
Page 1 of 18 
 

Title:  

Analytical friction model for sliding bodies with coupled longitudinal and transverse vibration 

 

 

Authors:  

Priyang Udaykant Jadav a,c (Corresponding author) 

Priyang.Jadav@rotork.com 

 

Ramin Amali a  

Ramin2.Amali@uwe.ac.uk 

 

Oluwamayokun Adetoro b 

Mayo.Adetoro@brunel.ac.uk 

 
a Department of Engineering Design and Mathematics, University of the West of England, Bristol, BS16 

1QY, United Kingdom 
b Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UB8 

3PH, United Kingdom 
c Rotork Controls Ltd, Bath, BA1 3JQ, United Kingdom  



Page 2 of 18 
 

ABSTRACT 

 

An analytical friction model is developed to calculate the drive force required to slide a body over a 

surface that is subjected to coupled longitudinal and transverse vibration. Previously, this computation 

was only possible under either longitudinal or transverse vibration using a separate analytical model for 

each mode. This paper presents a development of recent research in which it is possible to use a single 

analytical model, developed in Matlab®/Simulink®, to compute the friction force and drive force 

during longitudinal, transverse and coupled longitudinal-transverse vibration. The new model is also 

evaluated numerically by use of a specially developed friction subroutine which can be integrated into 

any Abaqus® dry contact simulation. Results agree very well with those in previously published 

literature. 

 

Keywords: Friction, Vibration, Modelling, Analytical 

 
 

1. Introduction 

  

In mechanical systems that involve predominantly dry sliding contacts the efficiency of the 

system can be significantly improved by reducing the friction force between the rubbing surfaces. This 

is usually achieved by improving the surface quality of the contacting pair, utilising conventional 

lubricants [1-3] or those enhanced with nano-particles [4-6], or by applying surface coatings [7,8]. A 

less typical method of friction reduction and one that has been the subject of theoretical analyses for 

several decades is the phenomenon of reduced friction force of surfaces when subjected to vibration. 

Frictional forces may cause undesired vibrations in a system as a result of stick-slip motion at the 

contact, conversely, many studies [9-25] have shown that imposed vibration can significantly reduce 

the friction force between two contacting surfaces. In such studies the vibration is applied to the contact 

by exciting one of the contacting bodies in the normal, longitudinal or transverse direction. 

Considerable research has been devoted to exploiting this phenomenon in various 

manufacturing processes. Jimma et al. [26] found that vibration applied to the deep drawing process 

enables deeper cups to be formed whilst avoiding cracks in steel drawn parts, Siegert and Ulmer [27] 

showed that it is possible to further reduce the friction force by having the drawing dies vibrate parallel 

to the drawing direction at frequencies ranging 20-22 kHz. Egashira et al. [28] utilised vibration whilst 

drilling micro holes in glass to reduce the cutting force and extend tool life. In the food industry, 

vibrating blades are used to reduce friction when cutting through foods [29]. Screws can also be 

tightened with considerably less torque through an instantaneous reduction in the friction force supplied 

by vibration. 

The first work investigating the influence of vibration on friction dates back to a 1952 study by 

Baker et al. [9] in which they determined that the coefficient of static friction under the influence of 

imposed normal vibration can been minimised to almost zero. Experiments by Fridman and Levesque 

[10] and also by Godfrey  [11] showed that pulling a block of mass over a plate vibrating perpendicular 

to the contact, with increasing vibration amplitude, reduces the static friction coefficient by almost 

100%. One of the first attempts to explain friction force reduction due to normal vibration was made by 

Lenkiewicz [12]; vibrations forced perpendicularly or at an angle to the friction surface generally cause 

changes in the value of the real contact area, and consequently changes in the value of the friction force. 

This is in agreement with Hess and Soom [13] who concluded that a temporary debonding of the contact 

surfaces leads to a reduction in the mean area of contact and a corresponding reduction in friction. In 

this century, normal vibration applied in custom built pin-on-disk tribometers have shown a decrease 

in friction coefficient with increasing vibration frequency and amplitude, between both metallic [14] 

and non-metallic surfaces [15].  

 In the case of longitudinal vibration conjecture, until recently, has been that the reduction of 

average friction force occurs as a result of cyclic instantaneous changes in the direction of the friction 

force vector, caused by changes in the sign of relative velocity when the amplitude of vibration velocity 

is greater than the velocity of sliding motion [16-22]. Gutowski and Leus [23] have shown that this 

commonly accepted view is erroneous. Reduction of average friction force may also take place without 

the change in sign of the friction force vector. One of the reasons behind the antiquated view is that in 
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friction force estimations, the simplified static friction models based on the Coulomb model of friction 

are assumed. In these models the deformation in the contact zone of two surfaces moving in relation to 

one another is not taken into consideration. This creates significant difficulties in the conduct of 

simulational analyses due to their insufficient consistency with experimental results. Gutowski and Leus 

[23] have shown that significantly better results can be achieved by conducting the analyses using 

dynamic friction models, such as the Dahl or Dupont model in which the real elasto-plastic 

characteristics of the contact are considered. Analyses carried out with the use of Dahl friction model 

yield very good agreement between computations and experimental results. 

During transverse vibration a variable vector of relative velocity of sliding causes oscillations 

of the friction force vector around the sliding direction, resulting in a sub-division of this force into two 

components, one parallel (𝐹𝑥) and one perpendicular (𝐹𝑦) to the direction of motion, see Fig. 3c. 

Consequently, only the parallel component of friction force acts in the direction of motion, resulting in 

the reduction of driving force 𝐹𝑑 required in this direction. Investigations [18-22] based on this 

mechanism have also shown a large discrepancy between analytical and experimental results since the 

analytical models are based on the Coulomb friction model. Gutowski and Leus [24] again 

demonstrated that a much better agreement can be achieved by utilising an analytical model which 

considers dynamic friction together with dynamic equations of motion, whilst also including terms to 

describe the compliance of the mechanical drive system. 

