
Policy discussion for sustainable integrated electricity expansion in

South Africa

Monyei, C. G.1,2,4, Jenkins, K.3, Viriri, S.1 and Adewumi, A. O.1

1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,

Westville Campus, Private Bag X54001, Durban 4000, South Africa

2Gidia Oaks Centre for Energy Research, Lagos, Nigeria

3School of Environment and Technology, University of Brighton, Cockcroft Building,

Moulsecoomb, Brighton BN2 4GJ, United Kingdom

4Corresponding author

Abstract

Emerging reports have shown that despite Eskom’s continued investment in increasing electricity supply

capacity to grid connected and off-grid households, there has been a steady decline in electricity consumption

(kWh/month/individual) and household income (ZAR/month). This paper presents an integrated electricity

expansion model (IEEM) for South Africa that seeks to incorporate demand side management (DSM) in

providing a roadmap for improving and increasing energy (electricity) access that is sustainable, viable,

ethically compliant and cost effective. In modelling IEEM, a modified genetic algorithm (MGA) would be

utilized in simulating the dispatch of DSM loads (residential houses only) across the country. This paper

advances traditional grid expansion planning by presenting smart policy discussions on the usefulness of

IEEM in reducing associated network losses, enhancing utilization of local energy sources and minimizing

expansion and plant operations costs. This paper also discusses the impact of the IEEM on the quality of

life (QoL) of households and quality of service (QoS) of the utility. Electricity consumption data have been

adopted from the existing literature and appropriately modified.

Keywords - integrated electricity expansion model, energy poverty, sustainability, smart

policy, demand side management

Highlights

X Presents an integrated electricity expansion model (IEEM) for South Africa.

X Outlines the potential of IEEM to integrate DSM to minimize grid expansion.

X Presents techno-economic policy discussions on potential network loss reduction.

X Extends further policy discussions on poverty mitigation and REPs utilisation.
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Nomenclature

DLC Direct Load Control

DP1, DP2, DP3 Dynamic pricing tariff options

FBAE Free Basic Alternative Energy

FBE Free basic Electricity

k,z Indices of buses

MGA Modified Genetic Algorithm

QoL Quality of Life

QoS Quality of Service

REPs Renewable Energy Projects

SHS Solar Home System(s)

T 24 hours duration or 96 time slots

t time slot of 15 minutes interval

TOU Time of Use pricing tariff option

1 Introduction

According to the Transmission Development Plan (TDP) (Eskom 2015b), Eskom is expected to step up the

construction of additional electricity supply capacity from 2017. The accelerated efforts by Eskom are sequel to

the energy crisis that has plagued South Africa since 2008; originally leading to massive blackouts, load shedding

and huge economic losses (Kohler 2014; Shezi 2015). While about 3,516 MW is expected to be lost from the

grid due to deteriorating and decommissioning of ageing power plants between 2021-2024, about 19,000 MW

is expected to be added to the grid capacity through new builds and capacity expansion between 2017-2024

(Eskom 2015b). Table 1 (Eskom 2015b) presents the planned decommissioning between 2021-2024 while Tables

2 (Eskom 2015b) and 3 (Eskom 2015b) present the planned supply capacity increment between 2017-2024.

Within, Table 2 shows the Medupi and Kusile coal-fired and Ingula pumped storage power stations as key

developments to meet peak demand. The power plants in Table 2 all feed into the national grid.

Further, additional costs are expected to arise given the need to increase the transmission network capacity

and the requirement to build additional transmission and distribution stations in order to wheel power to

homes and industry sites. It is expected that the bulk of the costs for expansion will be borne by the electricity

consumers in form of increased electricity bills while further support will come from loans from the government

and commercial creditors (BusinessReport 2018). The population growth predictions shown in Table 4 (Eskom

2015b) present a growing trend in electricity demand forecasts. An assumed consequence of the increasing

population, increasing energy needs and increasing industrialization is the need for Eskom to continue to boost

generation capacity to always match projected demand. Yet this idea is at variance with a global trend, where

demand side management (DSM) initiatives are being implemented in order to reduce the need for new builds

and efficiently utilize existing technologies to meet current demand. This is due, largely, to the huge costs

involved in building power stations and the long timespan between construction the synchronization of power

plant outputs (Ofgem 2015).

Figure 1 presents the conventional electricity expansion plan currently being exploited by Eskom. During

the process of executing electricity expansion, Eskom models electricity demand increases considering diverse
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factors (Gross Domestic Product (GDP), inflation, previous electricity demand growth, government policies

etc.) to come up with various growth patterns considering multiple variants (shown in Table 4).

1.1 Prevailing problems associated with South Africa’s electricity expansion plan

The demerits of the conventional electricity expansion plan of South Africa are as follows:

� There is the possibility of a supply glut (surplus) due to over-compensation of supply capacity. Such an

instance was witnessed in the 1990’s and led to the mothballing of the Komati, Camden and Grootvlei

power stations (Monyei and Adewumi 2017).

� There is the possibility of a supply deficit owing to either demand exceeding projections or policy inconsis-

tencies that mitigate against the development of new builds to shore up supply capacity. Such an instance

was witnessed in 2008, when supply could not meet peak demand leading to massive load shedding and

blackouts (Kohler 2014; Shezi 2015).

� Low utilization of renewable energy resources. Despite considerable increase in renewable energy projects

(REPs), the lack of control over end user load dispatch (flexible DSM loads) by Eskom prevents them

from fully utilizing the potentials of REPs due to their stochasticity. System operation and planning is

thus done using base load stations (coal and nuclear) whose capacities and performances can be evaluated

exactly.

� The loss of loads and blackouts remain a possibility. In instances of peak demand, the inability of Eskom to

quickly dispatch end user loads without financial penalties means the possibility of load shedding becomes

high.

� Electricity billing could be excessive. According to Eskom (2017b), between 2008 and 2013, electricity

price cumulatively rose by about 114% which was at variance with declining electricity prices prior to

2008/09. The sharp increase in electricity price (which was to enable Eskom raise future revenue to cover

for new builds) was met with increasing public resistance (Eskom 2017b). Eskom has thus consistently

argued for further increases in electricity prices to enable it to bridge its revenue shortfall (R35 billion in

2014/15).

