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Abstract

The study of the fine-grained social dynamics between children is a methodological
challenge, yet a good understanding of how social interaction between children unfolds
is important not only to Developmental and Social Psychology, but recently has become
relevant to the neighbouring field of Human-Robot Interaction (HRI). Indeed,
child-robot interactions are increasingly being explored in domains which require
longer-term interactions, such as healthcare and education. For a robot to behave in an
appropriate manner over longer time scales, its behaviours have to be contingent and
meaningful to the unfolding relationship. Recognising, interpreting and generating
sustained and engaging social behaviours is as such an important – and essentially, open
– research question.

We believe that the recent progress of machine learning opens new opportunities in
terms of both analysis and synthesis of complex social dynamics. To support these
approaches, we introduce in this article a novel, open dataset of child social interactions,
designed with data-driven research methodologies in mind.

Our data acquisition methodology relies on an engaging, methodologically sound,
but purposefully underspecified free-play interaction. By doing so, we capture a rich set
of behavioural patterns occurring in natural social interactions between children. The
resulting dataset, called the PInSoRo dataset, comprises 45+ hours of hand-coded
recordings of social interactions between 45 child-child pairs and 30 child-robot pairs. In
addition to annotations of social constructs, the dataset includes fully calibrated video
recordings, 3D recordings of the faces, skeletal informations, full audio recordings, as
well as game interactions.

Introduction 1

Studying social interactions 2

Studying social interactions requires a social situation that effectively elicits interactions 3

between the participants. Such a situation is typically scaffolded by a social task, and 4

consequently, the nature of this task influences in fundamental ways the kind of 5

interactions that might be observed and analysed. In particular, the socio-cognitive 6

tasks commonly found in both the experimental psychology and human-robot 7

interaction (HRI) literature often have a narrow focus: because they aim at studying 8

one (or a few) specific social or cognitive skills in isolation and in a controlled manner, 9
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these tasks are typically conceptually simple and highly constrained (for instance, object 10

hand-over tasks; perspective-taking tasks; etc.). While these focused endeavours are 11

important and necessary, they do not adequately reflect the complexity and dynamics of 12

real-world, natural interactions (as discussed by Baxter et al. in [1], in the context of 13

HRI). Consequently, we need to investigate richer interactions, scaffolded by 14

socio-cognitive tasks that: 15

� are long enough and varied enough to elicit a large range of interaction situations; 16

� foster rich multi-modal interactions, such as simultaneous speech, gesture, and 17

gaze behaviours; 18

� are not over-specified, in order to maximise natural, non-contrived behaviours; 19

� evidence complex social dynamics, such as rhythmic coupling, joint attention, 20

implicit turn-taking; 21

� include a level of non-determinism and unpredictability. 22

The challenge lies in designing a social task that exhibits these features while 23

maintaining essential scientific properties (repeatability; replicability; robust metrics) as 24

well as good practical properties (not requiring unique or otherwise very costly 25

experimental environments; not requiring very specific hardware or robotic platform; 26

easy deployment; short enough experimental sessions to allow for large groups of 27

participants). 28

Looking specifically at social interactions amongst children, we present in the next 29

section our take on this challenge, and we introduce a novel task of free play. The task 30

is designed to elicit rich, complex, varied social interactions while supporting rigorous 31

scientific methodologies, and is well suited for studying both child-child and child-robot 32

interactions. 33

Social play 34

Our interaction paradigm is based on free and playful interactions (hereafter, free play) 35

in what we call a sandboxed environment. In other words, while the interaction is free 36

(participants are not directed to perform any particular task beyond playing), the 37

activity is both scaffolded and constrained by the setup mediating the interaction (a 38

large interactive table), in a similar way to children freely playing with sand within the 39

boundaries of a sandpit. Consequently, while participants engage in open-ended and 40

non-directed activity, the play situation is framed to be easily reproducible as well as 41

practical to record and analyse. 42

This initial description frames the socio-cognitive interactions that might be 43

observed and studied: playful, dyadic, face-to-face interactions. While gestures and 44

manipulations (including joint manipulations) play an important role in this paradigm, 45

the participants do not typically move much during the interaction. Because it builds 46

on play, this paradigm is also primarily targeted to practitioners in the field of 47

child-child or child-robot social interactions. 48

The choice of a playful interaction is supported by the wealth of social situations and 49

social behaviours that play elicits (see for instance parts 3 and 4 of [2]). Most of the 50

research in this field builds on the early work of Parten who established five stages of 51

play [3], corresponding to different stages of development, and accordingly associated 52

with typical age ranges: (a) solitary (independent) play (age 2-3): child playing 53

separately from others, with no reference to what others are doing; (b) onlooker play 54