 This paper focuses on the latter two modes of vibration that are tangential to the plane of 

contact. Tsai and Tseng [25] assumed that tangential vibrations are imposed directly onto the sliding 

body and analysed the effect on friction force reduction. They used the Dahl friction model [30,31] on 

a single lumped elastic asperity to investigate the reduction phenomenon. Gutowski and Leus [23,24] 

on the other hand, applied vibration to the base and assumed that this vibration is transferred to the 

sliding body. They developed an analytical model for longitudinal vibration and a separate model for 

transverse vibration, however, a model for coupled longitudinal-transverse vibration does not exist in 

literature. This paper proposes a new model, based on the approach of Gutowski and Leus [23,24], to 

describe the changes in friction force and drive force for sliding surfaces subjected to coupled vibration. 

The previous models [23,24] are used as basis for validating the new model.  

There are four objectives of the work presented in this paper; (i) derivation of a mathematical 

model that can be used to determine quantitative changes in the friction force occurring at the contact 

between the sliding body and the base which is under the influence of longitudinal, transverse or coupled 

vibration (ii) simulation of the new model both analytically in Matlab®/Simulink® and numerically in 

Abaqus® (iii) validation of the new model by comparison of results with analogous ones in previous 

publications (iv) analysis of how the drive force 𝐹𝑑 is influenced by different modes of imposed coupled 

vibration. 

 

2. Model formulation 

 

Dahl [30] discovered that when an external drive force is applied on a static body that is in 

contact with another, an intermediate motion of one surface over the other occurs before the bodies 

enter macroscopic relative motion. This intermediate motion is often described as pre-sliding 

displacement, otherwise termed “elastic slip”, and is the result of real surfaces having asperities that 

interlock when two surfaces are in contact. The application of external drive force on the body initially 

creates an elastic deformation of the contacting asperities. As the asperities undergo increased strain, 

yielding occurs and the two surfaces then start to break free of each other. During this time plastic 

deformation of asperities takes place. Finally, asperity rupture occurs leading to formation of further 

surface irregularities which will continuously undergo strain and rupture as sliding takes place [30]. 

Thus, in Dahl’s dynamic friction model it is assumed that the friction force 𝐹 is associated with the 

elastic deformation 𝑠 of the contact (Fig. 1) measured in the direction of sliding: 

 

𝐹 = 𝑘𝑡𝑠 (1) 
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where 𝑘𝑡 is the stiffness of the contact in the tangential direction. This is illustrated in Fig. 1 where the 

deformable contacting asperities of the sliding body and the base are thought of as a single lumped 

asperity 𝑀𝑁. 

 

 
Fig. 1. Elastic strain ‘𝑠’ of contact zone assumed in Dahl’s friction model 

 

The force-displacement relationship is modelled by Dahl [31] with the following differential 

equation: 

 

𝑑𝐹

𝑑𝑥
= {𝑘𝑡 [1 −

𝐹

𝐹𝐶
sgn(�̇�)]

𝑖

      𝑖𝑓 𝑖 > 0 

𝑘𝑡                                        𝑖𝑓 𝑖 = 0 

 (2) 

 

where 𝑑𝐹 and 𝑑𝑥 are the incremental friction force and incremental displacement respectively, and �̇� 

is the instantaneous velocity of the body in the direction of sliding. 𝐹𝐶 is the magnitude of Coulomb 

friction force, given by: 

 

𝐹𝐶 = 𝜇𝐹𝑁 (3) 

 

where 𝜇 is the coefficient of static friction and 𝐹𝑁 is the normal reaction force. 

The parameter 𝑖 in equation (2) determines the shape of the relationship between the tangential 

displacement 𝑥 and friction force 𝐹. 𝑖 = 0 describes brittle material behaviour, where the friction force 

linearly increases with tangential displacement at a gradient 𝑘𝑡 (Fig. 2), until the maximum friction 

force is reached and the surfaces break away. This maximum force is equal to the Coulomb friction 

force 𝐹𝐶. As the value of 𝑖 → 2 the material behaviour becomes ductile producing a non-linear response 

of 𝐹 which is asymptotic to the value of 𝐹𝐶 [31]. The value 𝑖 = 1 is used for all computations in this 

paper. 

 

 
Fig. 2. The effect of parameter 𝑖 on the relationship between friction force 𝐹 and displacement 𝑥 
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 By substituting (1) and (3) into (2), the relationship can be written in the form of (4), which 

describes the relationship between the velocity of contact deformation 𝑑𝑠 𝑑𝑡⁄  and the velocity �̇� of the 

sliding body. 

 

𝑑𝑠

𝑑𝑡
= �̇� [1 −

𝑘𝑡𝑠

𝜇𝐹𝑁
sgn(�̇�)]

𝑖

 (4) 

 

The instantaneous velocity �̇� can be thought of as the relative velocity 𝑣𝑟 of the sliding body in 

relation to the base velocity �̇�𝑏 (Fig. 1), where: 

 

𝑣𝑟 = �̇� − �̇�𝑏 = {
 �̇�       𝑖𝑓 �̇�𝑏 = 0, i. e. stationary base
𝑣𝑟     𝑖𝑓 �̇�𝑏 ≠ 0, i. e. vibrating base 

 (5) 

 

 Therefore (4) can be written in a generalised form which takes into account both the non-

vibrating and vibrating cases: 

 

𝑑𝑠

𝑑𝑡
= 𝑣𝑟 [1 −

𝑘𝑡𝑠

𝜇𝐹𝑁
sgn(𝑣𝑟)]

𝑖

 (6) 

 

Fig. 1 depicts the case of longitudinal vibration which is a one-dimensional problem; the 

vibration of the base acts parallel to the direction of sliding of the body therefore deformation 𝑠 of 

elastic asperity 𝑀𝑁 occurs in one dimension. Equation (6) can be readily used in this case. 

In transverse, or coupled longitudinal-transverse vibration, the problem becomes two 

dimensional since the deformation 𝑠 no longer occurs parallel to the direction of sliding. Equation (6) 

therefore cannot be readily used in these cases. Gutowski and Leus [24] developed a mathematical 

model for computing friction force during transverse vibration. In the following work it is shown that 

the transverse vibration model can be extended for use with longitudinal and coupled longitudinal-

transverse vibration.  

