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Abstract—Weed control in pasture is a challenging problem that 

can be expensive and environmentally unfriendly. This paper 

proposes a novel method for recognition of broad-leaf weeds in 

pasture such that precision weed control can be achieved with 

reduced herbicide use. Both conventional machine learning 

algorithms and deep learning methods have been explored and 

compared to achieve high detection accuracy and robustness in 

real-world environments. In-pasture grass/weed image data 

have been captured for classifier training and algorithm 

validation.  The proposed deep learning method has achieved 

96.88% accuracy and is capable of detecting weeds in different 

pastures under various representative outdoor lighting 

conditions. 
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I.  INTRODUCTION  

Pasture is increasingly seen as crop, which when managed 
effectively can provide a healthy diet for livestock throughout 
the year. The presence of weeds lessens the nutrition within 
the crop, and if left unchecked will out-compete the grass. One 
of the most common and invasive weeds is the broad-leaf 
weed known as Dockleaf (Rumex Obtusifolius). Current 
methods of controlling weeds tend to rely on blanket spraying 
of the field using herbicides such as glyphosphate. This is both 
costly for farmers and can have a negative impact on the 
environment, e.g. by contaminating nearby watercourses. 
Precision spraying has been developed with some success on 
"in-crop" weeds where the weed is more readily differentiated 
from the crop, either due to the high colour contrast between 
vegetation and soil, or by exploiting the regular geometry of 
the crop rows themselves. However, “in-pasture” weed 
detection is considerably harder as the weeds and grass are 
both predominantly green, and the grass can often obscure the 
weed. [1] provided an excellent comparison of machine vision 
techniques for detecting Dockleaf in pasture, concluding that 
the best performing was an approach that used Local Binary 
Patterns (LBP) which describe local textures as a feature 
extractor and a Support Vector Machine (SVM) as the 
classifier. This approach achieved an accuracy of just over 
80%. In this paper, we replicate this finding on a large dataset 
and compare this method with other conventional machine 
learning methods, as well as providing improved performance 
through the use of deep learning. 

II. LITERATURE REVIEW 

Weeds in pastures pose a threat to livestock health and 
their control using broadcast spraying can have a detrimental 
impact on the natural environment. Some weed species can 
result in animal illness, even death, particularly in equine 
pastures. While weed control in arable crops is a common 
practice, in grassland it is far less usual. A large amount of 
herbicide input is not only unfriendly to environment, but 
incurs great economic costs. This negative impact might be 
dramatically reduced if the weed control could be more 
targeted by application in a way such that the amount of 
herbicide usage is reduced to a minimum and its application 
more targetd by spot spraying only where weeds exist. In view 
of this, a few research works have investigated weed 
detection/recognition in grasslands by using conventional 
machine learning methods [2, 3, 4]. 

Machine learning has been providing effective solutions to 
a wide range of object detection tasks. Generally, desirable 
features can be readily extracted from indoor and structured 
environments. However, when it comes to outdoor 
environments where there exist variations that cannot be 
modelled explicitly, conventional machine learning methods 
can struggle to maintain good performance. This calls upon 
investigations and comparisons of different methods that can 
obtain reliable features (hand crafted or automatically learned) 
regardless of the complexity of data acquired. 

Neural networks have been an active area of research for 
many decades due to their theoretical ability to model any 
relationship between input and output, linear or non-linear, 
provided with sufficient data from which to generalise. As far 
back as 1980, Fukushima [5] proposed an architecture based 
on the human visual receptive _fields that he named the 
Neocognitron. It described alternating layers that convolved 
and sub-sampled an input image. This architecture inspired 
the development of LeNet-5 [6], a 7-layer convolutional 
neural network (CNN) which recognised hand written digits. 
However, due to the large numbers of trainable parameters 
needed, it could only operate on 32x32px images. With the 
growth in low cost, powerful graphics cards, it is now possible 
to design and train far deeper networks on desktop machines. 
For example an NVidia Corporation Titan-X card (similar to 
that used in this study) contains 3072 computing cores and 
12GB of on-board RAM. In recent years deep learning and 



convolutional networks have been applied in a wide range of 
both research areas and also in industrial settings [7, 8]. To 
our knowledge this is the first time a deep network has been 
used to classify docks in pasture. 

III. METHODOLOGY 

While object detection is a well-researched area, 
challenges posed by broad-leaf weed (referred to as weed in 
the rest of the paper) detection is different in that a grassland 
represents a type of dynamic and highly unstructured outdoor 
environment. More complications are caused by similarity in 
colour between grass crops and weeds. However, regardless 
of the similarity in colour, grass crops can commonly be 
characterised by their thin overlapping leaves as opposed to 
broad-leaf weeds that have relatively large homogeneous leaf 
surfaces. Therefore, texture information may be informative 
at discriminating between weeds and grass. 