1.2 Major contributions of this research

The aim of this paper is to study and show the impact of an electricity expansion model (that integrates all as-

pects of the electricity grid) on peak demand reduction, expansion costs reduction, capacity utilization maximiza-

tion, maximization of earnings (for the supply side), minimization of electricity costs (consumption/utilization

side) and network loss reduction. This is consequent on the fact that in addressing the issues associated with

the conventional system of electricity expansion planning in South Africa, there is the need for an electricity

expansion plan that is capable of:
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� Isolating consumers from extreme price fluctuation due to the utility’s billing system that attempts to

recoup investments on new builds.

� Utilizing REPs effectively.Rather than expending huge sums building large-scale storage facilities for wind

and solar projects, end user loads could be dispatched during times of wind/solar availability. While we

acknowledge the role of battery energy storage in stabilizing the electric grid and enabling the integration

of REPs (Hu et al. 2017), we however draw caution from DiOrio et al. (2015) who offer that it is necessary

to evaluate the utility rate structure, and determine whether the addition of battery storage can be leveraged

to reduce costs enough to justify the upfront capital expenditure and replacement costs. This is important

in ensuring that consumers do not become unnecessarily over-burdened with huge electricity bills.

� Efficiently utilizing installed supply capacity. With adequate knowledge of demand schedules and opera-

tional control of a fraction of end users loads, the utility is able to optimally dispatch generation sources

and allocate end user loads such that dispatched supply capacity is efficiently utilized. This is necessary

to prevent energy wastage, reduce emissions and operations losses.

� Minimizing network losses1. With advanced knowledge of demand growth profiles across the provinces, it

becomes possible to evaluate the associated costs (economic, losses) and benefits of situating a generation

source closer to a demand hub2 or extending the transmission network from the generation hub 3 to the

demand hub. While it might be economical to locate power plants close to primary fuel sources, there is

the possibility of incurring high economic costs and he network losses through evacuating power from the

generation site to load centres. Balancing the location of generation sources to minimize economic costs

and network losses becomes important.

� Minimizing expansion. The ability to predict demand growth and evaluate operational DSM (by which

we mean flexible loads whose operation hours can be influenced externally) capacity provides the utility

company with an avenue to explore varied energy supply mix options, including REPs. This may minimize

the utility’s expansion of supply capacity, inherently improving efficiency and reducing expansion costs.

Figure 2 presents the proposed integrated electricity expansion model (IEEM). In differing from Figure 1,

Figure 2 operationalizes DSM. By this, we mean that it makes DSM load hours of operation flexible. In Figure

1, DSM initiatives being adopted by Eskom consist of energy efficiency demand side management (EEDSM).

In 2008, Eskom began a campaign to exchange incandescent bulbs in homes for more energy efficient compact

fluorescent lamps (CFLs) with about 65 million of such energy efficient CFLs installed in South African homes

to date. The result has been considerable energy savings and reduced electricity bills, job creation and a culture

of greater energy efficiency among South Africans. It is estimated that about 11.8 TWh of DSM programs are

1According to Eskom (2015a), total technical energy losses for the 2014/15 financial year was estimated at 8.79%. While
transmission losses (estimated at 2.53%) are mainly associated with power evacuation and increase with distance, distribution
losses (estimated at 6.78%) are influenced by factors such as network design, network topology, load distribution and network
operations.

2We define a demand hub to be a cluster of provinces with cumulative demand exceeding 15% of the total demand for South
Africa.

3By generation hub we mean a cluster of power plants with generation capacity exceeding 30% of total generation capacity of
South Africa. An example of such is the Mpumalanga Power Pool (MPP).
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currently in place in South Africa with expected cumulative savings of 466 MW by 2017/2018 from the additional

Residential Mass Rollout lighting LED program which commenced 2015/2016 (Eskom 2017a). However, despite

the projected savings expected from such measures, their impact is passive due to the fact that the utility has

no influence over the utilization time of EEDSM initiatives like CFLs distribution in South Africa. Figure 2

advances Figure 1 by incorporating price based DSM with specific loads either being controlled directly by the

utility (direct load control, DLC) or by the home owners (within a flexible window).

2 The integrated electricity expansion model (IEEM) and related

works

As shown in Figure 2, in predicting demand growth, the growth of flexible customers4 is also predicted across

the provinces. This is necessary as it helps in determining the minimum expansion needed (rather than the

conventional expansion model shown in Figure 1 that aims for maximum expansion units).

A review of related literature for South Africa shows that only Monyei and Adewumi (2017) have been able

to quantitatively illustrate growing energy poverty in South Africa as well as providing initial evidences of the

benefits of operationalizing DSM for an isolated case. Other related works on the electricity sector in South

Africa have centred around associated statistics and policy, for example Blommestein and Daim (2013)who

carried out the evaluation of consumers decision making processes around energy efficient devices using a

hierarchical decision model (HDM) to determine if there was a sync between consumers technology focus and

current efficiency initiatives; Amusa et al. (2009) who applied bounds testing approach to co integration with

an autoregressive distributed lag framework to examine South Africa’s electricity demand during the period

1960-2007 and Inglesi (2010) who forecast (using the Eagle-Granger methodology for co-integration and error

correction models) the electricity demand of South Africa up to 2030. Similarly, DSM studies have been carried

out by Clark (2000), who investigate the factors inhibiting municipalities from investing in DSM initiatives;

Lombard et al. (1999) where a program for thermal efficiency in the South African residential sector was

proposed and Rankin and Rousseau (2008) where the authors described how an improved inline water heating

concept was capable of achieving peak load reduction without availability compromise within the specified

operating time. Furthermore, other researchers have extended studies to pricing and its effect on electricity

demand. For example, the effect of pricing policy on aggregate electricity demand and the magnitude of demand

change/response to a variation in pricing policy between 1960-2007 for South Africa was studied in Amusa et

al. (2009), while Inglesi-Lotz (2011) applied the Kalman filter in estimating the price elasticity of electricity in

South Africa between 1980-2005.

4We define flexible customers for this paper to be households with grid access and who have agreed to participate in DSM
initiatives by either leaving the dispatch of selected loads to the utility within a flexible window or strict flexible window. By
flexible window, we mean 24-hours window and by strictly flexible window, we mean a 2-hour window. Selected loads for this
paper are cloth washers, cloth dryers and dishwashers. The incentive for participation is a reduction in electricity bills for the
participating loads.
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2.1 Motivation for IEEM

The 1990’s mothballing of power production plants (see Monyei and Adewumi 2017) as well as the subsequent

supply deficit in 2008 that precipitated the blackouts and load shedding that characterized the electricity

network of South Africa between 2008-2015, necessitates a more proactive model that is sustainable and flexible.