Mathematical computational procedures were developed assuming the Dahl model in 

combination with the experimental setup described by Gutowski and Leus [23,24]. Their specially 

designed test rig comprises a body of known mass 𝑚 moved over a base that can be vibrated by a 

piezoelectric element either in the longitudinal or transverse mode. Fig. 3a is a schematic representation 

of their setup with the assumption, for the purposes of this paper, that vibration can be applied not only 

in longitudinal (𝑋) or transverse (𝑌) mode but can also be coupled so that longitudinal and transverse 

components act simultaneously and in phase. Mathematically this is equivalent to applying the vibration 

along an axis that is at an arbitrary angle 𝛳 (Fig. 3b) relative to the direction of sliding. Angle 𝛳 thus 

describes the mode of vibration. The displacement of the base during this coupled vibration can be 

separated into longitudinal and transverse components 𝑥𝑏 and 𝑦𝑏 respectively. 

The movement of mass 𝑚 over the base is imposed by a constant drive velocity 𝑣𝑑 applied at 

point 𝐵 (Fig. 3a), while sinusoidal vibration applied to the base is also transferred to the body, 

corresponding to an instantaneous external drive force 𝐹𝑑. The drive force is transferred to point 𝐴 of 

the sliding body via the drive system of which the stiffness coefficient 𝑘𝑑 is known and zero structural 

damping is assumed, hence ℎ𝑑 = 0. Endpoint 𝑁 of the lumped asperity is attached to the sliding body, 

while the free endpoint 𝑀 interfaces with the vibrating base. 𝑁′ is the projection of 𝑁 on the plane of 

sliding 𝑋𝑌. Relative displacement of points 𝑀 and 𝑁′ creates the deformation 𝑠 of the contact at an 

angle 𝛽 measured in the 𝑋𝑌 plane. 

In transverse vibration [24] the motion of the body sliding over the vibrating base is a 

superposition of two motions; the first caused by the driving force 𝐹𝑑, and the second by the transfer of 

transverse motion 𝑦𝑏 from the base to the sliding body. When coupling longitudinal vibration to the 

transverse, a third motion must also be superimposed; the motion of the sliding body caused by the 

transfer of longitudinal motion 𝑥𝑏 from the base. All three of these motions influence the magnitude 



Page 6 of 18 
 

and direction of elastic deformation 𝑠 of the contact zone. This deformation directly decides the 

magnitude and direction of the friction force 𝐹.  

 

 

 

Fig. 3. (a) Contact’s elastic deformation modelled as a lumped elastic asperity 𝑀𝑁 [24] (b) instantaneous displacement 

vector of base vibrating along an axis at angle 𝜃, separated into components 𝑥𝑏 and 𝑦𝑏 (c) instantaneous forces acting on 

sliding body [24] 

 

The new model is a development of previous models [23,24] and follows the formulation 

described by the sequence of equations henceforth using notations presented in Fig. 4. Boxed 

parameters indicate state variables; their value calculated in the previous increment is carried forward 

for use in the current increment. During a consecutive time increment ∆𝑡, points 𝑀 and 𝑁′ change their 

relative positions thus elastic deformation of the contact undergoes a change in its magnitude and 

direction from 𝑠(𝑡) at the beginning of the increment to 𝑠1(𝑡 + ∆𝑡) at the end of the increment. 

Coordinates of 𝑀 and 𝑁′, and magnitude of 𝑠(𝑡) at the start of the increment are given by: 

 

𝑀(𝑡) = [𝑀𝑥(𝑡),  𝑀𝑦(𝑡)] = [ 𝑀1𝑥 , 𝑀1𝑦 ] 

𝑁′(𝑡) = [𝑁𝑥
′ (𝑡),  𝑁𝑦

′ (𝑡)] = [ 𝑁1𝑥
′ , 𝑁1𝑦

′ ] = [ 𝑥 , 𝑦 ] 

(7) 

(8) 

 

𝑠(𝑡) = 𝑠1  (9) 

 

and at the end of the increment by: 

 

𝑀(𝑡 + ∆𝑡) = 𝑀1 = [𝑀1𝑥 ,  𝑀1𝑦] 

𝑁′(𝑡 + ∆𝑡) = 𝑁1
′ = [𝑁1𝑥

′ ,  𝑁1𝑦
′ ] = [𝑥, 𝑦] 

(10) 

(11) 

 

  
Fig. 4. Change in magnitude and direction of deformation from 𝑠 to 𝑠1 over a single time increment ∆𝑡 

a b 

c 
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 The position of points 𝑀 and 𝑁′ at any instance is a result of superposition of the motion caused 

by the driving force 𝐹𝑑, the base longitudinal vibration component 𝑥𝑏 and transverse component 𝑦𝑏. At 

consecutive instances 𝑀 and 𝑁′ change their relative position, thus elastic deformation of the contact 

undergoes a change in its magnitude and direction from 𝑠 to 𝑠1. This change during any consecutive 

time increment ∆𝑡 is separated into two phases. In the first phase the intermediate deformation 𝑠′ is 

analysed as a result of motion of point 𝑁′ to 𝑁1
′ position. In the second phase the final deformation 𝑠1 

is analysed as a result of motion of point 𝑀′1 to 𝑀′2 position. The displacement from 𝑀′1 to 𝑀′2 is 

described by components 𝑀′1𝑀𝑥
′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑀′1𝑀𝑦

′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Since 𝑁 is rigidly connected with the sliding body, its  

coordinates [𝑥, 𝑦] in the 𝑋𝑌 plane can be described by equations (14) and (16). 

 

𝑚�̈� = 𝐹𝑑 − 𝐹𝑥 

∆𝑥 = ∬
𝐹𝑑 − 𝐹𝑥

𝑚
𝑑𝑡𝑑𝑡 − ∬

𝐹𝑑 − 𝐹𝑥

𝑚
𝑑𝑡𝑑𝑡  

𝑥 = ∆𝑥 − ∆𝑥𝑏 + 𝑥  

(12) 

 

(13) 

 

(14) 

 

where 𝐹𝑑, 𝐹𝑥 and ∆𝑥𝑏 are calculated by equations (17), (38) and (28) respectively.  

