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ABSTRACT: Morpholino Oligonucleotides (MOs), an uncharged DNA analogue, are functionalized with an acrylamide moiety and 

incorporated into polymer hydrogels as responsive crosslinks for microRNA sequence detection. The MO crosslinks can be selec-

tively cleaved by a short target analyte single-stranded DNA (ssDNA) sequence based on microRNA, inducing a distinct swelling 

response measured optically.  The MO crosslinks offer significant improvement over DNA based systems through improved thermal 

stability, no salt requirement and 1000-fold improved sensitivity over a comparative biosensor, facilitating a wider range of sensing 

conditions.  Analysis was also achieved using a mobile phone camera, demonstrating portability.

Hydrogels are crosslinked hydrophilic polymers that can swell to ab-

sorb large volumes of water. Responsive hydrogels are important smart 

materials able to respond to external stimuli such as pH, temperature 

and a wide variety of other biomarkers.1–5 These networks have shown 

promise in various applications such as controlled drug release,6 wound 

healing7 and biosensing.8 DNA-based hydrogels using designed single-

stranded DNA (ssDNA) sequences have been extensively investigated 

as responsive hydrogels, utilising nucleic acid Watson-Crick base pair-

ing rules or DNA secondary structures to facilitate specific biorecogni-

tion.9–12 

Pure DNA hydrogels have been synthesised using 3- or 4- way 

crosslinks, linked using T4 DNA ligase to form networked DNA, and 

subsequently shown to release a variety of drugs, proteins or cells dur-

ing DNA degradation.13 In sensing applications, acrydite-modified 

ssDNA was immobilised in polyacrylamide chains that, when mixed 

with partially complementary ssDNA that forms a crosslink, has been 

used to bring about gelation which can then be reversed in response to 

an analyte that displaces the DNA crosslink.14,15 One strand of the 

crosslink is fully complementary to the analyte sequence, such that the 

analyte will displace the partially complementary strand and break the 

crosslink (Fig 1a and b). Similarly, partially complementary acrydite-

modified ssDNA crosslinks have been copolymerised with acrylamide 

and a covalent crosslinker, N,N′-methylenebis(acrylamide) (MBA), to 

form gels to detect short DNA sequences.16–18 In this case, there is no 

gel-sol transition due to the covalent crosslinks, rather that reduction in 

crosslink density allows the gel to absorb more water and swell to a 

greater volume (Fig 1c). 

DNA crosslinked hydrogels have several inherent limitations includ-

ing thermal denaturation, solvent interactions and a salt requirement.19 

These issues are exacerbated when using short ssDNA sequences (ca. 

22 nucleotides) as required for microRNA (miRNA) detection.20,21 

miRNA have garnered substantial attention as potential biomarkers 

able to differentiate a wide variety of pathologies.22 In particular, cir-

culating miRNA (either as free miRNA or contained in cell secreted 

exosomes) from saliva, urine, blood or other extracellular fluids have 

become a target for biosensor design.23 Despite this, difficulties in de-

tection remain, in particular due to the low concentrations of miRNA 

(~1 pM - ~10 fM in serum).24,25 Established miRNA detection methods 

such as RT-qPCR and microarrays (Limit of detection (LoD) fM - aM 

and nM - pM respectively)26offer high sensitivity and multiplexing, yet 

typically require centralised labs, expensive reagents and relatively 

long times to results (1 day or more). Techniques reliant on fluores-

cence (LoD nM - fM)27 have issues such as bleaching or auto-fluores-

cence, while microelectromechanical systems (MEMS) or nanoelectro-

mechanical systems (NEMS) (LoD aM - µM)28 typically have a rela-

tively complex fabrication process. 

Recent work showed the benefits of using synthetic DNA analogues 

in hydrogels, utilising a mixture of peptide nucleic acid (PNA) in a “hy-

brid” crosslink with ssDNA to form crosslinked salt-free hydrogels,29 

although some challenges remain. We investigate herein Morpholino 

Oligonucleotide (MO) crosslinked hydrogels. MOs are synthetic DNA 

analogues with an uncharged backbone consisting of morpholine rings 

connected by phosphorodiamidate groups (Figure 1d).30 This un-

charged backbone results in stronger DNA binding and reduced salt 

dependence whilst maintaining high water solubility and avoiding en-

zymatic degradation.31 The increased rigidity of the backbone also re-

duces self-hybridisation. The benefits of MOs have been assessed in 

electrochemical studies32,33 and microarrays34 but have hitherto been 

unused in responsive hydrogels or in other fields using oligonucleotide 

interactions such as DNA nanotechnology.  

