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Abstract. A hybrid model, combining a Cellular Automaton (CA) and
a multi-agent system, was proposed to mimic the computation abilities
of the plasmodium of Physarum polycephalum. This model was imple-
mented on software, as well as, on hardware, namely on a Field Pro-
grammable Gate Array (FPGA). The specific ability of the P. poly-
cephalum simulated here is given in brief, also bringing attention to the
approximation of a Kolmogorov-Uspensky machine (KUM), an alterna-
tive to the Turing machine. KUM represent data and program by a la-
beled indirected graphs and a computation is performed by adding/removing
nodes/edges. The proposed model implementation is taking full advan-
tage of the inherent parallel nature of automaton networks, and CA, as a
result of the mapping of the local rule to a digital circuit. Consequently,
the acceleration of the computation for the hardware implementation,
compared to the software, is as high as 6 orders of magnitude.

Keywords: Slime Mould, Cellular Automata, Hardware, Agents, Kol-
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1 Introduction

Physarum polycephalum is widely used in the last decade as an unconventional
computing substrate, because it demonstrates complex behavior, regardless of its
apparent simplicity, easy culturing and very low-cost experimentation. In vivo
experiments with that biological, massively parallel computing prototype were
developed [1]. A plasmodium, the ‘vegetative’ stage of P. polycephalum life cycle,
was persuaded to scout for nutrients in its vicinity and link all of them with a
tubular network. The importance of the functionality of the tubular network to
the survival of the plasmodium (transfer of nutrients, metabolites, and chemical
and electrical messages) subjects its actual configuration in rounds of optimiza-
tion by the actual plasmodium and the local conditions of the experiment. This
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is the reason why the plasmodium is such a successful paradigm of a biological
substrate computer with inputs of geometrical configuration of nutrient sources
(NSs) and an output of an interconnected graph [2].

Some examples of the vast range of problems tackled by P. polycephalum [3]
are labyrinth solving [4, 5], approximation of Voronoi diagrams and Delaunay
triangulation [6], travelling salesman problem [7], simulation of Boolean logic [8]
and evaluation of transport [9] and ancient road networks [10]. Nonetheless, the
abilities of P. polycephalum inspired scientists to invest efforts towards the sim-
ulation of its behavior and its usage to solve complex problems, like designing
routes in information networks [11]. Some examples of the computerized ap-
proximation of the behavior of the plasmodium are a mathematical model with
feedback of the tube dynamics [12], agent–based particle models [13] and cellular
automata (CA) [14–16]We propose a novel approach towards computerizing the
abilities of the slime mouldby designing a hybrid model, which combines CA and
a multi–agent system is introduced.

Moreover, a rather interesting paradigm of in-vivo experiments utilizing P.
polycephalum is the approximation of Kolmogorov–Uspensky machine [17, 18].
Thus, here the results produced from these experiments were used as a control for
the novel hybrid model proposed. Kolmogorov and Uspensky [19, 20] proposed
that a dynamically changing graph could represent an abstract computing ma-
chine. This graph has a finite amount of nodes and the edges between them are
not directed. Each of the graph’s nodes are alternatively labelled and only one
of the nodes can be activated for a given time step. This structured was initially
defined as the Kolmogorov complex and, then, was more commonly known as
Kolmogorov-Upsensky machine (KUM). This term will be used hereafter.

KUM is an alternative to the Turing machine, with the main difference of the
replacement of the tape of the Turing machine by a graph. Given this geometric
substrate of the KUM (the graph), it can accurately mimic growth phenomena
and computation influenced by structure in natural systems (like biological sys-
tems, chemical systems etc). An additional meaningful distinction is that whereas
the Turing machine was intended to replicate a human-executed computation,
the KUM aims to portray “computation as a physical process” [21].

Despite their differences, Turing and KU machines belong the same classes
of abstract mathematical machines. A physical implementation of a KUM is
searched within biological substrates, like the plasmodium of P. polycephalum
[17, 18]. P. polycephalum is an ideal choice for this because of its capacity of
exploring and growing in a graph-like configuration and dynamic reshaping of
the edges and nodes in the graph.