 

𝑚�̈� = 𝐹𝑦 

𝑦 = ∬
𝐹𝑦

𝑚
𝑑𝑡𝑑𝑡 

(15) 

 

(16) 

 

where 𝐹𝑦 is calculated by equation (39). 𝐹𝑥 and 𝐹𝑦 are components of the friction force 𝐹 acting parallel 

to the 𝑋 and 𝑌 axes respectively (Fig. 3c). Point 𝐵 moves at a constant drive velocity 𝑣𝑑 whereas the 

velocity of point 𝐴, being rigidly connected to the sliding body, is affected by the transfer of vibrating 

motion from the base to the body. Due to a continually changing position of point 𝐴 relative to 𝐵, the 

driving force 𝐹𝑑 does not have a constant value. It is a function of the variable elastic deformation of 

the mechanical drive’s components. Assuming the drive system has a linear elastic characteristic, the 

drive force is calculated by: 

 

𝐹𝑑 = 𝑘𝑑[𝑥𝐵 − 𝑥𝐴] 
= 𝑘𝑑[𝑣𝑑𝑡 − 𝑁1𝑥

′ ] 
 

(17) 

 

where 𝑡 is time, and 𝑁1𝑥
′ = 𝑥 is the instantaneous displacement of the sliding body in the 𝑋 direction, 

determined by equation (14).  

 

2.1. First phase of motion 

 

 During a consecutive time interval ∆𝑡, in the first phase of motion, displacement of the sliding 

body occurs which moves 𝑁′ to the 𝑁1
′ position (Fig. 4). At the same instance, 𝑀 moves along the path 

𝑀𝑁1
′̅̅ ̅̅ ̅̅  to the 𝑀′1 position. Consequently, deformation 𝑠 changes to an intermediate 𝑠′ with a new 

magnitude and direction. Instantaneous direction of this deformation is determined by angle 𝛼, whilst 

the change in its magnitude by an increment ∆𝑠 [24]. The increment ∆𝑠 can be evaluated using 

relationship (6), therefore, the magnitude of deformation 𝑠′ after this first phase of motion is calculated 

by: 

 

𝑠′ = 𝑠 + ∆𝑠 

= 𝑠1 + 𝑣𝑟1 [1 −
𝑘𝑡 𝑠1

𝜇𝐹𝑁
sgn(𝑣𝑟1)]

𝑖

∆𝑡 

 

(18) 

 

Relative velocity 𝑣𝑟1 along the line of action of the lumped elastic asperity can be determined 

from the following expression: 
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𝑣𝑟1 =
𝑀𝑁1

′̅̅ ̅̅ ̅̅ − 𝑀𝑁′̅̅ ̅̅ ̅̅

∆𝑡
=

𝑀𝑁1
′̅̅ ̅̅ ̅̅ − 𝑠

∆𝑡
=

𝑀𝑁1
′̅̅ ̅̅ ̅̅ − 𝑠1

∆𝑡
 (19) 

 

where  

 

𝑀𝑁1
′̅̅ ̅̅ ̅̅ = √[𝑁1𝑥

′ − 𝑀𝑥(𝑡)]2 + [𝑀𝑦(𝑡) − 𝑁1𝑦
′ ]

2
 

= √[𝑥 − 𝑀1𝑥 ]
2

+ [ 𝑀1𝑦 − 𝑦]
2
 

 

 

(20) 

 

Direction of 𝑣𝑟1 in relation to axis 𝑋 is determined by angle 𝛼 (Fig. 4) where: 

  

sin 𝛼 = {

𝑀1𝑦 − 𝑦

𝑀𝑁1
′̅̅ ̅̅ ̅̅

      𝑖𝑓 𝑡 > 𝑡𝑣

0                      𝑖𝑓 𝑡 ≤ 𝑡𝑣

 (21) 

 

cos 𝛼 = {

𝑥 − 𝑀1𝑥

𝑀𝑁1
′̅̅ ̅̅ ̅̅

      𝑖𝑓 𝑡 > 𝑡𝑣

1                      𝑖𝑓 𝑡 ≤ 𝑡𝑣

 (22) 

 

and 𝑡𝑣 is the time at which vibration is switched on. The 𝑖𝑓 conditions in (21) and (22) are necessary to 

avoid nan errors in the formulation when 𝑀𝑁1
′̅̅ ̅̅ ̅̅ = 0.  

 

2.2. Second phase of motion 

 

Within the same time increment ∆𝑡, in the second phase of motion, in accordance with Fig. 3b, 

the base undergoes coupled longitudinal-transverse vibration such that the longitudinal component 𝑥𝑏 

and transverse component 𝑦𝑏 act simultaneously and in phase. Mathematically this coupled motion can 

be treated as vibration applied along an axis that is at an arbitrary angle 𝛳. The instantaneous 

displacement 𝑢 of this sinusoidal vibrating motion along the axis of vibration is given by: 

 

𝑢 = {
𝑢𝑎 sin 𝜔𝑡      𝑖𝑓 𝑡 ≥ 𝑡𝑣

0                    𝑖𝑓 𝑡 < 𝑡𝑣
 (23) 

 

where 𝑢𝑎 is the amplitude of the displacement of vibration and 𝜔 is the angular frequency in rad/s. The 

above equation acts as a switch that activates the sinusoidal vibration at 𝑡 ≥ 𝑡𝑣. The displacement 

components 𝑥𝑏 and 𝑦𝑏 in Fig. 3b are thus given by: 

 

𝑥𝑏 = 𝑢 cos 𝜃 (24) 

𝑦𝑏 = 𝑢 sin 𝜃 (25) 

 

and the instantaneous velocity 𝑣 of this sinusoidal motion along the axis of vibration is given by: 

 

𝑣 = {
𝑢𝑎𝜔 cos 𝜔𝑡      𝑖𝑓 𝑡 ≥ 𝑡𝑣

0                        𝑖𝑓 𝑡 < 𝑡𝑣
 (26) 

 

where 𝑢𝑎𝜔 is the amplitude of the velocity of vibration 𝑣𝑎, and hence: 

 

𝑣𝑎 = 𝑢𝑎𝜔 = 2𝜋𝑓𝑢𝑎 (27) 
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In longitudinal vibration, where 𝜃 is 0° or 180°, only 𝑥𝑏 changes direction and 𝑦𝑏 remains zero. 

