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Abstract 

In this study, an experimentally validated numerical analysis was performed toward optimization of stacking 

sequence in multidirectional laminated composites subjected to low velocity impact. For this purpose, an 

optimization program was developed by integrating Finite Element Method (FEM) and Multi Objective Genetic 

Algorithm (MOGA) using modeFRONTIER. In this regard, three objective functions were defined; one, based 

on Hashin failure theory and two others based on interlaminar shear and tensile stresses. These objective 

functions were aimed to be optimized through tailoring ply angles with special focus on minimizing impact 

induced damage. The obtained results indicated that the proposed optimization method is an effective tool for 

optimizing stacking sequence of laminated fiber reinforced composite materials. 
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1. Introduction 

Fiber reinforced polymers (FRP) are extensively used in various engineering fields, especially in aerospace, military 

and automotive industries due to their high specific strength and stiffness, good fatigue performance, great corrosion 

resistance, etc. However, different damage mechanisms such as: matrix cracking, fiber breakage and fiber/matrix 

debonding affect load bearing capacities and operational life of these materials [1-6]. Hence, it is very important to 

investigate composite materials behavior and corresponding failure modes under various loading conditions. One of 

the most critical loading conditions is impact event which is a sophisticated phenomenon since it involves a very 

complex stress distribution in the material, e.g., inter-laminar shear stress inside the laminate, compression at the top, 

tension at the bottom and contact stress just behind the projectile [7,8]. Furthermore, impact loading causes barely 

visible impact damage (BVID) which can’t be easily detected and significantly reduces strength and stiffness of 

composite materials. In recent years, a wide variety of experimental, numerical and analytical studies have been 

conducted to investigate impact induced damage in composite materials [7- 

Abisset et al. [7] conducted scaled indentation experiments on quasi-isotropic composite plates and evaluated damage 

evolution by means of non-destructive methods such as X-ray computed tomography and ultrasonic scanning. The 

results revealed similar damage patterns for the scaled plates. It was shown that geometrical parameters, stacking 

sequences and the ply block thickness are the most important factors influencing the damage patterns. The degree of 

geometric nonlinearity was also  found to be important, mainly affecting the delamination amount and corresponding 

critical load. Lopes et al. [8] followed their previous experimental work to investigate the scaling effect in more detail 

using finite element method. They simulated progressive failure behavior of matrix, fibers and interfaces between the 

plies by means of physically based constitutive material models. The comparison between the numerical and 

experimental results indicated a high reliability of FEM in predicting the impact dynamics, impact footprint, locus and 

size of various damage mechanisms such as delamination, fiber damage and matrix cracking, as well as the energy 

amount dissipated by delamination, intra-ply damage and friction. 

Xu et al. [9] performed a numerical/experimental study on scaling effects in CFRP composites subjected to low 

velocity impact. According to their results, the elastic response of the composite plates obeys a scaling law, while 

damage does not scale in accordance with that predicted by simple scaling laws. Assessment of the damaged 

specimens showed that for specified scaled impact energy, fiber damage was greater in the larger samples in the form 
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of large cracks in the warp and weft directions. However, only small levels of delamination were shown in these 

specimens because of the highly toughened epoxy resin. It was also demonstrated that the fracture energy associated 

with fiber failure scales with the square of scale size, n2, while the initial impact energy scales as n3. 

Chambers et al. [10] experimentally studied impact induced damage in CFRP composites using fiber optic sensors. 

Based on their results, by means of a panel containing an array of closely located sensors, impact consequences can 

be accurately detected. Zhang et al. [11] investigated damage development and dynamic mechanical response of cross-

ply composite laminates under low velocity impact condition. Based on continuum damage mechanics, they 

numerically investigated force-displacement, force-time and energy-time history curves along with the damage 

propagation behaviors of delamination and matrix cracking. Comparison between the numerical and experimental 

results demonstrated acceptable accordance, indicating high efficiency of the proposed FE model. Shi et al. [12] 

modeled intra- and inter-laminar cracking mechanisms in carbon/epoxy composite plates subjected to impact loading. 

The impact force and energy predicted by FE model were in a good agreement with experimental findings. Wisnom 

et al. [13] numerically evaluated discrete transverse cracks in polymer composites by means of cohesive zone interface 

elements. Through combining stress-based and fracture mechanics approaches, they could accurately predict initiation 

and propagation of different damage modes. Olsson et al. [14] analytically investigated dynamic impact event in 

composite plates. Using dynamic solution, they developed a delamination threshold load by considering inertial effects 

in delaminated sub-laminates.  