We present the first MO crosslinked hydrogels (MOCHs) as a means 

of label-free ssDNA detection and assess the benefits of MO crosslinks 

with regards to future automation and processing. MOCHs included 

both physical (hydrogen bonded MOs) and covalent crosslinks (MBA) 

(Figure 1e). The MO crosslinks consisted of two strands, the “sensor” 

strand had full complementarity for the chosen “analyte” ssDNA se-

quence, while the “blocker” strand was partially complementary to the 

sensor strand, such that the blocker strand will be displaced by the an-

alyte ssDNA sequence. Displacement of the blocker strand breaks the 

physical crosslinks of the gel facilitating greater swelling while binding 

of the ssDNA will also change the ionic charge of the gel macrostruc-

ture. In this work we selected the miRNA sequence miR-92a (Table 1, 

A1), which has potential as a biomarker for leukaemia when compared 

to miR-638 concentrations.20 This sensor design can be easily adapted 

to target any miRNA sequence and the blocker toehold length can be 

altered to account for weaker sequences with fewer GC base pairs.   



 

 
Figure 1 (a) Sequences of the morpholino oligonucleotide (MO) crosslink, 
tethered in polymer at the 5’ end. (b) Displacement of the MO blocker 

strand by the analyte strand to break the crosslink. (c) Morpholino Oligo-

nucleotide Crosslinked Hydrogel (MOCH) system showing displacement 

of blocker strand (yellow) from sensor strand (blue) by analyte sequence 

(red), facilitating greater swelling.  (d) Structure of MO with 5’ acrylamide 

for copolymerization with acrylamide where “R” is any of nucleobases 
ACGT. Full structure in Figure S1. (e) UV-initiated radical polymerization 

of acrylamide (10 wt%), functionalized MOs (0.4 mol %) and MBA (0.6 

mol %) to form MOCH through radical initiation (0.125 mol %) where mol 
% is relative to acrylamide.  

EXPERIMENTAL SECTION 

Materials. All materials were purchased from Sigma Aldrich and 

used as received, except for the Morpholino Oligonucleotides and 

ssDNA oligonucleotide sequences (Table 1) which were purchased 

from GeneTools and IDT Technologies, respectively. 

 

Table 1. Morpholino Oligonucleotide sequences.  

S1: 5′-ACA GGC CGG GAC AAG TGC AAT A-3′ 

B1: 5′-TAT TGC ACT TGT-3′  

A1: 5′-TAT TGC ACT TGT CCC GGC CTG T-3′ 

AMM1: 5’-TAT TGC CCT TGT CCC GGC CTG T-3’ 

AMM5: 5’-TAG TGC ACT TGT GCG GCC CTG G-3’ 

R1: 5′-ACG TCT AGA CGT AAC GAA GGT C-3′  
Sensor (S1) and blocker (B1) units have acrylamide moiety at 5’ end for integration in 

polyacrylamide hydrogels. The analyte sequence (A1) is taken from miRNA 92a-1.20 Com-

plementarity with S1 are highlighted in red and underlined. S1 and B1 are 12 base pair com-

plementary. A1 is fully complementary to S1, AMM1 and AMM5 have 1 and 5 mismatches with 

regard to S1 respectively. R1 is a randomly generated sequence and has only 6 non-contigu-

ous base pair complementary to S1. 

 

Morpholino Oligonucleotide Preparation. Equimolar S1 and B1 

MOs were dissolved in distilled water (at a concentration of 1 mM) and 

aliquoted in appropriate quantities. Mixtures were then heated to 95 °C 

for 2 min, cooled to room temperature and subsequently freeze-dried 

as smaller aliquots for use in gel preparation. 