In transverse vibration, where 𝜃 is 90° or 270°, only 𝑦𝑏 changes direction and 𝑥𝑏 remains zero. During 

any other mode of vibration, the vector direction of both 𝑥𝑏 and 𝑦𝑏 will change.  

At the beginning of increment ∆𝑡 the base touches the sliding body at point 𝑀. After the lapse 

of ∆𝑡, the base incremental displacements ∆𝑥𝑏 and ∆𝑦𝑏 (Fig. 4) are: 

 

∆𝑥𝑏 = 𝑥𝑏 − 𝑥𝑏  (28) 

∆𝑦𝑏 = 𝑦𝑏 − 𝑦𝑏  (29) 

 

The effect of incremental displacement ∆𝑥𝑏 is described by (14), whereas the effect of ∆𝑦𝑏 by 

(30). ∆𝑦𝑏 is only partially transferred to endpoint 𝑀 [24], therefore, the displacement 𝑀′1𝑀𝑦
′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of point 

𝑀′1 caused by the transverse component of vibrating motion comprises only a part of the incremental 

displacement ∆𝑦𝑏 of the base: 

 

𝑀′1𝑀𝑦
′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜂𝑦∆𝑦𝑏 (30) 

 

where 𝜂𝑦 is the transverse vibration transfer coefficient defining the proportion of ∆𝑦𝑏 that is transferred 

to move the free endpoint from 𝑀′1 to the 𝑀′2 position. The consequence of this second phase of motion 

is a further change of asperity deformation from an intermediate 𝑠′ to final magnitude 𝑠1 (Fig. 4). 

Instantaneous direction of this deformation is determined by angle 𝛽, whilst the change in its magnitude 

by an increment ∆𝑠′ [24]. In similarity with the previous phase, ∆𝑠′ can be evaluated using relationship 

(6), therefore, the final magnitude of deformation 𝑠1 after this second phase of motion is calculated by: 

 

𝑠1 = 𝑠′ + ∆𝑠′ 

= 𝑠′ + 𝑣𝑟2 [1 −
𝑘𝑡𝑠′

𝜇𝐹𝑁
sgn(𝑣𝑟2)]

𝑖

∆𝑡 

 

(31) 

 

Relative velocity 𝑣𝑟2 along the new line of action of the lumped elastic asperity can be 

determined from the following expression: 

 

𝑣𝑟2 =
𝑁1

′𝑀′2̅̅ ̅̅ ̅̅ ̅̅ − 𝑁1
′𝑀′1̅̅ ̅̅ ̅̅ ̅̅

∆𝑡
=

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅ − 𝑠′

∆𝑡
 (32) 

 

where  

 

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅ = √[𝑠′ cos 𝛼]2 + [𝑠′ sin 𝛼 + 𝑀′1𝑀𝑦

′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
2
 

= √[𝑠′ cos 𝛼]2 + [𝑠′ sin 𝛼 + 𝜂𝑦∆𝑦𝑏]
2
 

(33) 

 

Direction of 𝑣𝑟2 in relation to axis 𝑋 is determined by angle 𝛽 (Fig. 4) where: 

 

sin 𝛽 = {

𝑠′ sin 𝛼 + 𝜂𝑦∆𝑦𝑏

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅

      𝑖𝑓 𝑡 > 𝑡𝑣

0                                   𝑖𝑓 𝑡 ≤ 𝑡𝑣

 (34) 

 

cos 𝛽 = {

𝑠′ cos 𝛼

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅

                      𝑖𝑓 𝑡 > 𝑡𝑣

1                                  𝑖𝑓 𝑡 ≤ 𝑡𝑣

 (35) 
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The 𝑖𝑓 conditions in (34) and (35) are necessary to avoid nan errors in the formulation when 

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅ = 0. At the end of increment ∆𝑡, knowing the magnitude of deformation 𝑠1 and its direction 𝛽, 

as well as coordinates [𝑥, 𝑦] of point 𝑁1
′, it is possible to determine the coordinates of point 𝑀1 at which 

the endpoint 𝑀 is placed after lapse of increment ∆𝑡: 

 

𝑀1𝑥 = 𝑁1𝑥
′ − 𝑠1 cos 𝛽 

= 𝑥 − 𝑠1 cos 𝛽 
(36) 

 

𝑀1𝑦 = 𝑁1𝑦
′ + 𝑠1 sin 𝛽 

= 𝑦 + 𝑠1 sin 𝛽 
(37) 

 

In accordance with relationship (1) and notations per Fig. 3 and Fig. 4, an instantaneous value 

of friction force components 𝐹𝑥 and 𝐹𝑦 can also be determined: 

 

𝐹𝑥(𝑡 + ∆𝑡) = 𝑘𝑡𝑠1 cos 𝛽 

𝐹𝑦(𝑡 + ∆𝑡) = 𝑘𝑡𝑠1 sin 𝛽 

 (38) 

(39) 

 

2.3. Consecutive time increments 

 

The values of state variables listed in Table 1 computed during increment ∆𝑡 are carried forward 

to the next consecutive time increment ∆𝑡2. The sequence of equations (7) to (37) is then repeated to 

determine the coordinates of point 𝑀2 at which the endpoint 𝑀 is placed after lapse of time increment 

∆𝑡2. Equations (38) and (39) compute the components of friction force at the end of ∆𝑡2. At consecutive 

increments (3∆𝑡, 4∆𝑡,…, 𝑛∆𝑡) the cycle described by these equations is repeated. 

