
Feature and performance comparison of the
V-REP, Gazebo and ARGoS robot simulators

Lenka Pitonakova1,2, Manuel Giuliani1, Anthony Pipe1, and Alan Winfield1

1 Bristol Robotics Laboratory, University of the West of England, Bristol, UK
2 contact@lenkaspace.net

Abstract. In this paper, the characteristics and performance of three
open-source simulators for robotics, V-REP, Gazebo and ARGoS, are
thoroughly analysed and compared. While they all allow for program-
ming in C++, they also represent clear alternatives when it comes to
the trade-off between complexity and performance. Attention is given
to their built-in features, robot libraries, programming methods and the
usability of their user interfaces. Benchmark test results are reported in
order to identify how well the simulators can cope with environments of
varying complexity. The richness of features of V-REP and the strong
performance of Gazebo and ARGoS in complex scenes are highlighted.
Various usability issues of Gazebo are also noted.

1 Introduction

Simulation is a useful scientific tool that can complements more traditional ex-
perimental approaches [1]. Choosing a suitable simulator is important, as differ-
ent simulation environments offer different performance, model detail and built-
in features, all of which may affect the success and the merit of a simulation-based
study. In this paper, features and performance of three open-source simulators
for robotics, V-REP [2], Gazebo [3] and ARGoS [4], are thoroughly analysed
and suggestions about what types of projects they are suitable for are provided.
All of the three simulators allow for programming in C++, allowing us to make
reasonable comparisons between their features and performance. At the same
time, the simulators represent clear alternatives when it comes to the trade-off
between simulation complexity and speed.

Other simulators, such as Matlab [5, 6], Webots [5, 6], Player/Stage [5, 7–9],
Gazebo [5, 7–9], USARSim [5, 8, 9], SARGE [8] and TeamBots [7], have previ-
ously been described and compared. While some comparisons were rather in-
formal [6, 8], others involved ranking simulators based on specific evaluation
criteria. For example, in [9], programming language support, documentation,
user interface and debugging techniques of simulators were evaluated. In [5], the
evaluation criteria included simulator physical fidelity, functional fidelity, ease of
development and cost.

To the best of our knowledge, no formal comparison between V-REP, ARGoS
and Gazebo has been conducted before. Inspired by [5, 7, 9], it is therefore our



aim to provide a ranked evaluation of the simulator characteristics in Section 2.
Moreover, similarly as in [9], the simulator performance is evaluated on a set of
benchmark experiments in Section 3.

2 Simulator Characteristics

All tests were performed in the 64-bit Ubuntu Linux 16.04 environment running
on a computer with 4x Intel Core i7 2.2 Gz processor, 8GB RAM and Intel HD
Graphics 6000 graphics card. The built-in capabilities, model library, program-
ming methods and user interface of the simulators are compared in Table 1.

Table 1: Simulator characteristics ranked as rich (green), neutral
(white) and poor (red). Ranking was performed by considering
characteristics in the same row (i.e., of the same type) relatively to
each other.

V-REP Gazebo ARGoS

Available for MacOS,
Linux and Windows.
Binary packages are avail-
able for all platforms.

Available for MacOS,
Linux and Windows.
A binary package is
only available for Linux
Debian. Installed via
the command line using
third-party package man-
agers on other systems.

Available for MacOS and
Linux. Binary packages
are available for Linux.
On MacOS, ARGoS is in-
stalled via the command
line using a third-party
package manager.

Built-in capabilities

Default physics engines
include: Bullet 2.78, Bul-
let 2.83, ODE, Vortex and
Newton.

Only the ODE physics
engine is available by de-
fault. It is, however, possi-
ble to build Gazebo from
source with a different
physics engine.

A 2D and a 3D custom-
built physics engines
with very limited capa-
bilities are available by
default.

Includes a code and a
scene editor.

Includes a code and a
scene editor.

Includes a Lua script ed-
itor but no scene editor.