Moreover, as the plasmodium is stimulated by chemoattractant nutrient
sources, utilizing a vast distributed array of membrane–bound sensor proteins,
distributed tools were chosen for its simulation, like CA and multi-agent models.
In this paper, we focus on the hardware implementation of the proposed hybrid
model of P. polycephalum to mimic the physical implementation of a KUM in
the plasmodium of P. polycephalum.
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2 Description of the CA-Multiagent model

A new model of CA was developed, in order to combine CA [15, 16], and multi-
agent modeling [22]. This new model integrates the parallel nature of CA along
with the dynamic behavior in space and time of the multi-agent system without,
however, increasing the complexity of the system. The model is computation-
ally simple by using distributed local sensory behaviors, although approaching
some of the complex phenomena observed in Physarum. In order to configure
Physarum’s adaptive motif, the selected mechanism must be able to adjust its
pattern over time, i.e. the pattern must be more flexible to show the emerging
properties, which are extensible and can be calculated.

In this model, the inherent flow of the colloidal solution is provided by agent-
to-cell mediation, and gel matrix resistance is provided by the agent-agent col-
lisions. The consistency of this set of “crowd” is ensured by the fact that there
is mutual attraction to the stimuli deposited by the population of the agents.
The directional orientation and movement of the activated plasmodium front
is created by coupling the emerging mass behaviors by dragging local source
stimuli. Changing the value of cell identities is equivalent to secreting a quan-
tity of chemoattractant during their successful motion and detecting the largest
amount in the cell’s neighborhood by three sensors. As a result, they adjust the
cell’s angle, so the behavior of other agents can also affect their behavior.

The area of the experiment is divided into a grid of identical square cells,
with the side of length equal to α and represented by a CA assuming that each
square element of the surface is a cell of a CA. The width of the neighborhood
of (i, j) cell is assumed to be equal to one on both sides, meaning that, we have
a Moore neighborhood. The state of the new CA model at time t is:

Ct
i,j = {griddatati,j , trailti,j , particle idsti,j , angleti,j} (1)

Parameter griddatati,j can get values at time t that indicate whether the
cell is a wall or a food stimulus. Referring to trailti,j , is the value derived from
the food diffusion equation and represents the strength of the smell of the food
stimuli at time t in the (i, j) cell. Additionally, particle idsti,j is the value of
the agent’s (i, j) identity at time t. When there is no agent in the cell, then, as
normal, its value is equal to zero. Finally, angleti,j is a variable that shows the
angle of the agent in a cell.

Some program variables are specified at the initialization of the model. The
main parameters are the amount of agents in the population, grid size, consump-
tion of food value (diffdamp) and the variable that indicates how large the value
of the data nodes are. This is displayed as griddatati,j to trailti,j and can get two
values, the projectvalue (when there is no agent nearby or on the central cell)
or the suppressvalue (when there is at least one agent in the neighborhood of
the central cell on which the food is placed).

Subsequently, the agents are placed in random positions within the CA grid
with their velocity vectors oriented at random angle values. When a CA neigh-
borhood contains one agent or is fully occupied of agents then the value of the
trail value is generated by the equation:
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trailt+1
i,j = trailti,j + suppressvalue (2)

Else, if the area is free from agents then it gets the value

trailt+1
i,j = trailti,j + projectvalue (3)

During the evolution of the model, the cell motor behavior is activated to
move the agents along their velocity vectors, thus renewing the values of the
particle ids and their velocity vectors. The new coordinates of an agent are cal-
culated and an attempt is made to move by one cell in the Moore neighborhood
of the central cell (where the agent is located).

tvi = i+ cos(angle(i, j))× speed and tvj = j + sin(angle(i, j))× speed (4)

If a cell is bound or wall and is selected by an agent to make a move towards
it, then that agent will not move to that cell but the angle of the velocity vector
will be renewed to a random value, i.e. anglet+1

i,j = random() × 360. However,
if all the prerequisites are met in order to make a movement, the value of the
agent’s identifier of the given cell will be given to the new cell, as well as its
angle, and the trail value will be renewed by increasing it by an amount depT .
This will be an attractive means for other agents to move towards it in order to
create a single structure as the biological organism.

particle idst+1
i,j = particle idsti+1,j+1

anglet+1
i,j = angleti+1,j+1

trailt+1
i,j = trailti,j + depT

(5)

The algorithm proceeds by calculating the sensory inputs of the cells. Each
cell containing an agent has 3 sensors that are located in the neighborhood of
this cell in the direction of the agent’s angle. The neighborhood could be larger,
e.g. by integrating all the cells that are spaced 2, 3, . . . cells away from the central
one. Moreover, this would act as an escalation parameter in a large CA, a cell
would receive values in its sensors from a more distant area and could direct its
agent towards that direction (Fig. 1).