Sample Preparation. Pre-gel solutions were prepared from stock 

monomer solutions of acrylamide (AAm), N,N′-methylene bisacryla-

mide (MBA) and NaCl in pH 7.4 phosphate buffer with 1-hydroxycy-

clohexyl phenyl ketone (HPK) in ethylene glycol as a radical photoin-

itiator. Mixing of these stocks with 0-150 mM NaCl gave final concen-

trations of 10 wt% AAm with 0.6 mol % MBA and 0.13 mol % HPK 

with regard to AAm. Pre-gel stocks contained carbon nanopowder (<50 

nm particle size, 10 mg/mL) as an additive to increase contrast between 

gel and swelling solution. The combined stock solution was then pipet-

ted into a 1.5 mL Eppendorf centrifuge tube containing MOs to a final 

concentration of 0.4 mol % (5.6 mM in the gel assuming 100% conver-

sion). 

Gelation. Hydrogel samples were prepared in 1 or 2 µL quantities 

by pipetting the pre-gel (and MO) stock onto a 7.7 x 22.8 mm silicon 

oxide chip with a silanized layer for polymer attachment to the chip 

surface. Silicon oxide chips were cleaned using 10 wt% NaOH for 4 

hours, rinsed with deionised water, soaked in 0.01 M HCl for 10 min 

before pipetting 2 µL of 3-(trimethoxysilyl)propyl methacrylate onto 

the gelation area for 16 hours. Chips were then rinsed with acetone and 

deionised water and dried before use. Once deposited, the pre-gelator 

droplet on each chip was irradiated with a Dymax Bluewave 75 UV 

curing light source (280 – 450 nm, 19+ W/cm2) for 60 s to initiate 

polymerisation and gelation. Gels were washed in 1 mM phosphate 

buffer solution (pH 7.4) with the same NaCl concentration as the pre-

gelator solution (0-150 mM) at 4 °C for 1 hour, the wafer was then 

patted dry and stored at 4 °C for 16-24 hours until constant mass and 

moved into the test environment (20 1 °C, 40 % humidity) before 

swelling. 

Optical Swelling Measurements. Swelling properties of the hydro-

gels were characterised by taking images of the gels using a Sony XCD-

X710 Firewire Camera with a MEDALight LP-300 lightbox as back-

light using IC Capture image acquisition software. For swelling kinet-

ics studies gels were imaged in solution. For end volume only gels were 

dried carefully to remove excess liquid on the outside of the gels before 

imaging. Images were processed and analysed using custom written 

MatLab code which calculated the gel volume using the contrast be-

tween the background and the gel and calibrated using the width of the 

chip.18 

Polymer Swelling. Prepared hydrogels (2 or 1 µL) were submerged 

in 5 mL of 1 mM phosphate buffer solution with 150 mM NaCl con-

taining either the ssDNA ‘analyte’ or ‘random’ sequence at various 

concentrations of ssDNA (1 µM – 1 pM or buffer only) at 20 °C 1 °C. 

Samples were imaged every 10 seconds as described above. Samples 

were measured in triplicate. 

Salt Study. Sample solutions and gels were prepared as described 

above without NaCl and washed in 1 mM phosphate buffer without 

NaCl. Samples were then placed in a 5 mL solution containing the ‘an-

alyte’ or ‘random’ ssDNA sequence (1 µM) with varying NaCl con-

centrations (0-300 mM) at 20 1 °C. Swelling was monitored in tripli-

cate optically as above. 



 

Temperature Study. Gels (1 µL) were prepared without NaCl as 

above. 3 samples were placed in a 5 mL solution of 1 mM phosphate 

buffer pre-heated to temperatures varying from 20-65 °C 2 °C and 

kept at the set temperature for 1 hour. Gels were then removed from 

solution, patted dry and imaged.  

Mobile Measurements. Gels (1 µL) were prepared without NaCl as 

above. Samples were placed in 5 mL solution of 1 mM phosphate 

buffer with either A1 or R1 ssDNA (10 pM) in triplicate for 30 minutes. 

Gels were then removed from solution, the wafer dried, and the gel im-

aged using a OnePlus 5t camera (20 MP) with a SODIAL(R) 30X 

Zoom LED Magnifier Clip-On Cell Phone Mobile Phone Microscope 

Micro Lens attachment. Images were analysed using Digimizer (Med-

Calc Software bvba) to measure gel areas. 

RESULTS AND DISCUSSION 

Sensitivity to Target (A1) vs a Random (R1) Control Sequence. 

