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Abstract 

Since the first publication, the U-model methodology has progressed and evolved over the 

course of a decade. By using the U-model technique, researchers have proposed many 

different linear algorithms for the design of control systems for the nonlinear polynomial 

model including; adaptive control, internal control, sliding mode control, predictive control 

and neural network control. However, limited research has been concerned with the design 

and analysis of robust stability and performance of U-model based control systems. 

This project firstly proposes a suitable method to analyse the robust stability of the 

developed U-model based pole placement control systems against uncertainty. The 

parameter variation is bounded, thus the robust stability margin of the closed loop system 

can be determined by using LMI (Linear Matrix Inequality) based robust stability analysis 

procedures. U-block model is defined as an input output linear closed loop model with pole 

assignor converted from the U-model based control system. With the bridge of U-model 

approach, it connects the linear state space design approach with the nonlinear polynomial 

model. Therefore, LMI based linear robust controller design approaches are able to design 

enhanced robust control system within the U-block model structure. 

With such development, the first stage U-model methodology provides concise and flexible 

solutions for complex problems, where linear controller design methodologies are directly 

applied to nonlinear polynomial plant-based control system design. The next milestone 

work expands the U-model technique into state space control systems to establish the new 

framework, defined as the U-state space model, providing a generic prototype for the 

simplification of nonlinear state space design approaches. 

The new U-state space platform provides a generalised representation of a broad range of 

nonlinear state space models and simplifies nonlinear control design procedures. The 

desired state vector (closed loop specification) is determined by the linear control design 

method (LQR design). The proposed U-state space control system design approach is 

applied to develop the controller for a nonlinear quad-rotor rotorcraft model and nonlinear 

inverted pendulum system. The simulation results are presented to validate the 

effectiveness and efficiency of the proposed U-state space approach and stabilise with 

satisfied performance.  
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Chapter 1 

Introduction 

 

The core objective of design in control engineering is invariable in-order to develop a 

controlled system that best matches required performance or design specifications (Zhu et 

al., 2016). The most recognised and broadly classification of the usual control system 

design procedures are grouped into the linear or nonlinear behaviour of the dynamic plant 

(system or process). Linear control is a mature subject with a variety of powerful 

methodologies and a long history of successful industrial applications (Slotine and Li, 

1991). Comparatively, it is a more difficult subject of nonlinear control, which is defined 

as the design and analysis of target control systems which contain at least one nonlinear 

component. Generalisation of the design methodology for nonlinear control systems has 

been a popular and challenging topic in research and applications including such broad 

applications as aircraft and spacecraft control, robotics and process control. 

1.1 Nonlinear Feedback Control Systems 

In a wide range of practical industrial fields, the occurrence of various control problems is 

characterised by essential nonlinearity. Designing a controller for nonlinear dynamic 

systems, control engineers were forced to consider on how to best deal with the nonlinear 

characteristic of the dynamic plants. Thus, the most difficult issue is to establish a general 
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control-oriented model prototype to represent the dynamic behaviour of nonlinear plants, 

which requires transformation of the original model into a concise, flexible and precise 

expression. 

For nonlinear control system design, many mature linear control system design approaches 

cannot be directly applied to nonlinear control system design. Linearisation is one of the 

most frequently used methodologies to describe the operation of physical systems around 

its operating points and approximate the linear behaviour of the nonlinear system, but 

inadequate or inaccurate errors will also appear during the analysis of the linearised system 

behaviour. There are several linearisation techniques including piecewise linearisation, 

pointwise linearisation, feedback linearisation and back stepping. 

 

1.1.1 Piecewise linearisation 

According to the characteristic of the nonlinear dynamic system, piecewise linearisation 

divides the curve of system’s input and output relationship description into some intervals 

to linearise every interval into straight line approximation (Leenaerts and Bokhoven, 1998). 

As a result, each interval of the original nonlinear system can be regarded as an equivalent 

approximate linear system and applied to linear control system design approaches. Based 

on this point, researchers expect to use mature linear control theory and methodology on 

analysing and synthesising linearisation problems. However, this linearisation method is 

only valid in the neighbourhood area of the operating point (Oktem, 2005). 

The piecewise linearised model will change immediately according to the corresponding 

operating point variation in the time varying system. It can be said that piecewise 

linearisation method can be simply applied to slow time-varying systems, whose parameter 

variations are guaranteed. Although the characteristic nonlinearity exists in this system, the 

existing linear control design and analysis methods can be directly used to sort out such 

linearised problems around the limited margin. On the contrary, the performance of 

piecewise linearisation control systems cannot be guaranteed on the fast time varying 

behaviour system, because large time margin of the interval will generate dynamic shift. 

With regards to piecewise, the linear controller design method can be immediately applied 

to the several linearised subsystems of the nonlinear system. Piecewise linearisation will 
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obviously process massive numerical calculation procedures on more pieces of linearised 

subsystems when the target system has stronger nonlinear characteristics. 

1.1.2 Pointwise linearisation 

The neural network is one of the most widely used numerical modelling methods. It not 

only has the high fitting ability for mapping any complex nonlinear dynamic behaviour but 

also easily implements the related program on computers for multifunction. Based on these 

advantages, linearised neural network approach is proposed to approximate the nonlinear 

plant dynamic behaviour around the operating point by using the linear model (Hagan, et 

al. 2002; Zhu et al. 1999). 

The parameters of the designed controller can be updated under adaptive rules using the 

output of neural network, so that these errors caused by linearisation are compensated for 

such online study performance of neural network. In other words, the neural network output 

determines the time varying based controller output. This approach has a variety of 

advantages such as strong robustness, fast online updating ability and accurate nonlinear 

mapping. For such powerful functions, this method is regarded as a universal 

approximation approach. 

Based on neural network, an approximate linearisation for nonlinear systems is proposed 

to design a network approximator for involutive equation integration however it has a 

satisfied or unsatisfied integrability condition (Pei and Zhou, 1998), which has fewer 

restrictions and can be widely applicable. However, the system uncertainties beyond 

consideration slow down the efficiency of the training speed of the neural network 

algorithm. Dynamic output feedback linearisation based neural network modelling and 

control approach is proposed for ANARX (Additive Nonlinear Auto-Regressive 

eXogenous) structure (Petlenkov, 2007). The linear model approximation is based on 

feedback linearisation and the controller design employs simple construction and smarter 

neural network. 

1.1.3 Feedback Linearisation 

The central idea of feedback linearisation is the conversion of an equivalent linear model 

from the original nonlinear dynamic model by coordinate transform (Slotine and Li, 1991; 

Zhu et al., 2016). The input output feedback linearisation is defined according to the relative 
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degree (generally smaller than dynamic order) of the nonlinear system (Khalil, 2002), 

which obtains a direct and simple relation between the system output y and the control input 

u so that successfully cancel the nonlinear dynamics in the closed loop by coordinate 

transform and output feedback.  

This method is straightforwardly achieved in industry as it only requires the measurement 

of the data of system output and control input. However, the limitations of this method have 

the following two points. On one hand, the nonlinear dynamic model of the controlled 

object is required accurate and precise description for it is a model dependency method. On 

the other hand, the zero dynamics of the primary nonlinear plant must be stable due to the 

precondition that only the input and output information of the system is used for calculation 

(Haddad and Chellaboina, 2008). 

In terms of discrete-time nonlinear system, Lee and Marcus (1987) propose to implement 

the related feedback linearisation method, which also can be used to linearise the MIMO 

process (Kravaris and Soroush, 1990). Commonly, feedback linearisation is not employed 

in the processing industries since the standard controlled objects (processes) in such 

industries tend to contain strong nonlinearity. It is hard to obtain accurate and precise model 

expressions based on state space description. In general, the relation equation between 

control input and system output can be obtained by various system identification 

approaches. 

1.1.4 Backstepping linearisation 

Backstepping is a technology by recursive solutions for stabilising a strict feedback 

nonlinear system against uncertainty (Wang and Wang, 2009). Combined with feedback 

linearisation, this approach designs a sequence of ‘virtual’ systems whose relative degree 

is one by following backstepping design principles. The last virtual output is used for linear 

closed loop feedback design for both strict feedback and pure feedback nonlinear systems. 