Furthermore, growing/expanding grid access has not directly translated to increasing electricity consumption

(kWh/capita). Monyei and Adewumi (2017) illustrate this by investigating declining electricity per capita, as

do STATSSA (2017), who illustrated an increase in South African poverty rates (estimated to be about 55.5%).

It can thus be inferred that increasing poverty will directly result in decreasing disposable income and increasing

energy poverty (since households would spend more of their disposable income purchasing lesser electricity units

due to increasing electricity tariffs). In addition, Monyei and Adewumi (2017) offer that the estimated addition

to the grid capacity between 2017-2024 is over 500% in energy terms. This thus implies that Eskom stands at a

higher risk of incurring further revenue shortfall due to increasing operational losses (owing to underutilization

of installed capacity, increasing operations and maintenance costs and reduced revenue owing to decreased

electricity units purchases). IEEM is thus important in obviating the need for maximum demand sizing in grid

expansion by introducing flexible customers and efficiently utilizing REPs. Further, this paper advances the

discuss in Monyei and Adewumi (2017) beyond an isolated case by computing DSM potentials and evaluating

its impact (in terms of cost and expansion) for South Africa and making policy recommendations.

3 The IEEM description and application

In attempting to model DSM for South Africa and provide policy recommendations as regards electricity ex-

pansion, network losses, REPs utilization and electricity tariffs, we first describe South Africa’s main electricity

company and the electricity network model employed in this paper.

3.1 A brief description on Eskom

The major electricity provider in South Africa is Eskom, which generates over 95% of the total electricity

consumed in South Africa and about 45% of electricity produced in Africa. In addition to electricity generation,

Eskom owns the majority of the transmission network in South Africa with an average yearly production of

about 200 000 GWh. Eskom generates and sells electricity to municipalities (42.7%), industries (22.3%), mines

(14.4%), commercial and agricultural based companies (7%), rail companies (1.4%) and exports about 5.6% of

its electricity. Their major production sources for electricity include coal (83%), nuclear (5%) and imports (4%).

Imports are from the Southern African Power Pool (SAPP) which is an inter-connected regional transmission

network of the Southern African Development Community (SADC) (Monyei and Adewumi 2017).
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3.2 Description of model electricity network for South Africa

Figure 3 presents a network model for the South Africa grid. It consists of ten buses (BUS 1 - BUS 10), nine

load points (LP1 - LP9), five major power generation points (PP1 - PP5) and fifteen transmission lines (Line 1

- Line 15). For the model shown in Figure 3, all the transmission lines are assumed to be 400-kV transmission

lines5. For the purpose of this paper, the generation sources considered are coal and nuclear, which form the

base load stations for South Africa. Table 5 presents the relationship between Buses 1 - 9 and the respective

province electricity statistics.

3.3 Problem description

The aim of this paper is to study and show the impact of IEEM on peak demand reduction, expansion costs

reduction, capacity utilization maximization, maximization of earnings (for the supply side), minimization of

electricity costs (consumption/utilization side) and network loss reduction. The mathematical description of

the preceding problems are as follows:

3.3.1 Peak demand minimization

Given P t (MW), BLt (MW) and DSM t (MW),

BLt + DSM t = P t (1)

The objective function P t
IEEM is defined as

P t
IEEM = min(P t) (2)

Where P t (MW) is the total power demand, BLt (MW) is the total base load demand and DSM t (MW) is the

DSM demand for South Africa for slot t. A slot is defined as a 15-minutes interval.

3.3.2 Expansion costs minimization

Given Cexp (ZAR/MW) to be the cost of adding an additional MW to the national grid, then the objective

function Cexp
IEEM is defined as

Cexp
IEEM = min(Cexp) (3)

3.3.3 Capacity utilization maximization

Given Utilt (%) to be the average utilization of power plants across South Africa, the objective function

UtiltIEEM is defined as

UtiltIEEM = max(Utilt) (4)

5Major transmission network of South Africa consists of 765-kV, 533-kV, 400-kV, 275-kV, 220-kV and 132-KV lines.

7



3.3.4 Revenue maximization - supply side

Given SuppT (ZAR/day) to be the total daily revenue earned by the supplier from electricity sold, the objective

function SuppTIEEM is defined as

SuppTIEEM = max(SuppT ) (5)

where SuppT =
∑t=96

t=1 (Suppt)

3.3.5 Electricity cost minimization - consumer side

Given Hexp (ZAR/day) to be the daily electricity cost for a house participating in DSM, the objective function

Hexp
IEEM is defined as

Hexp
IEEM = min(Hexp) (6)

3.3.6 Network loss minimization - transmission only

Given LossT (MW) to be the daily transmission losses for the electricity network, the objective function

LossTIEEM is defined as

LossTIEEM = min(Loss) (7)

where LossT =
∑t=96

t=1 (Losst)

3.3.7 Operations cost minimization

Given OPT (ZAR/day) to be the daily operations cost in generating and distributing electricity by the utility,

the objective function OPT
IEEM is defined as

OPT
IEEM = min(OPT ) (8)

Subject to

OPT = FT + ET + MtT (9)

where FT (ZAR/day) is the daily fuel cost (coal cost, water cost etc.) for running power generation plants,

ET (ZAR/day) is the daily emissions cost based on power sent out and MtT (ZAR/day) is the daily cost of

maintenance for the power generation plants.

3.4 Solving the network model

The Gauss-Seidel model has been chosen for attempting to solve the resulting load flow problem from Figure

3. Its choice is basically due to familiarity and ease of programming and speed since Newton-Raphson takes

longer because of the need to recalculate the Jacobian (Gilbert et al. 1998). Applying Kirchoff’s current law
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given the bus admittance matrix yields equation 10.

I = YbusV (10)

The kth nodal current of N nodes (BUSES) is obtained to be Ik =
∑N

z=1(YkzVz) which can be resolved to give

(11).

Ik = YkkVk +

N∑
z=1

(YkzVz) (11)

Re-arranging (11) to obtain Vk is shown in (12).

Vk =
Ik
Vkk

− 1

Ykk

N∑
z=1

(YkzVz) (12)

if Sk = Pk − jQk then (13) is obtained.