Rahul et al. [15] applied FEM and genetic algorithm for minimizing cost and weight of the laminated composites. 

They used delamination and matrix cracking as failure criteria for optimization process, without investigating fiber 

breakage. Khedmati et al. [16] investigated stacking sequence optimization of composite panels under slamming 

impact loading for minimizing central deflection of the panels. Lopez et al. [17] studied optimization of hybrid 

laminated composites under buckling loading. They used maximum stress, Tsai-Wu and Puck failure criteria for 

optimization task. Kalantari et al. [18] investigated optimization of unidirectional hybrid composites under bending 

loading with the aim of minimizing the weight and the cost of the composite plates subjected to the constraint of a 

predetermined minimum flexural strength. Jacob et al. [19] studied multi-objective optimization of composite pressure 

vessels based on Tsai-Wu failure criterion for minimizing mass and maximizing the axial and hoop strength. Burn et 

al. [20] used bio-inspired design approach for strength improvement of composite T-joints under bending loading by 

means of modeFRONTIER software. Their optimization problem had only a single objective of minimizing the peak 
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interlaminar tensile strength, as the most important factor for delamination. According to the above mentioned 

literature, there are only a few studies in the field of composites optimization for “impact loading” conditions [14, 

15], and in these studies different objective functions and design variables have been examined for optimization of 

composite materials. To the best of the authors’ knowledge, Hashin failure theory hasn’t been used so far as an 

objective function or the design constraint of the optimization process. Hashin criterion is a comprehensive criterion 

that considers different failure modes of: fiber tension, fiber compression, matrix tension and matrix compression. 

However, the theory doesn’t consider delamination damage mode. Hence, in this research, beside Hashin criterion, 

two other objective functions were defined to take into account all probable damage modes of laminated composites. 

Indeed, Hashin criterion was applied to account for matrix cracking and fiber breakage damage mechanisms, while 

interlaminar shear and tensile stresses were employed to consider delamination damage mode. Then these objective 

functions were aimed to be minimized by tailoring ply angles through integration of finite element method and genetic 

algorithm. For this purpose, an optimization program was developed based on finite element method and genetic 

algorithm using modeFRONTIER software. The main goal of the present study is to optimize stacking sequence of 

carbon/epoxy composites subjected to low velocity impact with the special focus on minimizing impact induced 

damage.  

2. Experimental set-up 

The specimens used in this work are IM7/8552 composite plates made up of epoxy resin reinforced by carbon fibers 

with nominal volume fraction of 57.7%. The impact tests were performed based on ASTM D7136 standard [21]. For 

this purpose, composites plates were prepared in a rectangular shape with the dimensions of 150 mm * 100 mm * 1 

mm. The plates comprise eight plies with nominal cured ply thickness of 0.125 mm, oriented by various stacking 

sequences in the form of [θ1/ θ2/ θ3/ θ4]s, where θi is the ply angle determined by optimization program. The layup 

orientations were considered symmetric to avoid mechanical coupling between extensional and bending loadings. The 

specimens were restrained using four clamps and the tests were conducted by using a hemispherical steel impactor 

with a diameter of 16 mm and a hardness of 62 HRC. The experimental set-up is shown in Figure 1. 

 

“[Insert Figure 1]” 
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3. Finite element simulation 

3.1. Material model 

The composite plates were regarded as homogenous materials with orthotropic linear elastic behavior before damage 

initiation. The material constitutive model prior to damage initiation was defined as follows: 

σ = C ε0  (1) 

where: 
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where, Ei is Young’s modulus in i direction, νij is Poisson’s ratio and Gij is shear modulus in i-j plane. Γ is a constant 

defined as: 

1
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 (3) 

The damage initiation criterion was specified based on 3D Hashin failure theory and the damage evolution law was 

determined based on the fracture energy dissipation concepts. The 3D Hashin criterion was implemented via user 

defined subroutine VUMAT. This criterion considers four damage modes, namely, fiber compression, fiber tension, 

matrix compression and matrix tension modes according to Eqs. (4)-(7) as follows [22]: 

- Fiber compression mode (σ11<0): 

211d ( )fc
Xc


  (4) 

- Fiber tension mode (σ11≥0): 
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- Matrix compression mode (σ22+ σ33<0): 
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- Matrix tension mode (σ22+ σ33≥0): 
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Where, σij are stress tensor components, Xt and Xc are longitudinal tensile and compressive strengths, Yt and Yc are 

transverse tensile and compressive strengths, S12, S13 and S23 are in-plane and out-of-plane shear strengths, respectively. 

dfc and dft are damage indexes corresponding to fiber damage and dmc and dmt are damage indexes corresponding to 

matrix damage under compression and tension, respectively.  