Meshes can be manipu-
lated (e.g., cut) by robots
in real time.

No mesh manipulation
is available.

No mesh manipula-
tion is available.

Scene objects can be
fully interacted with
(e.g., moved or added) by
the user during simula-
tion. The world returns
to its original state when
the simulation is reset.

Scene objects can be
fully interacted with
(e.g., moved or added)
by the user during sim-
ulation. The world does
not return to its original
state when the simulation
is reset.

Scene objects can be
moved by the user dur-
ing simulation.



Outputs include video,
custom data plots and
text files.

Outputs include simula-
tion log files, video frames
as pictures and text files.

Outputs include video
frames as pictures and
text files.

Includes particle systems. No particle systems are
available.

No particle systems are
available.

Robot and other models

Provides a large variety
of robots, including bi-
pedal, hexapod, wheeled,
flying and snake-like
robots. Also provides a
large number of robot
actuators and sensors.

A less diverse library
of default robots, that
mostly includes wheeled
and flying robots. Third-
party robot models are
available, but their docu-
mentation is often poor.

A fairly small library
of robots, only includ-
ing the e-puck [11], eye-
bot [13], Kilobot [17],
marXbot [12] and Spiri
[14] robots.

The default models are
very detailed and there-
fore appropriate for high-
precision simulations. It is
possible to simplify the
models directly in V-REP.

The default models
are fairly simple and are
therefore more appropri-
ate for computationally
complex simulations.

The default models
are fairly simple and are
therefore more appropri-
ate for computationally
complex simulations.

Meshes are imported
as collections of sub-
components. It is there-
fore possible manipulate
individual parts of an
imported model and to
change their textures,
materials and other
properties.

Meshes are imported
as single objects. Models
that contain multiple sub-
components have to be as-
sembled in Gazebo from
multiple DAE files, each
corresponding to one sub-
component.

Mesh importing is
not available. Object
representations are
programmed using
OpenGL.

It is possible to simplify,
split and combine
meshes. This makes
it possible to optimise
the triangle count of
imported models and to
manipulate meshes (e.g.,
to cut them) with robot
actuators.

Imported meshes can-
not be changed. A
model therefore has to
be optimised in third-
party 3D modeling soft-
ware. This may be diffi-
cult during iterative de-
velopment.

N/A

Programming methods

A scene is saved in
a special V-REP format.
All scene editing therefore
has to be done using the
V-REP interface.

A scene is saved as an
XML file. This makes it
possible to e.g. create a
bash script that changes
the scene and then runs a
simulation.

A scene is saved as an
XML file. This makes it
possible to e.g. create a
bash script that changes
the scene and then runs
a simulation.



There are various options
for programming func-
tionality, including scripts
attached to robots, plug-
ins, ROS nodes [10] or
separate programs that
connect to V-REP via the
RemoteAPI.

Functionality can be pro-
grammed either as com-
piled C++ plug-ins or as
ROS [10] programs. Lack
of scripting makes it dif-
ficult to run quick tests
with ad-hoc solutions.

Robots can be pro-
grammed either
through Lua scripts or
in C++.

Scripts can be included in
robot models and are of-
ten used to describe the
models and their capa-
bilities.

It is difficult to recognise
how a third-party robot
model works or what
plug-ins it uses. The plug-
in list is only available in
the Model Editor.

Some documentation
of the robots is provided
in ARGoS, but most of
how a robot works needs
to be deducted from
code examples.

“CustomUI” API, based
on QT[15], is used to cre-
ate custom interfaces.
Custom UI controllers can
be attached to individ-
ual robots. For example,
it is possible to display
a robot’s camera output
when the robot is clicked
on.

Custom interfaces can
be created as plug-ins by
using the default QT API
[15]. However, the inter-
faces can only be attached
to the whole scene and not
to individual robots.

Custom interfaces can
be created in C++ by
sub-classing an ARGoS
API class. The interfaces
can be attached to the
whole scene or to individ-
ual robots.