V t′+1
k =

1

Ykk
[
Pk − jQk

(V t′
k )∗

−
N∑

z=1

(YkzV
t′

z )] (13)

Where Ik is current, Vk/Vz is voltage and Ykk/Ykz is bus admittance matrix. The modelling of the Gauss-Seidel

operation is constrained to ensure that convergence is only possible within allowed bus voltage limits. Similarly,

Sk, Pk and Qk are the apparent, real and reactive power (all in per unit) at bus k.

3.5 Assumptions for network

The network model shown in Figure 3 is assumed, within realistic approximations, to present valid values for

the South African electricity network. The following have been assumed in simplifying the electricity network

for South Africa:

� Only base load generation stations (coal and nuclear) have been used in the simulation.

� All base load generation stations within a province have been merged to form a pool (PP1-PP5).

� The load within a province have been merged to also form a pool (LP1-LP9) .

� Random lengths have been assigned to the transmission lines to enable the computation of line losses due

to variation in situating generation plants. For this paper, the length of the transmission line is immaterial

since we are solely interested in the variation (percentage increase/decrease) of network transmission losses

due to variations in the location of power generation plants.

� The transmission lines are all assumed to have infinite ampacity limits.

� Power imports have been included in PP1 (from Botswana) and PP3 (from Mozambique).
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4 Scenario modelling

Three scenarios (Scenarios 1, 2 and 3) are modelled and discussed with respect to Section 3.3.1 to Section

3.3.7. For each Scenario being modelled, three cases are considered. The adoption of varying locations for

power station placement is to explore the effect of power plant location on parameters such as network loss,

utilization, reactive power compensation, voltage profile etc. The scenario modelling thus assists in determining

the optimal location for locating power plants that will achieve an optimal system configuration at the minimum

cost. Furthermore, the variation in the DSM profiles is to evaluate the extent to which flexibility in DLC affects

peak demand, supply capacity utilization and other associated costs.

� Case 1: Here, households participating in DSM determine when participating DSM loads are to be dis-

patched within a time-frame6. For this case, the time-frame is 05:00-08:00 and 17:00-22:00. It is also

assumed that the dispatch of DSM loads (DSM-potential for each province is shown in Table 5) under

this case follows the natural and unconstrained usage pattern of participating households.

� Case 2: Under this case, the participating DSM loads (DSM-potential shown in Table 7) are dispatched by

the utility across the day. The time-frame is from 00:00 - 00:00 (next day). The incentive for participation

is the reduction of electricity bills for the participating households. This case also offers the utility the

most flexibility in optimizing the dispatch of generation plants to reduce its operation costs and improve

capacity utilization. The DSM loads are under direct load control (DLC) by the utility.

� Case 3: Under this case, the utility dispatches participating households DSM loads within the time-frame

05:00-08:00 and 17:00-22:00 with the possibility of exceeding 08:00. DSM loads (DSM-potential shown in

Table 5) are under DLC in this case. In differing from Case 1, Case 3 incorporates DLC for the dispatch of

the DSM loads. Similarly, Case 3 differs from Case 2 by adopting a more constrained time-frame (similar

to Case 1). Case 3 also offers households reduction in electricity bills and reduced operation costs for the

utility.

Figure 4 depicts the dispatch time profile for participating DSM loads. It is seen from Figure 4 that the

time-frame is denoted by wi where wi is 2-hours for Cases 1 and 37 and 24-hours for Case 2. Also, tstarti,j is the

earliest start time for DSM load j in house i and is 05:00 for Cases 1 and 3 and 00:00 for Case 2. t
′

i,j is the

latest time a participating DSM load can be dispatched based on its hours of operation (tdurationi,j ), tdispatchi,j is

the time of actual dispatch of the DSM load j, tstopi,j is the latest stop time for a dispatched DSM load j while

tfinali,j is the actual stop time for a dispatched DSM load j. Table 6 presents the description of the participating

DSM loads including their duration of dispatch and power rating while Figure 5 presents the daily base load

profile for all provinces. The justification for the choice of the participating DSM loads is explicitly discussed

in Monyei and Adewumi (2017). In modelling the different Cases (1, 2 and 3), the incorporated MGA (Monyei

and Adewumi 2017) aims at minimizing the peak demand (MW) for the DSM loads (irrespective of the base

loads). Figure 6 presents the cumulative DSM profile for all Cases and provinces and is utilized for all Scenarios.

6A time-frame for this paper is the period within which DSM loads are to be dispatched i.e. from tstarti,j to tstopi,j .
7This would not always hold for Case 3 due to the possibility of tstopi,j exceeding the 2-hours limit for some households.
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4.1 Scenario 1

In Scenario 1, we model the electricity network shown in Figure 3 with DSM and base load considerations as

shown in Figures 6 and 5 respectively and the normal placement of base load power generation plants as shown

in Table 7. This scenario provides a baseline for comparison purposes with all other scenarios. Table 8 provides

further explanation to Table 7. BUS 2 is assumed to be the slack bus for this case while other generating plants

are dispatched at 70% capacity utilization.

4.2 Scenario 2

In Scenario 2, we model the same electricity network as used in Scenario 1 (i.e. Figure 3) utilizing same DSM

and base load profiles (shown in Figures 6 and 5 respectively) but with power plant distribution as shown in

Table 7 (as modified). The placement of the additional power plants for this scenario is by inspection (randomly)

and does not follow any scientific method. Similar to Scenario 1, BUS 2 is taken to be slack bus while other

generation power stations are dispatched at 70% capacity utilization.

4.3 Scenario 3

Scenario 3 is similar to Scenario 2 but with an additional power plant as described in Table 7. The additional

plant added to the indicated bus is assumed to be a base load power generation plant (typically coal or nuclear).

However, the plant could also be a combination of other sources - natural gas, REPs etc. BUS 2 is taken to be

the slack bus with other generation power plants dispatched at 70% capacity utilization.

4.4 Price modelling

Four varying pricing models are utilized in order to show the robustness of IEEM and aid policy discussions.