(age 2.5-3.5): child watching others play; may engage in conversation but not engage in 55

doing; true focus on the children at play; (c) parallel play (also called adjacent play, 56
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social co-action, age 2.5-3.5): children playing with similar objects, clearly beside others 57

but not with them; (d) associative play (age 3-4): child playing with others without 58

organization of play activity; initiating or responding to interaction with peers; 59

(e) cooperative play (age 4+): coordinating one’s behavior with that of a peer; everyone 60

has a role, with the emergence of a sense of belonging to a group; beginning of “team 61

work.” 62

These five stages of play have been extensively discussed and refined over the last 63

century, yet remain remarkably widely accepted. It must be noted that the age ranges 64

are only indicative. In particular, most of the early behaviours still occur at times by 65

older children. 66

Machine Learning, Robots and Social Behaviours 67

The data-driven study of social mechanisms is still an emerging field, and only limited 68

literature is available. 69

The use of interaction datasets to teach artificial agents (robots) how to socially 70

behave has been previously explored, and can be considered as the extension of the 71

traditional learning from demonstration (LfD) paradigms to social interactions [4, 5]. 72

However, existing research focuses on low-level identification or generation of brief, 73

isolated behaviours, including social gestures [6] and gazing behaviours [7]. 74

Based on a human-human interaction dataset, Liu et al. [8] have investigated 75

machine learning approaches to learn longer interaction sequences. Using unsupervised 76

learning, they train a robot to act as a shop-keeper, generating both speech and socially 77

acceptable motions. Their approach remains task-specific, and they report only limited 78

success. They however emphasise the “life-likeness” of the generated behaviours. 79

This burgeoning interest in the research community for the data-driven study of 80

social responses is however impaired by the lack of structured research efforts. In 81

particular, there is only limited availability of large and open datasets of social 82

interactions, suitable for machine-learning applications. 83

One such dataset is the Multimodal Dyadic Behavior Dataset (MMDB, [9]). It 84

comprises of 160 sessions of 3 to 5 minute child-adult interactions. During these 85

interactions, the experimenter plays with toddlers (1.5 to 2.5 years old) in a 86

semi-structured manner. The dataset includes video streams of the faces and the room, 87

audio, physiological data (electrodermal activity) as well as manual annotations of 88

specific behaviours (like gaze to the examiner, laughter, pointing). This dataset focuses 89

on very young children during short, adult-driven interactions. As such, it does not 90

include episodes of naturally-occurring social interactions between peers, and the 91

diversity of said interactions is limited. Besides, the lack of intrinsic and extrinsic 92

camera calibration information in the dataset prevent the automatic extraction and 93

labeling of key interaction features (like mutual gaze). 94

Another recent dataset, the Tower Game Dataset [10], focuses specifically on rich 95

dyadic social interactions. The dataset comprises of 39 adults recorded over a total of 96

112 annotated sessions of 3 min in average. The participants are instructed to jointly 97

construct a tower using wooden blocks. Interestingly, the participants are not allowed to 98

talk to maximise the amount of non-verbal communication. The skeletons and faces of 99

the participants are recorded, and the dataset is manually annotated with so-called 100

Essential Social Interaction Predicates (ESIPs): rhythmic coupling (entrainment or 101

attunement), mimicry (behavioral matching), movement simultaneity, kinematic turn 102

taking patterns, joint attention. This dataset does not appear to be publicly available 103

on-line. 104

The UE-HRI dataset [11] is another recently published (2017) dataset of social 105

interactions, focusing solely on human-robot interactions. 54 adult participants were 106

recorded (duration M=7.7min) during spontaneous dialogues with a Pepper robot. The 107
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Fig 1. The free-play social interactions sandbox: two children or one child and one
robot (as pictured here) interacted in a free-play situation, by drawing and manipulating
items on a touchscreen. Children were facing each other and sit on cushions. Each child
wore a bright sports bib, either purple or yellow, to facilitate later identification.

interactions took place in a public space, and include both one-to-one and multi-party 108

interactions. The resulting dataset includes audio and video recordings from the robot 109

perspective, as well as manual annotations of the levels of engagement. It is publicly 110

available. 111

PInSoRo, our dataset, shares some of the aims of the Tower Game and UE-HRI 112

datasets, with however significant differences. Contrary to these two datasets, our 113

target population are children. We also put a strong focus on naturally occurring, 114

real-world social behaviours. Furthermore, as presented in the following sections, we 115

record much longer interactions (up to 40 minutes) of free play interactions, capturing a 116

wider range of socio-cognitive behaviours. We did not place any constraints on the 117

permissible communication modalities, and the recordings were manually annotated 118

with a focus on social constructs. 119

Material and Methods 120

The Free-play Sandbox task 121

As previously introduced, the free-play sandbox task is based on face-to-face free-play 122

interactions, mediated by a large, horizontal touchscreen. Pairs of children (or 123

alternatively, one child and one robot) are invited to freely draw and interact with items 124

displayed on an interactive table, without any explicit goals set by the experimenter 125