All scripts and plug-ins
provided with the de-
fault robot models and
example scenes worked.

Many plug-ins pro-
vided with the default
robot models did
not work. Some on-line
examples were difficult
to run due to a large
number of dependencies
and differences in ROS
versions.

A few examples are
provided on the AR-
GoS website, all of which
worked.

Good API documenta-
tion, a large library of tu-
torials and code examples
and a large user commu-
nity are available. Regular
updates have been pro-
vided since 2013.

A fairly comprehensive
documentation, step-
by-step tutorials and a
large user community
are available. Gazebo is
likely to be supported
in the future, since a
development road map is
available on the website.

Good documentation,
but a small user commu-
nity are available. Devel-
opment has not been reg-
ular.

User interface (UI)



No freezing issues with
the interface were experi-
enced.

The interface froze a
number of times and the
program, and sometimes
the computer, had to be
restarted. This occurred,
e.g., when editing robot
models, starting or stop-
ping the simulation, and
in other instances.

No freezing issues
with the interface were
experienced.

All functionality is
fairly intuitive and
follows general conven-
tions known from similar
applications.

The UI usability is rel-
atively low. For exam-
ple, the top application
tool bar sometimes disap-
pears, it is not possible
to copy and paste multi-
ple objects, or to save a
scene into the same file af-
ter making changes to it.

The UI is very limited,
but all functionality is
fairly intuitive and fol-
lows general conventions
known from similar ap-
plications.

The model library is
distributed with V-REP
and it is thus always avail-
able regardless of Internet
connectivity.

The model library
is not distributed with
Gazebo, and it is instead
available on-line. On
multiple occasions, the
library could not be
accessed because Gazebo
could not connect to its
server, even though the
computer was connected
to the Internet.

The robot models are
distributed with ARGoS
and it is thus always
available regardless of In-
ternet connectivity.

The model library is
organised into folders
based on model category.
User can create their
own folders for their own
models.

The model library is
a long list of models and
particular model types
(e.g., robots) can be dif-
ficult to find.

Different robot types
are natively a part of AR-
GoS and can be found
by querying command-
line documentation.

V-REP offers the largest repertoire of features including, most notably, a
scene editor, 3D model importing, mesh manipulation, video recording and an
API for remotely connecting to a simulation. Also, its model library is relatively
large and well-documented. Gazebo also offers a scene editor and 3D model
importing, however, no mesh editing is available and the imported models need
to be optimised in third-party software. Gazebo relies on ROS [10] when it
comes to remote connectivity. Notably, Gazebo crashed a number of times on our
computer system and its interface was generally slow during testing (see details
in Table 1). Furthermore, and again only tested on our computer system, some of
its example code could not be compiled or did not run properly. Finally, ARGoS
offers the smallest amount of features compared to the other two simulators.
It has no scene editor and 3D models cannot be imported into it. Also, by
comparison, its robot library and documentation are limited.



One advantage of Gazebo and ARGoS over V-REP is the ability to define a
scene in a XML file. This is convenient, for example, when multiple experiments
with varying parameter values need to be generated and run automatically. On
the other hand, a V-REP experiment can only be specified in a V-REP scene file
via the V-REP graphical interface. It is therefore difficult to vary experimental
parameters, especially when running V-REP from the command line. While V-
REP offers up to nine optional command-line arguments that can be supplied to
a simulation, a more involved parameter specification would have to be handled,
for example, by a plug-in that could parse parameter text files. Such a plug-in
is currently not distributed with V-REP.

3 Simulator Performance

3.1 Methods

There were two types of benchmark test performed with each simulator:

– The GUI benchmark involved running a simulation of robots that moved
in a straight line and avoided obstacles in real-time. The simulators were run
along with their user interfaces. Each simulation took one minute.

– The headless benchmark involved running the same simulation as in the
GUI benchmark, that lasted five minutes. The simulators were run from the
command line without their user interfaces.