Morpholino oligonucleotide crosslinked hydrogels with 0.4 mol % MO 

and 0.6 mol % MBA relative to AAm (10 wt %) were investigated as a 

comparison to previous ssDNA crosslinked hydrogel work. Swelling 

was calculated as the % volume change (%) (where % = (Vm – Vi)/Vi 

× 100 and Vm and Vi represent measured volume and initial deposited 

volume respectively). Established ssDNA crosslinked systems exhibit 

selective analyte sequence recognition with high fidelity;16,18 it is es-

sential that this is maintained when using MO crosslinks. MOCH swell-

ing was measured in the presence of the A1 sequence (fully comple-

mentary to the sensor strand) or in the presence of a randomly generated 

R1 sequence (6 non-contiguous nucleobase complementary to the sen-

sor strand).  

Swelling kinetics were measured optically at a range of A1 and R1 

concentrations (1 µM – 10 pM) to probe the selectivity and detection 

limits of this system. MOCHs remained sensitive and selective at 100 

pM (Fig 2a), a 100-fold improvement on the comparative ssDNA cross-

linked system which had a limit-of-detection of 10 nM.18 MOs have a 

stronger affinity than ssDNA for binding RNA or ssDNA (As shown 

in Table S1)35,36 and so may be expected to form a fully displaced sys-

tem at a lower concentration of A1. Similarly, the effective tethering of 

the ssDNA strands from solution confers a charged moiety to the hy-

drogel which can contribute to overall swelling.17 As seen in Figure 2b, 

the maximal response to A1 occurs at or above 100 pM, whereas the 

response to R1 increases with concentration. This may be from com-

petitive displacement of the blocker shifting the equilibrium towards 

more broken crosslinks, or from association of R1 strands, and the as-

sociated charges, with the unhybridized segment of S1.  

Displacement of the blocking strand resulting in crosslink break-

down is the biggest factor causing increased swelling capacity and rate 

in response to the A1 sequence.37  Increasing the strength of the cross-

link through elongating the “toehold” overlap, the number of continu-

ous complementary nucleobases, between blocker and sensor strands 

results in a slower response profile in ssDNA crosslinked hydrogels, as 

displacement of the blocker is then less thermodynamically favored. As 

MO crosslinks are stronger than ssDNA crosslinks a similar trend is 

seen and the response rate is slower than our previous ssDNA cross-

linked system. Diffusion of the ssDNA in solution into the hydrogel is 

another influential factor on the rate of swelling. This is dependent on 

the concentration gradient between solution and hydrogel,16 the poros-

ity and charge of the hydrogel,38 as well as retardation of diffusion 

through the gel, as ssDNA interacts with the MO crosslink even if not 

resulting in blocker strand displacement. 39,40 

Figure 2b shows some concentration dependent responsivity, 

whereby oversaturation with a high R1 solution generates a response 

indistinguishable from a lower concentration of A1. We believe this is 

due to the competitive displacement of the MO crosslinks by a se-

quence with lower affinity but higher concentration. The hydrophilicity 

of the hydrogel is lower than in ssDNA crosslinked hydrogels as the 

charged ssDNA species has been replaced with the uncharged MOs. 

When interacting with MOs in the gel, the ssDNA in solution can be-

come tethered within the hydrogel due to interaction with the MO 

strands. Once the blocker strand has been displaced, it is likely that it 

could also hybridize with a ssDNA strand from solution. Each ssDNA 

strand that becomes tethered would add 22 phosphate groups, if the 

blocker strand also hybridizes with a solution ssDNA strand that would 

double to 44 phosphate groups per MO crosslink. This would equate to 

a charged density of 8.8 or 17.6 mol %. This localized tethering of 

charge ssDNA sequences within the MOCHs is believed to cause the 

concentration dependent increase rate of swelling exhibited at concen-

trations of 100 pM and above, whereas at concentrations below this the 

response to the R1 sequence is indistinguishable from swelling in 

buffer alone. 