(Fig 1). The task is designed so that children can engage in open-ended and 126

non-directive play. Yet, it is sufficiently constrained to be suitable for recording, and 127

allows the reproduction of social behaviour by an artificial agent in comparable 128

conditions. 129

Specifically, the free-play sandbox follows the sandtray paradigm [12]: a large 130

touchscreen (60cm × 33cm, with multitouch support) is used as an interactive surface. 131

The two players, facing each other, play together, moving interactive items or drawing 132

on the surface if they wish so (Fig 2). The background image depicts a generic empty 133
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environment, with different symbolic colours (water, grass, beach, bushes...). By 134

drawing on top of the background picture, the children can change the environment to 135

their liking. The players do not have any particular task to complete, they are simply 136

invited to freely play. They can play for as long as they wish. However, for practical 137

reasons, we had to limit the sessions to a maximum of 40 minutes. 138

Even though the children do typically move a little, the task is fundamentally a 139

face-to-face, spatially delimited, interaction, and as such simplifies the data collection. 140

In fact, the children’s faces were successfully detected in 98% of the over 2 million 141

frames recorded during the PInSoRo dataset acquisition campaign. 142

Fig 2. Example of a possible game situation. Game items (animals, characters...) can
be dragged over the whole play area, while the background picture can be painted over
by picking a colour. In this example, the top player is played by a robot.

Experimental conditions 143

The PInSoRo dataset aims to establish two experimental baselines for the free-play 144

sandbox task: the ‘human social interactions’ baseline on one hand (child–child 145

condition), an ‘asocial’ baseline on the other hand (child–non-social robot condition). 146

These two baselines aim to characterise the qualitative and quantitative bounds of the 147

spectrum of social interactions and dynamics that can be observed in this situation. 148

In the child-child condition, a diverse set of social interactions and social dynamics 149

were expected to be observed, ranging from little social interactions (for instance, with 150

shy children) to strong, positive interactions (for instance, good friends), to hostility 151

(children who do not get along very well). 152

In the asocial condition, one child was replaced by an autonomous robot. The robot 153

was purposefully programmed to be asocial. It autonomously played with the game 154

items as a child would (although it did not perform any drawing action), but avoided all 155

social interactions: no social gaze, no verbal interaction, no reaction to child-initiated 156

game actions. 157

From the perspective of social psychology, this condition provides a baseline for the 158

social interactions and dynamics at play (or the lack thereof) when the social 159

communication channel is severed between the agents, while maintaining a similar social 160

setting (face-to-face interaction; free-play activity). 161

From the perspective of human-robot interaction and artificial intelligence in general, 162

the child–‘asocial robot’ condition provides a baseline to contrast with for 163
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yet-to-be-created richer social and behavioural AI policies. 164

Hardware apparatus 165

The interactive table was based on a 27” Samsung All-In-One computer (quad core 166

i7-3770T, 8GB RAM) running Ubuntu Linux and equipped with a fast 1TB SSD 167

hard-drive. The computer was held horizontally in a custom aluminium frame standing 168

26cm above the floor. All the cameras were connected to the computer via USB-3. The 169

computer performed all the data acquisition using ROS Kinetic1. The same computer 170

was also running the game interface on its touch-enabled screen (60cm × 33cm), making 171

the whole system standalone and easy to deploy. 172

The children’s faces were recorded using two short range (0.2m to 1.2m) Intel 173

RealSense SR300 RGB-D cameras placed at the corners of the touchscreen (Fig 1) and 174

tilted to face the children. The cameras were rigidly mounted on custom 3D-printed 175

brackets. This enabled a precise measurement of their 6D pose relative to the 176

touchscreen (extrinsic calibration). 177

Audio was recorded from the same SR300 cameras (one mono audio stream was 178

recorded for each child, from the camera facing him or her). 179

Finally, a third RGB camera (the RGB stream of a Microsoft Kinect One, the 180

environment camera in Fig 1) recorded the whole interaction setting. This third video 181

stream was intended to support human coders while annotating the interaction, and was 182

not precisely calibrated. 183

In the child-robot condition, a Softbank Robotics’ Nao robot was used. The robot 184

remained in standing position during the entire play interaction. The actual starting 185

position of the robot with respect to the interactive table was recalibrated before each 186

session by flashing a 2D fiducial marker on the touchscreen, from which the robot could 187

compute its physical location. 188

Software apparatus 189

The software-side of the free-play sandbox is entirely open-source2. It was implemented 190

using two main frameworks: Qt QML3 for the user interface (UI) of the game (Fig 2), 191

and the Robot Operating System (ROS) for the modular implementation of the data 192

processing and behaviour generation pipelines, as well as for the recordings of the 193

various datastreams (Fig 4). The graphical interface interacts with the decisional 194

pipeline over a bidirectional QML-ROS bridge that was developed for that purpose 195

