA-1c Leu33>Val 175C>G None 3 45360729 

HPA-2 GP1BA HPA-2a Thr145 482C rs6065 2 4836381 

HPA-2 GP1BA HPA-2b Thr145>Met 482C>T rs6065 2 4836381 

HPA-3 ITGA2B HPA-3a Ile843 2621T rs5911 26 42453065 

HPA-3 ITGA2B HPA-3b Ser843 2621T>G rs5911 26 42453065 

HPA-4 ITGB3 HPA-4a Arg143 506G rs5917 4 45361953 

HPA-4 ITGB3 HPA-4b Arg143>Gln 506G>A rs5917 4 45361953 

HPA-5 ITGA2 HPA-5a Glu505 1600G rs1801106 13 52358757 

HPA-5 ITGA2 HPA-5b Glu505Lys 1600G>A rs1801106 13 52358757 

HPA-6w ITGB3 HPA-6bw Arg489>Gln 1544G>A rs13306487 10 45369788 

HPA-7w ITBG3 HPA-7bw Pro407>Ala 1297C>G rs121918448 10 45369541 

HPA-8w ITGB3 HPA-8bw Arg636>Cys 1984C>T rs151219882 12 45377914 

HPA-9w ITGA2B HPA-9bw Val837>Met 2602G>A rs74988902 26 42453084 

HPA-10w ITGB3 HPA-10bw Arg62>Gln 263G>A rs200358667 3 45360817 

HPA-11w ITGB3 HPA-11bw Arg633>His 1976G>A rs377302275 12 45377906 

HPA-12w GPIBB HPA-12bw Gly15>Glu 119G>A  rs375285857 2 19711485 

HPA-13w ITGA2 HPA-13bw Thr799>Met 2483C>T rs79932422 20 52369001 

HPA-14w ITGB3 HPA-14bw del_Lys del1909-
1911  

n/a 11 45376893-5 

HPA-15 CD109 HPA-15a Ser682 2108C rs10455097 19 74493432 

HPA-15 CD109 HPA-15b Tyr682 2108A rs10455097 19 74493432 

HPA-16w ITGB3 HPA-16bw Thr140>Ile 497C>T rs74708909 4 45361944 

HPA-17w ITGB3 HPA-17bw Thr195>Met 662C rs770992614 5 45363673 

HPA-18w ITGA2 HPA-18bw Gln716>His 2235G>T rs267606593 17 52366090 

HPA-19w ITGB3 HPA-19bw Lys137>Gln 487A>C rs80115510 4 45361934 

HPA-20w ITGA2B HPA-20bw Thr619>Met 1949C>T rs78299130  20 42455875 

HPA-21w ITGB3 HPA-21bw Glu628>Lys 1960G>A rs70940817 12 45377890 

HPA-22w ITGA2B HPA-22bw Lys164>Thr 584A>C rs142811900 5 42462694 

HPA-23w ITGB3 HPA-23bw Arg622>Trp 1942C>T rs139166528 12 45377872 

HPA-24w ITGA2B HPA-24bw Ser472>Asn 1508G>A rs281864910 15 42457790 

HPA-25w ITGA2 HPA-25bw Thr1087>Met 3347C>T rs771035051 28 52382870 

HPA-26w ITGB3 HPA-26bw Lys580>Asn 1818G None 11 45376801 

HPA-27w ITGA2B HPA-27bw Leu841>Met 2614C>A rs149468422 26 42453072 

HPA-28w ITGA2B HPA-28bw Val740>Leu 2311G>T rs368953599 23 42453713 

HPA-29w ITGB3 HPA-29bw Thr33>Met 98C>T None for 
CRCh37 

2 45351803 

Table 1.3 The human platelet antigen (HPA) system: Details of the genes encoding each HPA 

antigen alongside the respective amino acid and nucleotide variants. Also listed is the location 

of each HPA polymorphic position, including the respective exon, chromosomal position (Chr 

position) and rs number (where available from dbSNP), based on data from the human genome 

assembly GRCh37.  
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1.3 Clinical relevance of HLA and HPA in transfusion 

Individuals can become alloimmunised to HLA and or HPA following exposure during 

transfusion, pregnancy or transplantation (Brown and Navarrete, 2011), leading to the 

production of HLA and or HPA antibodies. HLA antibodies in the transfused blood product can 

result in the rare but potentially fatal transfusion associated acute lung injury (Brown and 

Navarrete, 2011). Post transfusion purpura is a rare transfusion-related complication due to 

alloimmunisation of the patient against platelet antigens leading to acute thrombocytopenia. 

In 2016, there were no reported cases of either transfusion associated acute lung injury or 

post transfusion purpura in the UK (Bolton-Maggs, 2017). More commonly, HLA or HPA 

alloantibodies present in the patient lead to complications such as immunological platelet 

refractoriness and foetal or neonatal alloimmune thrombocytopenia (Lucas, 2013). Binding of 

HLA or HPA alloantibodies to platelets can lead to a decrease of platelet function and survival 

(Pavenski et al., 2012). 

1.3.1 Immune platelet refractoriness (IPR) 

Platelet refractoriness is a failure to achieve a satisfactory response following random platelet 

transfusions (Stanworth et al., 2015) and is usually defined as an incremental rise in platelet 

count of 10 x 109/l or less, 1 hour or up to 24 hours post transfusion (Brown and Navarrete, 

2011). This can lead to a number of adverse outcomes, including increased risk of bleeding, 

decreased patient survival as well as longer hospital stays and associated in-patient costs 

(Stanworth et al., 2015). Platelet refractoriness can result from non-immune causes such as an 

enlarged spleen, bleeding or infection leading to decreased platelet survival, which need to be 

excluded prior to further investigation (Slichter et al., 2005).  

Immune platelet refractoriness (IPR) usually results from the presence of donor-specific HLA 

antibodies and can be successfully treated by the provision of HLA selected platelets (Brown 

and Navarrete, 2011). A small percentage of patients fail to respond to HLA selected products 

and will be subsequently examined for the presence of antibodies to HPA, which usually occur 

in conjunction with HLA antibodies although they can occur independently (Stanworth et al., 

2015). If necessary, patients can be provided with HLA and/or HPA compatible platelet support 

(Lucas, 2013), as summarised in Figure 1.6. In the financial year 2016/17, over 25,000 HLA and 

or HPA selected platelet units were issued for patients in England. 
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Figure 1.6 Summary of the laboratory investigation for platelet refractoriness. Patients failing 

to respond to random platelet transfusions are referred for HLA antibody screening. Where HLA 

antibodies are detected, HLA selected platelets are provided. If HLA antibodies are absent, or 

the patient is failing to respond to HLA selected platelets, the patient will be screened for 

antibodies to HPA and provided with HLA and HPA selected platelets as appropriate. Adapted 

with permission from Brown and Navarrete, Clinical relevance of the HLA system in blood 

transfusion, John Wiley and Sons. © 2011 International Society of Blood Transfusion. 
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1.3.2 Foetal or neonatal alloimmune thrombocytopenia 

Foetal or neonatal alloimmune thrombocytopenia (FNAIT) is a severe bleeding disorder of the 

foetus and neonate resulting from the destruction of platelets by maternal alloantibodies 

directed against paternally inherited antigens expressed on foetal platelets (Bertrand and 

Kaplan, 2014).  Alloantibodies involved in FNAIT are predominantly against HPA (Lucas, 2013), 

although other antigens such as GPIV have been implicated (Xia et al., 2014). FNAIT occurs in 

approximately 1 in 1000 live births (Lucas, 2013) and can result in intracranial haemorrhage 

leading to death or disability, with severity linked to the number of pregnancies (Delbos et al., 

2016) and history of earlier siblings (Wienzek-Lischka et al., 2015; Wienzek-Lischka et al., 

2017). Diagnosis of FNAIT is vital to manage both the index case and any subsequent 

pregnancies and usually follows presentation in a neonate less than 48 hours old with 

unexplained bruising and petechiae (red or purple spots on the skin) but who otherwise 

appears healthy (Bertrand and Kaplan, 2014).  

Maternal antibodies to HPA-1a are the most common cause of FNAIT, with HPA-1a 

immunisation occurring in 1 in 365 pregnancies (Ghevaert et al., 2007). HPA antibody 

screening was performed on over 500 maternal samples for suspected FNAIT in the financial 

year 2016/17 in England. Overall, greater than 95% of serologically confirmed FNAIT cases 

result from maternal-foetal incompatibility for HPA-1, -2, -3, -5 and -15 with the remainder 

caused by low frequency HPA (Pavenski et al., 2013). Transfusion of the affected foetus or 

neonate with platelets that do not express the antigen implicated (see section 1.3.3.) results in 

prolonged platelet survival compared to transfusion with random platelets (Lucas, 2013).  

1.3.3 Transfusion support for patients with HLA and or HPA alloantibodies 

Patients refractory to platelets and those affected by FNAIT require HLA and/or HPA matched 

platelets in order to obtain a satisfactory incremental rise in their platelet count (Pavenski et 

al., 2012). Numerous strategies are available for the selection of platelets to support these 

patients including the use of cross-match negative donors, of antigen avoidance and of HLA 

and or HPA matched products (Kopko et al., 2015), summarised in Table 1.4. 
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Method of platelet 
selection 

Advantages 
 

Disadvantages 

Cross-match negative  Rapid availability 

 Does not require a pool of 
HLA & HPA typed donors 

 

 Risk of further 
sensitisation 

 Not suitable for long 
term platelet support 

 Challenging for highly 
sensitised patients 

Antigen avoidance  Increases number of 
potential donors 

 Risk of further 
sensitisation  

 Challenging for highly 
sensitised patients 

HLA/HPA matching  Suitable for long term 
platelet support 

 Reduced risk of 
sensitisation 

 Time consuming 

 Patient must be HLA & 
HPA typed 

 Requires large panel of 
HLA & HPA typed donors 

HLA epitope matching  Increases number of 
potential donors 

 Requires high resolution 
HLA typing of patient and 
donor 

Table 1.4 Summary of options for selecting compatible platelets. Advantages and 

disadvantages of the four approaches used for the selection of platelets for patients with 

immune platelet refractoriness resulting from antibodies to HLA 

 

1.3.3.1 Cross-match negative 

Cross-matching is performed by incubating donor platelets with recipient serum followed by 

detection of any bound antibody using labelled antiglobulins (Vassallo et al., 2014).  Cross-

matched platelets have the advantage of being readily available (Rioux-Masse et al., 2014) and 

are cheaper and easier to obtain than having a pool of HLA typed donors (Lee and Ayob, 2015). 

However, there are concerns that not matching for HLA risks further alloimmunisation as 

platelets are likely to be incompatible with the recipient’s own HLA type (Vassallo et al., 2014) 

and is therefore not suitable for patients requiring long term platelet support (Brown and 

Navarrete, 2011). Sixty percent of US blood centres surveyed provide a cross-matched platelet 

product, although many reported problems with availability of cross-matching assays (Kopko 

et al., 2015). 

1.3.3.2 Antigen avoidance 

Selecting platelets on the basis of avoiding specificities for which the recipient has antibodies 

has been shown to be as effective as HLA matching (Petz et al., 2000). This approach has the 

advantage of increasing the number of donors available for patients compared to HLA 

matching, although it may be problematic when supporting highly sensitised patients (Kopko 
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et al., 2015). As with crossmatching, there are risks associated with broadening a recipient’s 

antibody profile, as platelet transfusions may not be well matched (Petz et al., 2000). 

1.3.3.3 HLA matching 

Generally HLA selection is performed for HLA-A and –B only as the role of HLA-C in IPR remains 

uncertain (Brown and Navarrete, 2011). HLA antigen matched platelets are provided according 

to two match grades: an A grade when donor and recipient are HLA compatible or a B grade 

where one or more mismatched HLA antigens are present, denoted by B1, B2, B3 and B4 for 

one, two, three or four mismatches, respectively (Brown and Navarrete, 2011). Searching for 

the best donor using this strategy can be a protracted process, particularly for blood centres 

without large donor panels (Kopko et al., 2015) and also increases the cost of managing 

patients (Lee and Ayob, 2015). National Health Service Blood and Transplant (NHSBT) has a 

panel of over 11,000 donors who regularly give their own platelets via an automated cell 

separating process known as apheresis,  to facilitate HLA matching for patients with IPR 

(Brown and Navarrete, 2011). 

1.3.3.4 HLA epitope matching 

HLA epitope-based matching (HEM) is a more recent approach based on compatibility of 

antigenic determinants (Duquesnoy, 2011). HLA epitope matching employs a predictive 

computer algorithm, such as ‘HLAMatchmaker’, for donor and recipient compatibility, 

quantifying mismatched antigenic determinants, so called ‘eplets’ (Duquesnoy, 2008) or 

antibody-verified epitopes recorded in the International HLA Epitope Registry website 

(Duquesnoy et al., 2014). Eplets are described as polymorphic linear or discontinuous amino 

acid residues at critical antigen/antibody binding sites of the HLA molecule. The HEM algorithm 

is based on the assumption that patients will not make antibody against eplets or epitopes 

shared between the donor and their own HLA type or to inaccessible parts of the HLA molecule 

(Duquesnoy, 2008).  Previous studies have shown that the number of eplet mismatches is 

inversely proportional to the increase in platelet count following platelet transfusion (Brooks, 

MacPherson and Fung, 2008).  The sharing of epitopes between different alleles enables 

permissive mismatching and should only require donor panels of ‘reasonable size’ compared 

to using fully HLA matched platelets (Rubinstein, 2010). 

1.4 HLA and HPA genotyping – current state 

Patients refractory to platelets and those affected by FNAIT require HLA and/or HPA matched 

platelets in order to obtain a satisfactory incremental rise in their platelet count (Pavenski et 

al., 2012). Hence techniques that can accurately and cost effectively define the HLA and HPA 

type of both patients and donors are required. As platelets only express HLA class I antigens, 
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genotyping of platelet donors and recipients is limited to HLA-A and HLA-B in most 

laboratories, due to uncertainty about the clinical relevance of HLA-C in IPR (Brown and 

Navarrete, 2011). Molecular techniques for HLA typing are well established, having been in 

routine use for over 20 years (Erlich, 2012). Due to lack of highly specific antisera free from 

HLA antibodies and the advent of the polymerase chain reaction (PCR), serological HPA 

phenotyping has also been largely superseded by DNA-based genotyping (Curtis and 

McFarland, 2009).  

NHSBT laboratories receive both patient and donor samples from hospitals and blood 

collection centres. Different approaches are taken for HLA and HPA genotyping dependent on 

the number of samples, resolution required and clinical urgency, summarised in Table 1.5. 

 

Method Genotyping 
application 

Sample 
type 

HLA 
Resolution 

Turnaround 
time 
(hours) 

Cost 
per 
test 

Sample 
throughput 

PCR-SSP HLA  
HPA 

Patient Low 2-3 ££ Low 

PCR-SSOP HLA Donor & 
Patient 

Low/Medium 6-8 £ Low or high 

PCR-SBT HLA 
HPA 

Patient High 24-72 £££ Low 

Taqman 
 

HPA Donor n/a 48 £ High 

Table 1.5 Molecular techniques used for HLA and HPA genotyping. The genetic system and 

sample type tested by each Polymerase chain reaction (PCR) based method, alongside the 

typical time taken to obtain a result. Cost per test is indicated using a comparative approach, 

with £ = inexpensive, ££ = medium cost and £££ = most expensive. The throughput of samples 

for each approach is designated high or low, with high throughput determined as processing in 

batches of up to 96 samples and low throughput as processing single or small numbers of 

samples. PCR-SSP = PCR using sequence specific primers; PCR-SSOP = PCR using sequence 

specific oligonucleotide probes; PCR-SBT = PCR by sequencing based typing 

 

 

1.4.1 Patient genotyping 

Patients are referred to NHSBT for the investigation of IPR and FNAIT which can be urgent in 

nature, for example when the patient is bleeding (West, 2016). In addition, samples from 

individuals requiring long-term platelet support are sent for HLA and HPA genotyping to 

ensure suitably matched products are provided, thereby avoiding the risk of sensitisation 

(Murphy et al., 1986). In England, approximately 900 patients are HLA typed each year during 

investigation for platelet refractoriness. 
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1.4.1.1 Patient HLA typing 

Patients with IPR are HLA typed by PCR based methods utilising sequence specific primers 

(PCR-SSP) or sequence specific oligonucleotide probes (PCR-SSOP) (Brown and Navarrete, 

2011). PCR-SSP uses gel electrophoresis to determine the presence or absence of amplicons 

for each HLA allele group tested. In contrast, PCR-SSOP requires the hybridisation of HLA locus 

specific amplicons with sequence specific oligonucleotide probes attached to a solid support 

followed by fluorescence based detection to determine the HLA type. These methods have a 

quick turnaround time and are suitable for small sample numbers. They produce low to 

medium resolution HLA types by focusing on polymorphisms within exons 2 and 3 of the HLA 

class I genes, where the majority of allelic diversity is located (Erlich, 2012). 

1.4.1.2 Patient HPA typing 

HPA typing, alongside screening for HPA antibodies, is performed only if IPR patients 

subsequently fail to increment with HLA matched platelets; it is uncommon for HPA antibodies 

to cause IPR independently (Brown and Navarrete, 2011). PCR-SSP is a commonly used method 

for HPA genotyping these patients, being both fast and reliable (Nogués, 2011).  

Suspected FNAIT cases are investigated by determining maternal and paternal disparity for the 

more frequent HPA genotypes, also using methods such as PCR-SSP (Arinsburg et al., 2012), 

although at NHSBT PCR sequencing based typing (PCR-SBT) of HPA-1, -2, -3, -4, -5, -6, -9 and -

15 is routinely employed for FNAIT investigations (West, 2016). Further analysis is required 

should no difference be detected for the common variants. This may involve extensive study, 

sequencing entire genes which can be a protracted process when searching the large HPA 

genes (Poles et al., 2013; Stafford et al., 2008). For example, the gene encoding GPIIIa, on 

which the majority of HPA are expressed, consists of 15 exons and is almost 100,000 bases 

long (see Table 1.2).  

1.4.2 Donor genotyping 

Providing suitable platelet transfusions for patients adversely affected by the presence of 

alloantibodies requires a large panel of HLA- and HPA-defined platelet donors (Pavenski et al., 

2012). Approximately 5000 apheresis donors per annum are currently recruited by NHSBT for 

this purpose, with each donor typed for both HLA and HPA on two separate occasions for 

quality reasons. This level of commitment to donor enrolment requires high-throughput 

genotyping techniques (Lucas, 2013). 

1.4.2.1 Donor HLA typing 

HLA class I typing of platelet donors is currently performed using reverse PCR-SSOP in a 96 well 

plate format, making it suitable for automation for high throughput typing. In separate PCR 
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reactions, amplification of exons 2 and 3 of the HLA-A, -B and-C genes is followed by 

hybridisation with locus specific, fluorescently tagged microspheres that are coated with up to 

100 probes, targeting sequence motifs across the respective exons. Where complementary 

sequences are present, bound PCR amplicons are detected by utilising xMAP® technology 

followed by analysis of probe patterns using interpretation software (Dalva and Beksac, 2007). 

PCR-SSOP typically produces a low to medium resolution HLA type (Nunes et al., 2011) which is 

sufficient for the selection of platelets for patients with IPR, based on their HLA type and 

antibody profile (Brown and Navarrete, 2011). 

1.4.2.2 Donor HPA typing 

To date, only genotypes of the HPA-1, -2, -3, -4, -5 and -15 systems are determined for 

apheresis platelet donors, selected originally due to their frequency and clinical relevance 

(Lucas, 2013). The Taqman™ assay is utilised for this high-throughput HPA typing due to its 

capacity for automated readout (Lucas, 2013). Briefly, for each HPA tested, PCR amplification 

using primers flanking the SNP of interest is performed in the presence of two labeled probes, 

one corresponding with the ‘a’ allele and the other specific for the ‘b’ allele. Displacement of 

an annealed probe by Taq polymerase during primer extension generates a fluorescent signal 

that can be measured. Using two different dyes for the two allele specific probes enables 

distinction between the alleles by their emission spectra (Nunes et al., 2011).  

 

1.5 Requirement for the improvement of HLA and HPA genotyping 

1.5.1 Increasing the resolution of HLA genotyping 

A prospective, randomised non-inferiority trial is currently underway within NHSBT to compare 

the efficacy of HLA epitope-matched (HEM) platelets for transfusion with standard HLA 

selected platelets for alloimmunised patients who require regular platelet transfusions but for 

whom a fully HLA matched donor is not available (ISCTRN23996532). The necessity for utilising 

HEM may increase as a result in a reduction in the availability of single platelet units. NHSBT 

recently announced a ‘Platelet Supply’ project, initiated following recommendations by The 

Advisory Committee on the Safety of Blood, Tissues and Organs to remove the current 

requirement of collecting 80% of platelets by apheresis. As part of a drive for efficiency savings 

in the blood supply chain, the plan was to reduce apheresis to 60% of existing collection levels 

by the end of 2015/16, with the further potential to reduce to as low as 40% thereafter 

(Ronaldson and Ashford, 2014). Whilst this strategy will align the percentage of platelet 

concentrates collected by apheresis in England with other European countries (Berger et al., 

2016), it will limit available units for patients with HLA and or HPA antibodies. Using HEM 
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should increase the number of platelet donors suitable for these patients when fully HLA 

matched units are unavailable (Pai et al., 2010).  

If HEM becomes routine practice, high resolution (i.e. allele level) HLA typing of platelet donors 

may be necessary because the matching algorithm requires information on amino acid 

sequence (Duquesnoy, 2008). However, implementation of this new approach will require a 

change to the current method used, described in 1.4.2.1, due to inadequate resolution of HLA 

class I typing. Pai et al., 2010 reported using HEM for the selection of platelet donors based on 

epitopes predicted from low resolution HLA types produced by PCR-SSOP (Pai et al., 2010). 

However, accurate comparison of donor and patient intra- and inter-locus HLA is likely to 

require high resolution or allele level typing (Duquesnoy, 2011). Conventionally, high 

resolution HLA typing is achieved using Sanger sequencing but due to the increasing number of 

characterised HLA alleles this method often produces ambiguous results due to limited  

sequence data generated for regions of the HLA genes and lack of phase within and between 

exons for heterozygous samples (Erlich, 2015). In addition, costs and logistical constraints 

make sequencing based typing (SBT) unsuitable for high throughput HLA genotyping. 

 

1.5.2 Expansion of HPA genotyping 

There is increasing evidence that HPA genotypes not routinely defined in patients or apheresis 

platelet donors are more clinically significant than originally thought, with a growing number 

of publications reporting maternal alloimmunisation against ‘rare’ platelet antigens (Peterson 

et al., 2012; Jallu et al., 2013; Bertrand et al., 2013a; Lucas et al., 2016; Sullivan et al., 2015). In 

one study, 6.6% of fathers of infants from 244 suspected cases of FNAIT were found to have 

low frequency HPA following sequencing of genes encoding glycoproteins GPIIIa/IIb (Peterson 

et al., 2014). This percentage of FNAIT due to rare HPA antibodies was considerably greater 

than the 0.7% identified in 1054 cases, reported several years earlier (Ghevaert et al., 2009). It 

has been suggested in the past (Ouwehand, 2005) and again more recently (Santoso and 

Tsuno, 2015) that laboratory investigations should not be limited to the more common HPA 

systems.  

Extending the existing PCR-SSP and Taqman™ techniques to include all 29 HPA systems would 

prove problematic as some HPA SNPs are adjacent to other polymorphic positions which can 

result in mistyping (Kengkate et al., 2015). Therefore, expansion of the current HPA repertoire 

will require an alternative approach, capable of defining all known HPA SNPs alongside 

scalability for high-throughput. 
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1.5.3 HPA whole gene sequencing 

Occasionally, an investigation for a rare or possibly unique HPA allele is required in cases of 

suspected FNAIT, where routine HPA typing and antibody screening proves uninformative 

(Lucas, 2013). As indicated in section 1.4.1, this can necessitate the sequencing of one or more 

HPA genes, which is complex and time consuming due to their length. Investigation of 

suspected FNAIT cases should be performed with urgency (Lucas, 2013), so reducing the time 

taken to search for a candidate mutation would be advantageous. It is possible to develop 

Sanger sequencing to determine the majority of, if not all, known HPA alleles as a first line test 

(Hong et al., 2017), but this requires significant development and validation of multiple primer 

sets due to the location of each HPA system (Lane et al., 2016). In addition, without 

sequencing each entire gene, Sanger sequencing may also fail to identify and or define novel 

HPA mutations without further development (Finning et al., 2016).  

1.6 Next Generation Sequencing  

Next Generation Sequencing (NGS) is a recent innovation in sequencing technology with the 

ability to produce large amounts of data relatively quickly and cheaply, capable of generating a 

high proportion of an individual’s genetic sequence in a single experiment (Metzker, 2010). 

When combined with novel DNA bar-coding technology, which consists of sample specific 

combinations of short oligonucleotides, NGS can be used to target specific regions of the 

genome from many different individual samples in one pool (Shiina et al., 2012).  

The term ‘next generation sequencing’ refers to a range of sequencing technologies developed 

during the past decade rather than a single technique (Muzzey, Evans and Lieber, 2015) and 

typically consists of (i) template preparation (ii) sequencing and imaging followed by (iii) data 

analysis, with each NGS technology taking a distinct approach (Metzker, 2010). DNA 

sequencing by NGS requires prepared templates of high molecular weight double stranded 

DNA that have been fragmented using methods such as sonication, nebulisation or enzymatic 

fragmentation (Knierim et al., 2011). Unique sample identifiers, so called DNA barcodes, along 

with platform-specific adapters are then ligated to the fragments generated, which facilitates 

immobilisation of each fragment to a solid surface or support and downstream sequencing 

(Figure 1.7).  
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Figure 1.7 DNA library preparation for the Illumina MiSeq. Fragmentation of double stranded 

DNA is followed by the ligation of partial adapters that serve as primer binding sites. A limited 

cycle PCR then adds sample specific indices incorporating P5 and P7 ends to each fragment, 

along with the MiSeq sequencing primer sequences, to allow clonal amplification and paired 

end sequencing on a MiSeq flow cell. 

 

The majority of NGS approaches then require in-situ clonal amplificiation of each prepared 

DNA template in order to provide signal enhancement prior to sequencing (Metzker, 2010). 

For the Illumina MiSeq, clonal amplification of each bound fragment occurs on a glass slide 

which allows positional separation of the clusters that form (Figure 1.8) that remain constant 

during the sequencing reaction (Muzzey, Evans and Lieber, 2015).  

 

 

 

Figure 1.8 Cluster formation on a glass slide following clonal amplfication. Each fragment 

bound to the MiSeq flow cell forms discrete clusters in fixed positions following clonal 

amplification. This facilitates signal amplificiation during the subsequent sequencing reaction. 
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Sequencing of the amplified templates consists of sequencing by synthesis (akin to Sanger 

sequencing), sequencing by ligation or using chemistries such as ion-semiconductor 

sequencing, depending on the platform employed (Muzzey, Evans and Lieber, 2015). This 

results in the production of multiple overlapping short sequences that can be subsequently 

assembled and analysed (Zhang et al., 2011), an example of which is shown in Figure 1.9, 

hence the alternative title ‘massively parallel sequencing’ sometimes cited (Yang et al., 2017). 