The idea of adaptive backstepping can be shown through the development of a Lyapunov-

based controller which recursively considers some of the state variables as “virtual controls” 

by stepping back toward the scalar equation based control input (Zhou and Wen, 2008). The 

designed control system has a strong robust performance because of compensation of the 

uncertainty in every virtual control step. A pH process control research has been proposed 
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to compare between adaptive backstepping and input-output linearisation techniques 

(Nejati et al., 2012). Simulated and experimental results show that the globally linearising 

controller based on pH reduced order model has a better performance than adaptive 

backstepping designs based on pH full order model. However, both of the design 

approaches need to measure particular state variables and precise state space model 

description for implementation. 

Overall, the key challenge of nonlinear control system design is to establish a general 

framework that describes smooth nonlinear plants/processes (without linearisation) which 

allow the synthesis of the simple linear control laws (such as pole placement and state 

feedback). This framework plays an essential role in the control system design of a 

nonlinear dynamic system, because the controller input can be carried out effectively, only 

if the equivalent structure represents accurate nonlinear behaviours. Therefore, the 

modelling of nonlinear plants becomes particularly significant. It indicates that the desired 

framework must be available to describe a variety of nonlinear plants/processes and be 

simply applied to the nonlinear controller design. 

1.2 Research motivation 

There has already been many powerful methods and sophisticated implementation 

approaches for linear control successfully applied to industry. Most of the practical 

applications can be operated well by the designed control systems within the linearised 

model. It is nature question to ask ‘why many researchers show an active interest in the 

development and applications of nonlinear control methodologies?’ (Slotine and Li, 1991). 

There are many reasons to explain the important and necessary of the study on nonlinear 

control. It can be conducted as four essential aspects which are the improvement of the 

existing control systems, analysis of hard nonlinearities, the simplicity of the design 

procedures and strong robustness against uncertainties. 

For nonlinear design, linear control methods rely on the fundamental assumption of small 

range operation for a similar linear model behaviour. When the nonlinearities compensation 

cannot adequately be guaranteed in the control system (such as the large operation range), 

the performance of a linear controller will be abysmal or to be even unstable (Slotine and 
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Li, 1991). Alternatively, the direct way is to design suitable nonlinear controllers to handle 

the nonlinearities in large range operation. 

Nonlinearity can be almost found in every practical application. To simplify the procedures 

of analysis and design for nonlinear systems, a classical approach called linearisation, 

briefly introduced in the previous section, obtaineds the linearised model from the original 

nonlinear model; is approximated on selected operation point. However, the controlled 

plant dynamics are described more and more complicated for its complex dynamic 

behaviour. Meanwhile, the best match of desired performance and accuracy for the 

designed control system is required under the modern technology development. With the 

higher demands of the control system, the designed linearisation control system cannot 

achieve the desired performance for the nonlinear dynamic plant. For the computer 

technology development, the development of general and efficient nonlinear control system 

design methods are not only necessary and essential but also are currently considerable 

enthusiasm for the research and application. 

In designing linear control systems, for example pole placement approach, it is usually to 

determine the desired closed loop system and resolve the pole assignor with the proper 

feedback loop. Substituting the particular parameters during calculations is necessary. 

However, uncertainties involved in the model parameters may exist and introduce many 

control problems. Examples of uncertainties could include: the ambient air pressure of 

aircraft (slow time parameter variation) or the internal parameters of a robot grasping arm 

(abrupt parameters change). A linear controller based on inaccurate or obsolete values of 

the model parameters may exhibit significant performance degradation or even instability 

(Slotine and Li, 1991). Two classes of nonlinear control system design approach 

respectively robust control and adaptive control are introduced to tolerated with 

nonlinearities against model uncertainties. 

In the last several decades, robust control approach has been developed into a mature 

subject. It is concerned with the designed controller performance of original systems (with 

uncertainty) to deal with unknown disturbances. On the other words, the key issue of robust 

controller design is considering the bounded system uncertainty and how the robust 

controller can perform under this problem without any revision. Indeed, many unavoidable 
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reasons that can lead to uncertainties appearing include: model mismatch, temperature 

change, component operation and measurement error. For nonlinear control systems, the 

existing general method of dealing with the nonlinearity is linearisation which always leads 

to unpredicted errors. Some issues cannot be designed appropriate controller by the linear 

control methodologies or found a satisfactory solution to analyse the system performances 

of a designed local stable linearised control system. The Linear Matrix Inequality (LMI) 

framework based robust stability conditions (Stipanovie and Siljakd, 2001) is proposed to 

design a stabilising feedback law with a bounded uncertain nonlinear disturbance terms. 

The enhanced LMI based control system design (Shen and Zhu, 2004) is proposed to solve 

a class of robust stability analysis and the closed loop system has a larger stable bound. The 

designed feedback controller can be directly obtained by computational simulation, which 

can be easily verified highly improved effectiveness and efficiency of the controller design. 

However, LMI based control system is difficult to directly apply to the design for nonlinear 

state space model and polynomial model. So that a generalised control-oriented framework 

for the nonlinear dynamic model is necessary. 

State space model is a convenient structure for restoring in computer memory for a modern 

control system which is also essential to reduce the complexity of the mathematical 

expressions (Ogata, 2009). Based on state space model, linear controller design approaches 

have been well theoretically studied in research publications and validated in a wide range 

of industrial applications (Zhu et al., 2016). For a linear polynomial model, many 

realisation approaches (such as controllable or observable realisations) are available to 

convert into state space representation to satisfy the primary state space fundamental 

requirement. Compared with the linear model, a nonlinear polynomial model is 

complicated and more difficult to transfer into a proper state space expression, nevertheless 

almost impossible to convert into an equivalent linear state space model (Zhu, 2016). Is 

there any proper way to propose a powerful algorithm to directly use linear control 

approaches for the design of nonlinear control? 

Overall, researchers are continuously discovering possible ways to directly use linear 

controller design methodologies to develop nonlinear control systems for both polynomial 

model expression and state space expression. Therefore, a geometric synthesis framework 

can be established to represent nonlinear dynamic plants and simplify and generalise 
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nonlinear control system design procedures. 

1.3 Research Questions 

From the above information, research questions of this project can be listed as follows: 

• How can the robust stability for the designed U-model based pole placement control 

system be analysed? How can the enhanced robust controller for the U-model based 

control systems be developed to deal effectively against uncertainty such as 

parameter variation? 

• Based on U-model methodology, is there any potential solution to define the new 

U-model realisation within state space description so that linear state space design 

approaches can be applied for nonlinear control system design? 

• What is an effective way to control both linear and non-linear quad-rotor models 

using only a linear U-state space control system? 

• What is an effective way to control both linear and non-linear inverted pendulum 

models using only a linear U-state space control system? 

1.4  The Aims and Objectives of the Project 

With such insight of the U-model based design approach for nonlinear polynomial control 

systems (Zhu and Guo, 2002), the aim of this PhD research is to develop and analyse 

enhanced robust control systems, and to expand this powerful approach into systems 

described in state space expressions. This required establishing a comprehensive U-state 

space framework converted from nonlinear dynamic state space models, which realises the 

direct use of mature linear state space design approaches for the nonlinear control systems 

design and widen the related U-model technique approach for practical applications. 

Therefore, this research not only brings forward new concepts (such as U-state space model 

and U-state feedback) as well as algorithms in academic research development, but also 

provides useful generic solutions for industrial applications in modelling and control of 

complex modern systems. The figure 1.1 graphically presents the aim and objectives of this 

project. 

To achieve this aim the following major objectives have been outlined: 
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• To provide a general framework for using linear state space control strategies to 

develop control systems for nonlinear polynomial plants. The U-block model is 

defined as a linear input output model, which is converted from the closed loop 

system of U-model based pole placement control system. 

• To design for effectiveness and efficiency within control systems, an accurate and 

precise dynamic model is generally necessary to represent in mathematical 

realisation. The uncertainty always exists due to model mismatch or other 

unexpected reasons (e.g. temperature change or component variation). Therefore, 

robust performance is one of the most important indexes for evaluating the 

behaviour of control system against uncertainties. Based on U-block model, linear 

robust analysis approaches are applied to discuss the robust performance of U-

model based pole placement control system. 