(source code available from the same link). 196

Fig 3 presents the complete software architecture of the sandbox as used in the 197

child-robot condition (in the child-child condition, robot-related modules were simply 198

not started). 199

Robot control As previously described, one child was replaced by a robot in the 200

child-robot condition. Our software stack allowed for the robot to be used in two modes 201

of operations: either autonomous (selecting actions based on pre-programmed play 202

policies), or controlled by a human operator (so-called Wizard-of-Oz mode of operation). 203

For the purpose of the PInSoRo dataset, the robot behaviour was fully autonomous, 204

yet coded to be purposefully asocial (no social gaze, no verbal interaction, no reaction 205

to child-initiated game actions). The simple action policy that we implemented 206

consisted in the robot choosing a random game item (in its reach), and moving that 207

item to a predefined zone on the map (e.g. if the robot could reach the crocodile figure, 208

1http://www.ros.org/
2Source code: https://github.com/freeplay-sandbox/
3http://doc.qt.io/qt-5/qtquick-index.html
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Fig 3. Software architecture of the free-play sandbox (data flows from orange dots to
blue dots). Left nodes interact with the interactive table hardware (game interface (1)
and camera drivers (2)). The green nodes in the centre implement the behaviour of the
robot (play policy (3) and robot behaviours (4)). Several helper nodes are available to
provide for instance a segmentation of the children drawings into zones (5) or A*
motion planning for the robot to move in-game items (6). Nodes are implemented in
Python (except for the game interface, developed in QML) and inter-process
communication relies on ROS. 6D poses are managed and exchanged via ROS TF.

Fig 4. The free-play sandbox, viewed at runtime within ROS RViz. Simple computer
vision was used to segment the background drawings into zones (visible on the right
panel). The poses and bounding boxes of the interactive items were broadcast as well,
and turned into an occupancy map, used to plan the robot’s arm motion.
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it would attempt to drag it to a blue, i.e. water, zone). The robot did not physically 209

drag the item on the touchscreen: it relied on a A* motion planner to find an adequate 210

path, sent the resulting path to the touchscreen GUI to animate the displacement of the 211

item, and moved its arm in a synchronized fashion using the inverse kinematics solver 212

provided with the robot’s software development kit (SDK). 213

In the Wizard-of-Oz mode of operation, the experimenter would remotely control the 214

robot through a tablet application developed for this purpose (Fig 3–11). The tablet 215

exactly mirrored the game state, and the experimenter dragged the game items on the 216

tablet as would the child on the touchscreen. On release, the robot would again mimic 217

the dragging motion on the touchscreen, moving an object to a new location. This 218

mode of operation, while useful to conduct controlled studies, was not used for the 219

dataset acquisition. 220

Experiment manager We developed as well a dedicated web-based interface 221

(usually accessed from a tablet) for the experimenter to manage the whole experiment 222

and data acquisition procedure (Fig 3–10). This interface ensured that all the required 223

software modules were running; it allowed the experimenter to check the status of each 224

of them and, if needed, to start/stop/restart any of them. It also helped managing the 225

data collection campaign by providing a convenient interface to record the participants’ 226

demographics, resetting the game interface after each session, and automatically 227

enforcing the acquisition protocol (presented in Table 1). 228

Coding of the social interactions 229

Our aim is to provide insights on the social dynamics, and as such we annotated the 230

dataset using a combination of three coding schemes for social interactions that reuse 231

and adapt established social scales. Our resulting coding scheme (Fig 5) looked 232

specifically at three axis: the level of task engagement (that distinguishes between 233

focused, task oriented behaviours, and disengaged – yet sometimes highly social – 234

behaviours); the level of social engagement (reusing Parten’s stages of play, but at a fine 235

temporal granularity); the social attitude (that encoded attitudes like supportive, 236

aggressive, dominant, annoyed, etc.) 237

Task engagement The first axis of our coding scheme aimed at making a broad 238

distinction between ‘on-task’ behaviours (even though the free-play sandbox did not 239

explicitly require the children to perform a specific task, they were still engaged in an 240

underlying task: to play with the game) and ‘off-task’ behaviours. We called ‘on-task’ 241

behaviours goal oriented : they encompassed considered, planned actions (that might be 242

social or not). Aimless behaviours (with respect to the task) encompassed opposite 243

behaviours: being silly, chatting about unrelated matters, having a good laugh, etc. 244

These Aimless behaviours were in fact often highly social, and played an important role 245

in establishing trust and cooperation between the peers. In that sense, we considered 246

them as as important as on-task behaviours. 247

Social engagement: Parten’s stages of play at micro-level In our scheme, we 248

characterised Social engagement by building upon Parten’s stages of play [3]. These five 249

stages of play are normally used to characterise rather long sequences (at least several 250

minutes) of social interactions. In our coding scheme, we applied them at the level of 251

each of the micro-sequences of the interactions: one child is drawing and the other is 252

observing was labelled as solitary play for the former child, on-looker behaviour for the 253

later; the two children discuss what to do next: this sequence was annotated as a 254

cooperative behaviour; etc. 255
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Fig 5. The coding scheme used for annotating social interactions occurring during
free-play episodes. Three main axis were studied: task engagement, social engagement
and social attitude.