Data analysis generally consists of either variant calling following the alignment of sequencing 

reads to a reference genome and/or utlising denovo genome assembly algorithms (Sims et al., 

2014).  
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Figure 1.9 Alignment and analysis of sequencing reads. (A) shows the overlapping assembly of 

sequencing reads spanning an entire HLA gene; (B) shows more detail of the overlapping 

assembly for exon 2; (C) shows the individual base calls for each overlapping sequence. The 

pink and yellow colours of each fragment in the images represent fragments from two different 

sequences in a heterozygous sample. 
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1.6.1 HLA genotyping by NGS 

Over the past five years, a number of approaches to HLA typing by NGS have been reported, 

ranging from the imputation of HLA types from genomic sequence data to targeted HLA 

sequencing using bench top NGS platforms, each with their respective advantages and 

disadvantages summarised in Table 1.6. 

 

NGS approach Advantages Disadvantages 

WGS/WES  Provides MHC haplotype data 

 Use of generic WGS/WES 
protocol 
 

 Requires complex imputation 
algorithms 

 Slow analysis 

 Up to 20% error rate 

 Not suitable for high throughput 
Targeted exon   Fragmentation not required 

 Fast preparation protocol 

 Suitable for high throughput 

 Cost effective 

 Results in ambiguous HLA types  

 Susceptible to PCR artefacts 

 Risk of allele imbalance or 
dropout 
 

Whole gene   Unambiguous 3rd or 4th field 
level typing 

 Suitable for high throughput 
 
 

 Protracted library preparation 

 Risk of allele imbalance or 
dropout 

 

Table 1.6 Advantages and disadvantages of NGS approaches reported for HLA typing. 

Reported NGS based approaches for HLA typing have included whole genome sequencing 

(WGS), whole exome sequencing (WES), targeted HLA exon sequencing or whole HLA gene 

sequencing.  

 

1.6.1.1 HLA imputation from whole genome or exome sequence data 

Large scale whole genome sequencing (WGS) or whole exome sequencing (WES) endeavours 

are not primarily intended for individual genotyping but rather for population genetic studies 

(Major et al., 2013). However, is it possible for classical HLA types to be imputed from such 

data by using statistical prediction algorithms (Bauer et al., 2016). Earlier reports indicated 

unacceptably high prediction errors of up to 20% due to insufficient read depth (Major et al., 

2013) or lack of reference data from ethnically diverse populations (Dilthey et al., 2013). Some 

mistyping also resulted from the homology of HLA-A, -B and -C genes with pseudogenes, 

leading to mis-alignment of sequence fragments (Major et al., 2013). More recently, Dilthey et 

al. described use of ‘HLA*PRG’, a computer algorithm that infers HLA types from WGS data. 

This program considers both genes and pseudogenes and has a reported accuracy of 99.4%. 

However, the requirement of high computational power taking 30-250 central processing unit 

hours per sample (Dilthey et al., 2016) is not acceptable for routine clinical application.  
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1.6.1.2 Targeted HLA sequencing 

For the majority of HLA typing laboratories, facilities for WGS or WES are unavailable. A more 

practical approach to HLA typing by NGS is the use of targeted sequencing. This requires the 

isolation of all or part of the HLA gene, typically by PCR amplification, although targeted 

enrichment capture assays have also been reported (Wittig et al., 2015). Numerous 

approaches have been described for PCR-based HLA typing by NGS, from targeting one or 

more exon to sequencing the entire gene (Figure 1.10) 

 

 

 

 

 

 

Figure 1.10 A typical primer map for the amplification of HLA class I genes. PCR primers can 

be designed to amplify exons individually, as represented by the red, orange and green arrows, 

or can target the entire HLA gene, indicated with the purple arrows. 

 

One of the benefits of using exon specific amplification is that template fragmentation and or 

ligation steps are not usually required due to the size of the amplicon and inclusion of 

multiplex identifiers during amplification (De Santis et al., 2013). However, the amplification 

strategy employed for exon only sequencing will determine the level of HLA typing resolution 

achieved. Lange et al. reported a cost effective, high throughput exon-based NGS method 

using micro fluidics for sample preparation. However, because only exons 2 and 3 of the HLA 

genes were sequenced, the results obtained were at a resolution equating to that obtained by 

Sanger sequencing (Lange et al., 2014). Similarly, sequencing just exons 2, 3 and 4 of the HLA 

class I genes produces ambiguous results in over 85% of samples (Trachtenberg and Holcomb, 

2013). It is possible to increase the HLA typing resolution to the ‘G’ group level by targeting 

more exons (Cereb et al., 2015), but primer design will be limited by polymorphisms within 

introns of the HLA genes (De Santis et al., 2013). Exon specific amplicon approaches to HLA 

typing by NGS are also susceptible to sequencing artefacts such as primer dimers and PCR 

mediated recombination (Holcomb et al., 2014; Schofl et al., 2017). 

Restricting the sequencing of HLA genes to exon regions will inevitably result in ambiguity due 

to lack of phase. However, using whole HLA gene amplification allows phasing across the 

entire region and therefore reduces the likelihood of any HLA ambiguity. Primers are located in 

5’UTR Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 Exon78 3’UTR 

Targeted exon 
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less polymorphic positions, with exons and introns amplified in a single fragment (Wang et al., 

2012). Early reports of HLA typing by NGS based on whole gene sequencing suggested this 

approach may have a limited throughput, with only a few samples included in a sequencing 

run (Shiina et al., 2012; Hosomichi et al., 2013). This was in part due to the platform employed 

but also because each amplicon had separate DNA barcode identifiers. Although this made 

data analysis more straightforward by reducing the risk of misalignment of fragments to 

homologous regions of other class I genes, it limited the number of samples that could be 

sequenced simultaneously.  More recently others have used identical DNA barcodes to label 

multiple amplicons from the same sample, enabling the pooling of amplicons and 

demonstrating it is possible to increase the throughput to 96 samples or more (Ehrenberg et 

al., 2014; Nelson et al., 2015).  

1.6.1.3 Sequencing platforms 

HLA typing results obtained by NGS are also influenced by the platform employed. One of the 

first NGS-based methods for HLA typing was developed on the Roche 454 FLX (Lind et al., 

2010). This platform had the advantage of generating long sequencing reads, which is 

preferable for HLA typing to ensure sequence reads span each exon, and was the first 

commercial NGS system for HLA typing (Gabriel et al., 2014). However, the Roche 454 system 

produced far fewer reads per run than its competitors, making it much more expensive, and 

has been phased out since 2016 (Erlich, 2015). The Ion Torrent (Thermo Fisher Scientific) 

produces shorter reads to a maximum of 400bp (Erlich, 2015) and also has reported 

sequencing errors from insertions or deletions (indels), particularly at homopolymer sites.  

However, the Ion Torrent has the advantage of a short sequencing run time of approximately 2 

hours and has potential for scalability, with a range of different chips sizes, making it a more 

economical option for some laboratories (Gabriel et al., 2014). The Illumina MiSeq has the 

advantage of using pair end sequencing, which facilitates interpretation of HLA types due to 

improved haplotype phasing (Carapito, Radosavljevic and Bahram, 2016). It is also the platform 

of choice for the majority of commercial HLA typing kits currently available.  

Instruments such as the PacBio RS11 (Pacific Biosciences) and the MinION (Oxford Nanopore) 

are more recent innovations. Both have the capability of producing reads of up to 40kb and 

50kb, respectively, potentially allowing sequencing of entire MHC haplotypes in phase. 

However, errors rates are reportedly much higher than the more established platforms 

(Carapito, Radosavljevic and Bahram, 2016). Approaches to HLA typing using the PacBio system 

have been published by a number of groups (Cereb et al., 2015; Mayor et al., 2015), but due to 

the large size of the instrument and high procurement costs this platform is unlikely to be 

implemented by many routine laboratories. In contrast, the MinION (Oxford Nanopore) is a 
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small, portable device that uses very different technology to other NGS sequencers and, whilst 

still in the development phase for HLA genotyping, has the potential to provide sequencing 

data cheaply and quickly (Carapito, Radosavljevic and Bahram, 2016). 

1.6.2 HPA genotyping by NGS 

With its ability to scrutinise large portions of the genome, NGS has the capacity to 

simultaneously sequence the six genes encoding HPA glycoproteins within a few days, rather 

than the weeks that may be required for investigation by conventional methods. Lane et al. 

described the prediction of red blood cell and platelet antigens from an individual’s genome 

obtained by using paired-end WGS on the Illumina HiSeq platform. However, whilst WGS did 

provide sequence data for each of the six genes coding for HPA, the authors acknowledged this 

approach was impractical and unaffordable for most laboratories and advocated using a 

targeted NGS panel as an alternative method for platelet genotyping (Lane et al., 2016). 

Targeted NGS methods have been reported for HPA genotyping but approaches published to 

date have focused on the more common HPA systems included in a genotyping panel 

alongside blood group antigens (Wienzek-Lischka et al., 2015; Orzinska et al., 2017).  

1.7 Aims and objectives 

This study set out to exploit the advantages offered by the novel NGS technology with the aim 

of enhancing the HLA and HPA definition of both platelet donors and recipients. The objectives 

by which this would be achieved were: 

 Comparison of a commercial HLA amplification protocol (Illumina TruSight™ HLA) with 

an in-house whole gene approach for PCR template generation 

 Establishing a high throughput NGS based method for HLA-A, -B and -C genotyping 

platelet donors and assess its potential impact on the selection of platelet donors 

using HLA epitope-matching (HEM) 

 Designing and developing a multiplex, high throughput NGS based method for HPA 

genotyping  

 Designing and developing an NGS based method to sequence the genes coding for 

glycoproteins that express HPA.  

1.8 Hypothesis 

The use of NGS for HLA and HPA genotyping will enhance the provision of suitable platelet 

transfusions for patients with HLA and/or HPA alloreactive antibodies.  
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2. Methods and Materials 

2.1 Samples 

2.1.1 Donor samples for HLA genotyping 

Informed consent was obtained from each donor in accordance with organisational protocols 

(see Appendix). EDTA blood samples were collected from random apheresis platelet donors at 

NHSBT clinics throughout England. All donors used in this study had been previously typed for 

HLA-A, -B and –C at intermediate resolution using Luminex-based sequence specific 

oligonucleotide technology (LABType®, One Lambda). 

2.1.2 Control DNA for HPA genotyping 

External quality assessment (EQA) DNA samples were selected for their range of genotypes 

from NHSBT DNA archives. EQA samples were originally distributed by the National Institute 

for Biological Standards and Controls, with HPA genotypes of each sample determined by over 

40 international laboratories. Additional anonymised control DNA samples were provided by 

the Australian Red Cross Blood Service. 

2.1.3 Patient DNA for HPA genotyping 

DNA samples previously genotyped for HPA were retrieved from NHSBT DNA archives. They 

were originally obtained from patients or family members following referral to NHSBT for 

investigation of FNAIT or thrombasthenia. Informed consent was obtained by the hospital 

clinical team (see Appendix). 

2.2 DNA extraction of donor samples 

DNA was extracted from 7ml EDTA blood samples and using a DNA mini kit (Qiagen) on the 

QIAsymphony®SP automated platform. Following extraction from a 200µl aliquot of EDTA 

blood, each sample was dissolved in 200µl of elution buffer and dispensed into 96-well plates, 

with 90 samples contained within each plate. Following DNA extraction, sample identifiers 

were automatically added to an XML rack file by the QIAsymphony software v4.0.1. A local 

Microsoft (MS) Access program was then used to extract the sample IDs and respective plate 

positions from the rack file to generate an MS Excel ‘plate map’ used to facilitate downstream 

sample tracking.  

2.3 DNA purification 

Purification of DNA was performed on samples prior to HLA genotyping only and was 

performed either manually or utilising a Biomek FXP laboratory automated workstation 

(Beckman Coulter) prior to quantification. Briefly, 50µl each of DNA and AMPure® XP beads 

(Beckman Coulter) were incubated together for 5 minutes followed by separation from 
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solution using a magnet and the supernatant containing impurities discarded. This was 

followed by two wash steps in 80% ethanol, freshly made from 100% Ethanol (Sigma-Aldrich). 

Purified DNA was finally eluted in 30µl of Ambion® nuclease free water (NFW) purchased from 

Thermo Fisher Scientific.  Any wells that did not contain purified DNA were filled with NFW and 

served as negatives controls. 

2.4 DNA quantification 

The concentration of double stranded DNA (dsDNA) present in each sample was determined 

using one of two fluorescence based assays. This approach for DNA quantification was selected 

over conventional UV absorbance because it is highly selective for dsDNA and therefore 

provided a more accurate assessment of the target concentration required for NGS. In general, 

samples in a 96 well plate format were quantified with the Quant-iT™ kit and concentration of 

DNA contained in tubes was measured using the Qubit®. 

2.4.1 Quant-iT™ Assay kit, Broad Range (Invitrogen) 

A standard curve was generated in accordance with the Quant-iT™ protocol, using 10µl of each 

DNA standard provided (range 0-100ng/µl) diluted in 200µl of working solution (1:200 dilution 

of Quant-iT dye in buffer). Test samples were prepared by adding 4µl of DNA to 206µl of 

Quant-IT BR working solution into the respective well of a black 96-well assay plate. Both 

Standards and test samples were then measured on a FiltermaxF3 plate reader (Molecular 

Devices) at 485mn and analysed using associated Softmax Pro software v6.3.  

2.4.2 Qubit® dsDNA BR assay (Life Technologies) 

Between 2 and 5µl of each DNA sample (dependant on material available) was made up to 

200µl with Qubit® working solution (1:200 dilution of Qubit® dye in buffer) in thin-walled 

0.5ml tubes (Qubit® Assay tubes). DNA sample concentrations were determined using a Qubit® 

2.0 Fluorometer in accordance with the Qubit® dsDNA BR assay protocol. 

2.5 DNA normalisation 

DNA was normalised to the desired concentration either manually or using an automated 

protocol. Manual normalisation was used to prepare DNA samples for the HPA genotyping 

protocol, whereas DNA for HLA sequencing was normalised using the Biomek workstation. 

2.5.1Manual normalisation  

DNA was diluted to the required concentration with 10mM Tris buffer (Buffer EB, Qiagen). 

2.5.2 Automated normalisation 

Values for DNA concentration obtained from the FiltermaxF3 in step 2.4.1 were imported into 

a spreadsheet with embedded macros which calculated the volumes of sample and NFW 

required for dilution of DNA to the desired concentration. The macro produced a Tag Image 
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File Format (TFF) file which was utilised by the Biomek® FXP liquid handling workstation 

(Beckman Coulter) to normalise each sample. Where the concentration was below the 

required input values, DNA was transferred neat.  

2.6 HLA genotyping by Next Generation Sequencing 

2.6.1 PCR amplification of HLA class I genes  

PCR amplification of the HLA-A, -B and –C genes was performed on each sample using either a 

modified TruSight™ HLA Sequencing panel approach (Illumina) or with an in-house protocol. 

The primer binding sites for the TruSight HLA sequencing panel were not disclosed by Illumina, 

but the in-house protocol used primers designed to amplify the entire HLA gene (Figure 2.1). 

 

 

 

Figure 2.1 Location map of in-house PCR primers for HLA class I amplification. Previously 

reported locus specific primers (Shiina et al., 2012) were located in conserved regions flanking 

each target (represented by the purple arrows) to amplify all exons, introns and un-translated 

regions (UTR) of each HLA gene. 

 

2.6.1.1 TruSight™ HLA Sequencing panel 

DNA was amplified using a modified version of the TruSight™ HLA PCR amplification protocol 

for HLA-A, B and –C , using a reduced reaction volume of 10µl compared to the prescribed 

50µl. PCR reactions for each HLA locus were performed in 96-well PCR plates (4titude®) and 

consisted of 5µl of HLA PCR mix, 0.4µl of MasterAmp Extra-Long DNA polymerase, 1µl HLA 

locus specific primer, 2.6µl of NFW and 1µl of DNA at 10ng/µl. Amplification was performed in 

a 9700 thermal cycler (Perkin Elmer) with a ramp rate set to 9600 using the following program: 

94°C for 3 minutes; 35 cycles of 94°C for 30 seconds, 60°C for 2 minutes and 68°C for 15 

minutes; 68°C for 10 minutes; hold at 10°C. 

2.6.1.2 In-house PCR protocol 

Whole gene amplification of HLA-A, -B and -C in 96-well PCR plates (4titude®) was performed 

using previously described primers (Shiina et al., 2012) but with a modified protocol. Each 10µl 

PCR reaction for HLA-A and –B consisted of 50ng purified DNA, 0.5U PrimeSTAR GXL DNA 

polymerase (TaKaRa Bio Inc), 1X PrimerSTAR GXL buffer, 200µM of each dNTP and 4pmol of 

each respective HLA locus specific primer. PCR reactions for HLA-C were as for HLA-A and –B 

but with the addition of 5% DMSO (Sigma-Aldrich). PCR amplification was performed using a 

5’UTR Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 Exon7/

8 

3’UTR 
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C1000 thermal cycler (Bio-Rad). HLA-A and –B conditions consisted of a 2 minute denaturation 

at 94°C followed by 30 cycles of 98°C for 10 seconds, 62°C for 20 seconds and 68°C for 5 

minutes. HLA-C amplification conditions were 94°C at 2 minutes followed by 30 cycles of 98°C 

for 10 seconds, 56°C for 20 seconds and 68°C for 5 minutes. All amplicons were held at 4°C 

until removed from the thermal cycler. 

2.6.2 PCR amplicon assessment 

Prior to pooling, PCR products from the first and last row of each plate were either assessed 

using agarose gel electrophoresis or quantified using a fluorescence-based assay to determine 

if the amplification was successful. In general, gel electrophoresis was used for amplicon 

assessment prior to library preparation with TruSightHLA kits whereas quantification was 

performed if the DNA libraries were prepared using the GenDx protocol. Where either method 

indicated failure of amplification, the PCR for the respective locus was repeated, as described 

in 2.6.1. 

2.6.2.1 Agarose gel electrophoresis 

For each sample evaluated, 2µl of PCR product was run on a 1% agarose gel (w/v) in 0.5X TBE 

buffer (Thermo Fisher Scientific) stained with SafeView nucleic acid stain (NBS Biologicals Ltd). 

Gels were visualised under UV light using the Alpha Imager system and Alpha View software 

v1.3.0.7 to determine the presence or absence of an amplicon. 

2.6.2.2 Quantification of PCR amplicons 

PCR amplicons were quantified with the Quant-iT™ BR Assay (Invitrogen) according to the 

protocol described in 2.4.1. 

2.6.3 Amplicon pooling 

Seven microlitres of amplicon for HLA-A, B and -C from respective PCR plates for each sample 

were added to a clean PCR plate either manually or using a Biomek® NXP multichannel liquid 

handling workstation (Beckman Coulter) so that the resulting pooled plate containing 21µl of 

pooled amplicon in each well of a 96 well plate (Figure 2.2) 
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Figure 2.2 Summary of the PCR amplification and pooling workflow. Once purified and 

normalised, each genomic DNA (gDNA) sample was amplified for HLA-A, -B and –C. Following 

successful amplification, 7µl of each amplicon was pooled into the respective wells of a single 

96 well plate. 

 

2.6.4 DNA library preparation 

Two commercial kits were used to prepare pooled amplicon libraries for sequencing on the 

MiSeq. Both approaches employed enzymatic fragmentation followed by a limited PCR 

amplification before combining each prepared sample to form a pooled amplicon library as 

outlined in Figure 2.3.  

 

 

Figure 2.3 Summary of workflow for DNA library preparation. Enzymatic fragmentation of 

prepared amplicons was followed by adapter ligation. A limited PCR then attached unique 

sample multiplex identifiers and Miseq compatible sequences. Finally each prepared library was 

pooled into a single tube prior to downstream sequencing. A maximum of 180 samples were 

pooled for a single MiSeq run, consisting of libraries from 2 plates with 90 samples per plate. 
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Pooled DNA amplicons were prepared for sequencing by following either a modified version of 

the TruSight™ HLA preparation protocol (Illumina) or using NGSgo® library preparation kits 

(GenDx, Utrecht). The TruSight HLA protocol was initially employed as part of beta testing for 

Illumina, and provided free of charge. During the early stages of this study it was also the only 

library preparation protocol that had more than 96 indexes available.  NGSgo® was selected for 

library preparation following the release of a 384 index set by GenDx. The key differences 

between each protocol are shown in Table 2.1 but each approach resulted in DNA fragments 

prepared from whole HLA gene amplicons labelled with sample-specific combinations of 

indices linked to MiSeq specific adapters in preparation for downstream sequencing. 

 

Process step  TruSight HLA (Illumina) NGSgo® (GenDx) 

Quantification of amplicons N/A Yes 

Purification of amplicons Bead based N/A 

Normalisation of amplicons Bead based Biomek workstation 

Tagmentation Yes Yes 

Index PCR Yes Yes 

Pooling Yes Yes 

Table 2.1 Comparison of commercial kits employed for DNA library preparation. Similarities 

and differences are shown for the key steps of each protocol prescribed by Illumina and GenDx 

for their respective DNA library preparation kits, TruSightHLA™ and NGSgo®, respectively. The 

process starts with pooled whole HLA gene amplicons for each sample and results in a pool of 

up to 90 samples prepared for sequencing HLA-A, -B and –C on the MiSeq NGS platform. 

 

2.6.3.1 TruSight™ HLA sequencing panel library preparation 

Pooled amplicons were treated to remove impurities and small DNA fragments by following 

the Trusight™ HLA PCR clean up protocol but adding only 21µl of sample purification beads 

(SPB) rather than the 45µl indicated to maintain the 1:1 bead to amplicon ratio. Thereafter, 

DNA libraries were prepared according to the TruSight™ HLA sequencing panel library 

preparation guide, version August 2014.  

Briefly, normalisation was achieved using a bead based method with subsequent tagging and 

fragmentation, so called ‘tagmentation’, performed whilst the amplicons were still attached to 

the normalisation beads. Eluted fragments were purified using 0.5X SPB to remove excess 

reagents and smaller fragments. This was followed by PCR amplification of the tagmented 

DNA, utilising Nextera XT Index sets A, B or C (Illumina). Following a final clean up with 0.5X 
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SPB, 5µl from each well were pooled into a single 1.5ml tube for each plate processed to form 

a pooled amplicon library. 

2.6.3.2 NGSgo® Library preparation 

Pooled amplicons were quantified using the Quant-iT™ BR Assay, as described in 2.6.2.1. 

Values obtained from the FiltermaxF3 were then imported into a spreadsheet with embedded 

macros which calculated the volumes of sample and NFW required for normalisation. The 

macro produced TFF which was utilised by a Biomek NXP Span-8 workstation (Beckman 

Coulter) to normalise each sample to 10ng/µl. Where the concentration was below 10ng/µl 

amplicon was transferred neat.  

Following purification and normalisation, DNA libraries were prepared with NGSgo® reagents in 

accordance with manufacturer’s instructions. Briefly, fragmentation, end repair and dA tailing 

of each sample was performed using NGSgo®FragX reagents. Adapter ligation with NGSgo®LibrX 

kits was followed by purification and size selection using 0.45X AMPure beads (Beckman 

Coulter). Indexing PCR utilised unique combinations of barcode indices from the NGSgo®IndX 

384 set. Following a final clean up with 0.6X AMPure beads, 5µl from each well were pooled 

into a single 1.5ml tube for each plate processed to form a pooled amplicon library (PAL). 

2.6.5 Assessment of the pooled amplicon libraries 

Each PAL was assessed by one or both methods prior to sequencing to ensure it contained 

sufficient prepared library of the correct size to obtain a quality sequence. The 2100 

Bioanalyser (Agilent) provided data on fragment size and molarity and was mainly employed in 

earlier experiments and for troubleshooting purposes due to the cost of the Bioanalyser chips. 

The Qubit® measured the total concentration of the library but did not provide data on quality. 

2.6.5.1 2100 Bioanalyser 

A 1µl aliquot of each PAL was assessed using the Agilent High Sensitivity DNA Kit on the 2100 

Bioanalyser system (Agilent Technologies, Inc) in accordance with the manufacturer’s 

instructions. The mean fragment size and profile was determined using the associated 2100 

Expert software v1.03 (Agilent Technologies, Inc). 

2.6.5.2 Qubit® 

Determination of concentration was performed in triplicate using the Qubit® dsDNA HS assay 

(Life Technologies). For each PAL, a 5µl aliquot was made up to 200µl with Qubit® working 

solution in thin-walled 0.5ml tubes (Qubit® Assay tubes) and measured using a Qubit® 2.0 

Fluorometer in accordance with the Qubit® dsDNA HS protocol. 
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2.6.6 Sequencing on the MiSeq 

Each PAL was diluted in NFW as required to produce a final target concentration of 17pM. Ten 

microlitres of diluted PAL was added to an equal volume of freshly prepared 0.1N NaOH in a 

1.5ml tube, mixed and incubated for 5 minutes at room temperature. This was followed by the 

addition of 980µl of Hybridisation buffer (Illumina) to form the diluted amplicon library (DAL), 

inverted to mix. Following preparation and loading of the flow cell, 600µl of DAL was added to 

a thawed v2 MiSeq reagent cartridge and loaded onto the MiSeq platform (Illumina), in 

accordance with the MiSeq system user guide (Illumina). Sample identifiers and their 

respective multiplex indices were recorded along with run parameters on the linked sample 

sheet. MiSeq run parameters were set to 2 x 251 cycles of paired end sequencing using a 

FASTQ only analysis application with adapter trimming. 

2.6.7 Data analysis  

Primary data analysis was performed using MiSeq Reporter v2.5.1 (Illumina) to generate a pair 

of FASTQ files for each sample. FASTQ files generated from the MiSeq run were then analysed 

using HLA specific analysis software, NGSengine (GenDX). The version of software and 

IMGT/HLA database used was dependent on the date analysis was performed. Analysis 

preferences were set to process a maximum of 100,000 reads per FASTQ file, using the 

standard phasing algorithm with a minimum read depth threshold defaulted to 20 bases and 

balance threshold set to 20%.  

 

2.7 HPA genotyping by Targeted Next Generation Sequencing 

2.7.1 Assay Design 

A custom HaloPlex high sensitivity (HS) panel (Agilent Technologies, UK) was created using 

Agilent’s online SureDesign HaloPlex advanced design wizard. Designs were based on hg19 

GRCh37 references sequences (Table 2.2), with target sources obtained from the RefSeq 

database (O'Leary et al., 2016). Target parameters for each gene were set to include all coding 

exons with an extension of 50 bases from the respective 5’ and 3’ ends of each region.  
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Gene  RefSeq Target ID (based on GRCh37 reference sequence) 
 

ITGB3 NM_000212 
GP1BA NM_000173 
ITGA2B NM_000419 
ITGA2 NM_002203 
GP1BB NM_000407 
CD109 NM_133493 

Table 2.2 Target sequences employed for the bespoke HaloPlexHS design. RefSeq target 

identifiers (ID) shown were entered into the Agilent SureDesign Haloplex advanced design 

wizard. Target IDs were based on the GRCh37 reference sequences to ensure compatibility with 

the SureDesign software. 