The sensors receive the trail values of neighboring cells in which they are
located. Then those three variables are compared, in order to decide the highest
food value from the trail of the neighboring cells. The prevailing sensor, will be
the one who will also indicate which direction the agent should follow to reach
the point of feeding.

If f sensor has the highest value, then the cell’s angle retains the same value.
If the value of f is less than the other two, then if fl is less than f, anglet+1

i,j =

angleti,j +45, otherwise, if fr is less than fl then anglet+1
i,j = angleti,j−45. Finally,

if f is greater than fl and less than fr then anglet+1
i,j = angleti,j + 45, otherwise,

if f is greater than fr and less than fl then anglet+1
i,j = angleti,j − 45.
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Fig. 1. Placement of 3 sensors in the Moore neighborhood of the cell according to its
angle.

The final step of the algorithm is to update the trail of each cell, where its
value is given by the equation of food diffusion.

trailt+1
i,j = {(trailti−1,j−1 + trailti,j−1 + trailti+1,j−1 + trailti−1,j + trailti,j+

trailti+1,j + trailti−1,j+1 + trailti,j+1 + trailti+1,j+1)/9 ∗ (1− diffamp)}
(6)

3 Hardware implementation of the proposed model

The proposed hardware system is comprised of the same basic structure repre-
senting a CA cell. Each cell circuit (Fig. 2) is interconnected with other cells in
its vicinity.

This circuit is equipped with 46 inputs and 19 outputs. As inputs we consider
eight signals, 9 bits each, that indicate an integer from 0 to 511, representing the
identifier number of the agents; eight signals, 9 bits each, that indicate an integer
number with range from 0 to 511, which represents the food value; eight signals,
9 bits each, that indicate an integer number ranging from 0 to 360, representing
the angle of agents in the CA; eight signals one bit each, needed to inform the
cell that an agent is going to move in its direction.

Eight additional signals one bit each that inform the central cell that the
agent cannot move to a neighboring cell; an 8-bit signal used to characterize the
central cell (food = 255, wall = 51, normalcell = 0); two signals, 9 bits each
that are used to initialize agents and angles in the grid and three signals, 1 bit
each for clk, reset and initialize.

As outputs there are eight signals, one bit each to inform neighbors that
the agent will move in that direction; eight signals, one bit each indicating that
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Fig. 2. Input and output signals of the circuit generated by the VHDL code.

the central cell is free to receive an agent and three signals, 9 bits each, which
represent the identifier, the angle and the smell of the food in the central cell.
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Firstly, initialize signal is set high, for cells to obtain random values
needed. In the first stage, the cell in which the food stimuli is found, renews
the trail value by noticing whether there is an agent in the neighborhood. The
following stage is the motor behavior where each cell will signal if there is an
agent to attempt to move in the direction which is indicated by the angle. If the
agent cannot move, then the angle will be modified to a random value and the
algorithm will continue.

However, if the agent can move, then the central cell will raise a flag to inform
its neighbors. Two additional steps in relation to the software code are introduced
to check whether two or more agents attempt to move to the central cell. In the
next stage, if the previous prerequisites are met, the agent’s identifier and angle
of the neighboring cell will be transferred to the central cell and its trace value
will be increased by depT. Afterwards, the sensory behavior of the food and the
adjustment of the angle of each cell are followed. Direction is indicated by the
higher smell of food detected by the sensors. Sensors f , fl and fr receive the
trail of the neighboring cells and the front is impacted by the angle of the central
cell. The final stage is the food diffusion equation.

A n × n grid of cells is designed and interconnected Then the grid circuit
received the following input signals: p + 1 (0 ≤ p ≤ 511) signals, 9 bits each,
that indicate an integer with range from 0 to 511. These signals are used to
load agents’ identifiers into different cells within the grid. Another p+ 1 signals
are used to give angle values in the cells. An 8-bit signal set to zero, i.e. to
the absence of food in a cell and another one 8-bit signal corresponding to the
number 255 and given to the cells that we intend to have food stimulus. Three
signals, one bit each corresponding to clk, reset and initialize. The outputs
are n × n signals, 9 bits each representing the ID number of the agent in each
cell of the grid.