We chose this fine-grained coding of social engagement to enable proper analyses of 256

the internal dynamics of a long sequence of social interaction. 257

Social attitude The constructs related to the social attitude of the children derived 258

from the Social Communication Coding System (SCCS) proposed by Olswang et al. [13]. 259

The SCCS consists in 6 mutually exclusive constructs characterising social 260

communication (hostile; pro-social ; assertive; passive; adult seeking ; irrelevant) and 261

were specifically created to characterise children’s communication in a classroom setting. 262

We transposed these constructs from the communication domain to the general 263

behavioural domain, keeping the pro-social, hostile (whose scope we broadened in 264

adversarial), assertive (i.e. dominant), and passive constructs. In our scheme, the adult 265

seeking and irrelevant constructs belong to Task Engagement axis. 266

Finally, we added the construct Frustrated to describe children who are reluctant or 267

refuse to engage in a specific phase of interaction because of a perceived lack of fairness 268

or attention from their peer, or because they fail at achieving a particular task (like a 269

drawing). 270

Protocol 271

We adhered to the acquisition protocol described in Table 1 with all participants. To 272

ease later identification, each child was also given a different and brightly coloured 273

sports bib to wear. 274

Importantly, during the Greetings stage, we showed the robot both moving and 275

speaking (for instance, “Hello, I’m Nao. Today I’ll be playing with you. Exciting!” 276

while waving at the children). This was of particular importance in the child-robot 277

condition, as it set the children’s expectations in term of the capabilities of the robot: 278

the robot could in principle speak, move, and even behave in a social way. 279

Also, the game interface of the free-play sandbox offered a tutorial mode, used to 280

ensure the children know how to manipulate items on a touchscreen and draw. In our 281

experience, this never was an issue for children. 282
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Table 1. Data acquisition protocol

Greetings (about 5 min)
� explain the purpose of the study: showing robots how children play
� briefly present a Nao robot: the robot stands up, gives a short message (Today I’ll be
watching you playing in the child-child condition; Today I’ll be playing with you in the
child-robot condition), and sits down.
� place children on cushions
� complete demographics on the tablet
� remind the children that they can withdraw at anytime

Gaze tracking task (40 sec)
children are instructed to closely watch a small picture of a rocket that moves randomly
on the screen. Recorded data is used to train a eye-tracker post-hoc.

Tutorial (1-2 min)
explain how to interact with the game, ensure the children are confident with the
manipulation/drawing.

Free-play task (up to 40 min)
� initial prompt: “Just to remind you, you can use the animals or draw. Whatever
you like. If you run out of ideas, there’s also an ideas box. For example, the first one is
a zoo. You could draw a zoo or tell a story. When you get bored or don’t want to play
anymore, just let me know.”
� let children play
� once they wish to stop, stop recording

Debriefing (about 2 min)
� answer possible questions from the children
� give small reward (e.g. stickers) as a thank you
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Table 2. List of raw datastreams available in the PInSoRo dataset. Each datastream is
timestamped with a synchronised clock to facilitate later analysis.

Domain Type Details

child 1 audio 16kHz, mono, semi-directional
face (RGB) qHD (960×540), 30Hz
face (depth) VGA (640×480), 30Hz

child 2 audio 16kHz, mono, semi-directional
face (RGB) qHD (960×540), 30Hz
face (depth) VGA (640×480), 30Hz

environment RGB qHD (960×540), 29.7Hz

game interactions background drawing (RGB) 4Hz
finger touches 6 points multi-touch, 10Hz
game items pose TF frames, 10Hz

other static transforms between touchscreen and facial cameras
cameras calibration informations

Data collection 283

Table 2 lists the raw datastreams that were collected during the game. By relying on 284

ROS for the data acquisition (and in particular the rosbag tool), we ensured all the 285

datastreams were synchronised, timestamped, and, where appropriate, came with 286

calibration information (for the cameras mainly). For the PInSoRo dataset, cameras 287

were configured to stream in qHD resolution (960×540 pixels) in an attempt to balance 288

high enough resolution with tractable file size. It resulted in bag files weighting ≈1GB 289

per minute. 290

Besides audio and video streams, user interactions with the game were monitored 291

and recorded as well. The background drawings produced by the children were recorded. 292