• To design an enhanced LMI based robust control system to improve stability against 

the uncertainty of the linearised model within the U-block model structure. 

• To establish a new prototype U-state space model to represent a class of nonlinear 

state space model and the general linear/nonlinear state space model which can be 

easily converted into U-state space model expression. 

• To design a U-state space model based control system and analyse the system 

stability. 

• Case studies: Bench test on selected dynamics model to implement the 

corresponding U-model design approach. For example, a Hammerstein model is 

selected to demonstrate LMI robust analysis and robust control system design. The 

quad-rotor rotorcraft dynamic model and inverted pendulum are selected to 

demonstrate the performance and applicability of the proposed U-state space based 

feedback control strategy. 
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Figure 1.1 The diagram of project aims and objectives 

 

1.5 Contributions 

The contributions of this thesis are mainly 

• The first study of U-model based design approach has been proposed in pole 

placement controller design for nonlinear dynamic plants (Zhu and Guo, 2002). 

This new prototype can be represented as a wide range of smooth nonlinear 

polynomial models. In the following decades study, researchers are developed 

various control algorithms (such as adaptive control and general predictive control) 

and bench tested with computational simulations and applications which are mainly 

focused on the nonlinear polynomial control systems. Based on those fundamental 

studies, the new input output model, named U-block model, is proposed to represent 
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the closed loop of U-model based pole placement control system. This equivalent 

block model behaves as a linear model. The LMI approach is applied to this 

transformation for robust analysis and robust controller design. 

• The initial U-state space platform has been established. The new description of U-

state space model is defined and is converted from the original nonlinear state space 

model in a straightforward manner. The U-state space model based state feedback 

control for nonlinear dynamic model has been developed and bench tested through 

computational simulations. This design approach can be easily extended to some 

MIMO/SIMO systems. 

• Within U-model methodology, the nonlinear control system design can directly use 

those mature linear design approaches. This significantly simplifies the design 

procedures and provides straightforward step by step iterative calculation results on 

computational algorithms. It should be mentioned that this approach does not 

require any linearised approximation before applying linear design approaches. 

This method is applied to design linearised rotorcraft (and inverted pendulum) 

control systems. 

• The U-model methodology is also available for nonlinear control system design. 

Compared with classic linearisation design, it gives simple control structures (U-

mapping structure) and detailed numerical solutions within an effective framework. 

The bench test platform nonlinear control of rotorcraft (and inverted pendulum) 

systems have been established. 

1.6 Outline of the thesis 

Chapter 1 introduces the research background, motivation, project aim and objectives, as 

well as highlighting the contributions for research development and puts forward the main 

research outcomes. 

Chapter 2 briefly introduces the description of U-model, which is followed by the literature 

review of U-model based pole placement control system design; introduced to represent the 

fundamental methodologies. Also, other U-model based control systems are also proposed 

to introduce the efficiency and effectiveness of the U-model approach during last decade. 
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In chapter 3, a procedure for LMI based robust stability analysis of U-model pole placement 

control system is presented to determine the stability range. Then, an enhanced U-model 

LMI based robust control system is designed to enlarge this robust stability range. Finally, 

the computational simulation results are presented to verify the effectiveness of the 

enlarged robust stability bound. 

Chapter 4 establishes a U-state space realisation which is converted from the nonlinear state 

space dynamic model. Within the U-state space platform, the controller for the nonlinear 

control system is developed by using linear state feedback approach. Through the numerical 

simulation, it can be inspected that the system performance of designed U-state space 

control system achieves the desired requirements. 

In chapter 5, the proposed U-state space control system design approach is applied to 

develop the controller for a nonlinear quad-rotor rotorcraft model. Firstly, a brief 

introduction to quad-rotor modelling is presented. In order to test the availability of U-state 

space design approach, a nonlinear quad-rotor model is selected as the dynamic plant for 

implementation. Then the simulation results of navigation and control architecture for the 

quad-rotor are presented to highlight the application and performance of the proposed 

control laws. 

In chapter 6, an inverted pendulum system is selected to demonstrate the U-state space 

control algorithm. The standard inverted pendulum system is presented. The U-state space 

feedback control is applied to this SIMO system. The numerical case study is selected to 

simulate the developed control system performance. Then the simulation results are 

presented to analyse the performance of the U-state space control. 

Finally, in chapter 7 conclusions are drawn to summarise the study, the key findings can be 

summarised as below: 

• The U-block model, defined as an input output model, is converted from the closed 

loop of the U-model based pole placement control system. 

• Based on the current development of the U-model methodology for polynomial 

models design, an applicable robust analysis method is proposed to validate the 

robust performance for U-model based control systems. The robust stability margin 
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is analysed by the determined LMIs. The LMI based robust control system is 

designed for U-model based pole placement control system to improve the robust 

stability margin. 

• The initial U-state space platform is established. The new description of U-state 

space model is defined and then converted from the original nonlinear state space 

model. 

• The U-state space model based state feedback control for nonlinear dynamic model 

and bench test on with computational simulations. This design approach can be 

easily extended to some MIMO/SIMO systems. 

• The design for nonlinear control system can be directly applied to mature linear 

design approaches, which significantly simplifies the design procedures and 

provides straightforward step by step iterative calculation results on computational 

algorithms. It should be mentioned that this approach does not require any 

linearized approximation before applying linear design approaches. The U-model 

based approaches bridge the linear design approaches with nonlinear dynamic 

plants including both polynomial and state space descriptions. The U-model based 

approach is also suitable for linear control system design, which gives simple 

control structures and solutions within a general and effective framework. 
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2.1 Introduction 

As introduced in the last chapter, linearisation is one of the most popular approaches for 

nonlinear control system design. There are two well-known methods for linearisation; 

Feedback linearisation and State Dependent Parameter (SDP) Transformation. Feedback 

linearisation (including input-state linearisation and input-output linearisation) transforms 

the equivalent linear expressions from original nonlinear state space description models 

(Isidori, 1995; Slotine&Li, 1991). For cancelling the nonlinear dynamics in the closed-loop, 

the central idea of feedback linearization is to convert the nonlinear model into a linear 

form by the appropriate coordinate transform. Then, linear state-space approaches to 

designing the corresponding control systems can be implemented for the obtained linear 
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model. However, this method requires the application of a case by case approach with a 

certain degree of skill in manipulating differential equations and selecting coordinates (Zhu 

et al., 2016). It should be noted that this state space linearisation approach cannot to deal 

with the nonlinear polynomial model based control system design. Further details about 

this method will be discussed in Chapter 4. 

The other typical approach based on polynomial models is called the state dependent 

parameter (SDP) transformation. The fundamental idea is to treat nonlinear polynomial 

models as time varying linear models, which reduces the closed loop system to a linear 

transfer function with the determined poles. The stability performance of the nonlinear 

system is considered at the design stage by assuming pole assignability at each sample 

(Cimen, 2010; Taylor et al., 2009). It can be found that there is a common strategy for the 

nonlinear control system design in many studies, that attempts to convert/build up an 

equivalent linear form to represent the original nonlinear dynamic plants. Then, the linear 

control algorithm can be demonstrated for the transferred linear models. From the model 

structure side, SDP transformation provides a link between the nonlinear polynomial model 

and the linear time varying state space expression. However, this transform does not 

provide the formative framework/prototype or clear process to follow. 

More recently, a new methodology, referred to as the U-model approach, has been proposed 

with clear advantages to Feedback Linearisation and SDP transformation design methods. 

Consider a polynomial function (.)y f  and an open set 
1 2 3{ , , .... }nA x x x x . The value of 

(.)f  at 
1 2( , ... )nx x x x  can be denoted as 

1 2( ) ( , ... )nf x f x x x . The function can be said 

to be a smooth function if its partial derivatives of any order with respect to ix  exist and 

are continuous (Zhu et. Al, 2016). Based on the time varying parameters polynomial, it can 

present a wide range of smooth nonlinear systems without any deficiency for the nonlinear 

characteristics and dynamic performance of the plant. Thus, U-model provides the 

traditional nonlinear system constructing a universal structure that can be used by nonlinear 

controller design. As a result, it bridges the gap between the linear control system design 

method and nonlinear dynamic system, which makes the design of nonlinear control system 

with the simple process to design linear control system come true. 
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In this chapter, the U-model methodology is introduced as being fundamental to 

representing a wide range of the nonlinear polynomial models. The structure of this chapter 

is organised as follows. In section 2.2, the description of the U-model framework is defined. 