There were two types of simulation environment:

– Small scene, where robots were put on a large 2D plane
– Large scene, where an industrial building model with approximately 41,6000

vertices was imported into the simulator (Figure 1a). Since it was not possi-
ble to import the model into ARGoS, 5,200 boxes, corresponding to 41,6000
vertices, were randomly placed in the environment (Figure 1b).

Robot models were selected from a library of models available in each sim-
ulator, so that a sensible similarity, in terms of robot geometry and controller
capabilities, was achieved (Figure 2). In ARGoS, a flying instead of a wheeled
robot was used, since all wheeled robots in ARGoS are handled by a relatively
simple 2D physics engine. In V-REP, the original e-puck model was simplified
in order to decrease its vertex count. Each benchmark test was run with 1, 5, 10
and 50 robots in both environments.

At the beginning of each benchmark experiment, a simulator was restarted.
The computer was not running any other applications, apart from those normally
required by its operating system, and a simple CPU and memory monitoring
application. V-REP was running in “threaded rendering” mode during the GUI
benchmarks.

The simulation in both V-REP and ARGoS was updated 10 times per sec-
ond, i.e., dt = 100 ms. In Gazebo, 10 times more simulation steps per second



Fig. 1. The “Large scene” environment in (a) V-REP and Gazebo, and (b) ARGoS.

Fig. 2. (a) The simplified (left) and the original (right) e-puck [11] models in V-REP.
(b) The Pioneer 3AT [16] model in Gazebo. (c) The eye-bot [13] model in ARGoS.

were needed (dt = 10 ms), otherwise some robots exhibited strange movement
dynamics, such as rocking behaviour on a straight horizontal plane.

Three performance metrics were used to evaluate the simulator performance.
Real-time factor, R = simulated time / real time, the amount of CPU usage,
C, and the amount of memory usage, M . When R > 1, a simulation could run
faster than real time and vice versa. When C > 100%, a simulator could utilise
multiple processor cores. Two values for C and M were noted for Gazebo GUI
experiments, corresponding to the usage of gzclient (visualisation) and gzserver
(simulation), respectively.

3.2 Results

ARGoS achieved the highest simulation speed in the GUI experiments with up
to 50 robots in the Small scene and with up to 5 robots in the Large scene,
while utilising the smallest amount of resources (Table 2). Gazebo outperformed
ARGoS in other experiments, especially when the Large scene was used in the



Headless benchmark (Tables 2 and 3). However, Gazebo usually required the
largest amount of memory when it was running in the GUI mode, and a median
amount in the Headless mode. V-REP combined with ODE usually achieved
the lowest simulation speed. Using Bullet 2.78 often significantly increased the
performance of V-REP.

Table 2: Simulator performance in the GUI mode. The best (green)
and the worst (red) performance are indicated.