They were also segmented according to their colours, and the contours of resulting 293

regions were extracted and recorded. The positions of all manipulable game items were 294

recorded (as ROS TF frames), as well as every touch on the touchscreen. 295

Data post-processing 296

Table 3 summarises the post-processed datastreams that are made available alongside 297

the raw datastreams. 298

Audio processing 299

Audio features were automatically extracted using the OpenSMILE toolkit [15]. We 300

used a 33ms-wide time windows in order to match the cameras FPS. We extracted the 301

INTERSPEECH 2009 Emotion Challenge standardised features [14]. These are a range 302

of prosodic, spectral and voice quality features that are arguably the most common 303

features we might want to use for emotion recognition [16]. For a full list, please see [14]. 304

As no reliable speech recognition engine for children voice could be found [17], audio 305

recordings were not automatically transcribed. 306

Facial landmarks, action-units, skeletons, gaze 307

Offline post-processing was performed on the images obtained from the cameras. We 308

relied on the CMU OpenPose library [18] to extract for each child the upper-body 309
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Table 3. List of post-processed datastreams available in the PInSoRo dataset. With
the exception of social annotations, all the data was automatically computed from the
raw datastreams at 30Hz.

Domain Type Details

children face 70 facial landmarks (2D)
17 facial action-units
head pose estimation (TF frame)
gaze estimation (TF frame)

skeleton 18 points body pose (2D)
20 points hand tracking (2D, only when visible)

audio INTERSPEECH’s 16 low-level descriptors [14]

annotations timestamped annotations of social behaviours and remarkable events

skeleton (18 points), 70 facial landmarks including the pupil position, as well as the 310

hands’ skeleton (Fig 6). 311

This skeletal information was extracted from the RGB streams of each of the three 312

cameras, for every frame. It is stored alongside the main data in an easy-to-parse JSON 313

file. 314

Fig 6. Left: automatically extracted 2D skeletons; Right: reconstructed 3D point cloud
of one child face with the detected facial features, visualised in RViz.

For each frame, 17 action units, with accompanying confidence levels, were also 315

extracted using the OpenFace library [19]. The action-units recognised by OpenFace 316

and provided alongside the data are AU01, AU02, AU04, AU05, AU06, AU07, AU09, 317

AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU28 and AU454. 318

Gaze was also estimated, using two techniques. First, head pose estimation was 319

performed following [20], and used to estimate gaze pose. While this technique is 320

effective to segment pose at a coarse level (i.e. gaze on interactive table vs. gaze on 321

other child/robot vs. gaze on experimenter), it offers limited accuracy when tracking 322

the precise gaze location on the surface of the interactive table (due to not tracking the 323

eye pupils). 324

We complemented head pose estimation with a neural network (a simple 7-layers, 325

fully connected, multi-layer perceptron with ReLU activations and 64 units per layer), 326

implemented with the Caffe framework5). 327

4Classification following https://www.cs.cmu.edu/~face/facs.htm.
5Source available here: https://github.com/severin-lemaignan/visual_tracking_caffe
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Fig 7. Screenshot of the dedicated tool developed for rapid annotation of the social
interactions. The annotators used a secondary screen (tablet) with buttons (layout
similar to Fig 5) to record the social constructs.

The network trained from a ground truth mapping between the children’ faces and 328

2D gaze coordinates. Training data is obtained by asking the children to follow a target 329

on the screen for a short period of time before starting the main free play activity (see 330

protocol, Table 1). The position of the target provides the ground truth (x, y) 331

coordinates of the gaze on the screen. For each frame, the network is then fed a feature 332

vector comprising 32 facial and skeletal (x, y) points of interest relevant to gaze 333

estimation (namely, the 2D location of the pupils, eye contours, eyebrows, nose, neck, 334

shoulders and ears). The training dataset comprises 80% of the fully randomized 335

dataset (123711 frames) and the testing dataset the remaining 20% (30927 frames). 336

Using this technique, we measured a gaze location error of 12.8% on our test data 337

between the ground truth location of the target on the screen and the estimated gaze 338

location (i.e. ±9cm over the 70cm-wide touchscreen). The same pre-trained network is 339

then used to provide gaze estimation during the remainder of the free play activity. 340

Video coding 341

The coding was performed post-hoc with the help of a dedicated annotation tool (Fig 7) 342

which is part of the free-play sandbox toolbox. This tool can replay and randomly seek 343

in the three video streams, synchronised with the recorded state of the game (including 344

the drawings as they were created). An interactive timeline displaying the annotations 345

is also displayed. 346

The annotation tool offers a remote interface for the annotator (made of large 347

buttons, and visually similar to Fig 5) that is typically displayed on a tablet and allow 348

the simultaneous coding of the behaviours of the two children. Usual video coding 349

practices (double-coding of a portion of the dataset and calculation of an inter-judge 350

agreement score) were followed. 351
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Table 4. Descriptive statistics for the children

Condition Age Mean Age SD # girls # boys

Whole group 6.4 1.3 55 65

Child-child 6.3 1.4 42 48
Child-robot 6.9 0.9 12 18

Fig 8. Density distribution of the durations of the interactions for the two conditions.
Interactions in the child-robot condition were generally shorter than the child-child
interactions. Interactions in the child-child condition followed a bi-modal distribution,
with one mode centered around minute 15 (similar to the child-robot one) and one,
much longer mode, at minute 37.