A brief introduction to the concepts of mathematical transformation from the nonlinear 

polynomial model into U-model expression is given. In section 2.3, the earliest 

implementation of the U-model based design approach (U-model based pole placement 

control system design) for the nonlinear dynamic polynomial model is presented. An 

outline of different linear control design approaches developed by numerous researchers in 

development of U-model based control systems is presented in section 2.4. Finally, section 

2.5 gives general summaries of this chapter. 

2.2 Description of U-model 

A key challenge of nonlinear control system design is to develop a standard model 

prototype with conciseness, flexibility and manipulability. Therefore, U-model based 

control system design is proposed to firstly represent a broad range of linear and nonlinear 

dynamic plants. Regarding time varying parameter polynomial, the U-model approach 

skillfully converts the original nonlinear model into a linear control designable framework 

(U-model). The merit of the U-model framework for the nonlinear system controller design 

is the signifiant reduction in the difficulties encountered in nonlinear control system 

synthesis as well as computational complexities. 

Compose Single Input Single Output (SISO) nonlinear dynamic plants with the Nonlinear 

Auto-Regressive Moving Average with exogenous inputs (NARMAX) representation of 

the form as follows (Zhu and Guo, 2002): 

( ) [ ( 1),  ..., ( ), ( 1),  ..., ( ), ( ),  ... ( )]y t f y t y t n u t u t n e t e t n               (2.1) 

where   and   are the output and input signals of the plant respectively at the 

discrete-time instant is the plant order, is a nonlinear function and the modelling 

error term   could be induced from measurement noise, disturbance, plant variation, 

uncertain dynamics, modelling inaccuracy and imperfect or partial knowledge of plants. 

Note that here the plant delay has been assumed to be one for the sake of brevity. Without 

( )y t ( )u t

 ,  t n  (.)f

( )e t
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losing generality, the proposed control procedure is applicable for arbitrary known plant 

delay as well. Leontarities and Billings (1985) have shown that such the NARMAX model 

can represent a broad class of nonlinear systems. Furthermore, the Hammerstein, Wiener, 

bilinear and several other well-known linear and nonlinear model sets can be shown to be 

special classes of the NARMAX model. With its generality, the difficulty occurs when 

controlling a plant based on the NARMAX model is considered because of the lack of a 

manoeuvrable structure. Therefore various possibilities for parameterising   exist 

including the extended model set NARMAX models. The control oriented model for the 

nonlinear dynamic plants can be expressed as the polynomial of , as follows: 

0

( ) ( ) ( 1) ( )
M

j

j

j

y t t u t e t


                                      (2.2) 

where  is the power of model input , the parameter ( )j t  is a function of the past 

inputs  the past outputs  , and errors

. 

Rearranging the polynomial in equation (2.2), the control-oriented model can be derived as 

a classic power series of input with related time varying parameters ( )j t . Here 

errors   are unknown quantities, equation (2.2) is a more realistic 

representation for the nonlinear dynamic plants, which can be described a general nonlinear 

plant with this kind of sample mathematic expression. Equation (2.2) is the U-model 

expression, where ( )y t  if directly used in the linear controller design method, then one of 

the roots solved can be obtained the output of the controller (more details in section 2.3). 

Note that during the transformation of the U-model from the nonlinear dynamic plants, it 

does not lose any nonlinear dynamic characteristics, so this control oriented model highly 

improves the accuracy and efficiency for the nonlinear control systems design. 

Such an instance illustrates the conciseness and generality of U-model transformation. 

Suppose an expression of the nonlinear plant as follows (Quan and Guo, 2002): 

 (.)f

 ( 1)u t 

M  ( 1)u t 

 ( 1),  ...,  ( ),u t u t n   ( 1),  ...,  ( )y t y t n 

 ( ),  ...,  ( )e t e t n

 ( 1)u t 

 ( ),  ...,  ( )e t e t n
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2 2

3

( ) 0.1 0.9 ( 1) 0.4 ( 1) ( 1) 0.4 ( 1) ( 1)

          0.6 ( 1) ( 1) ( 2) ( 1) ( )

y t y t u t e t y t u t

y t u t e t e t e t

        

      
          (2.3) 

which can be rewritten in the notation of equation (2.2) as 

2 3

0 1 2 3 ( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )y t t t u t t u t t u t e t                 (2.4) 

where 
2

0 ( ) 0.1 0.9 ( 1) ( 1)t y t e t       , 1 ( ) 0.4 ( 1)t e t    , 2( ) 0.4 ( 1)t y t      and 

3( ) 0.6 ( 1) ( 2)t y t e t     are time varying parameters. 

Note that the parameter ( )j t  is a function of past inputs and outputs  

 and errors   and, in particular,   is an unknown 

quantity, which hence is unpredictable. Therefore, equation (2.4) is a more realistic 

representation for real nonlinear plants, and the above representation in equation (2.2) is 

mathematically simple and can be used to represent a wide class of nonlinear plants in 

practice as well. 

The U-model framework has some advantages compared with other nonlinear model 

transformation approaches: 

• The proposed U-model framework is more practical than the other models such as 

NARMAX model and Hammerstein model. 

• The U-model framework is applicable to use in almost all of the smooth nonlinear 

discrete time input-output dynamic models, and the mapping is reversible. 

• Nearly all expressions of the sampling data of the input-output nonlinear dynamic 

model can be presented as equation (2.2). Thus the discrete time nonlinear dynamic 

models are obtained the new expressions from equation (2.2). 

• When a polynomial structure exists in the current control model, the linear controller 

design approaches can be directly used to design control system for the polynomial 

structure expression nonlinear models. This methodology is not only simplifies the 

processes of root solver but also proposes a suitable controller design approach for a 

 ( 1),  ...,  ( ),u t u t n 

 ( 1),  ...,  ( )y t y t n   ( ),  ...,  ( )e t e t n ( )e t
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class of nonlinear dynamic control systems. The remarkable advantage is that the output 

of the controller is obtained from the only root solved by the nonlinear constant equation. 

There is a remarkable difference between the U-model and state-dependent model. The 

U-model formula is the power series of the current control law, and the coefficients of 

U-model are the time varying function of the input and output at the past time. But the 

state dependent model consists of the linear combination of the system output at the 

past time, whose coefficients are the time varying function of the state variables. 

2.3 U-model based Pole Placement Control System Design 

Pole placement is one of the most popular and powerful methods to resolve control system 

design problems in a wide variety of engineering fields. This is a simple method for 

controller design that the idea is to determine a controller as offset operator to place the 

desired poles of the closed loop systems (in Figure 2.1). Since in linear system, the use of 

it requires the desired state variable is controllable, pole placement usually cannot be used 

immediately to nonlinear dynamic model because the behaviour of the nonlinear model is 

very difficult to map the position of the system zeros and poles. In fact, the nonlinearity of 

nonlinear models is always left out in the existing design of nonlinear control system so as 

to treat it as a linear closed loop system. 

 

Figure 2.1 A general linear pole placement control system (Astrom and Wittenmark, 

1995) 

This type of pole placement method can only be used to design local operating points of 

the controlled object in the nonlinear model. With a limitation of local performance, such 

kind of design is likely to generate unacceptable performance in the strict nonlinear 

conditions. While the nonlinear objects under U-model framework can be used for the 

design of pole placement in the nonlinear system due to the fact that its control variable is 

    

 
Liner plant 
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expressed through polynomial and that the variable is controllable. This means that the pole 

placement of nonlinear system can be realized by acquiring the output of controller through 

solving of the polynomial equation. 

Zhu and Guo (2002) expound how to do the pole placement controller design for the 

nonlinear dynamic model on basis of U-model framework. By adopting the negative 

feedback principle of control theories, the pole placement based on U-model framework 

compares the expectant output with the actual one and obtains the input signals of the 

controller so as to finish the design of controller and to settle down the desired poles. As a 

result, the output of the controller is found by solving the mathematical equation (2.2) and 

the design of control system is completed by analysing and demonstrating that the 

polynomial with the current control input   effectively, whilst decreasing the 

difficulty and computational complexity of nonlinear control system. 