The time of use (TOU) and 3 dynamic pricing schemes (DP1, DP2 and DP3) as shown in Figure 7, are adopted

in evaluating electricity cost for the DSM loads only in all Cases. Irrespective of the scenario modelling (1, 2 or

3) adopted, the cost of the DSM loads for all cases remains the same for the scenarios. The Eskom TOU pricing

scheme adopted is for a household whose monthly electricity consumption is an average of 600kWh. The cost

for off-peak periods is about ZAR1.25/kWh and is exclusive of the peak period prices. For the purpose of this

research, 20% has been added to the spot price during off-peak periods to generate the peak period (6am-8am

and 6pm-9pm) TOU price. Weekdays and weekend peak periods have been assumed to be similar. Similarly,

for the dynamic pricing schemes adopted, the computation of the dynamic price DP t (where DP could be DP1,

DP2 or DP3) follows the time of use (TOU) pricing being used by Eskom. Given FP t as the TOU pricing

electricity spot price, then 1
96

∑t=96
t=1 (DP t) = FP t (Monyei and Adewumi 2017).

11



5 Results and discussion

Table 9 presents the associated statistics for the DSM loads only. It is observed from Table 9 that irrespective

of the scenario, Case 2 has the lowest build size of 173.48 MW while Case 1 has the highest build size of 495.01

MW. The selection of the maximum build size is based on the highest power demand (based on DSM load

allocation by MGA) across the day. Also presented in Table 9 is the cost of electricity (DSM loads only) across

the cases. Using TOU cost as the baseline cost, it is seen that Cases 1 and 3 offer competitive prices in terms

of cost reduction for the participating households (utilizing DP1 and DP2). For example, in Case 1, DP1 offers

a 25.41% cumulative reduction in combined DSM load electricity cost while DP2 offers a 13.41% cumulative

electricity cost reduction for all participating households. Similarly, for Case 3, DP1 offers 18% cumulative

reduction in electricity cost with DP2 offering cumulative electricity cost reduction of 8.67%. The cumulative

reduction in electricity costs (for Case 1 using DP1) translates to 3.26 kWh daily savings per household (based

on 1.25 ZAR/kWh). This could either be used in extending electricity usage or other activities that could

improve the quality of life (QoL) of households.

Based on Eskom (2017b) and Eskom (2015b), the average cost of building supply capacity for 2016/17 is

estimated at ZAR 9.39 million/MW. The implication of this is that excluding operations and other associated

costs, the build cost for Case 3 (363.84 MW) can be recovered (from DSM loads only) in about 194 days using

DP1 and about 174 days using DP2. While Case 2 offers a very competitive value in terms of expansion cost

reduction, its offer of competitive pricing for participating households is almost negligible. Table 10 presents the

daily cumulative losses across the network (Figure 3) for all cases and scenarios. Across all cases, it is observed

that losses reduced by 2.5% between Scenario 1 and Scenario 2 for Cases 1 and 3 (2.65% for Case 2) and 0.35%

between Scenario 2 and Scenario 3 for all cases.

It is observed that the placement of arbitrary generation plants in BUS 8 (Scenario 2) and BUSES 3 and 8

(Scenario 3) results in a reduction in transmission losses (shown in Table 10). The implication of this is that

less pressure (in terms of extra demand) is put on the Mpumalanga Power Pool (MPP). This frees up capacity

at MPP for maintenance and also reduces capacity expansion at MPP due to utilization of the local generation

power stations (or local REPs).

Figure 8 presents the effect of the additional power plants (Scenarios 2 and 3) on the ampacity of the

transmission lines. It is observed from Figure 8 that there is a significant drop in current flowing through lines

1, 8, 10, 13, 14 and 15 with significant increase in line current observed in lines 2, 3, 4, 5, 6 and 12. Current

through lines 9 and 11 remained averagely unaffected across the scenarios and cases. The utility of this result

is in determining transmission lines that need to be upgraded or supported to enable evacuation of power from

one bus to another.

The variation in BUS voltage across the scenarios is shown in Figure 9. It is observed from Figure 9 that bus

voltage profile is averagely unaffected for most buses with significant drop in bus voltage observed for BUSES

3, 7 and 9. Also, while no bus voltage exceeds the upper bus limit of 1.113 per unit, BUSES 2, 3, 6, 7 and 8

fall below the lower limit 1.007 per unit for all scenarios and cases (base voltage is 1.06 per unit).
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The utilization of capacity build for participating DSM loads is further shown in Table 9 to be 33.34% for

Case 1, 95.14% for Case 2 and 45.36% for Case 3 (irrespective of scenario). The high utilization observed for

Case 2 as a result of DLC compromises on electricity bill reduction for participating households. Under Case 2,

DP1, DP2 and DP3 tariffs translate to about ZAR 10.62 (8.50 kWh/month), ZAR 8.75 (7.00 kWh/month) and

ZAR 12.74 (10.19 kWh/month) monthly electricity bill reduction/energy savings for participating households.

In offering higher utilization of capacity build and guaranteeing maximum revenue accrual to the utility (based

on the similarity in earnings irrespective of the tariff method adopted), Case 2 compromises on significant

electricity bill reduction for participating households. Cases 1 and 3, which both compromise on utilization of

capacity build and maximum returns for the utility (for DP1 and DP2), guarantee participating households

significant monthly electricity bill reduction of 16.3% and 8.6% (for Case 1) and 11.3% and 5.4% for (Case 3).

IEEM thus provides an interactive platform that enables Eskom investigate the impact of DSM and varying

load control options (Cases 1, 2 and 3) on its capacity expansion and revenue accrual.

6 Policy discussions

In discussing further the results obtained, policy discussions on IEEM would focus on its network loss reduction

capabilities, expansion cost minimization potentials, electricity cost reduction potentials, poverty mitigation,

technical and economic evaluation potentials for electricity network expansion. Here, we discuss each in turn.

6.1 Policy discussion on network loss reduction

According to Eskom (2017b), transmission loss is about 7.5% of total power produced which results from the

long distance between the major power pool (BUS 2) and load points LP3, LP4, LP8 and LP9. Results obtained

show that the majority of losses occur on lines 1, 3, 11 and 15. This is as a result of the unavailability of local

base power stations or alternative power sources at BUSES 3, 4, 8 and 9. However, the introduction of fictitious

power stations at BUSES 3 and 8 lead to significant current drop in lines 1, 14 and 15. Since losses are directly

related to current flow, this means that reducing the current flowing through a transmission line would lead to a

corresponding decrease in the losses through the respective line. IEEM this offers Eskom a model to assess the

cost of citing power stations at local points of consumption (construction, fuel, maintenance, water etc.) and

savings/benefits (loss reduction, enhanced grid security and utilization of local REPs). Furthermore, a reduction

in network losses translates to longer operational life of the transmission line, reduced costs for transmission

network expansion and network security.