 

2.7.2 Targeted enrichment  

Using the bespoke HaloPlexHS design as described in 2.7.1, DNA libraries were prepared by 

following the HaloPlex HS target enrichment system protocol vC0 December 2015, outlined in 

figure 2.4. Briefly, genomic DNA (gDNA) was quantified as described in section 2.4 and diluted 

to 1.8ng/µl in 10mM Tris buffer pH 8.5. Each diluted gDNA sample was digested with a panel of 

16 restriction enzymes in the form of eight double digests for 30 minutes at 37°C along with an 

enrichment control DNA sample (ECD) provided with the kit. The restriction digest was 

validated by analysing 1:1 dilutions of inactivated ECD reactions on the 2100 Bioanalyser 

system (Agilent Technologies, Inc) using the Agilent High Sensitivity DNA Kit in accordance with 

the manufacturer’s instructions.  

Once digestion was confirmed, gDNA restriction fragments from each sample were pooled and 

hybridised to the custom HaloPlex HS probe library, with simultaneous incorporation of unique 

indexing primers occurring at 58°C for 2 hours. Following removal from the hybridisation 

buffer using AMPure XP beads (Beckman Coulter, UK), ligation reagents were added to the 

circularised fragments and incubated in a PTC-225 thermal cycler (MJ Research) at 55°C for 10 

minutes to close nicks in the probe-target DNA hybrids.  

Streptavidin labelled Dynabeads (Thermo Fisher Scientific, UK) were used to capture the 

biotinylated targets which were then amplified in a 9700 thermal cycler (Perkin Elmer) using 

the following PCR program: 98°C for 2 minutes; 25 cycles of 98°C for 30 seconds, 60°C for 30 

seconds and 72°C for 1 minute; 72°C for 10 minutes and held at 8°C. PCR products were 

subsequently purified with AMPure XP beads and evaluated with a Bioanalyser 2100 (Agilent 

Technologies, UK) or quantified using a Qubit (Thermo Fisher Scientific, UK), as described in 

2.6.5. 
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2.7.3 Pooling of libraries 

Prepared DNA Libraries were combined for downstream sequencing by either equimolar 

pooling or pooling in equal volumes. Each pooled library was validated with a Bioanalyser 2100 

to assess fragment size and concentration (see 2.6.5) and normalised to approximately 4nM.  

2.7.4 Sequencing on the MiSeq 

Based on the Illumina MiSeq System Denature and Dilute Libraries Guide, 10pM of the pooled 

library was then loaded onto a MiSeq (Illumina) for 2 x 151 paired-end sequencing using either 

a MiSeq compatible Nano or Standard v2 cartridge and flow cell. The MiSeq Reporter (MSR) 

software (Illumina, Cambridge) settings were adjusted to generate FASTQ files for index reads. 

2.7.5 Data analysis 

Primary data analysis was performed using MSR to generate a pair of FASTQ files for each 

sample. FASTQ files generated were then analysed using SureCall NGS data analysis software 

v3.0.3.1 (Agilent Technologies, UK). 
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Figure 2.4 Overview of the HaloPlexHS target-enrichment sequencing sample preparation 

workflow. Sample DNA was first digested and denatured followed by hybridisation with the 

bespoke HaloPlexHS probe library when unique indexing primers were also incorporated. This 

was followed by purification and ligation of targets with each fragment then amplified using 

circularised PCR to prepare libraries for downstream sequencing. ©Agilent Technologies, Inc. 

2nd February 2017. Reproduced with Permission, Courtesy of Agilent Technologies, Inc. 
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3. HLA typing of platelet donors by next generation sequencing 

3.1 Introduction 

Providing suitable platelet transfusions for patients who are refractory to random platelet 

transfusions due to the presence of HLA alloantibodies requires a large panel of HLA defined 

platelet donors (Pavenski, Freedman and Semple, 2012). Approximately 2500 apheresis donors 

per annum are currently recruited by NHSBT for this purpose, with each donor typed for HLA 

on two separate occasions for quality reasons. This level of commitment to maintain an active 

and accurately typed donor panel is high and requires high-throughput genotyping techniques 

(Lucas, 2013).  

Numerous strategies are available for the selection of platelets to support refractory patients 

including the use of (a) cross-match negative (b) antigen avoidance and (c) HLA matched 

products (Kopko et al., 2015). HLA epitope-based matching (HEM) is a more recent approach 

based on compatibility of antigenic determinants, but accurate comparison of donor and 

patient intra and inter locus HLA is likely to require high resolution or allele level typing 

(Duquesnoy, 2011). High resolution HLA typing is typically performed by Sanger sequencing 

but this method is unsuitable for high throughput due to costs and logistical constraints.  

Next Generation Sequencing (NGS) is a novel approach to sequencing, with a massive increase 

in capacity over conventional technology (Metzker, 2010). Consequently, NGS been exploited 

for HLA typing in recent years, with laboratories adopting a variety of strategies ranging from 

imputation of HLA types from WGS data (Bauer et al., 2016) to targeted sequencing of the HLA 

gene (Ehrenberg et al., 2014), reviewed in section 1.6.1. Some of the reported approaches 

define HLA to the allele level, as required for HEM (Duquesnoy, 2008). 

The aim of this initial work was to investigate the feasibility of applying NGS technology for 

HLA typing platelet donors. Included was an investigation of different approaches for PCR 

template generation and for preparation of DNA libraries prior to sequencing on the MiSeq 

NGS platform. Validity of results was provided by the development of stringent acceptance 

criteria and concordance with historical HLA data. 
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3.2 Materials & Methods 

3.2.1 Sample preparation  

Blood samples were collected from 540 random English apheresis platelet donors who had 

been HLA typed on a previous occasion. Samples were sent to the H&I laboratory at NHSBT, 

Colindale and DNA extracted from 200µl blood in batches of 90 samples using the 

QIAsymphonySP. Following extraction DNA was purified using AMPure beads, quantified using 

the Quant-iT™ broad range assay kit and subsequently normalized to 25ng/µl using the Biomek 

FXP laboratory workstation (Figure 3.1), detailed in sections 2.1 to 2.2. 

 

 

Figure 3.1. Summary of donor sample preparation prior to PCR amplification. Following 

platelet donor blood sample collection at NHSBT donor clinics, DNA is extracted, purified, 

measured and normalised to ensure the quantity and quality is optimal for whole HLA gene PCR 

amplification. 

 

3.2.2 PCR amplification 

The first 90 samples prepared (plate #457) were amplified using the TruSight HLA primers, 

which was performed as part of an early access trial using kits supplied by Illumina. However, 

due to the limited amount of reagents provided, instead of using the prescribed 50µl volumes 

the PCR reaction was reduced to 10µl and set up as described in section 2.6.1.1. The remaining 

450 samples contained within 5 plates (#459, #462, #464, #467 & #469) were amplified using 

previously published primers (Shiina et al., 2012) but with an in-house method (section 

2.6.1.2). Modifications from the original conditions were made during optimization and 

Platelet donor sample collection 

•Collected at NHSBT clinics in England 

DNA extraction 

•Using the QIAsymphonySP & DNA mini kits  

DNA purification 

•AMPureXP beads & Biomek FX robot 

DNA quantification 

•Using Quani-iT kits & FiltermaxF3 plate reader 

DNA normalisation 

•Dilution using Biomek FX robot  
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included a change to the reaction volume (10µl instead of 20µl) and adaptation of thermal 

cycling parameters. The addition of 5% DMSO (v/v) in the reaction mix was also required for 

HLA-C reactions. 

3.2.3 PCR assessment and amplicon pooling 

A 2µl aliquot was taken from the first and last row of each amplification plate to determine if 

the amplification had been successful. The method used for this assessment was determined 

by the downstream library preparation protocol, with agarose gel electrophoresis employed 

prior to TruSight library preparation and quantification used before the GenDx library 

preparation protocol (section 2.6.2). Any plates that indicated poor or failed amplification 

were repeated before proceeding. Following successful amplification, 7µl of PCR product 

generated for HLA-A, -B and –C for each sample were pooled to form a single plate of pooled 

amplicon (section 2.6.3). 

3.2.4 Library preparation 

The TruSight HLA library preparation method (section 2.6.3.1) was used to prepare the first 

two plates as reagents were provided free of charge by Illumina as part of an early access trial. 

At that time, Illumina were also the only provider of sufficient indices to allow multiplexing of 

>96 samples in a single MiSeq run. Subsequent libraries were prepared using the NGSgo® 

protocol (section 2.6.3.2) following the release of a 384 set of compatible indices by GenDx. In 

addition this kit had recently been validated for use by the H&I laboratory for sequencing adult 

volunteer haematopoietic stem cell donors for HLA-A, -B, C-, DRB1 and –DQB1. Table 3.1 

summaries the protocol used for each plate. 

Plate ID Amplification protocol Library preparation 
 

#457 TruSightHLA (Illumina) TruSightHLA (Illumina) 
#459 In-house TruSightHLA (Illumina) 
#462 In-house NGSgo® (GenDx) 
#464 In-house NGSgo® (GenDx) 
#467 In-house NGSgo® (GenDx) 
#469 In-house NGSgo® (GenDx) 

Table 3.1. The PCR protocol and library preparation methods used for each plate of DNA. Six 

plates were amplified, with the first plate using Illumina’s PCR primers and the remainder by 

the in-house approach. Library preparation was performed using the TruSightHLA™ kits for 

plates #457 and #459 with the other plates prepared with NGSgo® reagents. 

 

Both library preparation methods required some modification from their prescribed protocols, 

as each was designed by the respective manufacturer to process amplicons from a greater 

number of HLA loci and/or a larger PCR reaction volume than was produced by HLA class I 
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amplifications in this study. Therefore, rather than the preferred approach of combining 

amplicons based on concentration to avoid excess sequencing coverage of one locus to the 

detriment of another, HLA-A, -B and –C were pooled in equal volumes to ensure the minimum 

volume required by the downstream NGSgo® library preparation protocol was met.  

For the TruSightHLA protocol, PCR products were pooled prior to purification and 

normalization, which differed from Illumina’s prescribed process which instructs preparation 

of amplicons separately. This adjustment was made to maximize the number of samples that 

could be sequenced with the reagents provided by Illumina. This change also required a 

modification to the volume of sample purification beads used for the initial purification of 

pooled amplicon which had to be reduced from 45µl to 21µl to maintain the correct 1:1 bead 

to amplicon ratio.  

In order to maintain sample integrity, the index combinations used for each library preparation 

were carefully selected to ensure that each set provided a unique combination for each 

sample sequenced on a single MiSeq flow cell. Details of index combinations used were 

recorded on the respective sample sheets. 

3.2.5 Sequencing on the MiSeq 

To maximize the sequencing capacity of each run of the MiSeq, pooled amplicon libraries 

(PALs) prepared from two plates were combined together for sequencing (Table 3.2). Each PAL 

was assessed and diluted (as detailed in sections 2.6.5 and 2.6.6) prior to combining with its 

pair in equal volumes. The final PAL was then quantified using the Qubit® dsDNA HS assay prior 

to dilution, denaturation and loading onto the MiSeq. 

MiSeq run Plate IDs of the combined PALs 
 

1 #457, #459 
2 #462, #464 
3 #467, #469 

Table 3.2 Details of the pooled amplicon libraries (PALs) combined for each MiSeq run. Plate 

IDs are listed for each PAL and the combination of prepared libraries used for the three MiSeq 

runs. 

 

3.2.6 Data analysis  

FASTQ files generated by Miseq Reporter (MSR) software were transferred from the MiSeq to 

a high specification PC for analysis using HLA specific analysis software. Plates #457 & #459 

were originally analysed with NGSengine v1.8 but were subsequently reanalysed with the later 

release v1.9 along with the remaining plates, to ensure the data was compared to the latest 

sequence data made available with IMGT/HLA 3.20. Each result was scrutinised and reviewed 
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against the acceptance criteria listed in Table 3.3. Mismatched nucleotide positions in either 

exons or introns were inspected to determine if they were genuine mutations or merely 

artefacts, assessing base calls in conjunction with adjacent positions. All homozygous results 

were scrutinised using the statistics data tab of the NGSengine software, which provided a 

visual representation of allele balance across each gene.  

Quality parameter Acceptance criteria 

Average depth of coverage >100 bp 

No. of genotype matches 1 

No. of exon mismatches 0 

No. of intron mismatches 0 

Homozygous  None 

Atypical HLA associations None 

Presence of rare HLA alleles None 

Table 3.3 Quality parameters and respective acceptance criteria for data analysis using 

NGSengine analysis software. Each result was scrutinised against these parameters to review 

sequence quality and accuracy of HLA allele assignment. 

 

3.2.7 HLA concordance with historical HLA types 

Following scrutiny of each result, a concordance check was performed between the HLA types 

generated by NGS and the historical HLA results. Where the historical HLA type consisted of an 

HLA string rather than an individual allele, NGS results were considered concordant as long as 

the determined allele (or alleles if ambiguous) was contained within the historical HLA string. 

For example, an NGS result of HLA-C*03:04:01:01 was considered concordant with the original 

type as it is included in the HLA string determined by PCR-SSOP below, as underlined in bold:  

C*03:02:01;*03:02:02:01;*03:02:02:02;*03:02:02:03;*03:02:03;*03:02:04;*03:02:05;*03:02:0

6;*03:02:07;*03:02:08;*03:02:11;*03:02:12;*03:04:01:01;*03:04:01:02;*03:04:02;*03:04:03;*

03:04:04;*03:04:05;*03:04:06;*03:04:07;*03:04:08;*03:04:09;*03:04:10;*03:04:12. 

For the few historical results that were at first field only, results were considered concordant if 

the first two digits were the same as the original HLA type. 
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3.3 Results 

DNA was extracted and purified resulting in an average concentration of 17.2ng/µl (range from 

0 to 47.9ng/µl). PCR amplification was performed on DNA normalised to 25ng/µl (or used neat 

if below target concentration) 

3.3.1 PCR amplification 

Agarose gel electrophoresis was used to determine the success of PCR amplification for plates 

#457 and #459 only. PCR products of the expected length were observed in aliquots taken 

from the first and last row of each successfully amplified plate (Figure 3.2)   

  

  A:TruSightHLA amplicons from #457 HLA-A       

               A1       B1      C1      D1        E1       F1        G1      H1            A12    B12       

 
 
 B: In-house amplicons from #459 HLA-C 

      A1        B1       C1        D1        E1        F1       G1        H1             A12    B12                   

 
Figure 3.2 Example of HLA PCR amplicons run on a 1% agarose gel. Each lane is labelled with 

the respective plate position. Molecular weight marker (100bp) is highlighted by the red box. 

The top image shows PCR products taken from plate #457, amplified with Illumina’s 

TrusightHLA primers for HLA-A. The bottom  image shows HLA-C amplicons from plate #459, 

generated using in-house PCR  Specific PCR products are approximately 4kb in size. No positive 

control was included as all samples had been previously HLA typed and expected to contain a 

PCR product. Negative controls are not shown. 

 

Amplicons from the first and last rows of the remaining plates were quantified using the 

Quant-iT BR assay prior to pooling and normalisation (Table 3.4). The concentration of HLA-C 

amplifications shown for plate #467 were those obtained from repeat amplification as the 

original PCR had failed due to poor plate sealing.  
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Plate ID HLA-A amplicon mean 
concentration (ng/µl) 
 

HLA-B amplicon mean 
concentration (ng/µl) 
 

HLA-C amplicon mean 
concentration (ng/µl) 
 

#462 20.5 45.9 29.9 
#464 40.1 71.2 28.7 
#467 64.9 82.6 42.8 
#469 68.9 72.4 44.3 

Table 3.4 Mean concentration of PCR amplicons obtained for each HLA locus. A 2µl aliquot of 

each amplicon was taken from the first and last rows of the respective plates following PCR 

amplification. The average concentration was determined from the values obtained for each 

plate. 

 

3.3.2 Library quantification  

Concentration and fragment size determined for each pooled amplicon library are shown in 

Table 3.5. The concentration obtained for each library was quite varied, ranging from 0.6 to 

11.3ng/µl based on Qubit values with no correlation to library preparation method. The 

average fragment size of each library did appear to relate to the kit used, with GenDx library 

preparation producing smaller fragments on average. The fragment size distribution profile 

also looked atypical for PAL produced from plates #424 and #464 with NGSgo® kits, containing 

smaller fragments when compared to those generated by TruSightHLA, shown in Figure 3.3, 

although the reasons for this observation were not clearThis data was not available for the 

remaining plates prepared using NGSgo® kits. 

Plate 
ID 

Qubit® values 
(ng/µl) 

Bioanalyser values 
(ng/µl) 

Fragment size (kb) Library preparation kit 

#457 2.7 3.08 1764 TruSightHLA 
#459 0.6 0.51 1434 TruSightHLA 
#462 2.5 0.998 567 GenDX 
#464 1.9 1.11 576 GenDX 
#467 11.3 n/a n/a GenDX 
#469 8.6 n/a n/a GenDX 

Table 3.5 Mean concentrations and fragment sizes determined for pooled DNA libraries 

prepared from each plate. Concentrations were determined using the Qubit and 2100 

Bioanalyser assays with the fragment size determined using the Bioanalyser assay only. (n/a = 

no data obtained) 
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Figure 3.3 Atypical fragment size distribution for pooled amplicon libraries prepared from 

plates #462 and #464. (A) shows the expected bioanalyser trace, as observed for pooled 

amplicon library (PAL) prepared from plates #457 and #459. The bioanalyser profiles observed 

for PALs prepared from plates (B) #462 and (C) #464 had lower fluorescent units (FU) and had a 

lower and broader size range (bp). 

3.3.3 Sequencing quality  

The cluster density of the flow cell determines the amount of sequencing data generated, with 

lower cluster density producing a lower output. However, over clustering can also result in 

suboptimal data acquisition as fewer reads pass the filter due to reduced signal purity. This 

leads to higher background, poor base calling and, if excessive, over clustering can ultimately 

cause run failure (Illumina, 2016a). Cluster density on the flow cell was variable, ranging from 

345 to 960 K/mm2, with clusters passing filter > 88% on each occasion (Table 3.6).  

Run No. & ID Method of library 
preparation 

Cluster density % CPF Mean read 
depth 

1  #457#459 
 

TruSightHLA 820 94.3% 1695 

2  #462#464 NGSgo 
 

960 88.1% 222 

3  #467#469 NGSgo 
 

345 95.9% 498 

Table 3.6 MiSeq parameters observed for each sequencing run. Cluster density, % clusters 

passing filter (CPF) and mean read depth obtained according to MiSeq run and method used for 

library preparation  

 

A 

B C 
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Following the completion of each run, FASTQ files were generated by MSR for all samples and 

successfully transferred for analysis on the PC using NGSengine. Quality indicators were 

reviewed for each sample and are summarised in Table 3.7. The number of reads analysed 

varied according to sample and HLA locus, with an overall average of 19032 reads processed 

by NGSengine but ranging from the maximum of 200,000 to 0 where no suitable sequence 

data had been generated. For accepted sequences the minimum number of reads processed 

per HLA locus was 998. An average of 862x per base coverage depth was observed, although 

this varied between the three experiments performed, with a mean of 1910, 207x and 369x 

respectively. Read length ranged from 38bp to a maximum of 250bp although for sequences 

that were subsequently accepted the range was narrower with a minimum of 105bp for each 

read.  

Quality parameter  All sequence data Accepted sequences only 

Number of reads 19032 (0-200,000) 18799 (998-200,000) 
Read length (bp) 190 (38-250) 192 (105-236) 
Insert size (bp) 339 (0-633) 340 (59-633) 
% Mappability to HLA genes 74.6% (0-99%) 75.2% (9-99%) 
Read depth (bp) 862 (0-8752) 807 (36-7788) 
No. of phased regions 1.9 (1-39) 1.6 (1-21) 

Table 3.7. Summary of quality parameters observed for HLA sequence data. Results from all 

sequences generated from the three MiSeq runs, regardless of quality, compared with quality 

parameters observed with valid sequences only. Values are shown as mean average for each 

parameter with range in parentheses. 

The percentage of reads that map uniquely to a reference sequence, so called ‘mappability’, 

can have a significant impact on read depth (Sims et al., 2014). The range of mappability 

observed was very wide, even for sequences that met all acceptance criteria. However, there 

was a clear difference between the % mappability of reads generated using the TruSightHLA 

library preparation protocol used for plates #457#459 compared to those prepared using the 

NGSgo® kits, with an average of 94.0% and 64.8% respectively (Figure 3.4).  
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Figure 3.4 Percentage mappability of sequences generated. The range and average 

mappability of reads generated from each sequencing experiment, with the mean value 

represented by the triangle. 

 

3.3.4 HLA typing results 

In this study 540 samples were sequenced for HLA-A, -B and -C using the NGS protocols 

described above. Of the 1620 sequences performed, a total of 1466 (90.5%) met the defined 

quality acceptance criteria (Table 3.8). 

Run ID 
 

HLA-A HLA-B HLA-C 

#457 89    (98.9%) 49    (54.4%) 89    (98.9%) 
#459 86    (95.6%) 90    (100%) 89    (98.9%) 
#462 76    (84.4%) 83    (92.2%) 85    (94.4%) 
#464 83    (92.2%) 85    (94.4%) 82    (91.1%) 
#467 88    (97.8%) 88    (97.8%) 86    (95.6%) 
#469 75    (83.3%) 72    (80%) 70    (77.8%) 
Total 497  (92.0%) 468  (86.7%) 501  (92.8%) 

Table 3.8 The number of successful HLA types obtained per plate. Results are presented 

according to the run identifier (ID) and HLA locus. The percentage of successful results obtained 

for each plate are shown in parentheses. 

In total 441 samples (82.7%) produced an allele level genotype for HLA-A, -B and -C. Of the 

remaining samples 69 failed to sequence one HLA locus, 5 failed for two HLA loci and 25 failed 

to produce valid sequence for any HLA locus, summarised in Figure 3.5. 
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Figure 3.5. The percentage of sequences failing to meet quality acceptance criteria. Results 

are displayed according to HLA locus. The bar labelled ‘all loci’ shows the percentage of 

samples that failed to sequence for any HLA locus. 

 

The number and HLA loci of failed sequences varied between each plate of DNA. Notable 

differences included a high rejection rate for HLA-B sequences in plate #457 and a higher than 

average number of samples failing for all HLA loci on plate #469 (Figure 3.6).  

 

Figure 3.6. The number of samples with rejected sequences. Results are displayed according 

to plate identifier (ID) and HLA locus. 

 

The reasons for rejected sequence also varied according to HLA locus (Figure 3.7). Low 

coverage was the primary reason for samples failing for all HLA loci and for HLA-A sequences 

deemed invalid, whereas HLA-B sequences were predominantly rejected due to the production 
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of ambiguous results. Allele imbalance was observed in some samples for HLA-B and -C but not 

for HLA-A. Three samples were rejected due to the presence of putative novel mutations in 

exon regions of the respective HLA-B or HLA-C genes (see 3.3.4.4). 

 

Figure 3.7 A summary of reasons for sequence rejection. Results are displayed according to 

HLA locus and reason for rejection.  

 

3.3.4.1 Low sequencing depth 

The sequence alignment of all samples with an average per base depth of coverage of <100 

were carefully scrutinised. Where coverage was even and other quality parameters met, the 

result was accepted. However, NGSengine did not assign base calls for positions below the 

20bp default cut-off so these results, or those where other quality flags were present 

alongside low coverage, were rejected. Poor per base depth of coverage was the primary 

reason for samples that failed for all HLA loci. Low coverage was also the cause of all failures at 

the HLA-A locus, for 6 samples for HLA-B and 2 for HLA-C. Variation in read depth was also 

observed for each plate, with those prepared using the TruSightHLA kits resulting in fewer 

rejected sequences due to low coverage compared to the NGSgo kits (Figure 3.8). 
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Figure 3.8 Percentage of sequences rejected due to poor per base depth of coverage. Results 

are displayed according to plate ID. Bars in blue represent libraries prepared with the 

TruSightHLA kits. The red bars signify plates prepared with NGSgo® reagents. 

  

3.3.4.2 HLA ambiguity 

The primary reason for rejected sequences at the HLA-B locus was ambiguity, observed in 32 

samples. Ambiguity was indicated when the number of HLA genotypes matching to the NGS-

generated nucleotide sequence was >1 and all other sequencing criteria were met. All 

examples resulted from TrusightHLA HLA-B amplification products. Of these, 20 sequences 

analysed were unable to resolve HLA-B*44:01:01:01 and B*44:19N due to NGS base calls 

beginning 10 nucleotides from the start of exon 1. In the example shown, one of the alleles 

(B*40:01:02) has been determined but the software cannot unambiguously assign the second 

allele, as it is unable to discriminate between B*44:02:01:01 and the null allele B*44:19N 

which would be defined by Guanine or a deletion at position 5, respectively (Figure 3.9). The 

remaining 12 ambiguous types included three instances of an HLA-B*27:05/B*27:13 ambiguity 

with the remaining HLA-B alleles ambiguous at fourth field. 
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Figure 3.9 Ambiguity with HLA-B*44 alleles observed following TrusightHLA amplification. 

Screenshots from NGSengine showing the beginning of exon 1 in a sample with ambiguity 

between B*44:02:01:01 and B*44:19N. The top panel shows the expected base call at position 

5 if the second allele is a B*44:02:01:01 and the bottom panel shows a deletion at position 5 

required to assign B*44:19N, both circled in blue. The black arrows indicate the beginning of 

the aligned sequences generated by NGS at position 10 of exon 1. 

 

3.3.4.3 HLA allele imbalance 

In cases of imbalanced amplification where heterozygous positions for the minor allele were 

below the default 20% balance threshold, samples typed as apparent HLA homozygotes. 

However, the presence of a ‘hidden’ second allele could be visualized (Figure 3.10) and the 

allele balance threshold subsequently amended, although a lower limit of 10% for imbalance 

was maintained for all analyses.  

 

Figure 3.10 A screen shot of an imbalanced sequence. The ‘hidden’ minor allele base positions 

in red are highlighted by the green box, showing as approximately 10% of the overall sequence. 

The major allele alongside homozygous positions are shown in blue at the top of the image. 

The remaining red base positions towards the bottom of the image represent background 

noise. 
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A total of 15 results were rejected due to apparent bias in amplification, where one allele in a 

heterozygous sample failed to reach the minimum threshold of 10%. Of these, seven were 

HLA-B sequences derived from amplicons generated using TruSightHLA primers from Illumina, 

with the majority resulting from poor amplification of HLA-B*40:02:01. The remaining eight 

imbalanced sequences were observed in samples heterozygous for HLA-C, all due to inefficient 

amplification of HLA-C*07:04:01 using in-house PCR. 