Figure 2.2 shows the block diagram of the U-model based pole placement control system. 

In the U-pole placement design, the U-model is firstly transferred from the nonlinear model. 

With the polynomial equation of U-model as a root solver, the Newton-Raphson 

(Langtangen, 2012) algorithm can be used to find the controller output , which is 

also the control input at the next time-step. 

 

 

 

 

 

 

 

 

The general pole placement control law can be obtained from equation (2.2): 

                        (2.5) 

Where   is the reference for the output, the polynomial R, S and T are the forward 

( 1)u t 

( 1)u t 

( ) ( ) ( )RU t Tw t Sy t

( )w t

Figure 2.2 Block diagram of U-model based pole placement control system 

( )y t   

  

 

 

Newton-Raphson algorithm Nonlinear model 
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operators. From the control law (2.5) represent a negative feedback and feed-forward with 

the transfer function and . The output  can be described as the equation with , 

as following: 

                     (2.6) 

where polynomial  is the closed loop characteristic equation. The polynomial R, S and 

T can be resolved by a Diophantine equation. 

To make the control output equal the desired output ( ) ( )dU t y t , polynomial T is specified 

with (1)cT A  from equation (2.6). The signal can be obtained by equation (2.5) with 

the determined polynomial operator R, T and S. The remaining design task to resolve one 

of the roots of (2.2) to obtain the controller output ( 1)u t  , which is 

0

( 1) ( ) ( ) ( 1) 0
M

j

d j

j

u t y t t u t 


 
     

 
                         (2.7) 

With  as a root solver, the Newton-Raphson algorithm can be used to find the root 

 as the controller output. 

                   (2.8) 

Zhu and Guo (2002) also analyse the pole placement controller performance including 

identification error and stability of the controller. There will be an unpredictable quantity 

 contained in . The other unknown items  can be identified with 

the estimated value at each sampling time. In each sampling interval, the root solver always 

converges to a real root. Then the close-loop system output should be converged closely to 

the desire value, but with some discrepancy due to the modelling errors. The disturbance 

S

R

T

R
( )y t ( )w t

)()()( tw
A

T
tw

SR

T
ty

c





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( )U t

( )U t
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cannot change the poles of the close-loop system. 

The pole placement controller output can be solved and the stability of the controller can 

be guaranteed with the root solver of the Newton-Raphson algorithm. However, there may 

be some problems that lead to the instability of the controller. One is a critical point where 

the derivative of the function equates to zero caused by plant variation, calculation error or 

the unsuitable initial value. As the infinite value of root solver, the controller will be 

unstable. This problem can be solved with the subsidiary condition of iteration calculation. 

Instability could also occur if no real root of the polynomial equation exists, so the 

algorithm will break down under this situation. An enhanced Newton-Raphson algorithm 

is proposed to guarantee the stability of the controller in a minimum phase system (Zhu, et 

al. 1999). 

With this procedure, it does not request the plant model (no matter line or nonlinear) in the 

conversion stage. It only uses the plant model, an equivalent U-model expression, to obtain 

the controller output ( 1)u t   in the second stage. For a nonlinear plant model, the 

calculation is merely to resolve one of the roots from the U-model (2.2). For a linear plant 

model, it has a simple expression, 

0

1

( ) ( )
( 1)

( )

dy t t
u t

t






                               (2.9) 

where 
1( )t  is the coefficient associated with ( 1)u t   (for linear time invariant models, 

1( )t  is a constant). 0 ( )t  (non-zero value) is the summation of the rest of the terms in the 

linear model (Zhu & Guo, 2002). 

2.4 Other U-model based Control Systems 

Many researchers have proposed novel algorithms through the use of U-model based 

control system design for nonlinear dynamic models in the last decade. For the nonlinear 

polynomial model design, U-model structure has been applied to many different kinds of 

design approaches including adaptive control, internal control, sliding mode control, 

predictive control and neural network control. 
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In a stochastic control system, a varying learning rate of radial basis neural network control 

law proposes to identify the U-model time varying parameters for the nonlinear dynamic 

plants by the least squares method (Chang et al., 2011). The control law is constructed as a 

part of the radial basis neural network. The amount of stochastic U-model parameters are 

already known, supposing a minimum performance index number structure which is 

applied to a varying learning operator to update the time varying parameters ( )j t  and the 

weight value 
iw  of the radial basis neural network. 

The U-model framework based adaptive control algorithm is proposed to control a class of 

stochastic discrete nonlinear dynamic plants with unknown parameters (Wu et al., 2011). 

Assuming that the time varying parameters of U-model is unknown, and the new recursive 

least squares method is developed to identify the unknown plants. The unknown time 

varying parameters in the U-model expression is identified by least squares method and 

demonstrates the convergence for the online estimation of the time varying parameters in 

the case studies. 

U-model based adaptive tracking scheme for unknown MIMO bilinear system is proposed 

to develop a simple expansion for the nonlinear which is similar linear behaviour dynamic 

plants (Ali et al., 2006). A general dynamic bilinear control system is transformed to the U-

model framework and used Radial Basis Function (RBF) to estimate the time varying 

parameters of U-model in the radial basis neural network online. 

Research has also focused on the U-model based adaptive IMC control systems design 

(Muhammad and Butt, 2005). The dynamic nonlinear plants are modified into the U-model 

expression which time varying parameters are identified by using an adaptive filter. The 

adaptive tracking nonlinear models are based on the root of the solver and compose a simple 

control law. The advantages of the U-model based adaptive tracking algorithm for nonlinear 

dynamic plants are applied to a class of the nonlinear dynamic plants, which are stable at 

the past time. Moreover, the conventional and simple control law design can be used in this 

adaptive tracking control system. 

The internal model control method is applicable to both linear and nonlinear dynamic 

systems, which is extremely useful for stabilisation open loop control systems. In an 
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internal model control system, the closed loop system is input output stability determined 

by a stable controller and an accurate stable dynamic model to represent the dynamic plant. 

If the inverse of the dynamic plants exists, the close-loop system with this designed control 

law (determined by the inverse of the dynamic model) is input output stability. For a 

standard control law, the U-model expression in (2.2) is easily transformed from original 

model (such as neural network). The control input can be solved easily with the 

Newton-Raphson algorithm from a general and standard control law, and this method is 

very suitable for the nonlinear control area. 

U-model based inverse control is proposed to control the dynamic systems by a nonlinear 

filter which includes an adaptive linear scheme and a nonlinear polynomial pre-processor 

(Tahir, K., Muhammad, S., 2006). The pre-processer generates a signal of power series of 

input ( 1)u t  , the nonlinear adaptive filter is used to modify the unknown dynamic plants 

by producing the signal ( 1)u t  .The sum of the signal weight value is regarded as the output 

of the nonlinear adaptive filter. With the standard of least mean squares error criterion, the 

weight value of nonlinear adaptive filter is adjusted to minimise the least mean squares 

error. 

Facing the great challenge of the design of generalised predictive controller for a class of 

nonlinear dynamic plants, a U-model based control system is the suitable solution for the 

generalised predictive control system design (Du et al., 2012). The key point of the 

generalised predictive algorithm is to transform the nonlinear dynamic model into the U-

model framework and then to obtain controller output by the Newton-Raphson algorithm 

root solver. The model obtained by any of the linearisation methods has more or less the 

error from approximation. However, U-model framework is an accurate model matching 

without any approximation. U-model based generalised predictive control has the minimum 

performance index, and this achievement breaks the limitation of the generalised predictive 

control method directly used in the nonlinear dynamic control system. The dynamic model 

of the generalised predictive control system is the linear dynamic system that is expressed 

as the controlled integral regression moving the average model. A class of unstable 

disturbances can be described with this model and the steady state error of the generalised 

predictive control system is guaranteed for the designed control law including the integral 

( 1)u t 
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effect. 