The global damage indexes for fiber and matrix (df and dm) are defined as: 

d 1 (1 )(1 )

d 1 (1 )(1 )

d df ft fc

d dm mt mc

   

   
 (8) 

After damage initiation, the material constitutive model is given by: 

dσ = C ε  (9) 

Where, Cd is the damaged stiffness matrix defined as: 
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Where, Cd
ij and Cij denote damaged and undamaged tensor coefficients, respectively. smt and smc are constant 

coefficients corresponding to shear stiffness loss due to matrix failure under tension and compression, respectively 

[23].   

Material properties of IM7/8552 composite are summarized in Table 1 [24]. 

Table 1. Material properties of IM7/8552 [24]. 

E1 (GPa) 161 ν23 0.436 

E2 (GPa) 11.4 Xt (MPa) 2806 

E3 (GPa) 11.4 Xc (MPa) 1690 

G12 (GPa) 5.17 Yt (MPa) 60 
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G13 (GPa) 5.17 Yc (MPa) 185 

G23 (GPa) 3.98 S12 (MPa) 90 

ν12 0.32 S13 (MPa) 90 

ν13 0.32 S23 (MPa) 90 

 

3.2 FE model 

Finite element simulation of the impact event was carried out using general purpose finite element package 

ABAQUS/Explicit. Due to the symmetry of the problem, only quarter of the specimen was modeled to reduce the 

computational cost, by properly defining symmetry planes as shown in Figure 2. In order to increase the efficiency of 

the FE model, a finer mesh was applied in the impact region, while a coarser mesh was utilized in the area away from 

the impact zone. The optimum element size was determined by performing preliminary convergence studies based on 

the trial and error method. The impactor was modeled as a rigid body and initially positioned to be in contact with the 

top surface of the composite plate, just right in the center of the specimen with initial velocity of 1.414 m/s in the 

direction perpendicular to the plate, giving an impact energy of 5 J. The contact between the specimen and impactor 

was modeled using general contact algorithm available in ABAQUS/Explicit by defining an element set contacting 

both external and internal faces of the specimen, to ensure that the impactor interacts with interior elements after 

failure of exterior elements. The contact formulation was defined based on penalty method with friction coefficient of 

0.3 between the specimen and the impactor [5]. 

 

“[Insert Figure 2]” 

4. Optimization procedure 

The optimization program was developed by integration of FEM model and genetic algorithm in modeFRONTIER 

software. The main goal of the optimization procedure was to find out the optimum stacking sequences that lead to 

the least impact induced damage in composite plates. For this purpose, the ply angles were considered as input 

variables ranging between 0o and ±90 o with a 15o step for practical manufacturing. The objective functions were 
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defined based on the damage indexes of Hashin failure criterion as well as the interlaminar shear and tensile stress 

components of σ13 and σ33 as follows: 

2 2 2 2: min[ ( ) ( ) ( ) ( ) ]1Obj d d d dfc ft mc mt

   

    
(12) 

: min[ ]2 13Obj


  (13) 

: min[ ]3 33Obj


  (14) 

It should be mentioned that the average of the parameters was calculated to evaluate the damage amount in the whole 

specimen. 

The optimization problem has only one constraint that limits the stacking sequences to be symmetric in order to avoid 

mechanical coupling. The MOGA-II (multi objective genetic algorithm) was used as the optimization solver.  

The optimization workflow is illustrated in Figure 3. 

 

“[Insert Figure 3]” 

5. Results and Discussions 

Experimently measuredload-displacement curves were compared with the FE predictions in Figure 4, for the 

[0/90/90/0]s configuration. As shown in this figure, both experimental and numerical results exhibit similar trends, 

especially in the initial region of the curves, where there is a linear relationship between the load and displacement. 