 

State variable Computed during ∆𝑡 by Carried forward to ∆𝑡2 for use as 

∬
𝐹𝑑 − 𝐹𝑥

𝑚
𝑑𝑡𝑑𝑡 (13) ∬

𝐹𝑑 − 𝐹𝑥

𝑚
𝑑𝑡𝑑𝑡  in (13) 

𝑥 (14) 𝑥  in (8) and (14) 

𝑦 (16) 𝑦  in (8) 

𝑥𝑏 (24) 𝑥𝑏  in (28) 

𝑦𝑏 (25) 𝑦𝑏  in (29) 

∆𝑥𝑏 (28) ∆𝑥𝑏  in (14) 

𝑠1 (31) 𝑠1  in (18) and (19) 

𝑀1𝑥 (36) 𝑀1𝑥  in (7), (20) and (22) 

𝑀1𝑦 (37) 𝑀1𝑦  in (7), (20) and (21) 

Table 1: State variables 

 

3. Methodology 

 

The new model was evaluated by two methods; (i) in the Matlab®/Simulink® environment an 

analytical computation procedure was developed with equations (7) to (39) (ii) in Abaqus® the three-

dimensional domain was numerically simulated by finite element method, with the model implemented 

via a specially developed friction subroutine defining the tangential contact behaviour between the body 

and base. The sliding body, Fig. 5, was a cuboid with contact area 0.030 m × 0.040 m and height 0.053 

m, made up of deformable hexahedral elements. The base was a 0.1 m × 0.1 m analytical rigid shell. 

The material definition applied to deformable elements had Young’s modulus 209 GPa and Poisson’s 

ratio 0.3. There are two body masses 𝑚 used in this paper; the density was set to 7850 kg/m3 for a mass 

of 0.5 kg, or 31400 kg/m3 for mass 2 kg. A spring element with stiffness 𝑘𝑑 was applied between points 

𝐴 and 𝐵. A normal pressure load in addition to gravitational load was applied to attain a normal reaction 
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force 𝐹𝑁. The base orientation can be set between 0° ≤ 𝜃 < 360° in the 𝑋𝑌 plane, thereby applying 

any mode of in-plane vibration.  

 

 
Fig. 5: 3D domain in Abaqus® 

 

4. Results and discussion 

 

In 4.1 and 4.2, results of longitudinal and transverse vibration are compared with analogous 

ones accepted in previous literature [23,24] that have shown a good match to experiments. Coupled 

longitudinal-transverse vibration is then evaluated in 4.3. 

 

4.1. Longitudinal vibration 

 

The longitudinal vibration model accepted in literature [23] was executed with the same 

parameters as utilised therein; 𝑣𝑑 = 0.0005 m/s, 𝑚 = 0.5 kg, 𝑓 = 4000 Hz, 𝜇 =  0.1, 𝐹𝑁 = 55 N, 𝑘𝑡 = 

80E6 N/m. The value 𝑘𝑑 = 96068 N/m was estimated by extracting data from graphs [23] and 

substituting into relationship (17). The total simulation time was set to 1 sec and a fixed time step of 

1E-6 sec was utilised with vibration of the base starting at 0.14 sec. Fig. 6 illustrates the computed 

variability of drive force 𝐹𝑑𝑣 under the influence of longitudinal vibration in relation to the magnitude 

𝐹𝑑𝑠 of this force without vibration as a function of a dimensionless coefficient 𝑘𝑣 = 𝑣𝑎 𝑣𝑑⁄ . Each data 

point on the graph corresponds to the result of a single simulation. The data points collectively form a 

trend indicated by the dashed line. 

The new coupled vibration model proposed in this paper was then executed in 

Matlab®/Simulink® and Abaqus® using the same parameters while varying the value of 𝑘𝑣. To reduce 

computation effort in Abaqus® a larger time step of 1E-5 sec was utilised. The vibration mode was set 

to longitudinal by setting 𝜃 = 0°. Since 𝑦𝑏 given by (25) remains zero at 𝜃 = 0°, 𝑀′1𝑀𝑦
′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  given by (30) 

also remains zero, therefore, the value of transverse vibration transfer coefficient 𝜂𝑦 has no effect on 

the results of longitudinal vibration. Longitudinal vibration results obtained from the new model are 

also plotted in Fig. 6 and agree very well with the plotted trend. There is no reduction in drive force due 

to longitudinal vibration when 𝑘𝑣 ≤ 1.  

 

  
Fig. 6. Change in 𝐹𝑑𝑣 𝐹𝑑𝑠⁄  as 𝑘𝑣 increases in longitudinal vibration 
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Changes in drive force 𝐹𝑑 and friction force 𝐹𝑥 with time, computed using the new model when 

𝑘𝑣 = 6 (𝑣𝑎 = 0.003 m/s), are plotted in Fig. 7 and Fig. 8 in comparison to results obtained from the 

longitudinal vibration model [23]. Simulations begin with the body stationary, hence initially there is 

no elastic slip at the contact, resulting in 𝐹𝑑 = 0 N at 𝑡 = 0 sec (Fig. 7). Application of constant drive 

velocity 𝑣𝑑 at 𝑡 > 0 sec causes elastic deformation 𝑠 to increase, resulting in a steady rise in 𝐹𝑑 until 

𝑡 ≈ 0.12 sec at which time breakaway occurs due to 𝐹𝑑 reaching the magnitude of 𝜇𝐹𝑁 = 5.5 N. 

Switching on vibration at 𝑡 = 0.14 sec significantly reduces the magnitude of 𝐹𝑑 as the body continues 

to slide.  

Also shown in Fig. 7, the new model when evaluated in Matlab®/Simulink® produces greater 

undulation of 𝐹𝑑. This is a characteristic of the new model and is due to the computation of 𝑥, equation 

(14), being different to how 𝑥 is determined in the longitudinal model [23]. This undulation decreases 

as the vibration mode 𝜃 approaches transverse at 90° and 270°, see Fig. 10. 𝐹𝑑𝑣 is thus determined by 

averaging its magnitude within a single cycle: 

 

𝐹𝑑𝑣 =
1

𝑛
∑ 𝐹𝑑𝑣𝑖

(𝑡 + ∆𝑡𝑖)

𝑛

𝑖=1

 (40) 

 

where 𝑛 is the number of time intervals into which a single vibration cycle is divided: 

 

𝑛 =
1

𝑓∆𝑡
 (41) 

 

At 𝑘𝑣 = 6 friction force component 𝐹𝑥 undergoes cyclic changes in magnitude and direction 

(Fig. 8), therefore, its average value over a single vibration cycle reduces from 𝜇𝐹𝑁 = 5.5 N when there 

is no vibration to a lower value when vibration is initiated, hence the drive force is also reduced. 