It was found that there has been limited research on the analysis robust performance. Some 

studies have discussed the use of feedback analysis in determining the optimal learning rate 

to guarantee the stability of algorithm in the U-model based adaptive control systems for 

nonlinear dynamic plants (Ali et al., 2008). The importance of algorithm robustness is the 

estimation error under the influence of the disturbances i.e. the small disturbance may lead 

to the small estimation error, besides it also may lead to big identification error. The 

robustness of the adaptive algorithm can be regarded as a bounded positive constant that is 

derived from the proportion of estimation error energy and disturbance energy. The U-

model based control systems robustness, stability and convergence speed of the adaptive 

algorithm is guaranteed by the compressed mapping and the boundary of the learning rate; 

the learning rate is selected by using small gain theorem. 

 

Figure 2.3 U-model technology development 
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2.5 Summary 

In this chapter, the description of U-model framework is introduced to define the new 

converted equivalent realisation for nonlinear discrete time polynomial dynamic model 

which is called U-model representation. Pole placement is one of the most common and 

useful control system design approach in engineering areas. Based on U-model structure, a 

standard pole placement control system for the nonlinear dynamic plant has been proposed 

to use linear controller design method for nonlinear dynamic plant. 

Many other linear design methods have been successfully demonstrated for the nonlinear 

control system. Although not widely attended, U-model methodology, is a generic 

systematic approach to convert the nonlinear polynomial model into a controller output 

( 1)u t   based time-varying polynomial model. This has been studied (Du et al., 2012; 

Muhammad and Haseebiddon, 2005; Zhu, 1989; Zhu and Guo, 2002) for facilitating 

nonlinear control system design over the last decade. Consequently, linear polynomial 

model-based design approaches (such as pole placement and general predictive control can 

be directly used to design such nonlinear control systems (Du et al., 2012; Zhu and Guo, 

2002). The major contribution of the U-model-based design procedure can be listed in order 

(Zhu et al., 2016). 

(1) In methodology, those well-known approaches developed from linear systems 

can be directly applied to nonlinear control system design, which significantly 

reduces the design complexity and effectively provides straight forward 

computationally efficient algorithms. It should be noted that this new approach does 

not request to linearize nonlinear plant models in design. It is just to use linear 

design approaches to directly design nonlinear plant model based control systems. 

(2) In design, it obtains desired plant output first (compared to designing desired 

controller output in the classical framework) and then works out the controller 

output from the U-model in a relaxed root-resolving routine (compared to resolving 

complex solutions from the inverse of the whole designed systems). 
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(3) For linear control system design, it provides new insight and solutions within a 

more general and effective framework. 

It should be noted that the U-model-associated publications are still in the very early stages. 

Although various algorithms have been developed and bench tested with simulations and 

applications, they have not had a rigorous analytical description and highly regarded journal 

publications until recently (Zhu et al., 2016). It is the author’s belief that the next research 

progression should be the development to make the U-model approach available for using 

linear state space based design approaches to design the control of nonlinear polynomial 

models described plants. The key issue in the on-going study is obtain an equivalent linear 

input output model from its U-model based nonlinear control system. The linear robust 

analysis and design approach will apply to the input output framework for improvement 

robust performance of U-control systems against uncertainties. 
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3.1 Introduction 

Robustness is a method to evaluate the performance changes of a designed control system 

with system parameter variation (Skogestad and Postlethwaite, 2007). In recent years, there 

have been two significant breakthroughs in modern robust control; H2 and H∞ optimal 

control have both attracted a lot of research interest. 

H2 robust control systems have advantages on performance especially for handling 

stochastic aspects such as measurement noise as well as control cost capture (Peng, 2014). 

The H2 robust target considers to minimise the output energy by optimising an upper bound 

in the worst case of H2 norm (Yu, 2002). Based on this H2 controller, the closed loop of the 

control system has excellent dynamic performance. However, H2 controller design lacks 
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robustness to external disturbances and the mathematical operation of H2 norm is very 

limited due to non-induction characteristics. 

H2 control research provides very useful fundamental theorems and references for H∞ 

problems. The H∞ robust design minimises the H∞ norm of the transfer function which is a 

maximum singular value of the transfer function matrix. The performance of H∞ is 

convenient to enforce robustness to model uncertainty, but it is based on compromising 

system performance (Peng, 2014). 

Consider a standard state space linear system with matrices , ,   A B C and D . The transfer 

fucntion is defined as    
1

T s C sI A B D


    . The H norm can be defined as 

    


jTsT maxsup


. The solution for H∞ performance optimization of the system can 

be solved as the following eqations (Yu, 2002): 

min  

s.t. 0

T T

T T

A P PA PB C

B P I D

C D I





 
 

  
  

 

0P  

Although H∞ norm robust techniques have a wide ranging popularity among researchers 

and have provided the platform for many successfully theoretical solutions to control 

problems, application demonstrations with those approaches is quite limited. One of the 

reasons for this is due difficult in the implementation of the high order of the synthesised 

controllers. The other reason is the preference to use certain controller structures with 

simple tuning and reliable stability such as PID control or microprocessor instead of H∞. 

Combined with H2/H∞, LMI techniques are often considered for multi-objective synthesis 

thus providing more flexibility for combining various design objectives in a numerically 

tractable manner, and can even cope with those problems to which an analytical solution is 

out of the question (Soliman et al., 2011; Chesi, 2011). 
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To analyse robustness of control systems, the uncertainty of plant is very significant. The 

first priority which concerns a control engineer is the modelling an accurate description of 

the controlled subject. The uncertainties caused by environmental changes, components, 

internal drift and other unknown reasons are always occuring and will influence the existing 

control systems (Calafiore and Dabbene, 2002). Such uncertainty is entirely different from 

the external disturbance which is also unpredictable and not measurable before controller 

design. 

For U-model methodolgy, the nonlinear model can be converted into U-model expression 

without losing any nonlinear dynamics. Based on U-model, it is also archiving to directly 

use linear H-norm robust design approach to deisgn for nonlinea systems. 

In this chapter, the new U-model concept, U-block model, is defined as an equivalent input-

output block from the closed loop transfer function of U-model based pole placement 

control system. In section 3.3, the robustness analysis is discussed against uncertainties. U-

block model based robust control system is developed in section 3.4. The computational 

experiment used to demonstrate the proposed design approach is presented in section 3.5. 

Finally, a conclusion of this chapter is summarised in end. 

3.2 U-block model 

In chapter 2, U-model based pole place control system already has been introduced through 

the use of linear design approach for nonlinear polynomial plants. In this section, a new U-

model concept is defined based on U-control systems. 

Definition (Zhu et al, 2016): The closed loop of U-control system is defined as a new input 

output structure called U-block model. The U-block model can be express as 

( )( )
(   )

( )

c

c

A ny t
desired closed loop

w t A
   

Without any linearised approximation, the U-block model will behave as a general linear 

model. For example, the equivalent U-model expression is converted from the original 

nonlinear polynomial model. The required poles are assigned following the rules of a linear 

feedback control algorithm. As shown in Figure 3.1, the pole assignor is formulated by a 
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revised U-model-based pole placement controller design algorithm (Zhu, 2016). 

A standard pole placement controller is used as reference to design the internal part of U-

block model. Consider the U-model of expression (2.2), a general controller can be 

structured as: (Astrom and Wittenmark, 1995) 

( ) ( ) ( )Ru t Tw t Sy t                                 (3.1) 

where ( )w t  is the reference input and R, S and T are the polynomials of the forward shift 

operator q with the following description 

1

1

1

0 1

1

0 1

n n

n

m m

n

l l

n

R q r q r

T t q t q t

S s q s q s







  

  

  

                       (3.2) 

where q is the forward operator, n, m and l are the orders of the polynomials R, T and S, 

respectively. A designed controller must satisfy the causality conditions order(S)<order(R) 

order(T) ≤ order(R), that is l<n and m≤n. 

The standard pole placement control law (3.1) represents a negative feedback loop with the 

transfer function S/R and a feedforward loop with T/R; it thus has two degrees of freedom. 

For the proposed U-control design procedure, control law (3.1) can be rewritten as: 

( ) ( ) ( )dRy t Tw t Sy t                           (3.3) 

where dy  is the desired system output. 

By letting ( ) ( )dy t y t , the designed U-block model can be linked to the reference ( )w t  as: 

( ) ( ) ( )d

c

T T
y t w t w t

R S A
 


                      (3.4) 

where the polynomial cA  is the closed loop characteristic equation and specified in advance. 