Sequence Specificity. ssDNA crosslinked systems have been shown 

with high sequence fidelity, able to differentiate between a full se-

quence match and a sequence with one or more mismatches.16 To in-

vestigate sequence fidelity, MOCHs were swollen with sequences 

AMM1 and AMM5 (identical to A1 but with 1 and 5 mismatches respec-

tively). Figure 2c details the swelling of MOCHs in 100 pM solutions 

of AMM1 and AMM5 compared to swelling in buffer only, A1 or R1. The 

greatest response is to A1, with decreasing swelling in AMM1, AMM5, R1 

and finally buffer. As before, this is likely to the thermodynamic favor-

ability of displacement, whereby S1 has the strongest hybridization 

with so B1 is most rapidly displaced by A1, then AMM1, AMM5, R1 and 

is not displaced in buffer only. The competitive displacement is quan-

tifiable and can be accounted for during analysis.41 

 

Figure 2 (a) Comparison of swelling kinetics showing lower LoD of 

2 µL MOCHs in A1 or R1 at 10-100 pM or buffer only. (b) Comparison 

of swollen volume at 60 minutes in A1 (solid red) or R1 (dotted blue) 

at 10 pM – 1 µM or buffer. Full swelling kinetics of 1 nM - 1 µM in 

S2. (c) Swollen volume at 60 minutes to test mismatch response, at 100 

pM or A1, R1, AMM1, AMM5 and buffer. Synthesis and swelling all with 

150 mM NaCl. Error bars in figures a-c show standard error of the mean 

(SEM). 

Sensitivity to Salt. DNA hybridization is well known to require salt 

to shield the charges of the phosphate groups in the backbone and pre-

vent backbone repulsion between strands.42 MO-DNA hybridization 

has been shown to be possible with minimal salt present as the phos-

phate groups are replaced with uncharged phosphorodiamidate 

groups.31,43 MO-MO interactions were therefore expected to be possi-



 

ble without salt. Figure 3a shows the effect of altering the NaCl con-

centration (0-300 mM) in solution on MOCHs (2 µL) synthesized with 

no salt.  

As expected, gels synthesized without NaCl retain their sensing ca-

pability, indicating that the MO crosslinks remain intact. At each salt 

concentration, there is a clear increase in swelling in A1 over R1. With 

no NaCl there is the greatest response to both A1 and R1. This is ex-

pected to be both due to increased hydrophilicity and motility of 

ssDNA and all charges from strands that become tethered through in-

teractions with S1 or R1 being unshielded. Above 50 mM both A1 and 

R1 responses are lowered. MOCHs offer a solution to salt sensitivity 

challenges with the anionic DNA crosslinked gels. Removing salt dur-

ing synthesis enables the use of electrostatic additives that can other-

wise aggregate and precipitate in the presence of counter ions. Further-

more, if processing or storage requires the material to be dried, salt 

crystallization may lead to non-uniform damage and inconsistent re-

sponses.44 Although salt is plentiful in human serum, removal is possi-

ble using simple methods, such as magnetic beads that can be used as 

part of an extraction protocol, and would prevent any self-complemen-

tarity induced hairpin or self-dimerization that may occur with other 

miRNA sequences.45  

 
Figure 3 MOCH stability studies (a) Influence of salt (mM) on re-

sponse to 1 µM A1 and R1. Full data with SEM shown in S3. (b) Ther-

mal effects on MOCHs and crosslink integrity, error bars show SEM.  