6.2 Policy discussion on expansion costs reduction

The transmission development plan (TDP) (Eskom 2015b) outlines the intent to expand supply capacity by

over 500% in energy demands in response to anticipated demand growth between 2017-2024 (Monyei and

Adewumi 2017). With a moderate estimated cost of ZAR 9.39 million/MW, Eskom would need to hike electricity

prices excessively to recoup their investments. IEEM provides an alternative. By incorporating DSM at 10%
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participation of electrified households in South Africa, IEEM reduces capacity expansion from 495.01 MW to

173.48 MW (Case 1 to Case 2) and 495.01 MW to 363.84 MW (Case 1 to Case 3). This translates to savings

of over ZAR 3 billion for Case 1 to Case 2 and over ZAR 1.2 billion for Case 1 to Case 3. This thus implies

that more savings could be achieved with the incorporation of further households and loads (heating, cooling,

lighting, industrial etc.).

6.3 Policy discussion on electricity cost reduction

IEEM offers Eskom the opportunity of incentivizing households through the adoption of pricing tariffs that

reduce the electricity bill of participating households DSM loads. For example in Table 9, under Case 1, DP1

offers about ZAR 122/month/household savings which is about a 16% reduction in a typical household’s monthly

electricity bill (households consuming 600 kWh/month and under). In energy costs, this translates to about 98

kWh/month/household (at ZAR 1.25/kWh).

6.4 Policy discussion on poverty mitigation

According to STATSSA (2017) and Monyei et al. (2018b), over 50% of South Africa’s households are poor. It

can be inferred that the declining electricity consumption in households (Monyei and Adewumi 2017) despite

increasing investments in electricity capacity expansion has been exacerbated by the increasing cost of electricity.

Households are thus forced to purchase less electricity units due to higher tariffs leading to energy poverty.

IEEM provides policy makers an avenue to improve households QoL and precipitate economic growth through

the adoption of flexible pricing tariffs (DP1, DP2 and DP3) and operational DSM. From Table 9, under Case 1,

households are able to reduce monthly electricity bill by up to 16% which translates to energy savings of about

98 kWh/month/household. The savings can be used to either extend operation time of electrical appliances

that can contribute to households QoL (lighting, entertainment, heating, cooking) or engage in other activities

that are also capable of improving households QoL.

6.5 Policy discussion on capacity utilization

The impact of varying load control strategies - constrained user defined (Case 1), DLC (Case 2) and constrained

DLC (Case 3) has been presented in Table 9. IEEM enables Eskom investigate the potential impact varying

control strategies in terms of load dispatch could have on plant utilization, revenue accrual and electricity bill

reduction. As observed from Table 9, DLC (Case 2) offers Eskom more operational control of the electricity

network (generation, transmission and end-use dispatch time). Also, despite Cases 1 and 3 offering reduced

capacity utilization compared to Case 2, Eskom is able to dispatch base loads during the periods of low utilization

by reducing generation capacity for base loads during the periods of low utilization.
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6.6 Policy discussion on rural electrification expansion

The Free Basic Electrification (FBE) (GNESD 2017) and Free Basic Alternative Energy (FBAE) (DME 2007)

policies aim at providing energy to poor and vulnerable households. While Solar Home Systems (SHS) are

distributed to poor off-grid rural homes (or 50 kWh/month free to grid connected poor homes) under the

FBE, the FBAE provides other poor off-grid homes without SHS limited quantities of alternative energy fuels

at no cost to meet their basic energy needs (Monyei et al. 2018a). With the incorporation of DSM, IEEM

provides Eskom with enormous savings which can be invested in strengthening off-grid SHS and microgrids.

Considering the problem of weather variations which is capable of disrupting SHS output for off-grid poor

homes, with additional resources recouped from reduced expenditure on capacity expansion, Eskom can finance

hybrid generation schemes at the community level to improve electricity supply to the rural off-grid homes thus

reducing rural peripheralisation8(Monyei et al. 2018a).

6.7 Policy discussion on operations cost minimization

Notwithstanding fuel, maintenance and operations costs, emissions cost also contributes to the overall expen-

diture of Eskom. According to News24 (2013), a proposed carbon tax of ZAR120/tCO2 energy equivalent

by National Energy Regulator of South Africa (NERSA) was expected to add about R11 billion to Eskom’s

expenses from 2015. With over 80% of Eskom’s generating capacity sourced from coal power plants, this implies

that the additional costs would be transferred to consumers through tariff hikes (Gosling 2011). Through the

incorporation of DSM into the IEEM proposed and modelled in this paper, Eskom is provided with flexible

loads which can be dispatched by REPs during hours of their (REPs) availability. Considering the net zero

carbon charges on electricity production from REPs, Eskom not only reduces emissions and its associated costs

but also fuel costs.

6.8 Policy discussion on Quality of Service

Through IEEM, Figure 9 provides Eskom with technical statistics associated with voltage regulation. This is

important in helping Eskom determine the additional costs associated with improving power quality (reactive

power compensation, voltage regulation, frequency regulation). Furthermore, the peaking power plants like the

hydro electric power (HEP) stations and combined cycle gas turbines (CCGT) can be effectively dispatched to

maintain network operating frequency. The maintenance of operational frequency and balanced voltage improve

Eskom’s Quality of Service (QoS) since end users do not have to employ local improvement schemes to improve

the quality of power supplied.

8By rural peripheralisation, we extend its meaning beyond Sovacool et al. (2017) to mean discrimination in the quality of
electricity households can access based on their proximity to the grid.
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6.9 Policy discussion on network security

According to eePublishers (2014), South Africa’s electricity grid is expected to be N-1 compliant by 2022. This

means that the loss of any major transmission line or generating station is capable of precipitating grid collapse.

Furthermore, in the event of a major network fault, the unavailability of flexible customers/loads implies that

deliberately disconnecting consumers leads to economic losses and impacts negatively on their QoL. IEEM,

through the incorporation of DSM, provides Eskom with leeway (operational freedom) in balancing the grid

without economic repercussions. Furthermore, IEEM provides Eskom with an advanced simulation tool that

can be used in simulating extremities on the grid to evaluate the extent of grid security and response during

faults.