In order to prove that the software program and the CA hardware circuit
generated by the VHDL code have the same behavior, the following section
presents the results of trying to create a Kolmogorov–Uspensky machine.

4 Simulation results

In this section, the proposed CA–multiagent model will be used to reproduce
functions Fuse and Mult. These functions are characteristic of the Physarum
machine presented in [18], which mimics universal storage modification machines,
like the Kolmogorov-Uspensky machine. The CA is selected to have a size of
20 × 20. The agents are placed in random locations and with random angles.
The deposition value of the chemoattractant is equal to one for each successive
transfer of the particle’s identifier from one cell to another. The input signals
given to the system designed with the VHDL code were: the period of the clk

signal is set to 1 ns, the rst signal for 9ns equal to 1 and then 0, the initialize
signal equal to one for 10 ns and then equal to 0.

The experimental operations with the active zones as recorded by Adamatzky
and Jones [17, 18] were used as verification of the model.
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Fig. 3. Output of the model in software (a,b) and in hardware (c,d) with initial and
final positions of agents.

Initialization of the CA is illustrated in Fig. 3a for the software model and
in Fig. 3c for the hardware model. It is noted that cell values that are closer to
food sources will modify their status and will undergo changes in both identifiers
and angles. As already mentioned the output signals are 400, so for convenience,
all the changes noted in the cells are shown in a table. In the example of Fig. 3,
each agent has a sensory behavior of a larger neighborhood (3 cells), so that it
can detect the smell of the food of another cell on the grid without staying only
around a constant food stimuli. The pieces of plasmodium are attracted by the
food sources (red color) and plasmodium spots are created around these sources.
The food stimuli are initially placed in the cells (4, 10) and (17, 10).

By comparing these two models, we observed that they present similar re-
sults. On the other hand, the time spent by the CA circuit to form the result
(554 ns) is much less than the time spent in the software (0.3381 s).

In the following, a new stimulus is placed to attract the plasmodium in its
location. The new food source is installed in cell (10, 10). The growing plasmod-
ium is attracted by the inner source and the propagation continues inwards from
each initial source (Fig. 4). These two active zones fuse and retain a structure
spanning the array of nodes. After a few time steps, it is observed that the cells
near the new food source are starting to change their ID values, which means
that the active zones migrate in these directions. In software the chain structure
is formed at 0.7366 s (Fig. 4.b), while in hardware at 786 ns (Fig. 4.d).
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Fig. 4. The Fuse operation in software (a,b) and in hardware (c,d).

Fig. 5. The Mult operation of the Physarum machine (adopted from [18]).
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Fig. 6. (a,b,c,d). Mult operation of the virtual model. At the time of 1.5628 sec the
formation result for the software program (top) is produced, while for the program that
is designed with hardware description language (below) the formation of the network
is generated at 850 nsec.

An example is displayed in Fig. 5, given a food source chain where the plas-
modium has formed protoplasmic tubes, two oat flakes can be added right and
left and cause new active zones (Fig. 5.a). After 10 hours, 2 new active zones A1
and A2 are formed (Fig. 5.b).

Using the chain structure created by the previous method (Fig. 4) two addi-
tional food sources are added to each side of the array, at points (10, 6) and (10,
14). Two active fronts were produced to engulf the sources (Fig. 6). In Fig. 6 is
illustrated the function Mult of physarum machine, some agents will gradually
become aware of the existence of new food stimuli and will start moving in that
direction developing a diamond area.

5 Conclusions

A novel hybrid model was used to approximate the computing abilities of a
(geometrically represented) biological substrate, namely the plasmodium of P.
polycephalum. The model proposed here is a CA-based method incorporating a
multi–agent system. The results of the computerized plasmodium were closely
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imitating the results obtained from in vivo experimental studies. The developed
methodology was implemented in software as well as in hardware. The motivation
was the fact that the parallel nature of CA is lost in the software implementation.
The higher the complexity of the problem, the longer it will take to be resolved.
Whereas, the circuit generated by the VHDL code uses the advantage of parallel
processing and, therefore, solves the problem within a vast range of complexity,
using the resources for a given amount of time.
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