A. Hardware of the vision system 

To ensure that abundant and good quality data can be 
captured, we designed a computer vision system that could 
run weed detection independently from other hardware 
components (e.g. a nozzle control system for spot spraying 
herbicides and a GPS module for recording weed locations), 
but at the same time, could conveniently communicate with 
the other hardware modules. 

The computer vision system consists of a standard 
machine vision camera, an appropriate camera lens (providing 
a field of view of approximately 1m by 1m) and an embedded 
computing device. It can serve as a data capture system as well 
as a weed detection system. The camera lens was chosen in a 
way such that it provided a field-of-view that matched the 
effective spraying area covered by two spray nozzles. The 
diagram in Figure 1 shows how the vision system fits in the 
overall hardware platform. 

 

Figure 1.  A diagram illustrating the hardware platform 

This vision system can be mounted to common in-field 
vehicles performing weed control by spraying herbicides. For 
data capture, we mounted this vision system on a quadbike. 

B. Data acquisition 

Pasture fields in Dundee, Scotland, UK were traversed 
with a quadbike, which travelled in column-wise transects of 
the fields. The camera was set to continuously capture images 
at a high frame rate and high resolution (2048*2048 pixels), 

where redundant images containing repeated regions of a field 
were removed. Each remaining image was then divided into 
two columns and three rows, resulting in image sizes of 1024 
× 682 pixels. Each spray nozzle will therefore cover one of the 
two columns, i.e. three image patches per image frame. 

A MATLAB script was implemented so that individuals 
could rapidly label the image data using a keyboard arrow key 
press. This allowed the data to be efficiently and manually 
labelled in three categories - grass, weed and unsure. Data 
labelled as ‘unsure’ were discarded from the experiments as 
ground truth for them was not reliable. All the weed data were 
collated and masks for the weed regions were then manually 
labelled as well. Apparently, weeds can be almost infinitely 
small when they just start to grow, and it is unrealistic to detect 
them at these sizes. Therefore it was decided to only attempt 
to detect weeds that have a coverage larger than 5% of the 
entire image patch.  

A representative example of a labelled weed image patch 
is shown in Figure 2. 

 

 
(a) 

 
(b) 

Figure 2.  An example of a labelled weed image where the red region is 
the mask for the weeds. (a) the original image. (b) the image superposed 

with the mask. 

Overall, 6087 image patches were captured and labelled, 
including 4080 grass image patches and 2007 weed image 
patches. 

C. Conventional machine learning 

 
Conventionally, machine learning demands hand crafted 

features and a model that can perform either regression or 



 
 

Figure 3.  Architecture of our CNN consisting of six convolutional layers with alternating dropout and max-pooling layers. Classification occurs in the final 

three fully connected layers. 

 
classification tasks such that image samples can be 
characterised and discriminated.  

Local binary patterns [9] have been found to be excellent 
descriptors of local textures and have been widely used for 
various applications. Extracting uniform local binary pattern 
histograms (LBPH) can compute meaningful feature 
descriptors that are rotation invariant whilst retaining low 
dimensionality. Both properties are advantageous for real-
world and real-time applications.  Since we need to capture 
fine grained texture information, a neighbourhood of 8 and a 
radius of 1 were chosen for obtaining LBPH descriptors. 𝐿2 
normalisation was implemented at a post-processing stage. To 
investigate the impact of utilising colour information, we 
extracted LBPH features from both greyscale images and 
colour images (concatenated features from the Red, Green and 
Blue channels), respectively. A comparison of these results 
can be found in Section IV. 

Weed detection may be considered a two-class problem, 
i.e. weed and non-weed. This can be effectively solved by a 
support vector machine (SVM) [10] which was originally 
formulated as a binary classification method. As we captured 
a large amount of labelled image data, this supervised method 
should be able find a linear or a non-linear hyperplane that can 
separate the two classes well. Other classification and 
regression method have also been tested, including K-nearest 

neighbour (KNN), Ensemble methods, Complex Tree and 
Logistic Regression. 

These methods have been implemented in MATLAB [11] 
for evaluation. The results in Section IV report the 
performance of these methods.  

D. A deep learning based method 

CNN approaches in particular, combine both the feature 
extraction and classification stages of classical pattern 
recognition, by propagating the training of a fully connected 
classifier back through the convolutional layers in order to 
select the best features. 

To train a network of this depth not only takes a great deal 
of computing power, but also a very large amount of training 
data. In order to boost the amount of data we perform small 
manipulations to increase the variance and also improve the 
robustness of the network (shifting the images by up to 64 
pixels in the x/y plane, flipping the images horizontally and 
rotating by up to 30 degrees). The colour images are 1024*682 
pixels in size and these are resized to 64x64 pixels (this was 
determined empirically to give an acceptable compromise of 
good performance vs speed of processing), before being fed 
into the first layer of the network. The target for each image is 
either Weed, if the image contains weed, or 'Not Weed if it 
does not. These are converted to a 'binary' representation of 
output nodes, where a '1' in the relevant index corresponds to 



that class e.g.'10' corresponds to Weed, and '01' corresponds 
to 'Not Weed. The network we train consists of six 
convolutional layers, with alternating dropout and max-
pooling layers in between. The purpose of these is to aid 
convergence by preventing local minima, and providing 
scale/location invariance. The classification layer consists of 
three fully connected layers with the final layer containing 2 
outputs as described above. The architecture is shown in 
Figure 3.  