6.10 Policy discussion on pricing

Eskom’s pricing is mostly influenced by its projected capital expenditure on maintenance, new builds, overhead,

operations, insurance and other associated running costs. According to Eskom (2017b), there was a revenue

shortfall of about R35 billion for 2014/15 due to low tariff. However, while Eskom aims at maximizing revenue

accrual through higher tariffs, the resulting increase in tariff is capable of precipitating poverty. Households are

thus forced to spend a higher percentage of their income on reduced electricity units, leading to energy poverty.

This, in turn, can lead to reduced electricity consumption (as established in Monyei and Adewumi 2017) and

lower utilization of supply capacity, inherently leading to higher operations cost and increased operational losses.

According to Zhang (2012), investment in energy efficiency (especially for households and industries) can be

improved upon by mandatory targets and electricity prices. Appropriate pricing regimes are thus needed that

are capable of billing households based on their income level and rate/level of participation in DSM activities

and also encouraging energy efficiency investments. IEEM thus offers a platform for the exploration of the effect

of various pricing schemes on revenue accrual (for the utility) and peak demand reduction.

7 Conclusion

This paper has presented IEEM and studied its impact on both Eskom and consumers. This paper has shown

that IEEM advances traditional generation expansion planning (GEP) beyond conventional demand growth

expansion and generation capacity estimation. IEEM through the incorporation of DSM, provides Eskom with

varied options in terms of expansion planning (expansion capacity, possible revenue accrual and associated

network losses) which helps in better informing decisions on the type of generation capacity to build and

location. Considering the dispersed REPs across South Africa, IEEM has provided a platform that enables

Eskom utilize their capacity in dispatching flexible loads. Furthermore, IEEM has also shown its capability in

mitigating poverty through electricity bill reduction for participating households. With up to 16% reduction in

electricity bill for a typical household, more units could either be purchased by households to extend usage of

electrical appliances or for other activities that are capable of improving their QoL.
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In mitigating rural peripheralisation, IEEM provides enormous savings for Eskom through reduction in

expansion costs (due to the incorporation of DSM) which can be used in financing and strengthening the FBE

and FBAE. Considering the huge disparity in the quality of energy access between grid connected poor home

and off-grid poor homes, extra revenue saved from minimized capacity expansion can be used in improving off-

grid electrification projects. Such improvement in electricity access for rural and off-grid communities is capable

of stimulating economic growth. This is in line with Azimoh et al. (2017), who offer that while electrification

cannot solve the entirety of the developmental problems plaguing rural households, households cannot access

development assistance opportunities without having access to electricity.

Considering previous cases of power plants mothballing (due to excess supply capacity) and subsequent load

shedding due to demand exceeding supply capacity, IEEM helps in preventing this by ensuring that despite

reduced reserve margins, the availability of flexible customers/loads provides it (the utility) with allowance to

always balance the grid and optimally utilize available supply capacity to dispatch demand. With increased

operational control over electricity generation, transmission and utilization time, Eskom is able to ensure grid

security and stability. This becomes necessary as the participation of REPs in the grid increases. Due to the

stochasticity in the availability of REPs, the presence of flexible loads aids Eskom in maximizing REPs output

whenever available without negatively impacting on the QoL of households.

With deliberate action plans being undertaken by countries to reduce carbon emissions, IEEM provides

Eskom with a platform for evaluating resulting expansion options based on pre-determined emissions cap. Based

on estimated number of households participating in DSM operations and capped emissions, IEEM provides

Eskom with possible expansion options which help in formulating decisions/policy on billing strategy to be

adopted. This is important to Eskom, especially when applying for tariff increase approval from NERSA. IEEM

thus offers an interactive platform for expansion planning beyond traditional generation expansion models by

aiding NERSA in appropriately billing Eskom for emissions without adversely affecting consumers (who often

bear such penalties).

IEEM can also be useful to the regulator (NERSA) as it enables them to view the impact of its policies

(carbon tax, tariff increase approval) on Eskom (revenue accrual, operations cost) and consumers (electricity

cost, QoL, poverty). This thus helps NERSA in formulating streamlined regulatory frameworks (SRFs)9 that

are capable of stimulating economic growth and mitigating poverty.

8 Policy implementation and its challenges

A key benefit of the proposed IEEM is its interoperability. IEEM is capable of syncing effortlessly with existing

structures since its needed inputs (participating DSM households, emissions cap, network model, generation

plants, tariffs etc.) are ’plug-ins’. However, the absence of an advanced metering infrastructure (AMI) for South

Africa and the low penetration of smart meters mean that Eskom would not be able to directly communicate

9By streamlined regulatory frameworks (SRF) we mean policy bounded regulations that are optimized to ensure that its
enforcement on Eskom does not lead to adverse effects on electricity end users. For example, SRFs could include limits for
electricity tariff and carbon tax increase within a range of years based on prevailing GDP growth projections and other economic
implications. SRFs could also include the possibility of carbon tax relief based on prevailing economic trends.
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(in real/near-real time) with participating DSM loads. Furthermore, the municipalities make profit from sale of

electricity to households [who make up over 40% of municipalities customers (Eskom 2017b)]. The problem of

price harmonization becomes a problem since sale of electricity is a major source of income to the municipalities.

Lastly, security concerns do exist in households to smart meters owing to fears of intrusion and subtle monitoring

of consumption pattern which the utility could use in developing billing strategies that would penalize them

higher than the TOU pricing scheme (Sovacool et al. 2017).

9 IEEM limitation and future research

While IEEM has explored the impact of residential DSM on capacity expansion, there is the need to incorporate

industrial and commercial consumers to evaluate the effect of flexible industrial loads (heating, ventilation and

cooling, HVAC) and flexible industrial processes on capacity expansion, network losses, revenue accrual and

electricity costs reduction. Furthermore, IEEM has not considered the role of social institutional processes in

facilitating a smart and just electricity expansion. Future work would seek to integrate socio-technical transition

processes in improving IEEM.
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List of Tables

Table 1: 2021-2024 Planned Power Plant Decommissioning (Eskom 2015b)

Camden Hendrina Arnot

Year Unit MW Unit MW Unit MW

2021 6 -160 4 -190

2022 7 -170 3 -190

8 -180 5 -180

2023 5 -180 2 -190 3 -380

4 -185 2 -380

3 -185 1 -190 1 -376

2024 2 -190

1 -190

Table 2: 2017-2020 Planned Power Plant Capacity Increment (Eskom 2015b)