Analytical results of the new model obtained via Matlab®/Simulink® show an exact match of 𝐹𝑥 to the 

longitudinal model [23], however, numerical results from Abaqus® show subtle differences. These 

differences can be attributed to the Abaqus® solver which evaluates the model iteratively in each time 

increment to compute an approximation while enforcing equilibrium of internal structure forces with 

externally applied loads, whereas Matlab®/Simulink® performs an analytical calculation that outputs 

the exact solution to the formulation. These subtle differences in 𝐹𝑥 affect the correlation of the 

Abaqus® computed drive force in Fig. 7, otherwise the new model agrees very well with previous work. 

 

   
Fig. 7: Comparison of change in 𝐹𝑑 when longitudinal vibration is switched on, 𝑘𝑣 = 6 
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Fig. 8. Comparison of friction force changes during longitudinal vibration, 𝑘𝑣 = 6

 

4.2. Transverse vibration 

 

The new coupled model was executed for transverse vibration with parameters matching those 

utilised in literature [24]; 𝑣𝑑 = 0.0005 m/s, 𝑚 = 2 kg, 𝑓 = 3000 Hz, 𝜇 = 0.1, 𝐹𝑁 = 50.8 N, 𝑘𝑡 = 

67.29E6 N/m, 𝑘𝑑 = 96068 N/m. The total simulation time was set to 0.5 sec and a fixed time step of 

1E-6 sec in Matlab®/Simulink®, and 1E-5 sec in Abaqus®, was utilised with vibration of the base 

starting at 0.14 sec. The vibration mode was set to transverse by setting 𝜃 = 270°. The transverse 

vibration transfer coefficient was assumed 𝜂𝑦 = 0.71. This is the value estimated by Gutowski and Leus 

[24] at which their transverse vibration model produces a good match to results of all experiments 

carried out at 𝑓 = 3000 Hz in the range 𝑣𝑑 = 0.0001-0.0033 m/s.  

Fig. 9 illustrates the variability of normalised drive force 𝐹𝑑𝑣 𝐹𝑑𝑠⁄  under the influence of 

transverse vibration as a function of a dimensionless coefficient 𝑘𝑣, computed using the transverse 

vibration model [24]. The data points, each corresponding to the result of a single simulation, form a 

trend indicated by the dashed line. Results obtained from the new model, overlaid in Fig. 9, agree very 

well with the trend. Unlike longitudinal vibration, in transverse vibration there is reduction of drive 

force even when 𝑘𝑣 ≤ 1.  

  
Fig. 9. Change in 𝐹𝑑𝑣 𝐹𝑑𝑠⁄  as 𝑘𝑣 increases in transverse vibration  

 

Changes in drive force 𝐹𝑑, and friction force components 𝐹𝑥 and 𝐹𝑦 with time, computed using 

the new model when 𝑘𝑣 = 20 (𝑣𝑎 = 0.010 m/s), are plotted in Fig. 10 and Fig. 11 in comparison to 

results obtained from the transverse vibration model [24]. Application of constant drive velocity 𝑣𝑑 at 

𝑡 > 0 sec causes elastic deformation 𝑠 to increase, resulting in a steady rise in 𝐹𝑑 until 𝑡 ≈ 0.11 sec at 

which time breakaway occurs due to 𝐹𝑑 reaching the magnitude of 𝜇𝐹𝑁 = 5.08 N. Switching on 

vibration at 𝑡 = 0.14 sec significantly reduces the magnitude of 𝐹𝑑 as the body continues to slide.  



Page 14 of 18 
 

At 𝑘𝑣 = 20, friction force component 𝐹𝑥 undergoes cyclic changes only in magnitude whereas 

𝐹𝑦 changes in magnitude and direction, Fig. 11. The average value of 𝐹𝑥 over a single vibration cycle 

reduces from 𝜇𝐹𝑁 = 5.08 N when there is no vibration to a lower value when vibration is initiated, 

hence the drive force is also reduced. Analytical results of the new model obtained via 

Matlab®/Simulink® show an exact match to the transverse model [24], and numerical results via 

Abaqus® show subtle differences attributed to the iterative solver. 

 

 
Fig. 10. Comparison of change in 𝐹𝑑 when transverse vibration is switched on, 𝑘𝑣 = 20 

 

 
Fig. 11. Comparison of friction force changes during transverse vibration, 𝑘𝑣 = 20 

 

4.3. Coupled longitudinal-transverse vibration 

 

The new model can also determine the influence of coupled longitudinal-transverse vibration 

on drive force 𝐹𝑑. Simulations were performed in different vibration modes 𝜃 at selected values of 𝑘𝑣 

(2, 3, 4, 6 and 20) with parameters described in 4.2; 𝑣𝑑 = 0.0005 m/s, 𝑚 = 2 kg, 𝑓 = 3000 Hz, 𝜇 = 

0.1, 𝐹𝑁 = 50.8 N, 𝑘𝑡 = 67.29E6 N/m, 𝑘𝑑 = 96068 N/m. The total simulation time was set to 0.5 sec 

and a fixed time step of 1E-6 sec in Matlab®/Simulink®, and 1E-5 sec in Abaqus®, was utilised with 

vibration of the base starting at 0.14 sec. At 𝜂𝑦 = 0.71 the transverse vibration model [24] produces a 

good match to results of all transverse vibration experiments performed at 𝑓 = 3000 Hz in the range 

𝑣𝑑 = 0.0001-0.0033 m/s. Since the vibration frequency in the transverse direction will remain 3000 Hz 

at all vibration modes 𝜃, and 𝑣𝑑 is also in the range 0.0001-0.0033 m/s, it is reasonable to assume 𝜂𝑦 = 

0.71 for all vibration modes. 

For each selected value of 𝑘𝑣 simulations in 25 different vibration modes 𝜃 were performed in 

Matlab®/Simulink®. The results in terms of normalised drive force 𝐹𝑑𝑣 𝐹𝑑𝑠⁄  are plotted in Fig. 12 and 

the corresponding trend for each value of  𝑘𝑣 is also plotted. 3 further simulations for each value of 𝑘𝑣 

were performed in Abaqus® and their results are also overlaid in Fig. 12. Abaqus® and 

Matlab®/Simulink® results are in good agreement; an increase in 𝑘𝑣 results in a decrease in the drive 
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force in all modes of vibration. Regardless of the value of 𝑘𝑣 the greatest reduction in drive force is 

always achieved by longitudinal vibration (𝜃 = 0°, 180°). During transition from longitudinal to 

transverse vibration (𝜃 = 90°, 270°), and vice versa, the shape of curve 𝐹𝑑𝑣 𝐹𝑑𝑠⁄  varies depending on 

the value of 𝑘𝑣, however, the curve is always symmetrical about 𝜃 =  180°. This suggests the same 

result can be obtained at multiple values of 𝜃.  