V-REP +
Bullet 2.78

V-REP +
ODE

Gazebo +
ODE

ARGoS +
Point-
Mass3D

1 robot +
Small scene

R ≥ 1
C = 180%
M = 235 MB

R ≥ 1
C = 190%
M = 225 MB

R ≥ 1
C = 100 + 9%
M = 225 + 58 MB

R ≥ 1
C = 7%
M = 85 MB

5 robots +
Small scene

R = 0.52
C = 395%
M = 380 MB

R = 0.37
C = 395%
M = 360 MB

R ≥ 1
C = 100 + 19%
M = 305 + 58 MB

R ≥ 1
C = 10%
M = 88 MB

10 robots +
Small scene

R = 0.11
C = 400%
M = 536 MB

R = 0.099
C = 400%
M = 530 MB

R ≥ 1
C = 100 + 30%
M = 402 + 58 MB

R ≥ 1
C = 13%
M = 89 MB

50 robots +
Small scene

Not feasible Not feasible R = 0.87
C = 100 + 105%
M = 1410 + 358
MB

R = 0.9
C = 103%
M = 93 MB

1 robot +
Large scene

R = 0.96
C = 205%
M = 235 MB

R = 0.53
C = 200%
M = 225 MB

R ≥ 1
C = 100 + 10%
M = 264 + 58 MB

R ≥ 1
C = 32%
M = 90 MB

5 robots +
Large scene

R = 0.18
C = 400%
M = 325 MB

R = 0.1
C = 400%
M = 310 MB

R ≥ 1
C = 100 + 25%
M = 333 + 58 MB

R ≥ 1
C = 60%
M = 97 MB

10 robots +
Large scene

R = 0.052
C = 400%
M = 433 MB

R = 0.036
C = 400%
M = 460 MB

R ≥ 1
C = 100 + 40%
M = 425 + 58 MB

R = 0.86
C = 120%
M = 97 MB

50 robots +
Large scene

Not feasible Not feasible R = 0.57
C = 100 + 100%
M = 1450 + 426
MB

R = 0.052
C = 107%
M = 106 MB



In general, R ≥ 1 could be achieved by all simulators until all available CPU
power was used. The cut-off point, in terms of the number of robots, was always
the lowest for V-REP, i.e. the simulation in V-REP slowed down in smaller
experiments, compared to the other simulators. Furthermore, the simulation
speed decrease due to insufficient CPU power was generally less severe for Gazebo
than for V-REP and ARGoS.

Running Gazebo and ARGoS in the Headless mode (Table 3) increased R in
environments where maximum CPU power was utilised by the GUI mode. On

Table 3: Simulator performance in the Headless mode. The best
(green) and the worst (red) performance are indicated.

V-REP +
Bullet 2.78

V-REP +
ODE

Gazebo +
ODE

ARGoS +
Point-
Mass3D

1 robot +
Small scene

R = 4.1
C = 200%
M = 165 MB

R = 3.12
C = 200%
M = 160 MB

R = 42.85
C = 100%
M = 107 MB

R = 300
C = 6.3%
M = 18 MB

5 robots +
Small scene

R = 0.38
C = 400%
M = 320 MB

R = 0.32
C = 400%
M = 320 MB

R = 10
C = 100%
M = 130 MB

R = 150
C = 100%
M = 20 MB

10 robots +
Small scene

R = 0.09
C = 400%
M = 470 MB

R = 0.08
C = 400%
M = 480 MB

R = 5.26
C = 100%
M = 150 MB

R = 21.42
C = 144%
M = 20 MB

50 robots +
Small scene

Not feasible Not feasible R = 1.06
C = 100%
M = 356 MB

R = 0.52
C = 103%
M = 25 MB

1 robot +
Large scene

R = 1.91
C = 200%
M = 165 MB

R = 0.58
C = 200%
M = 160 MB

R = 18.75
C = 100%
M = 174 MB

R = 15.78
C = 139%
M = 31 MB

5 robots +
Large scene

R = 0.2
C = 400%
M = 270 MB

R = 0.11
C = 400%
M = 250 MB

R = 5.88
C = 100%
M = 192 MB

R = 5.45
C = 157%
M = 45 MB

10 robots +
Large scene

Not feasible Not feasible R = 3.09
C = 100%
M = 211 MB

R = 1.59
C = 130%
M = 47 MB

50 robots +
Large scene

Not feasible Not feasible R = 0.60
C = 100%
M = 423 MB

R = 0.03
C = 105%
M = 55 MB



the other hand, R was often smaller in the Headless mode of V-REP, compared
to its GUI mode. There were two factors that contributed to this result. Firstly,
R of the Headless mode was calculated over a longer period of time (simulated
five rather than one minute) and its average, rather than its maximum, value
was reported. Secondly, R of the Headless mode took into account not only
the actual simulation time, but also the time needed to initialise and close the
simulation. This in some cases took a significant amount of time, especially when
ODE physics engine was used with V-REP.