Medupi Kusile Ingula New coal O & C CGT

Year Unit MW Unit MW Unit MW Unit Name MW Unit Name MW

2017 3 738 2 738 4 333

4 738

2018 5 738 3 738

3 738

2019 6 738 5 738 1 Coal IPP1 200 3 Dedisa 237

2 Coal IPP1 200

2020 6 738 1 Coal IPP3 200 4 Dedisa 237

2 Coal IPP3 200

IPP - Independent Power Producer

Table 3: 2021-2024 Planned Power Plant Capacity Increment (Eskom 2015b)

Nuclear Newcoal O & C CGT Hydro import

Year Unit Name MW Unit Name MW Unit Name MW Unit Name MW

2021 5 Dedisa 237

1 Coal IPP2 250 6 Dedisa 269 1 Maputo 570

2022 2 Coal IPP2 250 7 Dedisa 269 2 Maputo 570

1 Coal IPP4 250 8 Dedisa 269

2 Coal IPP4 250 Dedisa

1 Thyspunt 1600 3 Coal IPP2 250 3 Maputo 570

2023 3 Coal IPP4 250 4 Maputo 570

4 Coal IPP4 250

2024 2 Thyspunt 1600 4 Coal IPP2 250 5 Maputo 283

IPP - Independent Power Producer
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Table 4: Electricity demand forecast by Eskom (Eskom 2015b)

Year

Scenario 2017 2018 2019 2020 2021 2022 2023 2024 2025

2010 IRP High Demand (MW) 51090 53276 55573 57649 59885 61932 63955 65870 68458

2010 IRP Low Demand (MW) 44710 45815 46952 47848 48828 49596 50299 50872 51903

2015 TDP Demand (MW) - Constrained 38885 40036 40904 41921 43990 46629 49427 52193 53600

2015 TDP Demand (MW) - Unconstrained 47720 48271 49328 50398 51528 52501 53403 54296 55310

Table 5: BUS-Province description

BUS Province
X 1000 GWh

HWEC∗ DSM-Households DREC DSM-Potential
BUS 1 Limpopo 1424 142.2 13.63 0.41
BUS 2 Mpumalanga 1063 106.3 34.33 0.31
BUS 3 KwaZulu-Natal 2244 224.4 41.68 0.65
BUS 4 Eastern Cape 1422 142.2 8.86 0.41
BUS 5 Gauteng 3901 390.1 57.58 1.12
BUS 6 Free State 806 80.6 10.32 0.23
BUS 7 Western Cape 1600 160 22.7 0.46
BUS 8 Northern Cape 296 29.6 5.16 0.09
BUS 9 North West 1021 102.1 29.18 0.29
* - modified from Monyei and Adewumi (2017)
BUS 10 acts as a conduit for conducting power from BUS 6 to BUSES 4, 7 and 8.
HWEC - Number of households per province with electrical connection (i.e. connected to the electricity grid).
DSM-Households are households per province participating in the DSM.
DREC - daily residential electricity consumption per province in GWh.
DSM-Potential is the daily provincial computed DSM potential (in GWh) based on DSM-Households.

Table 6: DSM load description
Loads Power (W) Slots Energy (Wh)

Dish washer 1200 5 1500
Cloth washer 500 3 375
Cloth dryer 1000 4 1000

Total 2700 12 2875

Table 7: Scenarios 1, 2 and 3 power plant distribution.
Bus Province Generation plant number

BUS 1 Limpopo 24,9
BUS 2 Mpumalanga 1,2,3,4,6,8,10,11,12,13,14,26
BUS 3 KwaZulu-Natal 27∗∗

BUS 4 Eastern Cape NBPP
BUS 5 Gauteng NBPP
BUS 6 Free State 7
BUS 7 Western Cape 5∗

BUS 8 Northern Cape 28∗∗∗

BUS 9 North West NBPP
NBPP - No base load power plant
* - Nuclear power plant
** - Considered only in Scenario 3
*** - Considered only in Scenarios 2 and 3
Every other numbered power plant is coal fired
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Table 8: Considered power plant description.
Generation plant number Name Type Capacity (MW)

1 Arnot Coal 2352
2 Duvha Coal 3600
3 Hendrina Coal 2000
4 Kendal Coal 4116
5 Koeberg Nuclear 1940
6 Kriel Coal 3000
7 Lethabo Coal 3708
8 Majuba Coal 4110
9 Matimba Coal 3990
10 Matla Coal 3600
11 Tutuka Coal 3654
12 Camden∗ Coal 1510
13 Grootvlei∗ Coal 1200
14 Komati∗ Coal 940
24 Medupi∗∗ Coal 4788
26 Kusile∗∗ Coal 4800
27 SB1∗∗ Coal 1429
28 SB2∗∗ Coal 1429

* - return to service power plants
** - new builds
SB1/SB2 - simulated builds 1 and 2 are the fictitious power plants randomly used during Scenarios 2 and 3 simulation.

Table 9: Daily DSM load associated statistics for all cases.

Maximum build (MW) Capacity utilization (%)
DSM cost (x10000000)

TOU cost (ZAR) DP1 cost (ZAR) DP2 cost (ZAR) DP3 cost (ZAR)
Case 1 495.01 33.34 2.2093 1.648 1.9131 2.3183
Case 2 173.48 95.14 2.0669 2.0181 2.0267 2.0084
Case 3 363.84 45.36 2.1616 1.7726 1.9742 2.2515

Table 10: Daily cumulative losses (MW) for all scenarios and cases.
Scenario 1 Scenario 2 Scenario 3

Case 1 86512 84321 84029
Case 2 86438 84150 83858
Case 3 86498 84305 84014
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List of Figures

Figure 1: Eskom’s conventional electricity expansion model (authors own compilation).
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Figure 2: Integrated electricity expansion model (IEEM) (authors own compilation).
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Figure 3: Model electricity network for South Africa (authors own compilation).

Figure 4: Dispatch time profile for DSM loads (authors own compilation).
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A slot is a 15 minutes interval. The start time is taken to be 00:00 (midnight/slot 1).

Figure 5: Base load dispatch profile for all provinces (authors own compilation).

A slot is a 15 minutes interval. The start time is taken to be 00:00 (midnight/slot 1).

Figure 6: Cumulative DSM load profile for all Cases (authors own compilation).
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A slot is a 15 minutes interval. The start time is taken to be 00:00 (midnight/slot 1).

Figure 7: Pricing schemes adopted.

Figure 8: Daily current evacuated per line (in kA).
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Figure 9: Daily average bus voltage (in per unit) profile.
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