Results – the PInSoRo dataset 352

Using the free-play sandbox methodology, we have acquired a large dataset of social 353

interactions between either pairs of children or one child and one robot. The data 354

collection took place over a period of 3 months during Spring 2017. 355

In total, 120 children were recorded for a total duration of 45 hours and 48 minutes 356

of data collection. These 120 children (see demographics in Table 4; sample drawn from 357

local schools) were randomly assigned to one of two conditions: the child-child condition 358

(90 children, 45 pairs) and a child-robot condition (30 children). The sample sizes were 359

balanced in favour of the child-child condition as the social dynamics that we ultimately 360

want to capture are much richer in this condition. 361

In both conditions, and after a short tutorial, the children were simply invited to 362

freely play with the sandbox, for as long as they wished (with a cap at 40 min; cf. 363

protocol in Table 1). 364

In the child-child condition, 45 free-play interactions (i.e. 90 children) were recorded 365

with a mean duration M=24.15 min (standard deviation SD=11.25 min). In the 366

child-robot condition, 30 children were recorded, M=19.18 min (SD=10 min). 367

Fig 8 presents the density distributions of the durations of the interactions for the 368

two baselines. The distributions show that (1) the vast majority of children engaged 369

easily and for non-trivial amounts of time with the task; (2) the task led to a wide range 370

of levels of commitment, which is desirable: it supports the claim that the free-play 371

sandbox is an effective paradigm to observe a range of different social behaviours; (3) 372
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Fig 9. Repartition of annotations over the dataset (in total duration of recordings
annotated with a given construct). The three classes of constructs (task engagement,
social engagement, social attitude) and the two conditions (child-child and child-robot)
are plotted separately.

many long interactions (>30 min) were observed, which is especially desirable to study 373

social dynamics. 374

The distribution of the child-robot interaction durations shows that these 375

interactions are generally shorter. This was expected as the robot’s asocial behaviour 376

was designed to be less engaging. Often, the child and the robot were found to be 377

playing side-by-side – in some case for rather long periods of time – without interacting 378

at all (solitary play). 379

Over the whole dataset, the children faces were detected on 98% of the images, 380

which validates the positioning of the camera with respect to the children to record 381

facial features. 382

Annotations 383

Five expert annotators performed the dataset annotation. Each annotator received one 384

hour of training by the experimenters, and were compensated for their work. 385

In total, 13289 annotations of social dynamics were produced, resulting in an average 386

of 149 annotations per record (SD=136), which equates to an average of 4.2 387

annotations/min (SD=2.1), and an average duration of annotated episodes of 48.8 sec 388

(SD=33.3). Fig 9 shows the repartition of the annotation corpus over the different 389

constructs presented in Fig 5. Fig 10 shows the mean annotation time and standard 390

deviation per recording for each construct. 391

Overall, 23% of the dataset was double-coded. Inter-coder agreement was found to 392

be 51.8% (SD=16.8) for task engagement annotations; 46.1% (SD=24.2) for social 393

engagement; 56.6% (SD=22.9) for social attitude. 394

These values are relatively low (only partial agreement amongst coders). This was 395

expected, as annotating social interactions beyond surface behaviours is indeed 396

generally difficult. The observable, objective behaviours are typically the result of a 397

superposition of the complex and non-observable underlying cognitive and emotional 398

states. As such, these deeper socio-cognitive states can only be indirectly observed, and 399

their labelling is typically error prone. 400
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Fig 10. Mean time (and standard deviation) that each construct has been annotated in
each recording. The large standard deviations reflect the broad range of group dynamics
captured in the dataset.