3.3.4.4 Novel exon mutations 

Putative novel mutations in the exon regions of three samples from plates #464 and #469 were 

observed, as detailed in Table 3.9. 

Plate Sample ID HLA allele Nucleotide 
position 

Exon Mutation 
identified 

#464 S142 C*03:03:03 2568 6 G>A 
#467 S70 B*15:10:01 42 1 G>A 
#467 S33 C*03:04:01:01 1810 4 T>A 

Table 3.9 Putative novel mutations observed in plates #464 and #467. Identifiers (ID) of each 

sample containing a putative novel HLA allele along with each respective mutation and its 

location in the HLA allele affected. 

 

3.3.4.5 Intron mismatches 

Mismatches with the reference sequence within introns were observed in 220 sequences 

analysed using NGSengine v1.9 that were otherwise considered acceptable. Reasons for 

intronic mismatching were variable and included the presence of putative novel mutations, 

artefacts or inconclusive base calls and from poor phasing of sequencing fragments. Another 

common reason for apparent mismatch with the reference was lack of sequence data available 

from IMGT/HLA, where GenDx had inserted ‘presumed’ sequences for affected alleles but 

which was discordant with the sequences obtained in this cohort (Figure 3.11). 
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Figure 3.11. Reasons for intron mismatches to the reference sequence. Intron mismatches 

were detected in 220 sequences analysed using NGSengine v1.9. An explanation for these 

observed mismatches are displayed as a percentage of the overall number of intron 

mismatches. 

 

Sequences with intron mismatches were subsequently re-analysed following the release of 

NGSengine v1.10 soon after the original data was produced, resulting in 28 (12.7%) of these 

anomalies being resolved. Of these, two samples were typed following removal of intron 

artefacts.  A further two samples containing the allele HLA-B*44:27 were successfully 

reanalysed using the updated software, both previously having failed to phase correctly. The 

remaining 24 samples were resolved because previously undefined HLA sequences had been 

added to the updated IMGT/HLA database (v3.22) which was included in the v1.10 NGSengine 

release (Table 3.10). 
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HLA alleles resolved with NGSengine v1.10 
 

No. of examples in cohort 
 

 A*03:01:01:05 1 

 A*03:01:01:06 1 

 A*24:02:01:04 1 

A*24:02:01:05 1 

A*68:01:02:03 2 

B*14:02:01:02 1 

B*15:01:01:04 1 

B*15:03:01:02 1 

B*44:03:01:02 1 

B*47:01:01:03 1 

C*04:01:01:06 11 

C*17:01:01:05 2 

Table 3.10 HLA alleles resolved using NGSengine v1.10. The alleles in this table previously 

failed to type using NGSengine v1.9 indicating intron mismatches. Due to the inclusion of 

previously undefined sequences in IMGT/HLA release v3.22, these alleles were subsequently 

resolved. 

3.3.5 HLA Concordance  

Concordance with historical HLA results for the 1555 genotypes determined by NGS was very 

strong, at 99.2%, 97.9% and 97.9% for HLA-A, HLA-B and HLA-C respectively. Of the 26 results 

found to be discordant, 22 NGS derived sequences were of poor quality and were rejected. The 

remaining 4 discrepancies resulted from errors in the original typing, detailed in Table 3.11. 

Sample 
ID 

Batch 
ID 

NGS result Historical Typing result 

S17 PP462 B*27:05:02; 
B*52:01:01:02 

B27; B51 
 

S17 PP462 C*01:02:01; 
C*12:02:02 

Cw1; # 
 

S54 PP462 B*07:02:01; 
B*40:01:02 

B*07:02; B*40:02 
 

S174 PP469 C*04:01:01:01; 
C*08:92 

C*04:01:01:01/*04:01:01:02/*04:01:01:03/*04:01:01:04/*04:01:01:05/*04:01:
02/*04:01:03/*04:01:04/*04:01:05/*04:01:06/*04:01:07/*04:01:08/*04:01:09
/*04:01:10*04:01:12/*04:01:13/*04:01:14/*04:01:15/*04:01:16/*04:01:18/*0
4:01:19/*04:01:20/*04:01:21/*04:01:22/*04:01:23/*04:01:24/*04:01:25/*04:
01:26/*04:01:27/*04:01:30/*04:01:31/*04:01:32/*04:01:33/*04:01:34/*04:01
:35/*04:01:36/*04:01:38/*04:01:40/*04:01:41/*04:01:42/*04:01:43/*04:01:4
4/*04:01:45/*04:01:46/*04:01:47/*04:01:48/*04:01:49/*04:01:51/*04:05/*04
:07/*04:09N/*04:10/*04:18/*04:19/*04:20/*04:23/*04:24/*04:25/*04:27/*0
4:28/*04:30/*04:31/*04:33/*04:35/*04:38/*04:39/*04:40/*04:41/*04:43/*04
:44/*04:45/*04:46/*04:48/*04:49/*04:50/*04:51/*04:52/*04:53/*04:56/*04:
57/*04:59Q/*04:62/*04:63/*04:64:01/*04:64:02/*04:65/*04:66/*04:67/*04:6
9/*04:70/*04:72/*04:73/*04:75/*04:76/*04:78/*04:79/*04:81/*04:82/*04:83
/*04:84/*04:85/*04:86/*04:87/*04:88N/*04:89/*04:91/*04:92/*04:95N/*04:
96/*04:98:01/*04:98:02/*04:99/*04:101/*04:102/*04:104/*04:105N/*04:106
/*04:108/*04:109/*04:111/*04:115N/*04:116/*04:117/*04:118/*04:119/*04:
120/*04:121/*04:123N/*04:124/*04:126/*04:127/*04:128/*04:130/*04:131/
*04:132/*04:133/*04:134/*04:135/*04:136/*04:137/*04:138/*04:139/*04:14
1/*04:142/*04:143/*04:144/*04:146/*04:148/*04:149/*04:150/*04:151*04:1
52; 
 
C*08:02:04/*08:02:07 
 

Table 3.11 Details of NGS results found to be discrepant with the historical typing data. 

Discrepant alleles/antigens are highlighted in red. # = presumed homozygous.  
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3.4 Discussion 

A total of 540 samples obtained from English apheresis platelet donors were sequenced for 

HLA-A, -B and -C using an NGS approach as described above, with over 90% of the 1620 

genotypes performed meeting the stringent acceptance criteria. Reasons for rejection of the 

remaining 154 sequences varied according to amplification protocol and the method used for 

library preparation. 

3.4.1 Amplification failure 

Although the majority of samples amplified successfully, it is likely that some samples failed to 

sequence for one or more HLA locus because of poor amplification. However, only a 

proportion of PCR products were checked either by gel electrophoresis or quantification so it is 

not possible to identify those samples affected. Ideally all amplicons should have been checked 

prior to pooling and library preparation, but it was logistically challenging to repeat adhoc 

failures when all samples are contained within a 96-well plate. Therefore a decision to 

continue with library preparation was made unless the sampling of PCR amplicons indicated 

the entire plate of DNA failed to amplify, such as occurred for plate #467 for HLA-C. 

3.4.2 Ambiguity 

No ambiguous HLA results were produced following amplification with the in-house PCR 

protocol. However, use of the TruSightHLA primers for amplifying DNA from plate #457 

resulted in ambiguity for 12% of HLA-B genotypes. This can be explained by the primers used 

by the Illumina kit. Although the exact binding site and primer sequence is not disclosed by the 

manufacturer, the expected size of amplicon for HLA-B of 2.6kb quoted in the TruSight HLA 

sequencing panel library preparation guide is significantly smaller than the 4.1kb amplicon for 

HLA-A and 4.2kb for HLA-C. Scrutinising the results in more detail it was clear the HLA-B 

primers do not amplify the entire gene and thus some crucial polymorphic positions in exon 1 

were not sequenced, as shown in section 3.3.4.2. Conversely, in-house PCR amplification uses 

primers that bind outside the coding regions for each HLA class I gene, and therefore all 

positions that affect HLA allele assignment are determined. 

As the TruSightHLA primers were provided as part of an early access program, concerns 

regarding this ambiguity were raised with Illumina, noting that the in-house amplification 

protocol was superior to the commercial kit. It is worth noting that the later HLA sequencing 

panel released by Illumina in 2016 (TruSightHLA v2) claimed to amplify exons 1 to 6, producing 

a slightly longer product of 2.8kb for HLA-B (Illumina, 2016b). Although these primers have not 

been tested at NHSBT, a recent paper suggests the ambiguity for HLA-B has been improved in 

the updated protocol, with unambiguous typing at third field increasing from 84% using 
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TruSightHLA v1 PCR primers to 91% with the later version of the TruSightHLA kit (Profaizer et 

al., 2017). 

3.4.3 Allele imbalance 

Both amplification approaches resulted in allele bias for a number of samples, but the affected 

HLA loci differed according to protocol. TruSightHLA amplification produced imbalanced HLA-B 

sequences whereas in-house PCR affected HLA-C. Allele bias during amplification of a biallelic 

system such as HLA is a well documented issue (Lange et al., 2014; Ehrenberg et al., 2014; 

Nelson et al., 2015; Carapito, Radosavljevic and Bahram, 2016). During the optimisation phase 

of the in-house protocol, allele drop out of HLA-C*07:04:01 in heterozygous samples was 

observed. In an attempt to resolve this anomaly, both betaine and DMSO were tried as 

potential additives to the PCR reaction mix as they are well documented PCR enhancing agents 

(Chakrabarti and Schutt, 2001; Kang, Lee and Gorenstein, 2005; Strien, Sanft and Mall, 2013). 

Betaine appeared to have an inhibitory effect for HLA-C as no PCR product was obtained when 

it was added to the reaction mix. Use of 5% DMSO was then tested as modifications such as 

the addition of DMSO in HLA class I amplification reactions using the same primer designs has 

been previously reported to reduce allele bias (Ehrenberg et al., 2014). However although the 

addition of DMSO did result in some successfully amplified HLA-C*07:04:01 alleles, it did not 

produce balanced amplification in all samples, with only 4 of the 12 HLA- C*07:04:01 

amplifications meeting the minimum 10% threshold. This is the subject of further work to 

resolve. 

3.4.4 Low coverage 

Both methods used for library preparation produced even coverage across the HLA class I 

genes, comparing favourably with alternative methods such as the generic Illumina kit, 

Nextera XT, which demonstrates extreme bias across the HLA class I genes with coverage loss 

in GC rich regions (Lan et al., 2015). 

Average per base coverage depth for the majority of samples was above the arbitrary 

threshold of 100bp. This cut off was based on dialogue with colleagues although there is no 

consensus of opinion on minimum coverage depth for HLA typing by NGS (Shiina et al., 2012; 

Wang et al., 2012; Gabriel et al., 2014; Gabriel et al., 2014). The latest amendments to 

accreditation standards from the American Society for Histocompatibility and Immunogenetics 

do not specify a minimum average coverage but stipulate these values must be obtained from 

‘laboratory-generated validation data’ (ASHI, 2014). A more detailed assessment of results 

suggested that read depth <100bp alone did not invalidate the result. Consequently sequences 

with low coverage were accepted if other key quality parameters were met and an 

unambiguous HLA type was assigned. Interestingly, there was a higher percentage of 
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sequences rejected due to low coverage from DNA plates prepared with the NGSgo kits 

compared to the TruSightHLA library preparation protocol. The reasons for this are not clear, 

and do not seem to directly correlate with cluster formation on the flow cell.  

Samples that failed to produce coverage for any HLA locus were most likely due to lack of 

amplicon template or errors made during library preparation. Lack of template may have 

resulted from problems with the initial PCR, amplicon pooling or normalisation. The 

TruSightHLA protocol uses a bead-based normalisation compared to the quantification and 

subsequent dilution of pooled amplicons required prior to NGSgo® library preparation. 

Differences in approach to normalisation for the two protocols may affect the accuracy of 

template added to the tagmentation steps.  The size distribution of the pooled amplicon 

libraries shown in Figure 3.3 certainly suggests that the fragmentation process was less optimal 

when using NGSgo® library preparation kits compared to TruSight™HLA. Lack of sufficient 

template for tagmentation may result in over fragmentation resulting in reduced library yield 

and coverage drop out as small fragments are removed during the purification steps. Likewise, 

insufficient tagmentation may produce larger libraries that do not cluster efficiently on the 

flow cell (Illumina, 2015). It is possible that the bead-based normalisation is more accurate 

than using a manual normalisation process, resulting in a lower failure rate. 

An alternative explanation of the higher failure observed with the NGSgo® protocol might 

relate to the very small reagent volumes used compared to the TruSightHLA protocol, for 

example 1.25µl versus 5µl of each index added, respectively. Difficulties with pipetting during 

library preparation may have caused inaccurate measurement of reagents. Failure to add 

sufficient indexing primers may lead to inefficient amplification or failure of the index PCR 

step, with fragments not attached to the MiSeq I5 and I7 adapter sequences and therefore 

unable to bind to the flow cell. This would lead to reduced sequence generated for some or all 

DNA fragments from affected samples. 

Low coverage may also result from poor mappability of sequences, where short sequences are 

rejected as the software algorithm fails to map them to a unique part of the reference 

sequence because of shared sequence motifs between HLA class I genes (Erlich, 2012). This is 

supported by data shown in figure 3.12 which demonstrates a strong correlation between size 

of sequencing insert and % mappability and the consequence of low mappability on read 

depth.  
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Figure 3.12 Insert size, sequence mappability and read depth. Graph (A) shows insert size 

versus % mappability observed for all HLA sequences in the cohort, indicating that larger 

fragments map more accurately to their respective HLA class I genes. Graph (B) demonstrates 

the effect that % mappability has on read depth, with deeper sequencing observed when a high 

percentage of fragments are mapped to the respective HLA reference sequence. Data circled in 

red was generated using the TruSightHLA library preparation kits with the remainder obtained 

using NGSgo® reagents 

 

Read length will also impact on the ability of the analysis software to phase reads correctly, 

required to determine whether polymorphic positions are in cis or trans in order to avoid 

ambiguity (Tu et al., 2017). Reads of less than 100bp in length are reportedly a problem as they 

are unable to phase non-polymorphic regions between heterozygous positions (Huang et al., 

2015) which will impact on the accuracy of HLA typing (Profaizer et al., 2015). However, it is 

still possible to produce a single genotype, despite lack of phase (Lind et al., 2013). 
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3.4.5 Intron mismatches 

Intron mismatches with the reference sequence were observed in 15% of valid sequences. 

Whereas results with mismatches in the exons were rejected, those high quality sequences 

with intron mismatches were deemed acceptable as this would not impact on amino acid 

sequence. However, the result would only be considered and reported at third field.  

More than half of these ‘mismatches’ were probably artefacts resulting from poor phasing or 

inaccurate mapping to the reference sequence. Intron mismatches identified in 22 sequences 

were due to the analysis software substituting regions of missing reference data with 

surrogate nucleotide sequence leading to erroneous intron mismatches, a known limitation of 

NGSengine (Duke et al., 2016). More recent versions of NGSengine allow these mismatches to 

be ignored by the user.  

A significant proportion (32%) appeared to be genuine novel mutations. HLA class I sequences 

are named by the WHO HLA Nomenclature Committee for Factors of the HLA System following 

attainment of a unique accession number from either EMBL, GenBank or the DDBJ databanks 

(Robinson et al., 2015). Once accepted the submitted sequence are stored in the IMGT/HLA 

database and, until recently, most HLA class I sequences submitted to the IMGT/HLA database 

were based on data from only exons 2 and 3 due to historical sequencing techniques (Lind et 

al., 2013). Although full genomic sequences are available for the most common HLA class I 

types, much of the intronic data is still missing but with more laboratories using NGS for HLA 

typing it is anticipated that many of the gaps in the data will be filled (Robinson et al., 2015). 

Indeed, re-analysing novel sequences with a more up to date version of NGSengine produced 

valid genotypes due to release of identical sequences in IMGT/HLA v3.22. The remaining 

putative novel mutations are discussed in more detail in chapter 5. 

3.4.6 Exon mismatches 

Three sequences were found to contain novel mutations in the exons and are discussed in 

more detail in chapter 5. 

3.5 Conclusions 

The results presented in this chapter demonstrate that NGS has the capacity to accurately HLA 

type 180 platelet donor samples simultaneously at the allele level. The use of stringent 

acceptance criteria supported by a very high level of concordance with historical HLA typing 

indicates that NGS is a valid approach for high throughput, high resolution HLA typing of 

platelet donors. The use of an in-house amplification protocol was shown to be superior to the 
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commercial primers, providing a template for whole gene sequencing of HLA-A, -B and -C. 

Some variability in outcome was observed between the two methods employed for library 

preparation, although insufficient data was available to confidently determine that one 

method was superior to another. Further sequencing experiments using both library 

preparation protocols to prepare DNA from the same starting amplicons would provide a more 

realistic comparison. 

It is worth mentioning that since the experiments described in this chapter were performed, 

the routine laboratory at NHSBT transferred from NGSgo® kits to library preparation with 

TruSightHLA reagents for stem cell registry donor typing. This followed a European tender 

where logistics, data quality and costs were considered. TruSightHLA had the added benefit of 

a developed automated protocol on the Biomek FX robot that was subsequently implemented 

in August 2016. 

The application and benefits of this method for HLA typing apheresis platelet donors to 

support HLA epitope matching of platelet transfusions will be the subject of further analysis 

and discussion in Chapter 4. 
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4. HLA epitope matching: allele prediction or NGS typing? 

4.1 Introduction 

The provision of HLA selected platelets is a proven treatment for patients with immunological 

platelet refractoriness (Kopko et al., 2015) but utilising HLA epitope matching (HEM) may be 

more relevant than matching the whole HLA, with the use of programs such as 

HLAMatchmaker providing an improved evaluation of histocompatibility (Duquesnoy, 2008). In 

addition, HEM may also increase the pool of available donors for patients with HLA 

alloantibodies, which would be of significant benefit as maintaining a large platelet donor 

panel for the provision of HLA matched platelets is costly (Pavenski et al., 2013). 

Epitope matching algorithms require HLA defined at second field i.e. at the amino acid level to 

accurately determine the HLA epitopes present in a donor or patient (Duquesnoy, 2008). As 

the majority of English platelet donors are currently typed using Luminex PCR-SSOP, it would 

be necessary to convert the medium resolution HLA-types obtained to the second field level, 

an approach used in previous studies reporting on the efficacy of HEM (Brooks, MacPherson 

and Fung, 2008; Pai et al., 2010). Results discussed in Chapter 3 demonstrate that it is possible 

to define HLA to the allele level using NGS but this is likely to incur additional costs over 

conventional HLA typing technology. Since second field HLA resolution can be achieved using a 

computer algorithm, an assessment of the accuracy of allele prediction from medium 

resolution typing is required to determine the cost benefit of moving to NGS for routine 

platelet donor typing (Brooks, MacPherson and Fung, 2008; Pai et al., 2010; Nambiar et al., 

2006). 

At NHSBT, the laboratory information management system (LIMS) used by the H&I department 

is Hematos IIG (Savant, Cumbria UK). This system enables users to search NHSBT stocks for 

suitable platelet donations for patients requiring HLA and or HPA selected platelets 

(Mwandoro et al., 2015). Currently the standard search determinates are based on 

conventional HLA match grades (Brown and Navarrete, 2011). However, Hematos also has the 

capability of using HEM for platelet selection, with the intention of routine implementation 

following the successful outcome of an ongoing double blind, non-inferiority trial 

(ISCTRN23996532). The current Hematos algorithm for platelet donor searching using HEM 

defaults to the ‘most likely HLA allele’, deemed to be the first allele in the string, whenever the 

HLA type of the donor or patient is not typed to at least second field (Kallon, 2015).  

In this chapter, the HLA typing results from 540 random apheresis platelet donors were used 

to determine the accuracy of HLA allele prediction. HLA alleles were predicted from their 

respective historical low to medium resolution HLA types and compared with the alleles 
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determined for each donor by NGS to assess the accuracy of allele prediction and the potential 

impact of any observed disparity.  

4.2 Materials and methods 

The HLA typing results were obtained from 540 random apheresis platelet donor samples, as 

described in Chapter 3.  

4.2.1 HLA allele prediction 

Historical HLA types were used to predict the HLA-A, -B and -C alleles for each donor using the 

algorithms described in 4.2.1.1 and 4.2.1.2. Both methods of prediction were performed 

manually and all predicted HLA alleles were defaulted to second field due to lack of available 

frequency data at third and fourth field. 

4.2.1.1 Selecting the first allele in the HLA string 

Where historical results consisted of an HLA string, the first allele in the string was selected as 

the most likely HLA allele. This algorithm was based on the current HLA allele prediction 

approach embedded in the Hematos epitope matching program. 

4.2.1.2 Selecting the most frequent allele 

The most frequent allele for each historical HLA type was predicted using the EpHLA-Converter 

component of the on-line software application ‘EpHLA’ (Sousa,Luiz Cláudio Demes da Mata et 

al., 2011). This software enabled conversion of low to medium resolution results into second 

field HLA alleles. The population ‘EUR’ was selected for each HLA type converted, which 

employed Caucasian HLA allele frequency data based on American populations (Maiers, 

Gragert and Klitz, 2007). This algorithm was based on the approach used by HLAMatchmaker 

(Brooks, MacPherson and Fung, 2008). 

4.2.2 Comparison of predicted versus defined HLA alleles 

HLA typing for HLA-A, -B and -C was performed by NGS on DNA extracted from 540 English 

apheresis platelet donors, as described in Chapter 3, section 3.2. The sequencing results 

obtained were compared with the HLA alleles predicted using both algorithms described in 

4.2.1 to determine if the prediction was correct. Comparisons were performed at second field 

only. 

4.2.3 Determining the impact of HLA allele prediction 

Any discrepancies between the HLA alleles predicted from the historical typing and NGS 

defined alleles were scrutinised to determine the reason for the inconsistency. Differences due 

to poor sequencing were excluded from any further analysis. The remaining allele 



75 
 

discrepancies were investigated for any potential mismatched HLA epitopes between the 

predicted and NGS results using the ABC database from the International Registry of Antibody-

Defined HLA Epitopes (Duquesnoy et al., 2013b). Each HLA locus was inspected separately with 

the predicted allele entered as the recipient type and the NGS result entered into the search 

field. Following application of the filter, mismatched epitopes displayed were recorded, noting 

in particular whether any mismatches were against exposed epitopes and if they were 

antibody verified (Duquesnoy, 2014). 

 

4.3 Results 

4.3.1 HLA allele predictions 

HLA predictions based on historical HLA types were performed on all 540 samples in the 

cohort. Of these, a comparison of the predicted results with NGS defined alleles was 

performed on 501, 503 and 509 results for HLA-A, -B and -C respectively, with remaining 

samples missing data. Discrepant predictions were either due to (a) the historical HLA type 

containing a rare allele as its first allele in the string, (b) the NGS result being a less frequent 

allele, (c) poor sequencing data or (d) errors with the historical typing. The overall number of 

discrepancies between the predicted and NGS defined alleles was greater when the first allele 

in the string algorithm was used, compared to those based on allele frequencies and 

regardless of the HLA locus (Figure 4.1).  

 

Figure 4.1 Discrepancies in HLA allele prediction. The percentage of samples with 

discrepancies observed between the predicted allele and the NGS result, using algorithms 

based on either the first allele or the most frequent allele contained within the historical HLA 

string for HLA-A, -B and -C. 
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Table 4.1 shows examples of allele predictions for each HLA locus made using both the first 

allele in the string and HLA frequency algorithms based on second field results. Those alleles 

determined as the most frequent in their respective allele group were HLA-A*29:02, -B*44:02 

and -C*07:01, having a frequency of 3.279%, 9.011% and 16.658%, respectively. This compares 

with the second most common alleles in the same allele groups, namely HLA-A*29:01, -*44:03 

and -C*07:02, which have frequencies of 0.216%, 4.963% and 15.006%, respectively (Maiers, 

Gragert and Klitz, 2007). 

Historical medium resolution type First HLA 
allele in string 

Most frequent 
HLA allele 

A*29:01:01:01/29:01:01:02N/29:01:02/29:01:04/29:01:05/29:02:01:
01/29:02:01:02/29:02:02/29:02:04/29:02:06/29:02:07/29:02:08/29:
02:09/29:02:10/29:02:13/29:04/29:06/29:08N/29:10/29:12/29:16/2
9:17/29:21/29:23/29:25/29:26/29:27/29:29/29:36/29:38/29:41/29:4
2/29:43/29:44/29:45/29:46/29:50/29:54/29:55/29:58 
 

A*29:01 
(0.00216) 

A*29:02 
(0.03279) 

B*44:02:11/*44:03:01/*44:03:03/*44:03:04/*44:03:05/*44:03:07/*
44:03:08/*44:03:09/*44:03:10/*44:03:11/*44:03:12/*44:03:14/*44:
03:18/*44:13/*44:26/*44:35/*44:36/*44:38/*44:39/*44:73/*44:85/
*44:89/*44:92/*44:94/*44:98/*44:103/*44:108N/*44:114/*44:115/
*44:122/*44:125/*44:141/*44:142/*44:147/*44:155/*44:157/*44:1
59/*44:161/*44:164/*44:165/*44:167/*44:174/*44:175/*44:178 
 

B*44:02 
(0.09011) 

B*44:02 
(0.04963) 

C*07:01:25/*07:02:01:01/*07:02:01:02/*07:02:01:03/*07:02:01:04/
*07:02:01:05/*07:02:02/*07:02:04/*07:02:05/*07:02:06/*07:02:07/
*07:02:08/*07:02:09/*07:02:11/*07:02:12/*07:02:14/*07:02:15/*0
7:02:16/*07:02:17/*07:02:18/*07:02:19/*07:02:21/*07:02:22/*07:0
2:23/*07:02:24/*07:02:25/*07:02:26/*07:02:27/*07:02:29/*07:02:3
0/*07:02:31/*07:02:32/*07:02:33/*07:02:36/*07:02:37/*07:02:38/
*07:02:39/*07:05/*07:13/*07:27:01/*07:29/*07:31:02/*07:38:01/*
07:38:02/*07:39/*07:42/*07:46/*07:47/*07:48/*07:50/*07:51/*07:
54/*07:56:01/*07:56:02/*07:61N/*07:62/*07:66/*07:72/*07:74/*0
7:75/*07:80/*07:84/*07:85/*07:87/*07:88/*07:90/*07:97/*07:99/*
07:100/*07:105/*07:117/*07:123/*07:125/*07:126/*07:130/*07:13
3/*07:135/*07:137:01/*07:137:02/*07:143/*07:144/*07:145/*07:1
46/*07:147/*07:152N/*07:155/*07:157/*07:159/*07:160/*07:163/
*07:167/*07:168/*07:169/*07:172/*07:174/*07:175/*07:178/*07:1
83/*07:185/*07:187/*07:192/*07:193/*07:195/*07:198N/*07:202/
*07:208/*07:209/*07:211/*07:213/*07:217/*07:218/*07:221/*07:2
25/*07:226/*07:229/*07:234/*07:239/*07:240/*07:243/*07:244/*
07:245/*07:251/*07:252/*07:258/*07:259/*07:261/*07:262/*07:27
0/*07:273/*07:274/*07:275/*07:283/*07:284/*07:286/*07:287/*0
7:288/*07:289/*07:290/*07:291/*07:292 
 

C*07:01 
(0.16658) 

C*07:02 
(0.15006) 

Table 4.1 Example of HLA alleles predicted from a medium resolution HLA type. Alleles were 
predicted from the same historical HLA result based on either the first allele in the HLA string or 
the most frequent allele, defaulted to second field. The respective allele frequencies are shown 
in parentheses (Maiers, Gragert and Klitz, 2007). Predicted allele(s) are underlined in bold in 
the historical HLA string. 
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Figure 4.2 shows the number and type of discrepancies observed for each HLA locus. The 

dominant discrepancy for HLA-A, using the ‘first allele in the string’ algorithm was observed in 

29 samples typed originally as an HLA-A*29 string by Luminex, resulting in an allele prediction 

of A*29:01, but where the NGS result was determined as A*29:02. However, this discrepancy 

was not observed when utilising frequency data for allele prediction. Conversely, when using 

allele frequencies, the opposite occurred in three samples, where NGS typed as HLA-A*29:01 

but the most frequent and therefore predicted allele was actually HLA-A*29:02. For HLA-B, the 

most common discrepancy was the incorrect prediction of B*44:02 instead of B*44:03. This 

disparity between predicted HLA allele and NGS result was observed in 17 samples using either 

algorithm, as HLA-B*44:02 was both the first allele and the most frequent in the respective 

HLA-B string.  