Finally, V-REP demonstrated the most optimal CPU utilisation. It automat-
ically spawned new threads when it was necessary and it could thus fully utilise
all available CPU cores. Gazebo only utilised a single CPU core per process. In
the GUI mode, Gazebo ran two processes, gzclient and gzserver, that could each
utilise a maximum of 100% of CPU power. In the Headless mode, only a single
core was utilised, as only the gzserver process was running. The multi-threaded
core utilisation by ARGoS worked in general but problems were experienced in
larger experiments. The CPU usage was notably smaller when more robots were
added to the environment. Furthermore, unlike V-REP, ARGoS requires the user
to specify the desired number of threads, rather than automatically spawning
new threads when it is necessary.

It is notable that the 3D models used in ARGoS and Gazebo were fairly sim-
ple compared to those used in V-REP, even though effort was made to simplify
the V-REP robot model (Figure 2). Moreover, the ARGoS physics engine was
much simpler than those used by V-REP and Gazebo. It is therefore expected
that using third-party libraries to cope with various aspects of the simulation
that are currently not covered in ARGoS, such as calculating more complex
physics dynamics, or working with imported 3D meshes, would decrease the
simulator’s performance. Similarly, it is expected that more complex 3D models
would decrease the performance of Gazebo compared to V-REP.

In order to confirm that the mesh complexity played a major role in V-REP,
we ran experiments with the Kilobot robots [17], that could only move forward
and did not have the sensing or controller capabilities of e-pucks, but consisted
of very simple 3D meshes. In the Kilobot experiments, up to six times higher R
could be achieved, using only about an eighth of the computer’s resources. In
another experiment, the building model in the Large scene was simplified from
around 41,600 to around 2,000 vertices. This increased R by up to 66%. Another
kind of optimisation involved decreasing the number of simulation update loops
per second from ten to two (i.e., dt = 500 ms). This increased R by up to 150%,
while decreasing memory usage by up to 15%. These results suggest that it is
possible to significantly increase the performance of V-REP by carefully setting
simulation parameters and by optimising 3D models used in the simulation.

4 Conclusion

V-REP is the most complex and the most resource-hungry of the three simu-
lators. However, it offers a number of useful features, such as multiple physics



engines, a comprehensive model library, the ability of a user to interact with the
world during simulation and, most importantly, mesh manipulation and optimi-
sation. Moreover, V-REP automatically spawns new threads on multiple CPU
cores and therefore utilises the full amount of CPU power when it is necessary.
It is therefore suitable for high-precision modelling of robotic applications such
as object transportation or area surveillance, as well as of various industrial
applications, where only a few robots are required to operate at the same time.

ARGoS, on the other hand, is a suitable choice for simulations of swarm
robotics tasks, such as collective foraging, flocking, or area coverage. Compared
to V-REP, ARGoS trades-off robot, environment and physics complexity for
superior performance. An XML-based simulation settings file is also very conve-
nient, especially when a large variety of simulations need to be generated auto-
matically. However, there are multiple important features missing from ARGoS,
most notably the ability to import 3D meshes into the simulator. Currently,
users that are not willing to spend time and effort on programming new robot
models in OpenGL, have fairly limited choices.

Gazebo occupies the space between V-REP and ARGoS. While it is much
closer to V-REP in terms of features, its interface and default robot models are
much simpler and resemble those found in ARGoS. It is notable that Gazebo
outperformed ARGoS in the larger simulation environments studied here, which
suggests that it is a more suitable choice for large swarm robotics experiments.
However, our experiments showed that the usability of Gazebo is relatively poor.
Firstly, while it can import 3D meshes, there are no editing options, making it
difficult to alter and optimise models. Another problem is the interface that has
a number of issues and fails to follow established conventions. Finally, difficulties
were noted when installing dependencies for Gazebo and for many of its third-
party models. While not necessarily severe by themselves, these issues together
could have a negative impact on a research project.

In the future, it would be interesting to conduct a user survey regarding the
features and simulator usability in order to obtain a more robust comparison. It
would also be interesting to evaluate the extent of the reality gap in the default
simulator robot models.