 

5. Substituting Dahl with LuGre friction model 

 

The new model is based on friction behaviour per the Dahl model [31], however, it is possible 

to substitute other dynamic friction models into the formulation, for example, the LuGre friction model 

[32] which is an extension of the Dahl model and defines the friction force by extending relationship 

(1) to: 

 

𝐹 = 𝑘𝑡𝑠 + ℎ𝑡

𝑑𝑠

𝑑𝑡
+ ℎ𝑣𝑣𝑟 (42) 

 

where ℎ𝑡 is the contact damping coefficient, ℎ𝑣 is the viscous damping coefficient, and 𝑑𝑠 𝑑𝑡⁄  is given 

by: 

 
𝑑𝑠

𝑑𝑡
= 𝑣𝑟 −

𝑘𝑡|𝑣𝑟|

𝜇𝐹𝑁 + (𝐹𝑆 − 𝜇𝐹𝑁)𝑒−(𝑣𝑟 𝑣𝑠⁄ )
𝑠 

 (43) 

 

where 𝐹𝑆 is the stiction force and 𝑣𝑠 is the Stribeck velocity. Equations (18) and (31) are then substituted 

by (44) and (45):  

 

𝑠′ = 𝑠1 + [𝑣𝑟1 −
𝑘𝑡|𝑣𝑟1|

𝜇𝐹𝑁 + (𝐹𝑆 − 𝜇𝐹𝑁)𝑒−(𝑣𝑟1 𝑣𝑠⁄ )
𝑠1 ] ∆𝑡  (44) 

𝑠1 = 𝑠′ + [𝑣𝑟2 −
𝑘𝑡|𝑣𝑟2|

𝜇𝐹𝑁 + (𝐹𝑆 − 𝜇𝐹𝑁)𝑒−(𝑣𝑟2 𝑣𝑠⁄ )
𝑠′] ∆𝑡 (45) 

 

and, (38) and (39) substituted by (46) and (47):  

 

𝐹𝑥(𝑡 + ∆𝑡) = [𝑘𝑡𝑠1 + ℎ𝑡 (
𝑠1 − 𝑠1

𝑑𝑡
) + ℎ𝑣 (

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅ − 𝑠1

∆𝑡
)] cos 𝛽  (46) 

𝐹𝑦(𝑡 + ∆𝑡) = [𝑘𝑡𝑠1 + ℎ𝑡 (
𝑠1 − 𝑠1

𝑑𝑡
) + ℎ𝑣 (

𝑁1
′𝑀′2̅̅ ̅̅ ̅̅ ̅̅ − 𝑠1

∆𝑡
)] sin 𝛽 (47) 

 

Setting ℎ𝑡 = ℎ𝑣 = 𝐹𝑆 = 0 in the LuGre model reverts to Dahl friction behaviour. To prove this 

the LuGre model was implemented into the new coupled vibration model for execution in 

Matlab®/Simulink® at 𝑘𝑣 = 2 and 20. Results using the LuGre model are overlaid in Fig. 12 and show 

an exact match to those with Dahl friction.  

If ℎ𝑡, ℎ𝑣, and 𝐹𝑆 are non-zero, or if another friction model is used then the value of the transverse 

vibration transfer coefficient 𝜂𝑦 may change since 𝜂𝑦 = 0.71 is based on a fit fidelity exercise performed 

by Gutowski and Leus [24] to match their model, which is also based on Dahl friction, to experimental 

data. If the friction model is changed it is advisable to check the fit fidelity of the model to experimental 

results and use a new value of 𝜂𝑦 if necessary. 
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Fig. 12. Changes in 𝐹𝑑𝑣 𝐹𝑑𝑠⁄  with 𝜃 at different values of 𝑘𝑣 

 

6. Conclusion 

 

A new analytical model has been developed based on two separate models presented in previous 

literature [23,24]. The new model is able to describe changes in friction force and drive force during 

sliding motion of a body over a surface vibrating not only in the longitudinal or transverse mode but 

also in any mode of coupled longitudinal-transverse vibration. The model has been evaluated 

analytically in Matlab®/Simulink® and numerically via a specially developed friction subroutine in 

Abaqus®. Simulations yield good agreement with the models for longitudinal [23] and transverse 

vibration [24] in previous literature.   

The new model can be used in any three-dimensional domain, such as the flat-on-flat contact 

domain used in this paper where the normal contact pressure has been assumed constant, or a more 

complex case of gears for example, where the normal contact pressures change as gear teeth move over 

one another, while multiple teeth enter and exit the gear mesh forming multiple contacts simultaneously. 

An advantage with Abaqus® is that the complexity of the domain can be increased by modifying the 

geometry of parts within it and the way in which they interact, whereas in Matlab®/Simulink® 

additional relationships would have to be introduced to describe these aspects which may result in time-

varying contact geometry. In the case of flat-on-flat contact, the greatest reduction in 𝐹𝑑 is achieved by 

longitudinal vibration, however, friction is in nearly all engineering problems and in other applications 

a different vibration mode may be more beneficial. 

To simulate coupled vibration the value of transverse vibration transfer coefficient 𝜂𝑦 must be 

known and can be estimated using transverse vibration experimental data with the method described by 

Gutowski and Leus [24]. It is assumed that 𝜂𝑦 does not change in value as vibration mode 𝜃 changes. 

The new model can then be used to compute changes in friction force and drive force in any mode of 

vibration. The longitudinal model and transverse model have previously been validated against 

experiments [23,24] and have been used in this paper as basis for validating the new model, however, 

experimental results for coupled vibration are not currently available. This provides scope for future 

work. Also, the influence on 𝜂𝑦 of using dynamic friction models other than the Dahl model is currently 

unknown. 
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