HLA-C had the highest allele prediction error of the three loci. The two most common 

discrepancies observed were between the predicted alleles HLA-C*07:01 and -C*03:02 and 

their respective NGS defined types of HLA-C*07:02 and -C*03:04. The HLA-C*03:02 vs C*03:04 

prediction error was observed in 30 samples when using the first allele in the string. However, 

this discrepancy was resolved using allele frequency data, as HLA-C*03:04 is more common 

than HLA-C*03:02 with a frequency of 8.215% compared to 0.146%, respectively. Thirty four 

samples were incorrectly predicted to be HLA-C*07:01 rather than -C*07:02 using either 

algorithm due to C*07:01 being both the first allele in the string and the most frequent HLA-

C*07 allele. 
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Figure 4.2 Discrepant alleles observed and number of samples affected.  The discrepancies 

observed between the HLA type determined by NGS and the predicted allele.  The number of 

samples affected by the respective prediction errors are shown in graph (A) for HLA-A, (B) for 

HLA-B and (C) for HLA-C. 
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4.3.2 Ethnicity and allele predictions 

Allele prediction based on HLA frequencies employed data obtained from the American 

Caucasian population (Maiers, Gragert and Klitz, 2007).  However, because allele frequencies 

are known to differ between ethnic groups (Dyer, 1988), the donor ethnicity was interrogated 

for all samples indicating prediction errors using the allele frequency algorithm. In cases where 

the ethnicity was other than white, HLA frequency data was further scrutinised using EpHLA 

converter  (Sousa,Luiz Cláudio Demes da Mata et al., 2011) to determine whether the allele 

prediction would have changed when considering the ethnic origin of the donor.  

Although 13 of the 75 samples with prediction discrepancies using the allele frequency 

algorithm came from donors with a self declared ethnicity that was not Caucasian, only three 

predictions would have changed if donor ethnicity was considered (Table 4.2). Allele prediction 

for the other nine samples remained the same, regardless of the donor’s ethnic origin. 

Historical HLA 
result 

Donor 
Ethnicity 

Predicted allele: 
Caucasian frequency 
data≠ 

Predicted allele: 
Donor ethnicity 
frequency data≠ 

NGS result  

A*29 allele string Asian A*29:02 A*29:01 A*29:01:01 
C*07 allele string Chinese C*07:01 C*07:02 C*07:02:01:01 
C*15 allele string Black C*15:02 C*15:05 C*15:05:02 

Table 4.2 Impact of donor ethnicity on HLA allele prediction using population frequencies. 

Three occurrences where the allele prediction using HLA frequency data based on the donor’s 

ethnicity differed to that using Caucasian frequencies ≠frequency data obtained from (Maiers, 

Gragert and Klitz, 2007) 

 

4.3.3 Haplotype frequencies and allele prediction 

In order to determine if using HLA haplotype frequencies would improve the accuracy of allele 

prediction, the most frequent errors observed for HLA-A and HLA-B when applying the allele 

frequencies algorithm for prediction were re-examined. Frequency data employed was based 

on haplotypes determined from a north west England cohort of 298 individuals (Alfirevic et al., 

2012), obtained from www.allelefrequencies.net, selected because it was the largest English 

population with haplotype frequencies available. Each HLA type affected was reviewed and the 

most frequent haplotype used to predict the allele from the historical HLA strings. As when 

employing allele frequencies, all results were considered at second field resolution only. For 

the three samples typed as HLA-A*29:01 by NGS but predicted to be the more frequent allele 

HLA-A*29:02, no additional benefit was gained by using haplotype frequency data. Two 

contained presumed haplotypes that indicated the presence of HLA-A*29:02 and the third 

sample did not appear to contain a haplotype including HLA-A*29 that was present in the 

http://www.allelefrequencies.net/
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North West England cohort. Therefore allele prediction based on haplotype frequencies was 

not possible for this sample (Table 4.3) 

Sample 
ID 

Historical HLA-A type Presumed haplotype and predicted HLA-
A*29 allele 

6883 A*01,*29; B*44,*57; C*06,*16 A*29:02-B*44:03-C*16:01 
711N A*11,*29; B*07,*55; C*03,*07 A*29:02-B*07:02-C*03:03 
0993 A*02,*29; B*07,*07; C*07,*15 N/A 

Table 4.3 Prediction of HLA-A*29 alleles from presumed haplotypes. The HLA type of each 

sample is displayed as first field for presentation purposes only, with the presumed haplotype 

shown in red; prediction was based on historical medium resolution HLA typing. The predicted 

haplotype and respective HLA-A*29 allele for each sample were based on the most frequent 

haplotypes found in North West England (Alfirevic et al., 2012). N/A = no haplotype  data 

available 

 

Using haplotype data proved more accurate than allele frequencies alone for samples typing as 

HLA-B*44:03 but predicted as the more frequent HLA-B*44:02. Twelve of the seventeen 

samples affected (70.5%) were correctly predicted as HLA-B*44:03 when employing haplotype 

data. It was not possible to predict the HLA-B*44 allele for the remaining five samples as there 

was no appropriate haplotype present in the west English cohort (Table 4.4) 

Sample ID Historical HLA-A type north Presumed haplotype and predicted 
HLA-B*44 allele 

614X A*02,*02; B*27,*44; C*01,*04 N/A 
496J A*02,*23; B*27,*44; C*02,*04 A*23:01-B*44:03-C*04:01 
6891 A*02,*23; B*27,*44; C*02,*04 A*23:01-B*44:03-C*04:01 
152P A*02,*24; B*27,*44; C*02,*04 N/A 
1927 A*01,*29; B*44,*57; C*06,*16 A*29:02-B*44:03-C*16:01 
642O A*01,*23; B*44,*52; C*04,*12 A*23:01-B*44:03-C*04:01 
753C A*02,*23; B*15,*44; C*04,*04 A*23:01-B*44:03-C*04:01 
2201 A*02,*32; B*44,*56; C*01,*16 A*02:01-B*44:03-C*16:01 
6883 A*01,*29; B*44,*57; C*06,*16 A*29:02-B*44:03-C*16:01 
597T A*26,*30; B*13,*44; C*06,*16 N/A 
871X A*23,*29; B*44,*44; C*04,*16 A*23:01-B*44:03-C*04:01 

A*29:02-B*44:03-C*16:01 

078E A*02,*29; B*35,*44; C*04,*16 A*29:02-B*44:03-C*16:01 
188N A*32,*32; B*27,*44; C*01,*04 N/A 
021F A*02,*23; B*40,*44; C*03,*04 A*23:01-B*44:03-C*04:01 
629B A*02,*23; B*15,*44; C*04,*07 A*23:01-B*44:03-C*04:01 
793D A*24,*31; B*14,*44; C*04,*08 N/A 
494J A*01,*23; B*44,*57; C*04,*06 A*23:01-B*44:03-C*04:01 

Table 4.4 Prediction of HLA-B*44 alleles from presumed haplotypes. The HLA type of each 

sample is displayed as first field for presentation purposes only, with the presumed haplotype 

shown in red; prediction was based on historical medium resolution HLA typing. The predicted 

haplotype and respective HLA-B*44 allele for each sample were based on the most frequent 

haplotypes found in north west England (Alfirevic et al., 2012). N/A = no haplotype data 

available 
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4.3.4 Impact of HLA allele prediction errors 

For each prediction error, the number of potential epitope mismatches between the two 

alleles was determined, with results summarised in Figure 4.3. Of the 25 different predicted 

allele discrepancies identified, 10 (40%) were found not to differ at the epitope level. Of the 

remaining 15 mismatched allele pairs, only two mismatched alleles (both HLA-C) were found to 

have mismatches with antibody verified epitopes. However, one of these (HLA-C*07:02 vs. 

C*07:01) was the most frequently observed discrepancy, with 34 donors affected. This 

mismatched pair also had five other epitope mismatches, four of which were in exposed 

regions of the HLA molecule.  

 

Figure 4.3 Number and type of epitope mismatches between NGS type versus predicted HLA 

allele. For those mismatched pairs, epitope mismatches have been catagorised into antibody 

verified, exposed and non-exposed epitopes. 

 

Overall, 40% of prediction errors were found to have mismatches to exposed epitopes, with 

five, three and two mismatches determined at HLA-A, -B and -C, respectively. Eight (32%) 

predicted allele discrepancies also had mismatches to inaccessible epitopes. The epitopes 

mismatched between each predicted allele versus NGS-defined type are listed in Table 4.5. 
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NGS vs. predicted allele  Antibody verified 
epitopes 

Exposed epitopes Inaccessible epitopes 

A*02:11 vs. A*02:01  73ID   

A*24:03 vs. A*24:02  163TEW   

A*24:07 vs. A*24:02  69AQT; 70QT; 
71QS 

  

A*29:02 vs. A*29:01  102DV   

A*33:03 vs. A*33:01  170RY   

B*13:02 vs. B*13:01    94TW; 97T 

B*18:03 vs. B*18:01  72QTD; 73TDE   

B*35:05 vs. B*35:01    94TL; 97S 

B*39:06 vs. B*39:01     94TW; 97T 

B*40:06 vs. B*40:04   102DV 94TW; 97T 

B*44:03 vs. B*44:02   156LA 156L 

C*03:04 vs. C*03:02     94II; 116Y 

C*07:02 vs. C*07:01 65QKR+76VS 62RK; 63EK; 
65QKR; 66K 

99S 

C*15:05 vs. C*15:02     116F 

C*16:02 vs. C*16:01 80K; 80K+14R 71ATN; 73TN; 
73TVN 

 

Table 4.5 Mismatched epitopes for each allele prediction discrepancy observed. Epitopes for 

each mismatch were obtained from the ABC database located within the International Registry 

of Antibody-Defined HLA Epitopes (Duquesnoy et al., 2013a). 

 

4.4 Discussion 

Apheresis platelet donors recruited by NHSBT are currently HLA typed using Luminex PCR-

SSOP technology (Brown and Navarrete, 2011) which defines HLA to medium resolution, 

reporting ambiguous results in the form of allele strings (Marsh et al., 2010). However, to 

accurately employ HEM for the selection of platelets for patients with immune platelet 

refractoriness, HLA needs to be defined at high resolution (Duquesnoy, 2008). Previous studies 

investigating HEM for platelet selection have reported using HLA allele predictions from the 

Luminex results as an alternative to allele level typing (Brooks, MacPherson and Fung, 2008; 

Pai et al., 2010; Nambiar et al., 2006). This chapter investigated the accuracy of HLA allele 

prediction when compared to typing by NGS. 

4.4.1 Accuracy of allele prediction 

The prediction algorithm programmed in the NHSBT LIMS system Hematos, is currently based 

on the first allele contained within an HLA string when an allelic type is unavailable. Results 

from this study demonstrate the inherent inaccuracy of this approach, producing an overall 

error rate of 11.1%. In 2015, NHSBT provided 19,493 doses of HLA selected platelets. Based on 
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this data, if HLA epitope matching had been exploited, HLA type predictions would have been 

incorrect for 2,163 units if the first allele of the Luminex string was used to determine the HLA 

type and defining epitopes. However, this error rate reduces to 4.9%, equivalent to 961 doses 

of HLA selected platelets, when using HLA frequencies from Caucasian populations to predict 

the high resolution type. 

The high discrepancy rate for predicted versus NGS allele using the first allele in the string 

algorithm was due to the first allele being the less common HLA allele, although this varied 

dependant on donor ethnicity. For example, the HLA-A*29 string shown in table 4.2 contained 

A*29:01:01:01 as the first allele in the string but in the Caucasian population HLA-A*29:02 is 

more common than HLA-A*29:01, with a frequency of 3.28% compared to 0.15%, respectively 

(Maiers, Gragert and Klitz, 2007). This resulted in 29 donors predicted to be A*29:01 when 

they were actually A*29:02. Conversely, when alleles were predicted based on population 

frequencies, the majority of predictions were accurate. Of the three samples that did type by 

NGS as A*29:01, one donor self declared as Asian and would have been predicted correctly if 

ethnicity was considered alongside allele frequencies, as A*29:01 is more common in the Asian 

population than A*29:02 (Maiers, Gragert and Klitz, 2007). The other two donors were 

recorded as Caucasian so the prediction would have remained unchanged. However, it is 

worth noting that studies exploring ancestral informative markers question the reliability of 

self-declared ethnicity as indicators of genomic ancestry (Ramos et al., 2016; Cardena et al., 

2013). 

Even when the most frequent allele appears to be the first in the Luminex string, errors still 

occurred. For example, the allele B*44:02 from a HLA-B*44 string was incorrectly predicted in 

17 donors using either algorithm rather than B*44:03, as determined by NGS. HLA-B*44:02 is 

the more common B*44 allele, being nearly twice as frequent in Caucasians as HLA-B*44:03 

(Maiers, Gragert and Klitz, 2007). However, the Luminex string began with B*44:02:11 which, 

based on the NGS data obtained from this cohort, is not a common allele in the English 

population; none of the 540 donors typed as B*44:02:11 but over 100 donors sequenced as 

either B*44:02:01:01 or B*44:02:01:03 by NGS. A similar error also occurred with a Luminex 

HLA-C*07 string, where the first allele in the string was C*07:01:25 but NGS typed as 

C*07:02:01:01 or C*07:02:01:03, with both prediction algorithms calling the discrepant 

C*07:01 allele, being both the allele first in the string and the most frequent at second field 

(Maiers, Gragert and Klitz, 2007). If the third field result had been considered in either case, 

prediction based on allele frequencies would have been correct the majority of the time but 

unfortunately the EpHLA converter software only provided frequency data at second field 

(Sousa,Luiz Cláudio Demes da Mata et al., 2011). The Allele Frequencies Net Database (Santos 

et al., 2016) does contain some population data at third or fourth field but a decision not to 



84 
 

utilise this information was based on the populations included (none were from the UK or 

Northwest Europe) and or the small cohort when compared to data available from EpHLA 

converter, which is based on over 6000 European Americans (Maiers, Gragert and Klitz, 2007). 

A recent publication reporting common and well-documented HLA alleles in Europe was also 

consulted but this reference defaulted frequency data to second field (Sanchez-Mazas et al., 

2017). 

The use of haplotype frequencies was investigated to determine if this was a more accurate 

approach for prediction of HLA alleles compared to using allele frequency data. Due to the 

complexity of the analysis, which was performed manually, only a small data set was examined 

for the purposes of this study. Consequently, investigation was restricted to the most frequent 

prediction errors for HLA-A and HLA-B only. Use of haplotype frequencies did not prove useful 

for the HLA-A*29 prediction error. This may have been by chance, as only three samples were 

affected and otherwise using HLA-A allele frequency data only proved reliable in most cases. 

However, for the HLA-B*44 prediction error example, haplotype analysis proved to be 

significantly more accurate than using allele frequencies, with over two thirds of prediction 

errors resolved. 

Haplotype frequency data used was obtained from a North West English population, although 

it is acknowledged the cohort was small, consisting of less than 300 individual HLA types. It 

might have been more appropriate to use a similar data source as used for HLA allele 

frequencies (i.e. American Caucasians data). However, although this cohort included HLA types 

from over 1.2 million bone marrow donors available from www.allelefrequencies.net, there 

were a very limited number of haplotypes at second field compared to the North West England 

population (Santos et al., 2016) and was therefore less informative.  

Despite the limited data set examined, use of haplotype frequencies does appear to provide 

accurate allele prediction, certainly for HLA-B*44. This approach for allele prediction is 

supported by Geneugelijk et al. who recently reported development of PIRCHE II software, 

designed to estimate risk of solid organ transplants based on HLA epitopes. PIRCHE II requires 

high resolution HLA types to accurately analyse risk and has embedded algorithms that convert 

low resolution types into HLA alleles using haplotype frequencies (Geneugelijk et al., 2017). 

However, despite the stated reliability of PIRCHE II estimations, the group acknowledged that 

this approach was not suitable for all donor-recipient pairs. They suggest that additional NGS-

based data is required for determining HLA haplotype frequencies, particularly if sequences 

are extended beyond exons 2 and 3 for HLA class I alleles, leading to more reliable epitope 

matching (Geneugelijk et al., 2017). However, use of NGS for HLA typing donors and recipients 

would completely negate the need for HLA allele prediction.  

http://www.allelefrequencies.net/
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4.4.2 Impact of prediction errors 

Twenty five HLA allele predictions were found to be incorrect, affecting 209 HLA types at HLA-

A, -B or -C when using the first in the HLA string algorithm, compared to 75 HLA types when 

alleles were determined from HLA frequency data.  

Following interrogation of the International Registry of Antibody-Defined HLA epitopes 

(Duquesnoy et al., 2013b), forty percent of the allele prediction errors did not translate to 

epitope mismatches. A proportion of these were found to have mismatches within HLA ‘G 

groups’, such as HLA-C*07:01, -C*07:06 and -C*07:18, where nucleotide sequences are 

identical in exons 2 and 3 of the respective gene that encodes the peptide binding domain of 

the HLA molecule (Marsh et al., 2010). Others lacked epitope data for a particular HLA allele, 

including HLA-B*18:40 and HLA-C*08:92 and in these cases it is possible epitope mismatches 

were present but have not yet been defined. Although the HLA Epitope Registry is regularly 

updated, its curators admit that data is incomplete and acknowledge the need for more 

studies (Duquesnoy et al., 2016). The two HLA-A prediction errors, namely A*02:07 vs. A02:01 

and A*33:05 vs. A*33:01 appear to have identical epitopes, despite amino acid differences in 

the 1 and 2 domain protein sequence (Robinson et al., 2015). The one other example of 

zero epitope mismatches was due to the presence of HLA-C*04:09N instead of the predicted 

HLA-C*04:01 allele. As a null allele, HLA-C*04:09N would result in lack of expression of the HLA 

molecule on the cell surface so any donor specific antibodies present would not give cause for 

concern if a donor with this type was transfused into a patient with antibodies to epitopes 

expressed on HLA-C*04:01 (Wang et al., 2002). 

Sixty percent of prediction errors would have resulted in epitope mismatches if they had been 

subsequently used to select platelets for transfusion. The majority of epitope mismatches 

identified were against exposed regions of the HLA molecule and are potentially clinically 

relevant being in antibody-accessible regions, although only three were antibody verified 

epitopes (Duquesnoy, 2014).  The most frequently observed example of epitope mismatching 

using either algorithm resulted from the prediction of HLA-C*07:01 instead of -C*07:02, 

affecting 34 donors (6.7% of the cohort). HLA-C is not generally currently considered when 

using HLA match grading to select platelets for refractory patients as the relevance of HLA-C 

antibodies in platelet refractoriness is still undetermined (Stanworth et al., 2015). However, 

two of the six epitopes mismatched between HLA-C*07:01 and -C*07:02, namely 62EK and 

66K, are also present on common HLA-A antigens such as HLA-A2 ((Duquesnoy, 2014). It is 

therefore important to consider all HLA class I compatibility when using HEM (Duquesnoy, 

2017). Even if HLA-C antigens prove less relevant in platelet transfusion, antibodies to HLA-C 
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epitopes may still cross react with those expressed by HLA-A and or HLA-B and thus could be 

clinically relevant. Indeed, Lomago and colleagues reported a case of an HLA-C*07:04 induced 

alloantibody cross reacting with shared epitope 156DA expressed by HLA-B*44:02 in a renal 

transplant recipient typing as HLA-B*44:03 who had never been exposed to HLA-B*44:02 

leading to an episode of acute cellular rejection (Lomago et al., 2010). Others have similarly 

postulated antibody mediated rejection can result from shared epitopes with the immunising 

antigen (Mongkolsuk et al., 2014).  

The most frequent HLA-B prediction error affected 17 donors, with two epitope mismatches 

between B*44:02 and the NGS defined allele B*44:03, although only one of the two 

mismatches was against exposed epitopes. For HLA-A, the most frequent discrepancy was 

between A*29:02 and A*29:01, with just one exposed epitope mismatch between the two 

alleles. The second most common HLA-C prediction error, with C*03:02 predicted instead of 

C*03:04, occurred in 30 donors using the first allele in the string algorithm. However, the two 

epitope mismatches between these alleles appear inaccessible to antibody. The clinical 

relevance of such non-exposed epitopes is questionable, but it has been suggested that 

because they reside in the peptide binding groove these polymorphic positions may affect the 

conformation of adjacent residues leading to the creation of antibody-recognisable epitopes 

(Duquesnoy et al., 2014). However it is not clear whether such positions would be 

immunogenic (Duquesnoy, 2014). 
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5. HLA frequencies and population analysis 

5.1 Introduction 

As discussed in Chapter 4, there is a lack of HLA allele and haplotype frequency data available 

beyond second field resolution in the English population. Limited frequency data can prevent 

accurate allele prediction from HLA types defined at a lower resolution (Geneugelijk et al., 

2017).  In addition, the availability of HLA frequencies at the allele level will provide useful data 

to the wider community, including the investigation of HLA allele associations with adverse 

drug reactions and in anthropology studies (Gonzalez-Galarza et al., 2015b). HLA frequency 

data can also provide estimates for the likelihood of finding an HLA compatible donor in the 

transplantation and transfusion settings (Pingel et al., 2013). 

NGS has the capability of HLA typing to the allele level (Erlich, 2015) and a protocol was 

developed and used to type 540 English apheresis platelet donors, as described and discussed 

in Chapter 3. The aim of this part of the study was to determine the HLA allele and haplotype 

frequencies of the platelet donor cohort based on HLA types obtained by NGS. Results from 

this analysis would then be submitted to an international database that stores allele 

frequencies from polymorphic areas in the human genome (Gonzalez-Galarza et al., 2015b).  

However, as the initial sequencing only produced complete HLA-A, -B and -C genotypes for 441 

(81.7%) donors, a decision was taken to re-sequence as many samples as possible that had 

previously failed for one or more HLA locus. This was to ensure that the maximum number of 

samples was included in the frequency data analysis. In addition, because some of the rejected 

sequences described in Chapter 3 were associated with particular alleles or allele groups, 

resolution was necessary to avoid skewing frequency analysis by excluding particular allele 

groups with poor sequence data. All sequences containing putative mutations in the first 

round of NGS typing were also repeated to confirm the presence of novel sequences. 

 

5.2 Materials & Methods 

HLA Typing was performed on DNA obtained from 540 apheresis platelet donors, as described 

in Chapter 3. Collected at English blood donor centres, the individuals in this cohort were of 

fixed ethnicity, with the majority (91.1%) of donors self declaring as white (Figure 5.1). In order 

to produce sufficient data for determining valid HLA allele and haplotype frequencies in this 

cohort, samples that originally failed to type for one or more HLA locus and those containing 

putative novel mutations were re-sequenced. 
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Figure 5.1 Self-declared ethnicity of the 540 apheresis platelet donors HLA typed in this study. 

 

5.2.1 Confirmatory sequencing of samples with putative novel mutations 

5.2.1.1 Sample selection 

From the original results described in Chapter 3, a total of 45 samples were identified as 

containing putative novel mutations in one or more HLA sequence that was otherwise valid. 

Fifty micolitres of each DNA was transferred from their original plates into a clean 96-well 

plate (#RPT1) using a bespoke cherry-picking program designed for the epMotion® 5075 liquid 

handling robot (Eppendorf).  

5.2.1.2 DNA preparation, PCR amplification and amplicon pooling 

DNA was purified manually using AMPure beads as previously described. However, due to the 

low DNA concentrations observed following the original DNA purification, it was decided not to 

normalise the DNA but use it neat. PCR amplifications for HLA-A, -B and -C were then set up for 

all 45 samples using the in-house PCR protocol, as described in 2.6.1.2. Success of amplification 

was determined by agarose gel electrophoresis (section 2.6.2.1), followed by pooling of 7µl of 

each amplicon into respective wells of a clean plate. 

5.2.1.3 Library preparation and sequencing 

Pooled amplicon was prepared for sequencing using the NGSgo® protocol as described in 

2.6.3.2. The PAL was assessed using both the Qubit and Bioanalyser and subsequently 

denatured and diluted before loading onto the MiSeq and sequencing using 2 x 251 chemistry 

(section 2.6.6). 

White Asian  Black Chinese Mixed Other Unknown 

% donors 91.1% 2.1% 0.2% 0.2% 1.5% 0.4% 4.5% 
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5.2.2 Re-sequencing of samples with HLA types previously rejected 

5.2.2.1 Sample selection 

Eighty nine samples that previously failed to sequence for one or more HLA locus had sufficient 

DNA remaining for re-sequencing. Fifty micolitres of each DNA sample was transferred from 

their original plates into a clean 96-well plate (#RPT2) using the epMotion® 5075 liquid 

handling robot as described in 5.2.1.1. 

5.2.2.2 DNA preparation, PCR amplification and amplicon pooling 

DNA was purified on the Biomek FX liquid handling robot using AMPure beads as previously 

described and neat purified DNA was used to set up PCR amplifications for HLA-A, -B and -C 

using in-house PCR. Success of amplification was determined using agarose gel electrophoresis 

and was followed by the pooling of 7µl of amplicon from each HLA locus into respective wells 

of a clean plate. 