To cancel the possible output offset in steady state, i.e., to make steady state error equal to 

zero at the controlled output, polynomial T is specified with 
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(1)cT A                           (3.5) 

The key idea of the design is to determine the desired closed loop characteristic polynomial 

cA , then resolve the polynomials R and S through a Diophantine equation (Zhu and Guo 

2002). After the desired plant output ( )dy t  is designed, the controller output ( 1)u t   can 

be determined by resolving one of the roots of the U-model. 

Theorem 3.1 (Zhu et al.,2016): The U-model based pole placement design procedure does 

not depend on the plant model. Only the solution of the designed controller output is 

involved in the plant model. 

Equation (3.4) provides a new design framework, using the U-control design procedure 

once, then it can be applied to many different plant models, which only calculates the 

corresponding controller output each time from a given plant model. For example, a 

nonlinear plant polynomial model is selected and the design of its control system is 

undertaken with a linear state-space-based approach; the procedure can be ordered into the 

following step-by-step implementation: 

(1) Convert the nonlinear polynomial model into the U-model expression (Note, not 

the linear approximation). 

(2) By pole assignor (a pole placement algorithm), convert the U-model into an 

input–output linear closed-loop model with assigned poles. This is defined as the 

U-block model, which is linear. 

(3) Convert the linear U-block model into its state-space realisation by commonly 

used realisation techniques. This is defined as the U-state-space model. 

(4) With reference to the U-state-space model, using linear state-space based design 

approaches, design the control system. 

3.3 Robustness analysis 

3.3.1 LMI preliminaries 
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A standard description of linear matrix inequality can be expressed as: 

0 1 1( ) 0m mF x F x F x F                    (3.6) 

where 1 2, ... m

i mF F F F   are symmetric matrices. 1 2( , , ) m

mx x x x   are real vector 

and known as decision variables of LMI. The inequality symbol means the ( )F x  in (3.6) 

negative. 

In many control problems, the variables are described as matrices for the convenience of 

calculations such as Lyapunov stability theory (Isidori, 1995): 

( ) 0T

a a bF x A X XA Q                 (3.7) 

where , n n

a bA Q R  are the given constant matrices, particularly Qb is a symmetric matrix. 

n nX R   is the symmetric unknown matrix which is required to be calculated. 

If there exists a basic series 1 2, , , n

ME E E S  that makes symmetric 
1

M

i i

i

X x E


 , then 

equation (3.7) can be rewritten as: 

ba

M

i

ii

M

i

ii

T

a

M

i

ii QAExExAExFXF 

























 

 111

)(  

                       1 1 1 0T T

b a a M a M M aQ x A E E A x A E E A                      (3.8) 

LMI problems are divided into two main classes which are LMI feasibility problems and 

LMI Optimization problems. 

• LMI feasibility problems 

Based on a given LMI (3.7), the only concern of corresponding LMI problems is to find 

a feasible solution fesX  ( ( ) 0fesF X  ) or determine that the LMI is not feasible. 

• LMI Optimization Problem 
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Optimization problems are involved in the minimization or maximization; subject to 

LMI constraints: 

 1min , nx x  

s.t.  1, , 0nF X X   

The numerical solution of LMIs can be implemented by Matlab LMI toolbox which  

provides a set of useful functions to solve LMIs. 

 

3.3.2 LMI based robust analysis 

Consider an uncertain parameter system: 

( ) ( ) ( )x t A x t                                                           (3.6) 

where nx R  is the state vector, and ( )A   is the function of the real parameter vector 

1[ ,..., ]T k

n R    . Assume that the uncertain parameter   takes values from the given 

set  , thus the uncertain system (3.6) is always asymptotical stable under this system 

robust stability condition. According to the uncertain parameter   which is a time-varying 

parameter, the uncertain system (3.6) is also a time-varying control system. An effective 

method to discuss the stability of the time-varying system is the Lyapunov stability theory. 

To all the uncertain parameters   , if and only if the positive definite matrix 0P   

satisfies  

( ) ( ) 0TA P PA                                                         (3.7) 

Thus the uncertain system (3.6) is quadratic stability. 

In such a quadratic stable system (3.6), the quadratic form of Lyapunov function is obtained 

from equation (3.7): 
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( ) ,  TV x x Px                                                         (3.8) 

where equation (3.8) satisfies  

( ( ))
0

dV x t
V

dt
                                                           (3.9) 

According to Lyapunov stability theory, the uncertain system (3.6) is asymptotical stable. 

Note that the asymptotical stable uncertain system which is also called robustness stability 

can be obtained from the system quadratic stability. 

Generally,   is an infinite set. Therefore, the definition of quadratic stability requires 

testing infinitely many matrix inequalities. It is obviously impossible to test in a specific 

control system. 

0 1 1( ( )) ( ) ... ( )k kA t A t A t A                                                (3.10) 

where 0 ,..., kA A  is known n n  real constant matrixes and the uncertain parameter ( )i t  is 

the bounded time varying function, where ( ) [ ( ), ],  1, 2,...,i i it t i k     . 

Define a vertex set described as: 

0 1{ [ ,..., ];  , 1,..., }k i i ior i k                                              (3.11) 

The allowed value range of the uncertain parameter   is a convex cell of vertex set, which 

means that a set is constituted by all convex combinations of the middle point of vertex set 

0 . The necessary theorem is proven in Theorem 3.1 to demonstrate the quadratic stability 

of uncertain parameter systems. 

Theorem 3.1 The uncertain parameter system (3.6) with the matrix ( )A   has quadratic 

stability, if and only if a symmetrical positive definite matrix exists, such that the LMI (3.7) 

is tenable (Yu, 2002). 

It should be noted that this theorem establishes a basis for developing the algorithm for the 
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LMI based robust stability margin analysis used in this study. 

The set   is infinite but 0  is a finite set. Following the theorem, the only need is to test if 

the LMI is true or false so that the system quadratic stability can be estimated. The condition 

of the system quadratic stability is to judge the feasibility of linear matrixes based on a 

group of LMI. 

The question of the feasibility of LMI has been solved through the use of the MATLAB 

LMI toolbox. In this toolbox, it provides a set of convenient functions to solve problems 

involving LMIs (Erkus and Lee, 2004). A standard LMI problem is normally solved in two 

stages in MATLAB. In the first step, the LMIs are defined to specify the decision variables. 

In the following step, the remaining task is to solve numerically using the available solvers 

in order to find any flexible solutions. 

The MATLAB LMI toolbox supplies the function to test the quadratic stability of the 

uncertain parameter system (3.6). This function determines the maximum range of the 

uncertain parameter to keep system quadratic stability, which is the maximum quadratic 

stability area. Note that 
1 1

( , ), ( , )
2 2

i i i i i i          , where ( ) [ , ]i i it    . The 

maximum quadratic stability range of closed loop system is found through estimation of  , 

which satisfies the quadratic stability with all [ , ]i i i i i       . 

3.4 U-block model based LMI robust controller design 

Due to the U-model framework, the nonlinearity of the nonlinear model is cancelled. The 

closed loop of U-model based pole placement control system behaves similarly to that of a 

linear system. Such linear systems can be easily transformed to state space representation 

under standard controllable principle. Therefore, the LMI based robust control system is 

designed in this section to demonstrate improved robustness of the developed U-model 

based pole placement control systems. 

Consider the discrete-time system 
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( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k

y k Cx k Du k

  

 
                                                (3.12) 

where nx R  is the state, 
ny R  is system output. 

The uncertain system can be expressed 

1 1

1

( 1) ( ) ( )

( ) ( ) ( )

x k A x k B w k

z k C x k Dw k

  

 
                                               (3.13) 

where qw R  is the disturbance input, 
pz R  is the controlled output, and 

1 1 1, 1, ,  and A B C D  are uncertain matrices. 