However, this is not anticipated to be a major issue for data-driven analyses, as 401

machine learning algorithms are typically trained to estimate probability distributions. 402

As such, divergences in human interpretations of a given social episode will simply be 403

reflected in the probability distribution of the learnt model. 404

When looking at social behaviours with respect to age groups, expected behavioural 405

trends are observed (Fig 11): adult seeking goes down when children get older; more 406

cooperative play is observed with older children, while more parallel play takes place 407

with younger ones. In constrast, the social attitudes appear evenly distributed amongst 408

age groups. 409

Fig 11. Percentage of observations for each constructs with respect the children’s age.
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Dataset availability and data protection 410

All data has been collected by researchers at the University of Plymouth, under a 411

protocol approved by the university ethics committee. The parents of the participants 412

explicitly consented in writing to sharing of their child’s video and audio with the 413

research community. The data does not contain any identifying information, except the 414

participant’s images. The child’s age and gender are also available. 415

The dataset is freely available to any interested researcher. Due to ethical and data 416

protection regulations, the dataset is however made available in two forms: a public, 417

Creative Commons licensed, version that does not include any video material of the 418

children (no video nor audio streams), and hosted on the Zenodo open-data platform: 419

https://zenodo.org/record/1043508. The complete version that includes all video 420

streams is freely available as well, but interested researchers must first fill a data 421

protection form. The detail of the procedure are available online: 422

https://freeplay-sandbox.github.io/application. 423

Discussion of the free-play sandbox 424

The free-play sandbox elicits a loosely structured form of play: the actual play 425

situations are not known beforehand and might change several times during the 426

interaction; the game actions, even though based on one primary interaction modality 427

(touches on the interactive table), are varied and unlimited (especially when considering 428

the drawings); the social interactions between participants are multi-modal (speech, 429

body postures, gestures, facial expressions, etc.) and unconstrained. This loose 430

structure creates a fecund environment for children to express a range of complex, 431

dynamics, natural social behaviours that are not tied to an overly constructed social 432

situation. The diversity of the social behaviours that we have been able to capture can 433

indeed been seen in Figs 9 and 11. 434

Yet, the interaction is nonetheless structured. First, the physical bounds of the 435

interactive table limit the play area to a well defined and relatively small area. As a 436

consequence, children are mostly static (they are sitting in front of the table) and their 437

primary form of physical interaction is based on 2D manipulations on a screen. 438

Second, the game items themselves (visible in Fig 2) structure the game scenarios. 439

They are iconic characters (animals or children) with strong semantics associated to 440

them (such as ’crocodiles like water and eat children’). The game background, with its 441

recognizable zones, also elicit a particular type of games (like building a zoo or 442

pretending to explore the savannah). 443

These elements of structure (along with other, like the children demographics) 444

arguably limit how general the PInSoRo dataset is. However, it also enable the free-play 445

sandbox paradigm to retain key properties that makes it a practical and effective 446

scientific tool: because the game builds on simple and universal play mechanics 447

(drawings, pretend play with characters), the paradigm is essentially cross-cultural; 448

because the sandbox is physically bounded and relatively small, it can be easily 449

transported and practically deployed in a range of environments (schools, exhibitions, 450

etc.); because the whole apparatus is well defined and relatively easy to duplicate (it 451

essentially consists in one single touchscreen computer), the free-play sandbox facilitates 452

the replication of studies while preserving ecological validity. 453

Compared to existing datasets of social interactions (the Multimodal Dyadic 454

Behavior Dataset, the Tower Game dataset and the UE-HRI dataset), PInSoRo is 455

much larger, with more than 45 hours of data, compared to 10.6, 5.6 and 6.9 hours 456

respectively. PInSoRo is fully multi-modal whereas the Tower Game dataset does not 457

include verbal interactions, and the UE-HRI dataset focuses instead of spoken 458
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interactions. Compared to the Multimodal Dyadic Behavior Dataset, PInSoRo captures 459

a broader range of social situations, with fully calibrated datastreams, enabling a broad 460

range of automated data processing and machine learning applications. Finally, 461

PInSoRo is also unique for being the first (open) dataset capturing long sequences (up 462

to 40 minutes) of ecologically valid social interactions amongst children or between 463

children and robots. 464

Conclusion – Towards the machine learning of social 465

interactions? 466

We presented in this article the PInSoRo dataset, a large and open dataset of loosely 467

constrained social interactions between children and robots. By relying on prolonged 468

free-play episodes, we captured a rich set of naturally-occurring social interactions 469

taking place between pairs of children or pairs of children and robots. We recorded an 470

extensive set of calibrated and synchronised multimodal datastreams which can be used 471

to mine and analyse the social behaviours of children. As such, this data provides a 472

novel playground for the data-driven investigation and modelling of the social and 473

developmental psychology of children. 474

The PInSoRo dataset also holds considerable promise for the automatic training of 475

models of social behaviours, including implicit social dynamics (like rhythmic coupling, 476

turn-taking), social attitudes, or engagement interpretation. As such, we foresee that 477

the dataset might play an instrumental role in enabling artificial systems (and in 478

particular, social robots) to recognise, interpret, and possibly, generate, socially 479

congruent signals and behaviours whenever interacting with children. Whether such 480

models can help uncover some of the implicit precursors of social behaviours, and is so, 481

whether the same models, learnt from children data, can as well be used to interpret 482

adult social behaviours, are open – and stimulating – questions that this dataset might 483

contribute to answer. 484
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