5.2.2.3 Library preparation and sequencing 

Pooled amplicon was prepared for sequencing using the TruSightHLA protocol, as described in 

2.6.3.1. This approach was selected because, at the time this experiment was performed, the 

Illumina library preparation kits were in routine use at NHSBT. The TruSightHLA protocol was 

initiated on a Biomek FX robot but due to a power interruption during the amplicon 

normalisation step, the remainder of the method was performed manually. To ensure that 

library preparation had not been adversely affected by failure of the robotics, the PAL was 

assessed using both the Qubit and Bioanalyser.  Following denaturation and dilution of the 

PAL, sequencing was performed on the MiSeq as before but this time using 2 x 151 paired end 

sequencing on a standard flow cell, which was cheaper and quicker than the 2 x 251 chemistry 

used previously and had been shown by the routine laboratory to provide acceptable results. 

5.2.3 Sequence data analysis 

FASTQ files generated by MSR were analysed using NGSengine v2.1, IMGT/HLA 3.24. Samples 

with remaining intron or exon mismatches were subsequently reanalysed following the later 

release of NGSenginev2.4 in January 2017, to check against sequences from IMGT/HLA v3.26. 

Analysis preferences were as described in section 2.6.7 and success of sequencing was 

determined using the acceptance criteria discussed in Chapter 3. 

5.2.4 Population data analysis 

5.2.4.1 HLA allele frequencies 

Allele frequencies for HLA-A, -B and -C were calculated from data obtained from 519 donors 

sequenced. Frequencies were determined at third field only and calculated by direct counting. 
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5.2.4.2 HLA haplotype frequencies 

Arlequin software v3.5, an integrated software package for population genetics analysis 

(Excoffier and Lischer, 2010), was employed to determine both HLA haplotype frequencies and 

calculate Hardy-Weinberg equilibrium (HWE). Haplotype frequencies were estimated using the 

expectation-maximum algorithm and the exact test using the Markov chain method (Guo and 

Thompson, 1992) was used for HWE, as recommended in the Arlequin35 user guide. HLA allele 

frequencies were also subsequently confirmed using Arlequin. 

 

5.3 Results 

5.3.1 Repeat amplifications 

Agarose gel electrophoresis indicating successful amplification was achieved for the majority of 

samples, based on an aliquot of each amplicon taken from the first and last rows of each 

repeat plate. Although the molecular weight marker was mistakenly omitted from the gel, all 

visible bands were of the same size and intensity indicating a successful amplification for all 

but one sample (Figure 5.2). 

 

 

 

Figure 5.2 Gel images of amplicons taken from the first and last row of each repeat plate. 

Image (A) shows amplicons from plate #RPT1 taken from row 1 and row 6 of each plate for 

HLA-A, -B and –C. (B) shows amplicons from plate #RPT2, taken from row 1 (wells 1 to 8) and 

row 12 (rows 89-96) of each plate for HLA-A, -B and -C. Note that for each row 12, a PCR 

product was only expected in lane 89. All wells contain a visible band of the same size, except 

for sample taken from well 1 of the HLA-A second repeat plate (white arrow) where no band 

was present. Note that no molecular weight markers were run. 

A 

B 
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5.3.2 Sequencing libraries 

Bioanalyser results indicated that each library was an acceptable size, with an average of 

1781bp and 1323bp obtained for plates #RPT1 and #RPT2, respectively. The first plate #RPT1 

had a slightly higher concentration of 3.7ng/µl when compared to 2.7ng/µl obtained for plate 

#RPT2, with both values determined using the Qubit. The cluster density achieved on the flow 

cell was similar for each MiSeq run, with 1251 K/mm2 and 1361 K/mm2 for #RPT1 and #RPT2, 

respectively.  The percentage of clusters passing the filter was 83% for both sequencing 

experiments. 

5.3.3 HLA sequencing results 

5.3.3.1 Confirmatory sequences of samples with putative novel mutations 

All 45 samples with previously identified novel sequences were successfully retyped for HLA-A, 

-B and -C. The average read depth was 1985bp (range 225-4391bp) with a mean insert size of 

419bp (range 307-563bp) with an average of 90% of sequences mapping to reference data. 

Nine of the 45 samples were subsequently resolved for all HLA loci due to the designation of 

new HLA alleles since the original sequencing was performed, detailed in Table 5.1.  

Table 5.1 HLA alleles resolved following re-sequencing. HLA sequences containing nucleotide 

mismatches at the positions indicated that were subsequently resolved following re-sequencing 

and analysis with NGSengine v2.4.  

 

Of the remaining 36 samples, mutations were confirmed in 38 HLA sequences with three 

identified in exons, 20 in the intronic regions and 15 mutations located in the UTRs, 

summarised in Table 5.2. 

Locus Substitution Deletion Insertion 

HLA-A 12 1 0 
HLA-B 10 0 5 
HLA-C 10 0 0 

Table 5.2 Number of HLA sequences observed with novel mutations. Samples are shown 

according to HLA locus and the category of mutation observed. 

ID Original closest 
matched allele  

Position of mutation New allele designation 

S30 A*02:01:01:01 2798 A*02:01:01:08 

S10 A*31:01:02:01 2486 A*31:01:02:04 

S39 A*31:01:02:01 2486 A*31:01:02:04 

S17 B*08:01:01 2803 B*08:01:01:02 

S36 B*08:01:01 2803 B*08:01:01:02 

S41 B*15:01:01:01 2324 B*15:01:01:06 

S24 B*56:01:01:02 2988 B*56:01:01:03 

S23 B*56:01:01:02 2988 B*56:01:01:03 

S12 C*02:02:02:01 3005 C*02:02:02:03 
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Twenty seven of these 38 mutations were confirmed in fully phased sequences (Table 5.3) with 

the remaining sequences failing to separate completely into two alleles for the length of the 

respective genes due to poor phasing. Lack of sequence phase across an entire gene was 

generally observed when there were large regions of homozygous sequence between the 

defining heterozygous positions, as illustrated in Figure 5.3.  

 

ID Affected allele Nucleotide 
position of 
mutation 

Gene 
Location 

Expected 
nucleotide 

Observed 
nucleotide 

Mutation 

S6 A*01:01:01:01 1049 INT 3 C A Substitution 

S5 A*02:01:01:01 2949 UTR C T Substitution 

S8S2 A*02:05:01 657/670 INT 2 A/G G/T Substitution 

S7  A*11:01:01:01 -116 UTR A G Substitution 

S14  A*23:01:01 multiple INT 2 MULTIPLE - Deletion 

S43 A*23:01:01 -219 UTR T C Substitution 

S22  A*24:02:01:01 -17 UTR C T Substitution 

S22  A*29:02:01:01 2338 INT 5 C A Substitution 

S16  A*30:02:01:02 2922 UTR G C Substitution 

S31  A*68:02:01:01 2263/2266/2268 INT 5 T/A/C G/T/T Substitution 

S26 B*07:02:01 1426 INT 3 C T Substitution 

S21  B*08:01:01:01 1051 INT 3 C T Substitution 

S11  B*18:01:01:02 3010.2 UTR - C Insertion 

S28  B*44:02:01:01 -31 UTR A/A C/C Substitution 

S20  B*51:01:01:01 666 INT 2 C T Substitution 

S45  B*51:01:01:01 666 INT 2 C T Substitution 

S18  B*51:01:01:01 2978 UTR T C Substitution 

S3  B*51:01:01:01 2978 UTR T C Substitution 

S33  B*51:01:01:01 2289 INT 5 C G Substitution 

S34 C*03:03:01:01 2568 EX 6 G A Substitution 

S29 C*03:04:01:01 1810 EX 4 T A Substitution 

S46  C*05:01:01:02 1505 INT 3 C A Substitution 

S9 C*05:01:01:02 3057 UTR C T Substitution 

S32  C*06:02:01:01 2426 INT 5 G T Substitution 

S13  C*07:02:01:01 -44 UTR T C Substitution 

S25 C*07:02:01:03 189 INT 1 C T Substitution 

S37  C*08:02:01:01 1117 INT 3 G C Substitution 

Table 5.3 Novel HLA alleles with fully phased sequences. Details of the mutations observed for 

each fully phased novel allele detected, including gene location, change to nucleotide sequence 

and mutation category. 
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Figure 5.3 Example of sequence containing a novel mutation with lack of phase. The novel 

mutation is marked with the blue triangle but, due to large homozygous regions between the 

heterozygous positions (circled in black), this sequence is not fully phased across the gene. Lack 

of phase is illustrated by the parallel grey lines between the heterozygous positions. 

 

5.3.3.2 Impact of Exon mutations 

Of the three sequences identified with novel exon mutations, two would result in changes to 

amino acid sequence when compared to the reference sequence, with the third being a 

synonymous substitution (Table 5.4).  

Allele Substitution Position Exon Codon change Amino acid change 

B*15:10:01 G>A 42 1 TCG>TCA Ser>Ser 
C*03:03:01:01 G>A 2568 6 GCG>ACG Ala>Thr 
C*03:04:01:01 T>A 1810 4 TGC>AGC Cys>Ser 

 Table 5.4 Effect of nucleotide substitutions for the three novel exon mutations identified.  

 

5.3.3.3 Re-sequencing samples with HLA types previously rejected 

A total of 239 of the 267 sequences performed met the acceptance criteria, resulting in 74 

(89.5%) samples producing a valid allele level type for HLA-A, -B and -C with the remaining 15 

samples having sequences rejected for one or more HLA locus (Figure 5.4). The majority of 

sequences in plate #RPT2 were rejected due to lack of phase, with an average of 12 phased 

regions per sequence, resulting in ambiguous allele assignment. Many of the accepted 

sequences were also poorly phased, with six phased regions per sequence on average (Figure 

5.5), despite a mean coverage depth of 1080bp.  
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Figure 5.4 The percentage of sequences rejected for each HLA locus in plate #RPT2. Results 

are presented according to HLA locus. 

 

 

Figure 5.5. The number of phased regions observed for sequences in plate #RPT2. Results are 

presented according to quality of sequence, with the mean value represented by the triangle 

 

Sequences that were rejected consisted of smaller fragments, although the mean insert size 

was not markedly difference from the valid sequences, with a mean of 345bp and 372bp, 

respectively. Of note was the uneven coverage observed in sequences from plate #RPT2 

(Figure 5.6), suggesting that sequences were either missing or they had failed to map correctly 

in regions with low sequencing depth. As the average mappability of sequences in both 
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accepted and rejected sequences were similar (82.8% and 80.6%, respectively), it suggested 

that sequences in the regions of low coverage had not been generated. 

 

 

Figure 5.6 An example of uneven coverage and the resulting poor phasing across the gene. 

Uneven coverage observed in a sample from sequencing run #RPT2. Phased regions are 

indicated by the solid red line, with grey lines in between representing regions with incomplete 

phasing, particularly noticeable in regions of low coverage. 

 

 

5.3.4 Population data analysis 

From the starting cohort of 540 donors, a total of 519 samples produced valid sequences for 

HLA-A, -B and -C, either during the original experiments described in Chapter 3 or in the re-

sequence data detailed above. Data from 21 samples were excluded from population analysis 

due to incomplete HLA sequence information for reasons summarised in Table 5.5.  

 

Reasons for exclusion 
 

No. of samples 

Insufficient DNA for repeat 7 
All HLA loci failed  3 
HLA-A failed  1 
HLA-B failed  6 
HLA-C failed  4 

Table 5.5 Reasons for exclusion of donors from the population data analysis. 

 

Due to the high number of sequences with one or more mismatches to the reference intron 

data, allele frequencies were determined at third field only, listed in Table 5.6. 
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HLA-A type Freq % 
individuals 

HLA-B type Frequency % 
individuals 

HLA-C type Frequency % 
individuals 

A*01:01:01 0.2062 37.38% B*07:02:01 0.1329 25.43% C*01:02:01 0.0250 5.08% 

A*02:01:01 0.3035 50.48% B*07:05:01 0.0010 0.19% C*02:02:02 0.0424 8.59% 

A*02:03:01 0.0010 0.19% B*08:01:01 0.1339 25.63% C*02:10 0.0010 0.20% 

A*02:05:01 0.0067 1.35% B*13:02:01 0.0231 4.62%  C*03:02:02 0.0019 0.39% 

A*02:06:01 0.0029 0.58% B*14:01:01 0.0116 2.31% C*03:03:01 0.0655 13.28% 

A*02:07:01 0.0010 0.19% B*14:02:01 0.0260 5.01% C*03:04:01 0.0838 15.82% 

A*02:11:01 0.0039 0.77% B*15:01:01 0.0684 13.49% C*04:01:01 0.0857 16.80% 

 A*02:13 0.0010 0.19% B*15:02:01 0.0010 0.19%  C*04:09N 0.0019 0.39% 

A*03:01:01 0.1320 24.86% B*15:03:01 0.0010 0.19% C*05:01:01 0.1060 21.09% 

A*03:02:01 0.0010 0.19% B*15:16:01 0.0010 0.19% C*06:02:01 0.1002 18.55% 

A*11:01:01 0.0578 11.37% B*15:17:01 0.0058 1.16% C*07:01:01 0.1618 30.86% 

A*23:01:01 0.0231 4.62% B*15:39:01 0.0019 0.39%  C*07:01:02 0.0048 0.98% 

A*24:02:01 0.0645 12.33% B*18:01:01 0.0270 5.39% C*07:02:01 0.1484 28.13% 

A*24:03:01 0.0010 0.19% B*18:03:01 0.0010 0.19%  C*07:04:01 0.0125 2.54% 

A*24:07:01 0.0010 0.19% B*18:40 0.0010 0.19% C*07:06 0.0029 0.59% 

A*25:01:01 0.0077 1.54% B*27:02:01 0.0010 0.19%  C*07:18 0.0067 1.37% 

A*26:01:01 0.0193 3.85%  B*27:03 0.0010 0.19%  C*08:01:01 0.0010 0.20% 

A*29:01:01 0.0010 0.19% B*27:05:02 0.0376 7.32% C*08:02:01 0.0356 6.45% 

A*29:02:01 0.0308 5.97% B*27:05:04 0.0019 0.39%  C*08:92 0.0010 0.20% 

A*30:01:01 0.0116 2.31% B*27:10 0.0010 0.19%  C*12:02:02 0.0106 2.15% 

A*30:02:01 0.0067 1.35% B*35:01:01 0.0491 9.44%  C*12:03:01 0.0202 4.10% 

A*30:04:01 0.0019 0.39% B*35:02:01 0.0019 0.39%  C*14:02:01 0.0087 1.76% 

A*31:01:02 0.0299 5.97% B*35:03:01 0.0048 0.96%  C*15:02:01 0.0270 5.27% 

A*32:01:01 0.0356 6.74% B*35:05:01 0.0010 0.19%  C*15:05:02 0.0010 0.20% 

A*33:01:01 0.0048 0.96% B*35:08:01 0.0029 0.58%  C*15:29 0.0010 0.20% 

A*33:03:01 0.0029 0.58% B*37:01:01 0.0212 4.05%  C*16:01:01 0.0356 7.23% 

 A*33:05 0.0010 0.19% B*38:01:01 0.0087 1.73%  C*16:02:01 0.0010 0.20% 

A*66:01:01 0.0029 0.58% B*39:01:01 0.0077 1.54%  C*16:04:01 0.0019 0.39% 

A*68:01:01 0.0077 1.54% B*39:06:02 0.0087 1.73%  C*17:01:01 0.0019 0.39% 

A*68:01:02 0.0193 3.47% B*40:01:02 0.0578 10.60%  C*17:03 0.0029 0.59% 

A*68:02:01 0.0087 1.73% B*40:02:01 0.0135 2.70%  1.0000  

 A*69:01 0.0010 0.19% B*40:06:01 0.0029 0.58%    

A*74:01:01 0.0010 0.19% B*41:01:01 0.0019 0.39%    

 1.0000  B*41:02:01 0.0029 0.58%    

   B*44:02:01 0.1098 21.39%    

   B*44:03:01 0.0549 10.79%    

   B*44:03:02 0.0029 0.58%    

   B*44:05:01 0.0029 0.58%    

   B*44:27:01 0.0019 0.39%    

   B*45:01:01 0.0048 0.96%    

   B*46:01:01 0.0010 0.19%    

   B*47:01:01 0.0010 0.19%    

    
B*49:01:01 

0.0145 2.89%    

    0.0039 0.77%    
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B*50:01:01 

   B*51:01:01 0.0424 8.29%    

   B*52:01:01 0.0096 1.93%    

   B*52:01:02 0.0010 0.19%    

   B*53:01:01 0.0039 0.77%    

   B*55:01:01 0.0250 5.01%    

   B*56:01:01 0.0019 0.39%    

   B*57:01:01 0.0462 8.86%    

   B*58:01:01 0.0087 1.73%    

    1.0000     

Table 5.6 HLA-A, -B and -C allele frequencies in English platelet donors. The HLA allele 

frequencies and the % of individuals containing each allele in a cohort of 519 samples collected 

from English apheresis platelet donors.  

 

A comparison of the three most frequent allele groups from each HLA locus showed similar 

frequencies observed in 400 healthy volunteers from North West England (Alfirevic et al., 

2012). However, this paper did not report unambiguous allelic level HLA types, so some alleles 

and their respective frequencies were grouped together according to their shorthand ‘G’ codes 

e.g. HLA-C*07:01:01, C*07:01:02, C*07:06 and C*07:18 as C*07:01g, which puts together HLA 

alleles with identical nucleotide sequences across exons 2 and 3 (Marsh et al., 2010), for 

comparison purposes (Figure 5.7) 

 

 

 

Figure 5.7 A comparison of the three most frequent HLA allele groups. Data is presented per 

locus by percentage frequency in English platelet donors with HLA frequencies reported by 

Alfirevic et al., 2012 in 400 healthy volunteers from North West England. 
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Haplotype frequency estimation determined a total of 1423 haplotypes, with 281 having a 

frequency of >0.05% in this population. The three most frequent haplotypes observed were 

HLA-A*01:01:01-B*08:01:01-C*07:01:01 (11.2%), HLA-A*02:01:01-B*44:02:01-C*05:01:01 

(6.6%) and HLA-A*03:01:01-B*07:01:01-C*07:02:01 (5.8%). When performed at third field 

resolution, HLA-A, -B and -C genotypes deviated from the expected Hardy-Weinberg 

equilibrium. However, when the typing resolution was reduced to the antigenic level, no 

significant deviation from HWE was observed, with the exception of HLA-B where the 

deviation is borderline (Table 5.7).  

 

HLA locus HWE – third field 
(p-value) 

HWE – first field 
(p-value) 

HWE – antigen level 
(p-value) 

HLA-A 0.00071 0.25938 0.56895 
HLA-B 0.00369 0.01432 0.04535 
HLA-C 0.02545 0.07630 0.07129 

Table 5.7  P-values observed for deviation from Hardy-Weinberg equilibrium (HWE). Results 

for HWE calculation are shown following analysis of HLA types at third field, first field and 

antigenic level of resolution 

 

 

5.4 Discussion 

Following the re-sequencing of samples that originally failed to produce an allele level type for 

HLA-A, -B and -C, the HLA allele and haplotype frequencies were determined for the platelet 

donor cohort HLA typed by NGS in this study.  

5.4.1 Outcome of re-sequencing 

The majority of samples were successfully re-amplified for HLA-A, -B and -C using the in-house 

PCR protocol, although because only a sample of amplicons were checked, it was not possible 

to determine the exact percentage of amplification success. Examining the first and last rows 

of each amplified plate of DNA by gel electrophoresis indicated that just one out of seventy 

five (1.3%) amplifications had failed, highlighting the robustness of this approach. 

The subsequent library preparation and sequencing was equally successful for the first plate, 

#RPT1, with all samples producing a sequence of acceptable quality. Unfortunately this was 

not the case with plate #RPT2, which generated sequences with uneven coverage resulting in 

poor phasing and low coverage across parts of the gene. This poor quality data was probably 

due to the failure of automation during the normalisation stage of the library preparation 

which is likely to have affected the amount of amplicon added to the subsequent tagmentation 
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step. Adding insufficient template into a tagmentation reaction is known to result in smaller 

fragments which can lead to coverage drop out (Illumina, 2015). Another possible explanation 

for the difference is that plate #RPT2 used 2 x 150bp chemistry compared to the 2 x 250 cycle 

kits employed for all other experiments. However this is not the experience observed by 

others (Profaizer et al., 2015) or in the routine NHSBT laboratory, where HLA typing results are 

comparable using either MiSeq chemistry.  

 

5.4.2 Confirmation of novel mutations 

Nine of the 45 putative novel mutations confirmed by re-sequencing were found to have 

designated HLA alleles following re-analysis using later releases of NGSengine and IMGT/HLA. 

The number of ‘novel’ sequences subsequently resolved by re-analysing with up to date 

software, detailed both here and in Chapter 3, is noticeable and can be attributed to the rapid 

rise of novel full length class I sequences added to the IMGT/HLA database in recent years. This 

is largely due to the increasing use of NGS for HLA typing (Robinson et al., 2015), enabling 

characterisation of regions outside exons 2 and 3 of the HLA class I genes that were not 

previously sequenced by the majority of laboratories using conventional technology (René, 

Lozano and Eliaou, 2016). 

Of the remaining samples, 27 of the 38 novel sequences determined were fully phased and 

should meet the strict criteria for submission to the IMGT/HLA database once accession 

numbers have been obtained for each unique sequence , which will be the subject of future 

work. In order for the ten sequences not ‘in-phase’ to be assigned a name by the WHO HLA 

nomenclature committee, samples will need re-sequencing using an alternative approach that 

is able to produce full length sequence across the HLA class I gene without the need for 

assembly of shorter reads, as phasing of heterozygous positions is required for IMGT/HLA 

submission (Lind et al., 2013). This would require the use of an NGS platform such as the 

PacBio RS II, which has been applied for novel allele confirmation by others (Cereb et al., 

2015), but this technology is currently not available at NHSBT.  

Of those samples containing novel mutations in exon regions of the HLA class I genes, two of 

the three identified would result in changes to the amino acid sequence of their respective 

HLA-C molecules. Whilst the relevance of polymorphism outside exons 2 and 3 is currently 

unknown (Lamb et al., 2015), of particular interest was the mutation at position 1810 in exon 4 

of HLA-C*03:04:01:01 which produces an amino acid substitution of cysteine to serine in the 

alpha 3 domain of the expressed HLA-C molecule. A recent paper suggested that mutations in 

the alpha 3 domain of an HLA molecule may affect the binding of CD8 molecules, required by 

cytotoxic T cells to exert their effect (Zaimoku et al., 2017).  
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The relevance of the synonymous substitution detected in an HLA-B*15:10:01 allele, as well as 

those mutations identified outside the coding regions in other samples, is also unclear. Whilst 

it is possible that these may impact on mRNA expression, very little is known about the effect 

that HLA polymorphism has on the splicing mechanism because the majority of HLA alleles are 

identified based on DNA sequence analysis only (Voorter et al., 2016).  

5.4.3 Population data analysis 

Due to the high number of samples with either novel mutations or artefacts contained within 

the intronic regions of each gene, it was decided to analyse HLA frequencies at third field to 

avoid having to exclude a significant proportion of data generated. Nevertheless, it is believed 

that this is the first reported UK population cohort with HLA typing at a resolution beyond 

second field. It has been submitted to Allele Frequencies Net database (Gonzalez-Galarza et 

al., 2015a) under the population name ‘England Blood Donors of Mixed Ethnicity’, identifier 

3392. This data is classed as ‘gold standard’ with allele frequencies adding up to 1, HLA typing 

determined to at least second field and a sample size of ≥50 (Santos et al., 2016).  

HLA allele frequencies were comparable with previous published English data. For example, 

the genotype frequency of HLA-A*01:01g reported by Alfirevic et al. 2012 in 400 volunteer 

donors was 38.6%, similar to the 37.4% of platelet donors typing as HLA-A*01:01:01 in this 

study. HLA-A, -B and -C genotypes determined at third field deviated from HWE. This is likely 

due to the presence of alleles such as A*74:01:01, B*18:40 and C*15:29, that occurred only 

once in this cohort, resulting in excess heterozygosity which is a known factor causing HWE 

deviation (Single et al., 2002). Many of the low frequency alleles observed are neither common 

nor well documented in European populations (Sanchez-Mazas et al., 2017) and may reflect 

the mixed ethnicity of English platelet donors which is typical of the blood donor population 

(Lattimore, Wickenden and Brailsford, 2015). However, this is not reflective of the more 

diverse ethnic distribution of the region, with only 84.9% of individuals in England (and Wales) 

self declaring as white in 2011 (Office for National Statistics, 2012) compared to 91.1% of 

platelet donors in this study. 

As reported by others, no significant deviation from HWE was observed when HLA genotypes 

were defaulted to antigen level (Schafer et al., 2016), apart from HLA-B which still deviated 

significantly. This was probably due to greater variability observed for HLA-B when compared 

to HLA-A and -C (Single et al., 2002), with 22, 11 and 13 antigens, respectively. Population data 

reported in this chapter has formed the basis of a short population report (Davey et al., 2017) 

which provides a structured description of populations along with genetic data and restricted 

analysis for HLA, KIR, cytokine and MIC genes (Mack and Middleton, 2015).   
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6. HPA genotyping by NGS 

6.1 Introduction 

Human platelet antigens (HPA) are located on glycoproteins expressed on the surface of 

platelets (Curtis and McFarland, 2014). There are currently twenty nine HPA systems 

described, encoded by the six genes  ITGB3, ITGA2B, ITGA2, GP1BA, GP1BB and CD109 

(Robinson et al., 2015). With the exception of HPA-14bw (which is defined by a three base pair 

deletion), each HPA is characterised by a single nucleotide polymorphism (SNP) resulting in an 

amino acid substitution in the corresponding protein (Lucas, 2013).  

A variety of molecular techniques have been employed to define the HPA systems (Nogués, 

2011), with the majority of HPA typing methods restricted to defining HPA-1, HPA-2, HPA-3, 

HPA-4, HPA-5 and HPA-15, selected originally for their frequency and clinical relevance (Lucas, 

2013). However, due to increasing reports of maternal alloantibodies against ‘rare’ HPA 

antigens (Poles et al., 2013; Peterson et al., 2012; Jallu et al., 2013; Bertrand et al., 2013b) it 

has been suggested that genotyping techniques should be expanded to include all known HPA 

systems (Santoso and Tsuno, 2015).  

Ideally, a single method capable of both detecting all known HPA SNPs and identifying novel 

mutations implicated in FNAIT should be employed. This would avoid the two tiered approach 

often required when investigating a rare or possibly unique HPA which can lead to protracted 

and costly laboratory investigations, requiring full length Sanger sequencing of one or more 

HPA defining gene (Poles et al., 2013; Wihadmadyatami et al., 2015). However, to date no 

published HPA genotyping has reported the capacity to define all known HPA systems in a 

single assay. 

Next Generation Sequencing (NGS) has the capacity to produce large amounts of sequence 

data relatively quickly and cheaply when compared to Sanger sequencing (Metzker, 2010). 

Lane et al. recently described the potential use of whole genome sequencing by NGS for 

predicting red cell and platelet antigens. They indicated that a targeted NGS approach might 

be a more affordable option for laboratories with novel DNA bar-coding technology enabling 

the simultaneous sequencing of specific regions of the genome in multiple individuals (Lane et 

al., 2016).  