However, the load measured by experimental tests is more oscillatory. In the second stage of the impact test, the load 

suddenly drops and then oscillates around an approximately a constant value. In the final stage, the load gradually 

decreases until settles to zero. In order to evaluate the performance of the FE model quantitively, the peak load and 

maximum displacement predicted by FEM were compared with those of experimental recordings. The peak loads 

obtained by FE model and experimental tests are 1.687 KN and 1.552 KN, respectively and the maximum 

displacements recorded by the FE model and experimental tests are 7.41 mm and 7.82 mm, respectively. The results 
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indicate good correlation between numerical and experimental findings, however, the maximum load predicted by the 

FEM is a little higher than that recorded by the experimental tests, and the maximum displacement obtained by the 

FEM is a little lower than that obtained experimentally. This discrepancy can be attributed to the fact that delamination 

was not directly simulated, which resulted in over-prediction of FE model stiffness and consequently caused higher 

peak load and lower maximum displacement. It should be mentioned that the effect of delamination was accounted 

by considering inter-laminar tensile and shear stresses, σ33 and σ13. 

 

“[Insert Figure 4]” 

After validation of the FE model, the optimization program was run by integrating the FEM and genetic algorithm. 

The aim of the optimization process was to find out the optimum layup orientation that leads to minimum impact 

induced damage. As mentioned in section 4, the objective was to minimize Hashin failure indexes (Eq. (12)) as well 

as inter-laminar tensile and shear stresses of σ33 and σ13, as the most influential stress components in delamination 

(Eqs. (13) and (14)). The optimization process was carried out as follows: First, 10 layup orientations were defined as 

starting set of input variables. Then, FE simulations were performed in ABQUS/Explicit based on these orientations. 

The outputs of FE simulations (i.e., σ13 and σ33 stress components and Hashin damage indexes) were then passed to 

modeFRONTIER optimization solver (MOGA-II in this study). By evaluating the FE results, the optimization 

algorithm updated the input variables (i.e. ply angles) in accordance with the objective functions defined by Eqs. (12)-

(14). The new updated ply angles were again passed to the FE model and this process was iterated 100 times, fully 

automatically using modeFRONTIER software. In this regard, 1000 simulations were performed. The optimization 

results are shown in Figure 5 by means of a 3D bubble chart. In this figure, the mean of σ13 and σ33 are depicted in x-

axis and y- axis, while the Hashin damage factor is illustrated based on the bubble size, the larger the bubble size, the 

greater the damage factor. The optimum solution lies in the bottom left of the chart (indicating lower σ13 and σ33) with 

a smaller bubble size (indicating lower damage factor).  

 

“[Insert Figure 5]” 
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The best ten optimum solutions are summarized in Table 2. The results demonstrate mean of σ13 and σ33 stress 

components as well as mean of all damage indexes of Hashin failure model individually. Hence, it is straightforward 

to analyze different stacking sequences from the viewpoint of various failure modes such as: fiber breakage and matrix 

damage (under compression and tension) as well as delamination.  

As seen in Table 2, the stacking sequences of [90/90/90/0]s and [0/90/90/0]s have the least values of fiber damage 

factor under compression; the stacking sequences of [45/-60/60/45]s and [60/90/0/-45]s have the least values of fiber 

damage factor under tension; the stacking sequences of [45/-60/0/90]s and [45/-60/60/45]s have the least values of 

matrix damage factor under compression and stacking sequences of [45/-45/45/-45]s and [0/90/90/0]s have the least 

values of matrix damage factor under tension. Considering all of the Hashin failure indexes (i.e. Eq. (12)), the stacking 

sequences of [45/-45/45/-45]s and [30/-60/60/-30]s exhibit the best performance. From the viewpoint of delamination 

damage mode (i.e. inter-laminar stress components of σ13 and σ33), the stacking sequences of [45/0/90/-45]s and 

[60/90/0/-45]s have the least values of σ13 and the stacking sequences of [90/90/90/90]s and [0/90/90/0] have the least 

values of σ33. Considering all of the objectives (Hashin damage factor, σ13 and σ33 stress tensors) altogether, the 

[60/90/0/-45]s stacking sequence has the least value of the sum of three objectives, and subsequently was regarded as 

the best optimum layup orientation. 

Table 2. Ten optimum stacking sequences. 