The convolutional neural network was written using 
available libraries in Python3.5 (Keras2.0, scikit-learn0.18.2, 
tensorow-gpu-1.1.0). All code has been run on a desktop 
computer with an Intel i5 processor, 16GB RAM using 
Windows7 64-bit, and an NVidia Titan-X 12GB graphics card 
with Maxwell Architecture. Training our network over 5000 
epochs takes approximately 20 minutes. The results of the 
model from the best performing epoch on the test data is then 
used. The results in Section IV report performance on the test 
partition. 

IV. EXPERIMENT AND RESULTS 

As a single spray nozzle has a coverage of an entire image 
patch, it is unnecessary to detect the exact coordinates of the 
weeds within the patch, but instead each image patch needs to 
be classified as either containing weeds or not containing 
weeds. Therefore the experiments were carried out for a two-
class classification problem. 

For all experiments, the data were split 80:20 into training 
and testing partitions. Table I shows the partitioning of these 
data. 

TABLE I.  A DATA PARTITION RATIO OF 80:20 WAS USED TO SPLIT 

THE TRAINING AND TEST DATASETS FOR TRAINING OUR OWN CNN. 
RESULTS ARE REPORTED ON THE TEST PARTITION 

 
Number of training 

images 
Number of 

testing images 
Total 

Weed 1591 416 2007 

Not Weed 3278 802 4080 

Total 4869 1218 6087 

 
Various other state-of-the-art methods were also tested, 

allowing a comparison to be made amongst several 
representative classification and regression methods for weed 
detection. The results are summarised in Figure 4. 

 

 
Figure 4.  Weed detection accuracy of a linear SVM (SVM-L), quadratic 

SVM (SVM-Q), medium Gaussian SVM (SVM-G), weighted KNN (KNN), 

Ensemble subspace discriminant (Ensemble) and logistic regression 

(regression) [11] 

As shown by the results, a quadratic SVM produced the 
highest accuracy (i.e. 89.40%) amongst a number of 
conventional machine learning methods.  

The confusion matrix for the quadratic SVM can be seen 
in Figure 5. 

 
Figure 5.  The normalised confustion matrix of the quadratic SVM. This 

method correctly identifies weeds with 80% accuracy. 

It should be noted that these results are based on LBPH 
features extracted from RGB colour images. When only 
greyscale information was used, the performance dropped to 
87.7% from 89.4%.  

Similarly, we evaluated weed detection accuracy of our 
convolutional neural network. The results can be found in 
Table II and Figure 6. 

TABLE II.  BREAKDOWN OF RESULTS WHERE ACCURACY = NUMBER 

CORRECT / TOTAL NUMBER OF THAT CLASS, FALSE POSITIVES = SUM OF 

INCORRECT LABELS FOR A PREDICTED CLASS / TOTAL NUMBER FOR THAT 

CLASS, AND FALSE NEGATIVE = SUM OF INCORRECT LABELS FOR A TRUE 

CLASS / TOTAL NUMBER FOR THAT CLASS. 

 Accuracy (%) 
False Positive 

Rate (%) 
False Negative 

Rate (%) 

Weed 93.15 1.8 6.8 

Not Weed 98.97 3.8 1 

 
 

 
Figure 6.  The normalised confustion matrix of our CNN. This method 

correctly identifies weeds with 93% accuracy. 

It can be seen that although LBPH and SVM gave 
desirable performance given the scene complexity, the CNN 
achieved an accuracy that is 13.00% higher for weed detection 
at an overall accuracy of 96.88%. A few visual examples of 
weed/grass classicisation results are shown in Figure 7. 
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Figure 7.  Visual examples of classification results. (a) successful 

identification of weed, (b) successful identification of grass, (c) weed 

identified as grass, and (d) grass identified as weed. 

CONCLUSION 

Broad-leaf weed detection in pasture is a challenging 
problem which is faced as it involves uncontrollable lighting 
as well as a highly complex and unstructured scenes. This 
paper investigates different methods for achieving high 
detection accuracy and robustness in a real-world application. 
A number of methods have been proposed and implemented. 
Results show that conventional machine learning methods can 
achieve a desirable high accuracy by exploring image texture 
information, where local binary patterns and a quadratic 
support vector machine achieved the highest accuracy of 
89.4%. A deep learning method utilising a CNN further 
increased the accuracy to 96.88%. Although large areas of 
extreme shadowing can cause false detections, this method is 
found to be robust to environmental variations in pastures. In 
our future works, weed species recognition is to be carried out 
such that weed control can be implemented in a more adaptive 
manner with enhanced effectiveness. 
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