Acknowledgements: This work was supported by EPSRC Programme Grant “Robotics
for Nuclear Environments”, grant ref: EP/P01366X/1. We would like to thank Farshad
Arvin, Tareq Assaf, Giovanni Beltrame, Paul Bremner, Ales Leonardis, Carlo Pinciroli,
Chie Takahashi, Simon Watson and Craig West for sharing their opinions and insights
into various aspects of simulation work. We would also like to thank Xavier Poteau,
who created the sample industrial building CAD model.

References

1. Andrews, P. S., Stepney, S., & Timmis, J. (2012). Simulation as a scientific
instrument. In Stepney S., P. S. Andrews, & M. N. Read (Eds.), Proc. of
the 2012 workshop on complex systems modelling and simulation (pp. 1–10).
Luniver Press.



2. Rohmer, E., Singh, S. P. N., & Freese, M. (2013). V-REP: A versatile and scal-
able robot simulation framework. In Proc. of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2013). Piscataway, NJ:
IEEE Press. DOI: 10.1109/IROS.2013.6696520

3. Koenig, N. & Howard, A. (2004). Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Proc. of the 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2004) (pp.
2149–2154). Piscataway, NJ: IEEE Press

4. Pinciroli, C., Trianni, V., et al.(2012). ARGoS: A modular, parallel, multi-
engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.

5. Craighead, J., Murphy, R., Burke, J., & Goldiez, B. (2007). A survey of com-
mercial & open source unmanned vehicle simulators. In Proceedings of the 2007
IEEE International Conference on Robotics and Automation (ICRA 2007) (pp.
852–857). Piscataway, NJ: IEEE.

6. Žlajpah, L. (2008). Simulation in robotics. Mathematics and Computers in
Simulation, 79(4), 879–897.

7. Kramer, J., & Scheutz, M. (2007). Development environments for autonomous
mobile robots: A survey. Autonom. Robots, 22(2), 101–132.

8. Harris, A., & Conrad, J. M. (2011). Survey of popular robotics simula-
tors, frameworks, and toolkits. Proceedings of the 2011 IEEE Southeastcon,
243–249.

9. Staranowicz, A., & Mariottini, G. L. (2011). A survey and comparison
of commercial and open-source robotic simulator software. In Proceed-
ings of the 4th International Conference on PErvasive Technologies Re-
lated to Assistive Environments (PETRA ’11). New York, USA: ACM. DOI:
10.1145/2141622.2141689

10. Quigley, M., Gerkey, B., et al. (2009). ROS: an open-source Robot Operating
System. In Proceedings of the ICRA 2009 Workshop on Open Source Software.

11. Mondada, F., Bonani, M., et al. (2009) The e-puck, a robot designed for ed-
ucation in engineering. In Goncalves, P. J. S., Torres, P. J. D. and Alves, C.
M. O. (Eds.), Proc. of the 9th Conference on Autonomous Robot Systems and
Competitions (ROBOTICA 2009), 1(1) (pp. 59-65).

12. Bonani, M., Longchamp, V., et al. (2010). The MarXbot, a miniature mobile
robot opening new perspectives for the collective-robotic research. In Proc.
of the 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2010) (pp. 4187–4193). Piscataway, NJ: IEEE Press.

13. Ducatelle, F., Di Caro, G. A., et al. (2011). Self-organized cooperation between
robotic swarms. Swarm Intelligence, 5(2), 73–96.

14. Spiri Specifications. http://pleiadesrobotics.com (Accessed on 18th April 2018)
15. QT. https://www.qt.io (Accessed on 18th April 2018).
16. Pioneer 3AT Spefications. http://bit.ly/2D2VfSR (Accessed on 18th April

2018)
17. Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable

robot system for collective behaviors. In Proc. of the 2012 IEEE International
Conference on Robotics and Automation (ICRA 2012) (pp. 3293–3298). Wash-
ington, D.C.: Computer Society Press of the IEEE.