No Layup dfc dft dmc dmt Obj1 

Obj2: σ13 

(0.1GPa) 

Obj3: σ33 

(0.1GPa) 

1 [60/90/0/-45]s 0.0769 0.0929 0.1363 0.3708 0.4130 0.0901 0.1704 

2 [0/90/90/0]s 0.0693 0.1233 0.1413 0.3315 0.3871 0.1388 0.1598 

3 [45/-45/45/-45]s 0.0718 0.1212 0.1366 0.3231 0.3780 0.1384 0.2256 

4 [45/-45/-60/60]s 0.0814 0.1002 0.1354 0.3445 0.3920 0.1047 0.2661 

5 [45/-60/60/45]s 0.0994 0.0907 0.1209 0.3697 0.4116 0.1301 0.2370 

6 [90/90/90/90]s 0.0413 0.0978 0.2179 0.4953 0.5515 0.1436 0.1165 

7 [45/0/90/-45]s 0.0814 0.0937 0.1334 0.3894 0.4299 0.0887 0.3061 

8 [30/-60/60/-30]s 0.0876 0.0991 0.1245 0.3348 0.3809 0.1058 0.3384 

9 [30/-60/45/-45]s 0.0809 0.1049 0.1295 0.3426 0.3895 0.1261 0.3174 
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10 [45/-60/0/90]s 0.0798 0.1048 0.1156 0.3533 0.3944 0.1044 0.3545 

 

The FE simulation results for [60/90/0/-45]s orientation are illustrated in Figure 6, representing contour plot of Hashin 

damage indexes (i.e. matrix and fiber damage under tension and compression). For comparison, the contour plot of 

damage indexes for [0/-30/45/90]s orientation is shown in Figure 7. As shown in these figures, the damage severity is 

much more evident in stacking sequence of [0/-30/45/90]s in comparison to [60/90/0/-45]s orientation. The damage 

coefficients of dfc, dft, dmc and dmt for [0/-30/45/90]s orientation are 0.0844, 0.0816,0.1499 and 0.4596, respectively. 

For both layup orientations, the damage pattern shows that matrix damage under tension is the most prevailing failure 

mode, followed by matrix damage under compression, fiber damage under tension and fiber damage under 

compression, respectively.  

 

“[Insert Figure 6]” 

 

“[Insert Figure 7]” 

The maximum damage diameter of these specimens was also calculated. In Figure 8, measurement of damage extent 

is illustrated based on the experimental impact tests. According to ASTM D7136 standard [20], eight points were 

located relative to the specimen center and the damage extent was determined based on the maximum distance between 

these points along the identified lines. Performing the measurements, it was calculated that the maximum damage 

diameter for [0/-30/45/90]s and [60/90/0/-45]s orientations are 13.42 mm and 11.07 mm, respectively.  

 

“[Insert Figure 8]” 

 

 

6. Conclusions 
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In this paper, an optimization program was developed to minimize impact induced damage in IM7/8552 composite 

plates. For this purpose, genetic algorithm and FEM were integrated by means of modeFRONTIER software. First, 

the accuracy of FE model was validated through comparing the load-displacement curve of the composite plates 

obtained by the experimental tests and the FE simulations. The comparison revealed good agreement between the 

numerical and experimental results, both quantitively and qualitatively. After validation of the FE model, the 

optimization program was run in order to find out the optimum layup orientation that leads to minimum amount of 

damage. The damage amount was evaluated based on the values of Hashin damage indexes as well as the inter-laminar 

shear and tensile stresses, as the most important factors affecting delamination. The obtained results indicate that the 

stacking sequences of [90/90/90/0]s and [0/90/90/0]s have the least values of fiber damage factor under compression; 

the stacking sequences of [45/-60/60/45]s and [60/90/0/-45]s have the least values of fiber damage factor under tension; 

the stacking sequences of [45/-60/0/90]s and [45/-60/60/45]s have the least values of matrix damage factor under 

compression and stacking sequences of [45/-45/45/-45]s and [0/90/90/0]s have the least values of matrix damage factor 

under tension. Considering all of the Hashin failure indexes, the stacking sequences of [45/-45/45/-45]s and [30/-

60/60/-30]s exhibit the best performance. From the viewpoint of delamination damage mode (i.e. inter-laminar stress 

components of σ13 and σ33), the stacking sequences of [45/0/90/-45]s and [60/90/0/-45]s have the least values of σ13 

and the stacking sequences of [90/90/90/90]s and [0/90/90/0] have the least values of σ33. Considering all of the 

objectives altogether, the [60/90/0/-45]s stacking sequence was regarded as the optimum layup orientation. 
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