Sensitivity to Temperature. Figure 3b shows the thermal stability 

of MO crosslinks. Thermal dehybridization is an important considera-

tion when designing oligonucleotide based sensors, particularly when 

targeting short sequences like miRNA. When the analyte sequence is 

only 22 nucleotides long, the blocker sequence must be long enough to 

be stable at room temperature and during synthesis, but not so strong 

that displacement is excessively slow. The use of more stable, high-

GC, crosslinks is not always possible as the crosslink sequence will be 

dependent on the target sequence. Due to the lack of phosphate-back-

bone repulsion, MO-ssDNA interactions have a higher Tm than ssDNA-

ssDNA, and similarly MO-MO interactions are expected to be higher 

again. Figure 3b shows gel stability at or below 45 °C and apparent 

crosslink dehybridization at 55 °C and above. Although we predicted a 

Tm of 66 °C (Table S1),35 this will be affected by the incorporation into 

the gel, whereby the kinetic strain of swelling will influence crosslink 

breaking.46,47 The importance of this temperature study is significant, 

as there is the possibility of a false positive result being obtained from 

a DNA crosslinked hydrogel due to elevated temperatures. Further-

more, thermal stability will be vital to the manufacturing, storage and 

transportation of a developed sensor and may be used to reduce re-

sponse time.16 

Optimizing Sensitivity. In this work, we use a simple optical means 

of volume measurement. Were these MO functionalized polymers to 

be applied to biosensing, using a more sensitive transduction mecha-

nism may further increase sensitivity and would be the likely basis of a 

sensor technology built from MOCHs. One simple way to improve sen-

sitivity would be to reduce the volume of material, thereby reducing the 

number of MO crosslinks required to break to achieve a measurable 

response. To investigate this, we reduced the hydrogel volume to 1 µL 

and synthesized and tested with no NaCl to theoretically maximize any 

charge related swelling from ssDNA binding (Figure 4), achieving an 

LoD of 10 pM. As the difference in % is similar to that of larger gels 

(2 µL) at 1 µM (Figure 3a), we expect a similar signal reduction at 

higher NaCl concentrations. Further reduction in volume is expected to 

improve sensitivity even more but requires development of different 

deposition (i.e. inkjet printing) or transduction methods that are beyond 

the scope of this contribution. 

 

 

Figure 4 Comparison of swelling kinetics showing lower LoD of 1 µL 

MOCHs in A1 or R1 at 1-100 pM or buffer. Error bars show SEM. 

 
Figure 5 (a) Analyzed image taken using a mobile phone of 1 µL 

MOCH (black “gel area”) on silicon wafer (7.6 mm wide) swollen in 

A1 or R1 (10 pM) for 30 minutes. Wafer edges were used for scale and 

gel area was manually identified, ignoring leached carbon and the re-

flection on the wafer. (b) Swollen area at 30 minutes in A1 or R1 (10 

pM) from mobile images. Error bars show SEM. 

Mobile Measurements. To showcase the potential portability and ac-

cessibility of MOCHs, we have also developed a simplified gel analysis 

methodology. Measurements can be taken with a smartphone, basic 

-50 

-40 

-30 

-20 

-10 

0

10

20

20 25 35 45 55 65

D
%

 

Temperature	(°C)

-80 

-70 

-60 

-50 

-40 

-30 

-20 

-10 

0

10

0 10 20 30 40 50 60

D
%

 
 
 

Time	(mins)

A1	1	μM	300	NaCl

A1	1	μM	150	NaCl

A1	1	μM	50	NaCl

A1	1	μM	0	NaCl

R1	1	μM	300	NaCl

R1	1	μM	150	NaCl

R1	1	μM	50	NaCl

R1	1	μM	0	NaCl

a)

b)



 

magnifier attachment, and free image processing software. Whilst en-

suring vertical and horizontal sample position is consistent is essential, 

the smartphone can quickly gather the required data of swelling kinet-

ics. A typical cropped and analyzed image is shown in Figure 5a, while 

the analysis after 30 minutes in 10 pM A1 or R1 is shown in Figure 5b. 

While sensitivity is not as high as with the more complex photography 

and image processing set-up, the detection of oligonucleotide se-

quences using MOCHs through a simple, portable method is ideal for 

outreach or demonstration, and offers potential for incorporation into 

future point-of-care diagnostic devices.  

CONCLUSIONS 

A novel MO crosslinked responsive polymer hydrogel system re-

ported here exhibited several improvements over comparative DNA 

systems. These include; increased sensitivity, improved thermal stabil-

ity and removal of salt requirements. Selective swelling is observed in 

the presence of an analyte ssDNA sequence, caused by competitive dis-

placement of MO crosslink, to a sensitivity of 100 pM. This was further 

improved through halving the hydrogel volume and removing salt from 

both synthesis and testing, resulting in a limit of detection of 10 pM. 

The improved thermal stability coupled with the diminished salt sensi-

tivity suggest significant promise for MOCHs as a more stable and con-

trollable alternative to DNA-based responsive hydrogel systems and 

facilitate alternative synthesis methods previously unavailable to DNA-

crosslinked materials. These MOCHs, and their swelling response, can 

be further optimized to increase sensitivity and into developed into bi-

osensor systems. Simultaneously, the MO crosslink can be easily trans-

lated into current DNA crosslinked systems such as nanoparticles, elec-

trochemical sensors or DNA nanotechnology for similar improve-

ments. 
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