In this study, a targeted NGS approach was designed to define all known HPA systems in either 

patient or donor samples, and assessed for its suitability as a routine approach for patient and 

donor genotyping, including novel allele detection.  
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6.2 Materials and methods 

6.2.1 Samples 

A total of 47 previously HPA genotyped DNA samples were used in this study, as detailed 

below. 

6.2.1.1 Control DNA 

Eleven DNA samples were obtained from NHSBT archives of external quality assessment (EQA) 

material. Samples were selected to ensure they covered as many HPA systems as were 

available, and included both heterozygous and homozygous examples of HPA genotypes 

commonly observed in the UK population. An additional fourteen anonymised control DNA 

samples were provided by the Australian Red Cross Blood Service and tested blind. The 

Australian samples included those with rarer HPA genotypes not available locally (Figure 6.1).  

 

Figure 6.1 HPA genotypes of control DNA. HPA genotypes represented by the external quality 

assessment (EQA) control DNA and the DNA provided by the Australian Red Cross blood service 

(AUS). EQA samples had not been previously tested for HPA-7, -8, -10 or -11. All HPA genotypes 

not represented in this figure were not defined in these control samples before being used in 

this study. 
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6.2.1.2 Patient DNA 

DNA was provided by the NHSBT Filton H&I laboratory. It had been previously extracted from 

patient blood samples originally referred for investigation, with informed consent obtained by 

the clinical team. Blind testing of these 22 samples was performed to assess targeted NGS as a 

potential method for clinical application. Included in this patient sample cohort were duplicate 

DNA from three patients and archive material of mother and baby from an unresolved 

suspected case of FNAIT which had previously undergone investigation by sequencing based 

typing. 

6.2.2 Historical HPA genotyping 

All samples in this study had been previously genotyped for HPA-1 to HPA-5 and HPA-15 by 

TaqMan real-time PCR, PCR-SSP and or PCR-SBT, with some control DNA additionally tested for 

HPA-6bw and HPA-9bw by the same method.  A number of samples were also defined for HPA-

7bw, -8bw, -10bw, -11bw, -27bw and or HPA-28w by either PCR-SSP or PCR-SBT (Table 6.1). 

HPA 
system  

HPA-1 to 
HPA-5 and 
HPA-15 

HPA-6w HPA-7w HPA-8w HPA-9w HPA-10w HPA-11w HPA-27w HPA-28w 

Typing 
method 

TaqMan/ 
PCR-
SSP/SBT 

TaqMan/ 
PCR-SSP/ 
SBT 

PCR-SSP PCR-SSP TaqMan/ 
PCR-SSP/ 
SBT 

PCR-SSP PCR-SSP SBT SBT 

No. of 
samples  

47 17 3 3 16 3 3 1 6 
 

Table 6.1 HPA systems previously defined in the sample cohort. The number of DNA samples 

defined for each HPA system indicated and the methods employed.  

 

6.2.3 Assay Design 

A panel of probes to detect the six genes known to encode HPA capturing all exons and 

flanking regions was designed to determine the feasibility of targeted NGS for HPA genotyping 

and assess its ability to detect novel HPA, as described in Section 2.7.1. 

6.2.4 Targeted enrichment and sequencing 

6.2.4.1 DNA sample preparation 

Each DNA sample was quantified using either the Quant-iT™ or Qubit® assay, as previously 

described (Section 2.4). A 50µl aliquot of each DNA sample was then prepared by diluting to 

1.8ng/µl with in 10mM Tris buffer pH 8.5 (Buffer EB, Qiagen).  

6.2.4.2 DNA library preparation 

Indexed DNA libraries were prepared from 50ng of genomic DNA (gDNA) using the bespoke 

HaloPlex HS target-enrichment assay for Illumina sequencing (Agilent Technologies, UK) as 
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described in Section 2.7.2. Three separate experiments were set up, with variable sample 

numbers tested each time (Table 6.2).  

Experiment Sample type No. of 
samples 

Expt 1 EQA  11 
Expt 2 Patient DNA (NHSBT Filton) 21 
Expt 3 Control DNA (Australian Red Cross Blood Service) 

plus one patient (NHSBT Filton) 
15 

Table 6.2 Detail of samples used for each HaloPlex HS experiment. Sample origin and the 

number included in each of the three HaloPlex HS experiments performed in this study 

 

The first experiment was performed using EQA samples to ensure the HaloPlex design had the 

capability of defining the common HPA genotypes. Second and third experiments were set up 

with DNA provided by external laboratories, which was tested blind and subsequently checked 

for concordance with the historical HPA genotype determined by the originating centre.  

Following preparation, for each experiment individual indexed libraries were combined into 

pools for downstream sequencing. Equimolar pooling was employed for the first experiment 

but subsequent pooling was based on equal volumes of each sample, to reduce costs and 

handling time. Each pooled library was then validated with a Bioanalyser 2100 (section 2.6.5.1) 

to assess fragment size and concentration and then normalised to approximately 4nM. Pooled 

libraries were sequenced separately on a MiSeq as described in section 2.7.4, using a Nano 

Cartridge for the first experiment and the Standard v2 cartridge for subsequent MiSeq runs. 

The type of cartridge was determined by the number of samples in each MiSeq run to ensure 

sufficient read depth was obtained. 

6.2.5 Data analysis 

Primary data analysis was performed using MSR to generate a pair of FASTQ files for each 

sample. FASTQ files were then analysed with SureCall NGS data analysis software v3.0.3.1 

(Agilent Technologies, UK) using the following pipelines:- 

6.2.5.1 HPA genotyping 

Single sample analysis was performed using the Default HaloPlex Method and chromosomal 

positions scrutinised using triage view for the respective positions for each HPA system. 

Nucleotides observed were used to manually assign genotypes for HPA-1 to HPA-29w, in 

accordance with data available from IPD-HPA. (Robinson et al., 2015) All HPA genotypes 

generated by NGS were then compared with those HPA systems previously defined in each 

sample and concordance determined.  
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6.2.5.2 Novel mutation detection 

FASTQ files from both the mother and baby from a suspected FNAIT case were analysed using 

HaloPlex default for pair analysis (Tumour Normal Method), allowing direct comparison of 

both sequences. Observed nucleotide differences between mother and baby for the six genes 

sequenced were examined, in particular those positions where the mother was homozygous 

and the baby was heterozygous, and therefore may encode a potential target of maternal 

alloantibody. 

6.3 Results 

6.3.1 Assay design 

The initial HaloPlex HS design based on the HPA gene targets described in section 2.7.1 used 

the ‘maximise specificity’ level of stringency to ensure target specificity. However, the HaloPlex 

design report indicated this would not provide 100% coverage of all six HPA genes, predicting 

99.74% and 98.05% coverage for target ID NM_000212 (ITGB3) and NM_002203 (ITGA2B), 

respectively. Although none of the affected regions encoded known HPA SNPs (Table 6.3), an 

additional probe group was designed using the ‘Maximise coverage’ stringency option to 

ensure sequence was obtained for all coding regions of the six genes, regardless. In total, 1241 

amplicons were created, with predicted 100% coverage of 108 target regions covering 

27,084kb for design ID 28048-1446018088 (Table 6.4).  

 

Region of interest not amplified TargetID 

CHR5:52351784-52351814 NM_002203 

CHR5:52358587-52358587 NM_002203 

CHR5:52371095-52371114 NM_002203 

CHR5:52385865-52385939 NM_002203 

CHR17:45364593-45364602 NM_000212 

Table 6.3 Regions not amplified by the original HaloPlex HS design. Target regions of interest 

that would not be amplified using stringency set to ‘Maximize Specificity’ 
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Gene Genomic 
Interval 

No. of 
Regions  

Size bp Databases Coverage High 
Coverage* 

Low 
Coverage** 

Stringency 

GP1BA chr17:4835850-
4837908 

1 2059 RefSeq 100 1 0 Maximise 
specificity 

ITGB3 chr17:45331178-
45387620 

15 3867 RefSeq 99.74 15 0 Maximise 
specificity 

GP1BB chr22:19711043-
19712037 

2 821 RefSeq 100 2 0 Maximise 
specificity 

ITGA2B chr17:42449682-
42466891 

24 6046 RefSeq 100 24 0 Maximise 
specificity 

ITGA2 chr5:52285249-
52386479 

29 6529 RefSeq 98.05 27 2 Maximise 
specificity 

CD109 chr6:74405889-
74533407 

32 7625 RefSeq 100 32 0 Maximise 
specificity 

ITGB3 chr17:45364593-
45364602 

1 10 CustomRegion 100 1 0 Maximise 
coverage, 
optimised for 
FFPE 

ITGA2 chr5:52351784-
52385939 

4 127 CustomRegion 100 4 0 Maximise 
coverage, 
optimised for 
FFPE 

Table 6.4 Summary of final HaloPlex HS Design ID 28048-1446018088. *High Coverage = 

number of regions where analysable amplicon overlap >= 90%.**Low Coverage= number of 

regions where analysable amplicon overlap < 90% 

 

Following manufacturing of the bespoke HaloplexHS design for HPA genotyping, quality control 

data provided by Agilent Technologies indicated that amplicons obtained from an enrichment 

of high-quality DNA were of the expected size range and concentration with no excessive high 

or low molecular weight product (Figure 6.2). 

 

Figure 6.2 Custom HaloPlex HS design quality control. A Bioanalyser electropherogram 

provided by Agilent Biotechnologies of the PCR product prepared from an enrichment of high-

quality DNA amplified with design ID 28048-1446018088 
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6.3.3 Restriction enzyme digestion 

Success of the restriction digest was confirmed by analysing the enrichment control DNA 

sample (ECD), set up with each experiment. An example of the results obtained from this 

validation can be seen in Figure 6.3, with each of the eight double digests showing discrete 

bands at the positions indicated in the HaloPlex HS protocol, version C0 December 2015. 

 

Figure 6.3 Validation of restriction enzyme digestion using the Bioanalyser 2100. Enrichment 

control DNA (ECD) was digested with a panel of 16 restriction enzymes in the form of two 

double digests provided with the HaloPlexHS kit. A 1:1 dilution of each ECD digest is shown, run 

using the Agilent high sensitivity kit on the Bioanalyser 2100, with results comparable to 

expected profile indicated in the protocol vC0 December 2015. Lane ‘L’ contains a 50bp ladder; 

lanes 1-8 contain 1:1 dilutions of the eight EDC restriction digests. Lanes 9-11 contain size 

markers only. 

 

6.3.4 Validation of DNA library preparation 

Pooled DNA libraries were assessed to determine the concentration and molarity using a 

Bioanalyser 2100 prior to dilution and loading onto the MiSeq platform. The concentration was 

determined by integration under the peak between 175 and 625bp, with any peak observed 

below 175bp excluded from the calculation. Peaks at approximately 140bp were observed and, 

according to the HaloPlex HS protocol, were associated with an adapter-dimer product and 

could be ignored if less than 10% of the overall peak value. A typical profile obtained is shown 

in Figure 6.4. 

Molarities of the pooled DNA libraries prepared in the first and second experiments were 

similar, with values of 34.88nM and 32.92nM respectively. However, the third DNA library 

prepared was approximate half the molarity of the first two, at 18.58nM, although this 
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difference did not appear to have any consequence given all pooled libraries were eventually 

diluted to 20M prior to loading onto the MiSeq. 

 

Figure 6.4 Validation Bioanalyser profile of the pooled DNA library from experiment 3. The X 

axis indicates the fragment size in base pairs. The blue bars (region 1) represent the peak 

range used to determine concentration and molarity. Values obtained for the peak at ~140bp 

were less than 10% of the overall concentration and were therefore ignored. 

 

 

6. 3.4 HPA genotyping 

Forty six of the forty seven samples sequenced were successfully genotyped for all currently 

defined HPA systems using the HaloPlex HS assay (Figure 6.5), with one sample excluded due 

to possible contamination.  

All HPA genotypes produced were 100% concordant with historical data. The majority of HPA 

systems tested were homozygous for the more common ’a’ allele observed in the UK 

population. However, both ‘a’ and ‘b’ alleles were represented in one or more sample for HPA-

1 to HPA-7bw, HPA-9bw, HPA -15, HPA-27bw and HPA-28bw (Figure 6.6). Unfortunately, it was 

not possible to test all potential combinations of HPA alleles due to the rarity of many HPA 

genotypes   
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Figure 6.5 HPA genotyping results determined using the bespoke HaloPlex HS design. Forty 

six samples were successfully sequenced, defining alleles for all 29 HPA systems. Blue blocks 

represent homozygous ‘aa’ HPA genotypes, yellow blocks indicate heterozygous ‘ab’ HPA 

genotypes and the red blocks denote ‘bb’ HPA genotypes for each HPA system. 
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Figure 6.6 Polymorphisms of the HPA systems sequenced using HaloPlexHS. The range of 

HPA alleles observed in forty six samples sequenced using HaloPlex HS.  

 

6.3.5 Sequence quality 

The quality parameters of each sequence obtained by our HaloPlex HS method were 

scrutinised to verify the accuracy of each HPA genotype assigned.  

6.3.5.1 Sequencing coverage 

Cluster density on the flow cell ranged from 1115 to 1226K/mm2 for the three experiments, 

with clusters passing filter greater than 87% on each occasion. On average, the per base depth 

of coverage (DoC) of 1144x was obtained for each sample, although the mean value varied 

between the three HaloPlex experiments performed, with an average of 584x, 1582x and 978x 

respectively. Variability in DoC between samples was minimal in the first experiment, but was 

wider in subsequent experiments (Figure 6.7).  
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Figure 6.7 Range of mean per base depth of coverage observed for each sample. Average 

DoC achieved per sample for each HaloPlex HS experiment, with the overall mean represented 

by the triangle. 

 

 

6.3.5.2 Coverage per HPA system 

The average DoC observed between each HPA system was quite varied, although this 

variability appeared to be consistent between experiments (Figure 6.8). The highest average 

DoC was achieved for HPA-23bw, with 2615x (range 469-5849), and the HPA system with 

lowest average coverage of 335x (range 18-664) was HPA-20bw.  
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Figure 6.8 Depth of coverage observed for each HPA system. Chart A shows the average and 

range of per base DoC observed for each HPA system, with the mean value represented by the 

triangle. Graph B shows the difference in average coverage observed per HPA with each 

experiment. 

 

6.3.6 Impact of GC content on read depth 

Table 6.5 lists the percentage GC content of each exon that encodes each of the respective 

twenty nine HPA systems, along with the mean DoC observed for each SNP. Fisher’s exact test 

showed a significant correlation between the mean depth DoC of 1144bp and the GC content 

of exons encoding each HPA SNP, with a lower read depth associated with a higher GC content 

(Figure 6.9).  
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GP1BA Gene Exon Total no. of nucleotides %GC Mean read depth 
(bp) 

HPA-1 ITGB3 3 196 61% 926 
HPA-2 GP1BA 2 2432 55% 1018 
HPA-3 ITGA2B 26 126 65% 915 
HPA-4 ITGB3 4 253 52% 675 
HPA-5 ITGA2 13 144 42% 1411 
HPA-6w ITGB3 10 430 59% 439 
HPA-7w ITGB3 10 430 59% 918 
HPA-8w ITGB3 12 101 48% 1990 
HPA-9w ITGA2B 26 126 65% 925 
HPA-10w ITGB3 3 196 61% 1028 
HPA-11w ITGB3 12 101 48% 1568 
HPA-12w GP1BB 2 921 73% 718 
HPA-13w ITGA2 20 142 35% 949 
HPA-14w ITGB3 11 223 61% 942 
HPA-15 CD109 19 118 43% 853 
HPA-16w ITGB3 4 253 52% 674 
HPA-17w ITGB3 5 163 53% 865 
HPA-18w ITGA2 17 152 40% 1325 
HPA-19w ITGB3 12 101 48% 675 
HPA-20w ITGA2B 20 148 66% 302 
HPA-21w ITGB3 12 101 48% 2202 
HPA-22w ITGA2B 5 50 60% 362 
HPA-23w ITGB3 12 101 48% 2393 
HPA-24w ITGA2B 15 105 55% 1194 
HPA-25w ITGA2 28 90 42% 494 
HPA-26w ITGB3 11 223 61% 1157 
HPA-27w ITGA2B 26 126 65% 922 
HPA-28w ITGA2B 23 81 61% 668 
HPA-29w ITGB3 2 86 63% 1817 

Table 6.5 Mean read depth and percentage CG content in the encoding exon for each HPA 

system.   
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Figure 6.9 Correlation between mean per base depth of coverage and % CG content. The 

higher the GC content the lower the mean read depth for each HPA SNP. Significant p value 

determined using Fishers exact test.  

 

6.3.7 Allele balance 

The ratio of sequence depth obtained for individual SNPs in all heterozygous samples was 

even, with a mean of 51% for allele ‘a’ and 49% for allele ‘b’, ranging from 41-60% and 40-50% 

respectively. Those HPA with fewer heterozygous examples in our cohort, such as HPA-6bw, 

tended to have slightly uneven allele balance (Figure 6.10). However, all heterozygous samples 

were well within the 20:80 balance ratio used by HLA analysis software for calling 

heterozygous positions (Section 2.6.7).  
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Figure 6.10 Mean allele balance observed for each heterozygous HPA system. The 

percentage read depth for allele ‘a’ is shown on the left hand side and allele ‘b’ on the right. 

 

6.3.8 Novel allele detection 

Full HPA genotyping of both the mother and baby from the unsolved FNAIT case was 

performed along with other patient samples in the second experiment. HPA-15 was potentially 

clinically significant, with the mother typing as HPA-15aa and baby determined to be HPA-

15ab. However, this HPA system had been previously excluded by NHSBT Filton as causing 

FNAIT in the original investigation. Consequently, all coding regions of the six genes sequenced 

were examined using SureCall pair analysis to search for any other potential mutations that 

might be implicated in FNAIT. 

The HaloPlex Tumour Normal method, using the maternal sample as the reference, indicated a 

total of twenty six differences between mother and baby, with 10 mutations of interest 

identified where mother was homozygous but the infant was heterozygous (Table 6.6). One of 

these mutations of interest was the previously discounted HPA-15 disparity, five were 

excluded as they were non-coding and three mutations were SNPs with no known association 

to FNAIT (National Center for Biotechnology Information SNP database) so were also ruled out.  

The remaining difference between mother and baby indicated a novel SNP in the ITGB3 gene 

(NM_000212.2:c.1373A>G) present in baby’s sample, resulting in an amino acid change from 

aspartic acid to glycine. Although there was insufficient DNA to sequence the historical 

paternal sample, retrospective analysis of original Sanger sequencing data performed by the 

originating laboratory was able to confirm inheritance of this mutation in baby (A. Poles, 

personal communication). 
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Chrom Pos ID Baby Mother HGVS(Coding) HGVS(Protein) 

chr5 52337908 rs3212441 T/C T/C NM_002203.3:c.186-34C>T  

chr5 52338083 rs1363192 G/T G/T NM_002203.3:c.295+32T>G  

chr5 52344610 rs1421933 G G/A NM_002203.3:c.630+10A>G  

chr5 52347369 rs1126643 T T/C NM_002203.3:c.759C>T NP_002194.2:p.Phe253= 

chr5 52351413 rs1062535 A A/G NM_002203.3:c.825G>A NP_002194.2:p.Thr275= 

chr5 52355854 rs2303127 C C/T NM_002203.3:c.1312+12T>C  

chr5 52356692 rs3212538 C/T T NM_002203.3:c.1313-39T>C   

chr5 52366138 rs2112290 A A/G NM_002203.3:c.2235+48G>A  

chr5 52368922 rs984966 A A/T NM_002203.3:c.2430-26T>A  

chr5 52370174 rs3212591 A A/G NM_002203.3:c.2572-41G>A  

chr5 52379277 rs2303122 T T/C NM_002203.3:c.3252C>T NP_002194.2:p.Phe1084= 

chr6 74432923 rs56093139 T/C C NM_001159587.2:c.248-51C>T   

chr6 74440104 rs143082026 A/G A/G NM_001159587.2:c.314G>A NP_001153059.1:p.Arg105His 

chr6 74466377 rs6453696 T/C T NM_001159588.2:c.414C>T NP_001153060.1:p.Tyr138= 

chr6 
 (HPA-
15) 

74493432 rs10455097 C/A C NM_001159588.2:c.1877A>C NP_001153060.1:p.Tyr626Ser 

chr6 74497009 rs2351528 G/A G NM_001159588.2:c.2159A>G NP_001153060.1:p.Asn720Ser 

chr6 74497152 rs5023688 A/G A NM_001159588.2:c.2302G>A NP_001153060.1:p.Val768Ile 

chr6 74521947 rs2917862 T/C C NM_001159588.2:c.3491C>T NP_001153060.1:p.Thr1164Met 

chr6 74528293 rs3005506 G/A A NM_001159587.2:c.4008+35A>G   

chr6 74533192 rs2917887 G G NM_001159588.2:c.3942G>T NP_001153060.1:p.Ala1314= 

chr17 4835895 rs2243093 C/T C NM_001165417   

chr17 45360730 rs5918 C C/T NM_000212.2:c.176T>C NP_000203.2:p.Leu59Pro 

chr17 45368337 rs15908 C C/A NM_000212.2:c.1143A>C NP_000203.2:p.Val381= 

chr17 45369617   G/A A NM_000212.2:c.1373A>G NP_000203.2:p.Asp458Gly 

chr17 45369777 rs4642 G G/A NM_000212.2:c.1533A>G NP_000203.2:p.Glu511= 

chr17 45369789 rs4634 A A/G NM_000212.2:c.1545G>A NP_000203.2:p.Arg515= 

Table 6.6 Nucleotide differences identified by SureCall using pair analysis between samples 

from mother and baby of a suspected FNAIT case. Lines highlighted in yellow are the 

mutations of potential interest where mother is homozygous and baby heterozygous, with the 

novel causative mutation highlighted in green. 

 

 

6.4 Discussion 

This is the first reported HPA genotyping method able to simultaneously detect and define all 

known HPA systems in a targeted NGS-based genotyping assay (Davey, Navarrete and Brown, 

2017). 

6.4.1 Assay design 

A panel of HaloPlex HS probes to detect the six genes that encode all currently defined HPA 

systems was designed to determine the feasibility of using targeted NGS for HPA genotyping.  

However, rather than just target the regions containing a restricted set of HPA SNPs, as 

reported by others (Orzinska et al., 2017), probe groups were designed to capture all exons 

and 50 base pair flanking regions to determine if this NGS-based approach might also be 

clinically useful for the investigation of FNAIT, including novel allele detection.  
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The original design used the ‘maximise specificity’ stringency option of the SureDesign 

HaloPlex Advanced Design Wizard; high specificity is important to avoid capturing highly 

similar but irrelevant regions (Nagy and Mansukhani, 2015). However, this design approach 

indicated that some target regions in chromosomes five and seven would not be amplified. 

Although the missed regions did not include those containing HPA SNPs, it was considered 

important to include all coding regions of each gene sequenced to facilitate detection of both 

known and novel HPA. Therefore design parameters were modified accordingly to ensure 

regions had analysable amplicon overlap of ≥90%, resulting in 100% predicted coverage for the 

six genes. 

Validation of both the restriction digestion and library preparation using data from the 

Bioanalyser indicated the efficacy of the bespoke HaloPlex HS design with regards sample 

preparation, although not the specificity of the probe library. 

6.4.2 Sequence quality 

Sequencing parameters observed, including cluster density and percentage of clusters passing 

filter, indicated an optimal amount of library had been loaded for each MiSeq run, based on 

Illumina’s recommended values (Illumina, 2016a).  

6.4.2.1 Depth of coverage 

Sufficient per base depth of coverage (DoC) is critical for NGS to ensure reliable base calling 

and subsequent alignment to the reference genome by analysis software. It is generally 

accepted that average depth in excess of x30 is acceptable for the detection of SNPs (Sims et 

al., 2014), although there is no consensus for a minimum DoC required. A recent study 

reported that the accuracy of sequencing actually improves once the read depth goes beyond 

10 times. (Pirooznia et al., 2014). For all three HaloPlex experiments, the mean DoC achieved 

was well above these minimum acceptable levels, although data generated by each MiSeq run 

was quite disparate. 

6.4.2.2 Depth of coverage per HPA system 

Substantial variation in the mean DoC for each HPA SNP was observed, and was consistent in 

each of the three experiments. One factor that might have affected coverage of each SNP is 

the GC content of the respective region sequenced. It has been reported that sequences with a 

higher proportion of G and C nucleotides are less likely to denature during PCR (Veal et al., 

2012) and this may have affected the efficiency of the enrichment stage of the HaloPlex HS 

protocol. Indeed, exon 20 of the ITGA2B gene that encodes HPA-20w exhibited the lowest 

mean coverage and has a GC content of 66%. Conversely, HPA-23bw had the highest observed 

DoC in each experiment, with just 48% GC content in the encoding exon 12 of the ITGB3 gene. 
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When all HPA SNPs were considered, Fishers exact test indicated a significant association 

between mean DoC for each HPA SNP and the GC content of the respective encoding exon 

(p=0.0317). 

6.4.2.3 Mean Depth of coverage per sample 

As well as variability between each HPA, the overall mean DoC differed markedly between 

each experiment. The variability of the overall mean DoC observed might be explained by the 

different number of samples sequenced in each experiment as well as the MiSeq cartridge 

selected and the amount of PAL loaded for each run. However, differences observed in the 

second and third experiment are more likely explained by the method used for library pooling. 

For the first experiment samples were pooled in equimolar amounts. If an outlier sample 

(which was at a very low concentration) is excluded, the variability of DoC was negligible, 

ranging from just 539-775bp compared to 185-775bp observed in the 11 samples overall. In 

contrast, the range of coverage depth increased considerably in subsequent experiments when 

samples were pooled by equal volume, suggesting that equimolar pooling is beneficial. Pooling 

in equimolar concentration required the use of a Bioanalyser 2100 to determine the molarity 

of each library. Whilst the Bioanalyser offered the additional benefit of assessing the quality of 

each library, this process is both time consuming and expensive when compared to pooling by 

equal volumes (De Leeneer et al., 2015). The costs further increase when experiments contain 

more than 11 samples due to the limited number of libraries that can be loaded onto a single 

bioanalyser chip. An alternative approach might be to estimate the molarity, given all libraries 

should be a similar composition as a result of AMPure bead size selection. By using an 

estimation of molarity, quantification of each library could be performed using a Qubit or 

similar fluorescent based technology which is quicker and cheaper. Subsequent pooling could 

then be performed by equal concentration rather than molarity or volume. This is likely to 

produce similar results to those observed using equimolar pooling without the additional cost 

of individual library assessment using a Bioanalyser.  

Others have also reported lack of coverage uniformity across regions using the HaloPlex target 

enrichment system (Sutton et al., 2015; Wendt et al., 2016; Zhang et al., 2016). The impact of 

uneven coverage can be limited by ensuring the DoC reaches the required minimum for the 

regions with the lowest coverage, although this may restrict the number of samples that can 

be multiplexed. Reducing variability between samples will allow a better estimate of the 

maximum number of samples that can be pooled and still maintain the deep sequencing 

required to produce accurate SNP detection. 
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6.4.2.4 Allele balance 

As well as ensuring there is sufficient read depth for each HPA SNP, the accuracy of base calls 

for heterozygous positions is dependent on allele balance, with errors increasing as the ratio of 

alleles falls below 20:80 (Pirooznia et al., 2014). The allele balance observed for all 

heterozygous HPA observed in the samples sequenced was well within this acceptable range, 

with the least balanced HPA-6bw still maintaining an allele ratio of 41:59. Although 

heterozygous examples were not available for all HPA systems in the sample cohort, the 

evenness in allele balance observed with those sequenced suggests rarer HPA would be 

detected. 

6.4.3 HPA genotyping  

Forty six samples were successfully HPA genotyped using the custom design HaloPlex HS target 

enrichment assay, with all results produced being 100% concordant with historical data.  

Although it was not possible to test all permutations of  HPA polymorphism using this HaloPlex 

HS assay due to the scarcity of samples with rarer HPA genotypes, the results generated 

provides compelling evidence that a targeted NGS approach is a viable option for 

simultaneously HPA typing both patient and donor samples for all known HPA systems.  

There are several advantages of a targeted NGS approach when compared to conventional 

Sanger sequence-based HPA typing. As well as being a one-hit assay, benefits include the 

requirement for only 50ng of genomic DNA (Xu et al., 2009), which is particularly important for 

clinical investigations where patient material may be very limited due to neutropenia or in the 

case of a neonate.  Another benefit of this approach is that NGS should not be adversely 

affected by rare mutations that have been known to interfere with the accuracy of some 

conventional PCR-based HPA genotyping techniques (Curtis and McFarland, 2009) as it is not 

reliant on sequence specific oligonucleotide primers or probes. 

The ability to sequence many samples simultaneously is one of the key benefits of NGS, with 

up to twenty one samples HPA genotyped simultaneously in this study. However, the HaloPlex 

HS assay enables up to 96 samples to be sequenced in a single experiment using the current 

index combinations provided. It is anticipated that optimisation of sample pooling will increase 

the capacity to multiplex for HPA genotyping, although the actual number of DNA libraries that 

can be combined without compromising overall sequence quality has yet to be determined.  

6.4.4 Novel mutation detection 

Included in the sample cohort was DNA from a mother and her baby from an historical 

unsolved FNAIT case originally investigated by NHSBT Filton. A comparison of the six gene 

sequences revealed a putative novel mutation in exon 10 of the ITGB3 gene, resulting in an 
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amino substitution in the glycoprotein GPIIIa. This region also encodes HPA-6w and HPA-7w 

(Figure 6.11), suggesting this novel mutation may have clinical significance and be implicated in 

FNAIT. This is currently the subject of further investigation by the originating laboratory.  

 

Figure 6.11 Cartoon showing the location of novel SNP in exon 10 of the ITGB3 gene 

detected in patient BB. The arrows indicate the proximity of HPA-6w and HPA-7w encoded by 

the same exon. 
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7. Discussion 

This study investigated the development and implementation of NGS technology to enhance 

the transfusion support provided to patients with either HLA and or HPA alloantibodies who 

require appropriately compatible products. Chapters 2 to 6 describe the successful design and 

development of two distinctive NGS-based methods to define the divergent nature of the HLA 

and HPA genetic systems and demonstrate the potential clinical application of these novel 

genotyping approaches. 

7.1 HLA typing and NGS 

The development of NGS technology has proved to be a paradigm shift in many areas of 

molecular biology and this is certainly true for the field of histocompatibility and 

immunogenetics (H&I), where use of NGS for HLA typing has been reported by many groups in 

recent years (Shiina et al., 2012; Lange et al., 2014; Hosomichi et al., 2013; Ehrenberg et al., 

2014). The unique benefit offered by NGS for HLA definition is the ability to produce 

unambiguous allele level genotypes from a fully phased nucleotide sequence (Erlich, 2015). 

Application of NGS in H&I laboratories has primarily focused on supporting haematopoietic 

stem cell transplantation (HSCT) due to the requirement for a high level of matching between 

donor and recipient (Bravo-Egana and Monos, 2017). The high throughput capability of NGS, 

alongside economies of scale, makes it particularly suitable for unrelated HSCT donor registry 

typing and assists scientists and clinicians in identifying suitably matched donors in a timely 

manner (Lange et al., 2014). It also negates the need for additional extended HLA typing, as 

may be required for donors defined on registries at low or medium HLA resolution only. Not 

only does this remove the costs associated with extended typing, but access to allele level 

donor genotyping data can also significantly reduce the time interval from initiating a donor 

search to selection of the final donor (Davey et al., 2016).  Availability of allele level HLA donor 

types on registries can also aid clinicians with an options appraisal for a patients’ treatment, 

should a fully matched donor be unavailable (van Rood and Oudshoorn, 2008).  

7.1.1 HLA typing platelet donors by NGS 

Until now, the clinical application of HLA typing by NGS to support the selection of platelets for 

transfusion has not been reported. The majority of patients requiring platelet support receive 

random platelet transfusions but for those patients who fail to respond due to the presence of 

alloantibodies a specialist product is necessary to avoid HLA and or HPA antigens to which the 

patient has become sensitised (Brown and Navarrete, 2011). Traditionally, selection of suitable 

platelets for these patients has consisted of HLA matching based on serologically defined 

antigens which can be a complex process and requires access to a large panel of HLA typed 
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platelet donors (Pavenski, Freedman and Semple, 2012). This conventional approach is also 

limited by considering each HLA locus in isolation, excluding HLA-C from the selection 

algorithm and assuming homozygosity where only one antigen has been identified at an 

individual locus. 

An alternative option for the selection of platelets for patients with IPR is the use of HLA 

epitope matching which is currently the subject of a non-inferiority trial (ISCTRN23996532). 

Benefits of HEM include a theoretically more accurate matching by selecting donors expressing 

epitopes shared with the recipient thereby avoiding both DSA and risk of further sensitisation. 

This increases the number of acceptable donors for patients that would otherwise appear 

mismatched using conventional HLA selection algorithms (Brooks, MacPherson and Fung, 

2008). A reduction in the number of platelet donations provided by apheresis is a strategic 

objective within NHSBT due to the high costs of producing platelet products by apheresis 

compared to pooled products manufactured when processing red cells. Plans have already 

been implemented to reduce the proportion of platelets units collected by apheresis from 80% 

to 60% with further reductions likely in the future (Ronaldson and Ashford, 2014). The 

implementation of HEM should ensure that patients continue to receive therapeutically 

beneficial platelet transfusions, despite fewer single donor platelet packs on the shelf. 

The matching algorithm for HEM requires both patient and donor HLA types defined to the 

allele level in order to accurately determine the epitopes expressed (Duquesnoy, 2011) so 

where HLA types are reported at a lower resolution, conversion into second field results is 

necessary. Whilst others have indicated this is an acceptable approach (Pai et al., 2010), results 

presented in chapter 4 show that conversion from low or medium resolution HLA types is error 

prone. Disparity between predicted and actual alleles present in an individual was found to be 

particularly high when the first allele in the HLA string is selected as the defined type, with 

6.6%, 13.5% and 13.3% errors for HLA-A, -B and -C respectively. This was of concern, as it is the 

method employed for allele prediction by Hematos (NHSBT’s laboratory information 

management system) when applying HEM for donor selection. This could lead to a platelet unit 

being selected inappropriately and either fail to improve the patient’s platelet count due to 

the presence of DSA or result in stimulating the production of de novo antibodies. 

Further analysis of the data obtained from Chapters 3 & 4 showed that the accuracy of 

conversion to second field genotypes could be improved by considering HLA allele frequencies 

to predict alleles from an HLA string, and further still when utilising HLA haplotype frequencies.  

However, this would require a more complex algorithm embedded in Hematos for allele 

conversion and would need information on the ethnicity of the donor and patient, which is not 

always available or reliable. This would then require the use of default Caucasian frequency 

data, which may not represent the ethnicity for the respective donor or patient, potentially 
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leading to inaccurate HLA allele predictions. Published HLA allele and in particular haplotype 

frequencies is also very limited (Geneugelijk et al., 2017), particularly for the UK population. 

Furthermore, frequencies are often based on data obtained from exons 2 and 3 rather than 

whole gene analysis (Geneugelijk et al., 2017) and therefore do not always represent the level 

of resolution required. Frequency data would also need to be regularly updated for any 

conversion algorithm to ensure the most current allele and haplotype frequencies were 

utilised.  

It is possible to avoid these allele prediction errors altogether by employing NGS for HLA 

typing. This would provide allele level definition of the HLA class I genes, removing the 

requirement for allele conversion by Hematos and thus ensuring accurate HEM of platelet 

donors. In this thesis, chapter 3 described a novel approach to NGS HLA typing that was 

applied to type 180 platelet donors in a single run on a MiSeq for HLA-A, -B & -C, producing 

results to third or fourth field resolution. Design of the described pipeline for HLA typing 

platelet donors occurred alongside development and implementation of an in-house NGS 

protocol at NHSBT for adult and cord blood donor typing as a service provision for the British 

Bone Marrow Registry. Some modifications were required to maximise the number of samples 

typed simultaneously and make optimal use of the sequencing capacity of a MiSeq flow cell. 

Adaptations included a reduction in the number of steps for DNA preparation, changes to the 

amplicon pooling process and use of an increased number of indices to facilitate additional 

multiplexing. In addition, two different approaches for DNA library preparation were trialed, 

the results of which helped inform the change to reagents kits used by the routine laboratory.  

Some of these modifications could also be applied to the existing HSCT donor workflow which 

would lead to a reduction in the number of steps performed without compromising data 

quality or quantity (Figure 7.1). This would represent a cost saving due to a reduction in both 

DNA quantification reagents and in hands-on time. However, HSCT donors are also typed for 

HLA class II alleles which, based on observations in the Colindale H&I laboratory since 2015, 

may be more susceptible to variations in DNA quality and concentration in the initial PCR 

reactions, particularly for HLA-DRB1. This is probably due to the size of the HLA-DRB1 gene 

which is considerably larger than the HLA class I genes, spanning over 11,000kb compared to 

HLA-A, -B and -C which are approximately 3500, 4000 and 4300kb in length, respectively 

(Robinson et al., 2015). Therefore removal of the DNA quantification and normalisation step 

for HLA class II amplification would need to be carefully validated to ensure it does not 

adversely affect allele detection or result in amplification bias. 
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Due to the success of this study, the laboratory is currently in the process of implementing 

NGS for routine HLA-A, -B and -C typing of all apheresis platelet donors. While much of the 

workflow is similar to that used for HSCT donors, some modifications to the laboratory process 

will be necessary including adaptation of the Biomek robots for automated library preparation. 

This is to ensure the liquid handling robots are able to manage a reduced volume of pooled 

amplicon library for each sample and process 180 samples concurrently, compared with the 

existing 96 sample batch to form the final pooled amplicon library. Despite the variation in 

NGS protocols required, processing both HSCT and platelet donors samples using the same 

technology will bring some operational benefits for the laboratory. This will include the ability 

to dedicate equipment for a single process rather than having to schedule multiple methods 

within the one laboratory alongside the release of bench space. The training of staff will also 

be simplified if all samples are processed via the same work stream, although this brings its’ 

own challenges as NGS is a technically demanding process compared to methods such as PCR-

SSP or PCR-SSOP.  

DNA purification DNA purification 

DNA quantification 

DNA normalisation 

PCR amplification PCR amplification 

Amplicon quantification Gel electrophorsis 

 

Amplicon pooling Amplicon pooling 

Library preparation Library preparation 

Sequencing        

(n=96) 

( 

Sequencing       

(n=180) 

HSCT donors Platelet donors 

 

Figure 7.1 The current NGS 

process flow for HSCT donors 

alongside the NGS protocol 

designed for platelet donors in 

this study. All steps highlighted 

in green are the same for both 

protocols. Those parts of the 

process highlighted in orange 

differ between HSCT donors 

and platelet donor type, with 

gel electrophoresis replacing 

amplicon quantification in the 

platelet donor work stream 

and variation in the total 

number of samples sequenced 

simultaneously. Steps shown in 

red (DNA quantification and 

normalisation) are not required 

when processing platelet 

donor samples. 
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7.1.2 HLA typing platelet recipients by NGS 

NGS is not currently employed for HLA typing patient samples at NHSBT laboratories. The 

reason is primarily one of logistics as the current work flow has been designed for high 

throughput. Although a system has been devised to manage requests for ad hoc samples for 

NGS typing within the routine laboratory, these samples feed into the high throughput donor 

typing pipeline to maximise the use of sequencing reagents; processing less than 96 samples 

per batch increases the cost per test significantly. This approach is not compatible with the 

service level agreement with service users, which is currently 5 working days from receipt of 

sample to reporting the result. A 5 day turnaround time would be challenging using the 

existing NGS work flow and does not allow time for any re-work should the initial sequence fail 

to produce a valid result. However, use of NGS for HLA typing could be appropriate for some 

patients that require life long HLA matched platelet support. 

As discussed at a recent NGS special interest group meeting organised on behalf of the British 

Society for Histocompatibility and Immunogenetics, other UK laboratories have started to 

implement NGS for patient HLA typing. However, the majority are using shared sequencing 

facilities with other departments or employing nearby university sequencing platforms to 

maximise cost effectiveness. Some laboratories have opted to type all samples by NGS to 

streamline their workflow as a high resolution HLA type can benefit both HSCT and solid organ 

transplant programs, although NGS is not suitable for urgent deceased donor typing in its 

current form (Monos and Maiers, 2015). Of those laboratories using NGS, all but one have 

chosen to use commercial HLA typing kits which are now readily available, including NGSgo® 

(GenDx), TruSight HLA (Illumina), Holotype HLA™(Omixon) and NXType™ (One Lambda). These 

are generally designed for a lower throughput and claim a faster processing time than would 

be possible sequencing larger numbers of samples. Until HLA typing is performed by NGS for 

platelet recipients it could be argued that defining platelet donors at a higher resolution is of 

little benefit when HLA allele prediction will still be required for the majority of patients 

receiving platelets selected using HEM. A counter argument is that having one individual of the 

donor recipient pair defined to the allele level improves the overall accuracy of HEM and is still 

preferable to using prediction algorithms alone (Geneugelijk et al., 2017). NGS could also be 

performed alongside the faster techniques to enable provision of subsequent products based 

on allele level HLA typing. 

 

7.2 Impact of NGS on HEM 

Results from Chapter 3 have shown that NGS for HLA typing produces accurate allele level 

typing of platelet donors. Implementation of NGS for routine platelet donor typing will ensure 
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that the correct epitopes are considered for each donor when using HEM to select donors for a 

particular patient. The principle of the HEM algorithm for transfusion is to select the platelet 

donor with the lowest number of epitope mismatches to the patient. Ideally the number of 

mismatches would be zero but it is not always possible to find a fully matched donor, 

regardless of the matching algorithm, and there is evidence to suggest that epitope 

mismatches can be tolerated below a certain threshold (Brooks, MacPherson and Fung, 2008). 

In reality it is more likely that the type of mismatch is more critical than the actual number per 

se, as there have been reports of an alloresponse to a single epitope mismatch (Lomago et al., 

2010). Whilst NGS will not guarantee to identify donors without any epitope mismatches, it 

should over time inform scientists about acceptable and unacceptable mismatches. To date, 

much of the research into HEM and its clinical impact has been around solid organ 

transplantation. There are clear indications that not all HLA mismatches are clinically 

significant but understanding which mismatches are permissive is a significant challenge for 

the discipline; it is hoped the HEM will provide an opportunity to evaluate the immunogenicity 

between donor and recipient and optimise outcome (Wiebe and Nickerson, 2016).  Knowing 

the exact amino acid sequence of each individual HLA for both donor and recipient will allow 

scrutiny at the molecular level to hopefully provide more insight into acceptable mismatching 

(Erlich, 2012). A recent paper by Duquesnoy and Marrari explored the use of a program called 

ElliPro and demonstrated its potential to predict alloantibody responses to HLA-ABC eplets. 

They reported that ElliPro scores were indicative of an eplets’ ability to induce a specific 

antibody response and that a low ElliPro score assigned to some theoretical eplets suggested 

they were incapable of inducing an alloantibody response and therefore should be re-classified 

as ‘non-epitopes’ (Duquesnoy and Marrari, 2017; Duquesnoy, 2017). Interestingly, some of 

these so called ‘non-epitopes’ included 97T and 116F which were identified as mismatched 

epitopes in some allele prediction discrepancies discussed in Chapter 4 (refer to Table 4.3), 

suggesting that the mismatches identified are probably not clinically relevant.  

Analysis of the impact of HLA epitope matching and mismatching will form part of the ongoing 

clinical trial into use of HEM for platelet transfusion. It is hoped that results may provide some 

insight into permissive HLA epitope mismatching in the transfusion setting. In an attempt to 

find some preliminary evidence of the impact of HEM for platelet selection, the medical history 

and response to transfusions was examined for a highly sensitised immune refractory patient 

who was provided HEM selected platelets at the request of their clinician over a period of 

several months. Initial indications suggested that the patient had an improved platelet 

increment following HEM selected platelets compared to conventional matching. However, at 

the time of transfusion with conventionally HLA matched platelets the patient was suffering 

from sepsis. This co-morbidity is as likely to explain the poor platelet increments as the 
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approach taken for platelet selection because sepsis is a known cause of thrombocytopenia 

(Brown and Navarrete, 2011). In addition, the patient had become sensitised to additional HLA 

antigens as a result of mismatched transfusions but because the patients’ HLA antibody 

screening was not up to date at the time the units were allocated, platelets to which the 

patient had DSA were provided, resulting in poor increments. This single case serves as a note 

of caution when interpreting outcome data following platelet transfusions; patient responses 

are likely to be multi-factorial and results must be considered in their clinical context. 

7.3 The wider impact of HLA typing by NGS 

Due to the rapidly expanding number of HLA alleles, ensuring that PCR-SSOP and PCR-SSP 

techniques are able to detect all new alleles will become increasingly challenging and is more 

likely to require additional testing to resolve the resulting ambiguity (Tait, 2011). The use of 

NGS for HLA typing resolves these dilemmas, producing a high resolution or allele level result 

first time. 

7.3.1 Whole gene HLA sequencing 

The decision to use whole gene amplification in this study rather than taking a restricted exon 

based approach results in sequencing data for both the coding and non-coding regions of the 

HLA class I genes. As well as producing an unambiguous HLA genotype, sequencing beyond the 

conventional exons 2 and 3 includes the transmembrane and cytoplasmic regions of the HLA 

class I gene, improving the overall characterisation of HLA genes. Sequencing entire HLA genes 

should eventually provide more insight into the roles these regions play in the immune 

response, as well as the effect of intronic variation on gene regulation and expression (Monos 

and Maiers, 2015). Generation of whole gene sequence data may eventually provide other 

benefits, including application in phylogenetic studies and in assay design, for example in the 

design of primers located in intronic regions (Lind et al., 2013).  

7.3.2 HLA allele and haplotype frequencies 

Chapter 5 discussed the HLA-A, -B and -C allele and haplotype frequencies in 519 platelet 

donors HLA genotyped by NGS. This data was submitted to the Allele Frequency Net Database 

(Santos et al., 2016) as the first reported cohort of HLA class I frequency data at third field 

resolution in an English donor population (Davey et al., 2017). One of the anticipated benefits 

of NGS typing is an increase in the knowledge of allele and haplotype frequencies. Results 

submitted based on information from this study will hopefully provide impetus to submit more 

frequency data as it becomes available, particularly from the adult and cord blood populations 

typed by NHSBT where both HLA class I and class II sequences are produced by NGS. This will in 

turn assist allele prediction where it is still required, either for patient samples or legacy 
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donors HLA typed before the implementation of NGS. This will require HLA conversion 

algorithms that include allele and ideally haplotype frequencies to assist with allele prediction. 

Indeed, the algorithm employed by Hematos is currently being reviewed by NHSBT in light of 

data analysed and discussed in Chapter 4 in order to improve accuracy over the existing 

approach of selecting the first allele in the HLA string.  

7.3.3 Novel HLA allele detection 

The number of novel mutations discovered in the platelet donors typed by NGS as part of this 

study was also discussed in Chapter 5, with 38 HLA sequences confirmed as having previously 

unreported mutations in either exon, intron or UTR regions. Although these putative new HLA 

alleles have yet to be submitted to the IMGT/HLA database, once complete this additional 

sequencing data will contribute to the knowledge of HLA polymorphisms.  

7.4 HPA genotyping by NGS 

This study has resulted in the first published application of a targeted NGS assay to 

simultaneously genotype patients and donors for all known HPA systems and provides proof of 

concept that NGS for HPA genotyping can be applied in the clinical setting (Davey, Navarrete 

and Brown, 2017). One of the initial objectives of this study was to design a method for HPA 

genotyping platelet donors to replace the existing method using the Taqman assay which is 

currently limited to defining HPA-1 to -5 and -15. Once designed, it was anticipated that this 

method would then be applied to the 540 platelet donor cohort to determine HPA-1 to -29 

frequencies in the English platelet donor population. Unfortunately due to time and cost 

constraints this was not possible but will hopefully form part of future work. Understanding 

the frequencies of the HPA systems not currently defined in platelet donors will inform the 

strategy for HPA donor genotyping at NHSBT. If the rarer HPA systems cannot be detected in a 

cohort of over 500 donors it could be argued that it is not necessary to type donors routinely 

for these less common SNPs. However, until the frequencies are determined it is possible that 

some of the HPA systems are more frequent than first thought. Indeed, one of the EQA 

samples used to validate the targeted NGS assay was found to be HPA-28wab, which was 

unexpected given the HPA-28w system had only been defined relatively recently and had not 

been detected in 100 blood donors screened for the HPA-28w SNP (Poles et al., 2013).  

If the strategic decision is to implement targeted NGS for platelet donor HPA genotyping, a 

number of developments will be required to facilitate a high throughput workflow, essential to 

type the 5000 samples received per annum by NHSBT. These will include the automation of the 

laboratory process in order to minimise hands on time and reduce the risk of sample transfer 

error. This should be possible using existing Biomek robots installed as the method is based on 

a 96 well plate format but would require support from the manufacturers of both the kits and 
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robotics to implement such a protocol. For some of the steps e.g. AMPureXP bead-based clean 

up, automated protocols already exist in the laboratory. Other processes including the 

restriction digests are specific to the HaloPlex HS protocol and would need automated 

programs to be designed. Another critical requirement will be the development of the data 

analysis pipeline. Although the SureCall software is adequate for limited SNP interpretation, it 

would be time consuming and potentially error prone if used for high throughput, as 

navigating to the respective SNPs for each HPA relies on manually entering the chromosomal 

positions. SureCall does have the capacity to determine user parameters for automated 

mutation calling and although this option has been discussed with Agilent Technologies as part 

of this study, time constraints have thus far prevented further investigation. If NGS is to be 

employed for high throughput HPA typing, additional IT developments will also be required in 

order to provide an interface between SureCall and the existing LIMS system and enable 

automated data download, thereby avoiding manual transcription to ensure accuracy of data 

transfer and reporting of results. 

7.5 Identification of platelet donors with rare genotypes  

A more limited application of donor HPA genotyping could be used to specifically search for 

platelet donors with rare HPA genotypes. Screening patients for the presence of HPA 

antibodies requires techniques such as the monoclonal immobilisation of platelet antigens 

(MAIPA) assay, which uses a panel of HPA typed platelets (Lucas, 2013). Due to the increasing 

number of reports of maternal alloimmunisation against rare HPA, it could be argued that 

focusing only on the more common antigens when investigating suspected FNAIT is 

inadequate (Santoso and Tsuno, 2015). Genotyping donor samples using targeted NGS could 

identify apheresis donors with rare HPA genotypes who could be used to supplement the 

existing HPA typed platelet panel used for antibody screening by MAIPA. In order to reduce 

costs, one consideration might be to limit NGS genotyping to non-Caucasian donors to increase 

the likelihood of finding rare HPA genotypes although, as data on HPA frequencies in different 

populations is very limited (Robinson et al., 2013), this approach might be misguided. A strong 

argument for implementing NGS for HPA genotyping for all platelet donors would be to 

increase the knowledge of HPA frequencies in the English population (Robinson et al., 2013), 

as discussed in section 7.3. Whilst the cost of NGS is more expensive than the existing in-house 

Taqman technique, because NGS defines all twenty nine HPA systems alongside the potential 

for novel mutation detection, the cost per HPA is more economical and so could be justified. 

7.6 Novel HPA allele detection 

By sequencing all exons and flanking regions of the 6 genes included in the HaloPlex design, it 

was anticipated that this approach would enable detection of novel sequences, as well as 
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defining all known HPA. To challenge this theory, DNA samples extracted from a mother and 

her baby from a previously unresolved case of FNAIT were included in this study and 

sequences compared using the SureCall software paired analysis application for the detection 

disease variants. An exciting development of this study was the discovery of a novel SNP in the 

baby’s sample in a region of the ITBG3 gene between two known HPA suggesting a likely 

causative mutation of FNAIT (Davey, Navarrete and Brown, 2017). Further testing, including 

recombinant expression, by NHSBT laboratories in Bristol have since confirmed that the 

mutation identified in this study is a novel HPA, although this still requires ratification by the 

Platelet Nomenclature Committee. A report is currently in preparation for submission to the 

journal Transfusion, which will reference the NGS investigations completed as part of this 

study (Poles, A. and Lucas, G., personal communication). This was a significant discovery and it 

is hoped that targeted NGS developed during this study will be implemented for the detection 

of rare or novel HPA in NHSBT laboratories as part of routine FNAIT investigation.  

7.7 Conclusions 

This study demonstrates that NGS can significantly improve the definition of both HLA and HPA 

genetic systems. If implemented routinely for platelet donor genotyping and for the 

investigation of FNAIT, these novel approaches will provide a number of tangible benefits for 

laboratories and the patients they support, as well as the wider community. These include 

 Allele level HLA definition to accurately select donor platelets for patients using HEM 

 Detection of novel HLA class I polymorphisms, in both coding and non-coding regions 

 Increased knowledge of HLA intronic sequences  

 Increased knowledge of HLA allele and haplotype frequencies  

 Definition of all known HPA systems in a single test 

 Increased knowledge of HPA frequencies  

 Detection of rare or novel HPA polymorphisms in cases of suspected FNAIT 

Some additional development is still required for both HLA and HPA genotyping, particularly in 

respect of automation, data analysis and reporting of results, but none of these issues are 

insurmountable. Indeed, it is anticipated that NGS for HLA typing platelet donors will be fully 

implemented by autumn 2017. The timeline for introducing targeted NGS for routine definition 

of HPA is less clear but the potential benefits are undeniable, particularly for the detection of 

rare and novel HPA. 
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10.5 INF256 – Histocompatibility testing for platelet transfusion 
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10.6 INF283 Platelet groups and antibodies in pregnancy 
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