Denote the transfer function from w to z by 

1( ) ( )G z C zI A B D                                            (3.14) 

Lemma 1 (de Souza et al., 1993): Supposed that the system (3.12) is stable. Then, 

( ) 1G z

  if and only if there exists a matrix 0TP P   such that 

0 0
0

0 0

T
A B P A B P

C D I C D I

       
        

       
                (3.15) 

or equivalently 

1 0

0
0

0

0

T T

T T

P A B

I C D

A C P

B D I

 
 

  
 
 

 

                          (3.16) 

Accordingly to lemma 1, the uncertain system (3.8) is said to be quadratically stable with 

unitary H  disturbance attenuation if there exists a matrix 0TP P   such that 
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1

1 1

1 1

1 1

1 1

0

0
0

0

0

T T

T T

P A B

I C D

A C P

B D I

 
 

  
 
 

  

                     (3.17) 

The H∞ state space model adopted for U-pole placement control system is shown in Figure 

3.2 and can be expressed as (Yu, 2002): 

       

       

       

1 2

inf inf inf 1 inf 2

1 2

1

o o o

x k Ax k B w k B u k

z k C x t D w k D u k

y k C x k D w k D u k

   

  

  

                                (3.18) 

where        inf, , ,u k w k y k z k is the discrete-time state variable, 

       inf, , ,u k w k y k z k  are the discrete-time robust controller output, system 

disturbance input, system output, and disturbance output respectively. By the way, A  is the 

state matrix, 1 2,B B  are the disturbance input matrix and regulated input matrix respectively, 

inf , eC C  are the H∞ output matrix and system output matrix. Matrices D  

( inf1 inf 2 1 2, , ,o oD D D D ) with different subscribers are real matrices with proper dimension for 

the system. 

 

Figure 3.2 Block diagram of enhanced LMI control system 

As mentioned by (3.18), a H∞ output feedback controller ( )K z  should be designed to force 

the closed loop system to have the performance of asymptotic stability. The state space 

expression for ( )K z  can be presented as: 

U-model based pole 

placement control system 

w(t) 
y(t) 

LMI 

controller 
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     

     

1k k k k

k k k

x k A x k B u k

u k C x k D y k

  

 
                                        (3.19) 

where kx  is the state variable and , , ,k k k kA B C D  are unknown H∞ output feedback 

controller matrices. Combining (3.18) with (3.19), the closed loop system can be expressed 

as: 

     

     inf inf inf

1ct ct ct ct

ct ct ct ct

x k A x k B w k

z k C x k D w k

  

 
                                   (3.20) 

where the state vectors and closed loop metrics are expressed as: 

 
 

 ct

k

x k
x k

x k

 
  
 

, 

,  

,  

The H∞ output feedback controller should be designed to take H∞ performance 

(   1clT z  
 ) into consideration, where  clT z 

 is the H∞ norm of the transfer 

function from w  to inf ctz  , and 1  is the upper bound of  clT z 
. Such output feedback 

controller ought to be designed to make the system have an acceptable H∞ norm form w  to 

inf ctz  keeping the system robustness. 

In order to enhance the performance of the U-pole placement control system, LMI is applied 

to address the solvability of discrete-time H∞ robust control system design problems. With 

the theorem of  -suboptimal controller for discrete-time, Gahinet and Apkarian consider a 

proper discrete-time plant realisation (3.19), and assume that plants 2 0( , , )A B C  is 

stabilizable and detectable and 02 0D   (Gahinet and Apkarian, 1994). 








 


1

22

okok

kok

ct
DBCB

CBCDBA
A 







 


1

121

ok

ok

ct
DB

DDBB
B

 kokct CDCDDCC 2inf2infinfinf 
12inf1infinf okct DDDDD 
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Let W12 and W21 denotes basis of null spaces of inf 2 inf 2 2( ) TI D D B  and 1 01 0( )oI D D C , 

where inf 2D
 and 01D

 are respectively for the Moore-Penrose pseudo inverse of matrix 

inf 2D and 1oD . 

The discrete-time  -suboptimal H∞ problem is solvable if and only if there exist symmetric 

matrices R, S satisfying the following LMI system (Gahinet and Apkarian, 1994): 

inf 1

inf 1 inf inf inf 1

1 inf 1 1

0 0
0

0 0

T T
T

R RT T

T T

ARA R ARC B
N N

C RA I C RC D
I I

B D I





 
    

      
     

                       (3.21) 

1 inf

1 1 1 1 inf 1

inf inf 1 1

0 0
0

0 0

T T T
T

S ST T

T

A SA S A SB C
N N

B SA I B SB D
I I

C D I





 
    

      
     

                        (3.22) 

0
R I

I S

 
 

 
      (3.23) 

where RN  and sN  respectively denotes basis of the null spaces of 2 inf 2( , )T TB D  and 

2 01( , )C D . 

Lemma 2 (Zhai et al, 2001) the following statements are equivalent: 

(i) A is Schur stable and 1

1( )C zI A B D 


    

(ii) The desired H∞ controller exists if and only if there are matrices P and K positive 

definite solution P to the LMI: 

                                          (3.23) 

0

0
0

0

0

cl cl

T T

cl cl

T T

cl cl

cl cl

P PA PB

A P P C

B P I D

C D I





 
 


  
 
 

 
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where 
k k

k k

A B
K

C D

 
  
 

. The LMI (3.23) is a BMI with respect to P and K. The controller 

matrices , , ,k k k kA B C D  can be obtained by solving bilinear matrix inequalities (3.23) 

mentioned in the lemma. 

3.5 Case studies 

In the case studies, a Hammerstein model is selected for the robust stability test. The closed 

loop characteristic equation is specified with 

2 1.3205 0.4966cA q q                                        (3.24) 

Therefore the closed loop poles are a complex conjugate pair of 0.6603 0.2463j  . This 

design specification corresponds to a natural frequency of 1 rad/sec and a damping ratio of 

0.7. To achieve zero steady-state error, specify 

(1) 1 1.3205 0.4966 0.1761cT A                                 (3.25) 

For the polynomials R and S, specify 

2

1 2

0 1

R q r q r

S s q s

  

 
                                                (3.26) 

Substitute the specifications of (3.24) and (3.26) into Diophantine equation of (2.6), the 

coefficients in polynomials R and S can be expressed with 

2 1

1 0

0.4966

1.3205

r s

r s

 

  
                                                (3.27) 

To guarantee the computation convergence of the sequence U(t), that is to keep the 

difference equation with stable dynamic response, let 1 20.9 0.009r r   . This assignment 

corresponds the characteristic equation of U(t) as ( 0.89)( 0.01) 0q q   . Then the 

coefficients in polynomial S can be determined from the Diophantine equation of (3.27) 

 
4876.04205.0 10  ss
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Substituting the coefficients of the polynomials R and S into controller of (2.5), gives rise 

to: 

 

                                 (3.28) 

Therefore the controller output u(t) can be determined in the following way: 

Consider the following Hammerstein model (Zhu and Guo, 2002) 

                                (3.29) 

The corresponding control oriented model is obtained from formulation (2.2) 

2 3

0 1 2 3( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1)y t t t u t t u t t u t                           (3.30) 

where 

0 1

2 3

( ) 0.5 ( 1) 1 0.1 ( 2) ( ) 1

( ) 1 ( ) 0.2

t y t x t t

t t

 

 

     

  
 

The system response under the proposed pole placement control has been discussed in (Zhu 

and Guo, 2002). It can be seen from the simulation results that the resultant closed loop 

system behaves similarly to that of a linear system, which is due to the cancellation of the 

nonlinearity by the proposed control-oriented model and controller design approach. 

However, if the internal parameter of the nonlinear model is changed, the controller 

performance will not be same standard and that is the purpose of using a robust controller 

which is going to be studied in the simulations. 

In the following simulation, the LMI based H∞ output feedback controller is tested to 

improve the system performance of the designed U-pole placement control system. To the 

selected Hammerstein model, the variation of the internal parameter is the change of ( )j t . 

The characteristic equation of the LMI based H∞ robust controller (step 2) can be expressed 

)1(009.0)(9.0)1(  tUtUtU

)1(4876.0)(4205.0)1(1761.0  tytytw

)(2.0)()(1)(

)2(1.0)1()1(5.0)(

32 tutututx

txtxtyty




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as: 

2( ) 0.4084 0.1452rcA z z z                                          (3.31) 

This equation is obtained based on closed loop equation (3.24) by using Matlab LMI 

toolbox solver. 

The controller is going to be applied for all cases in the U-model system simulations. 

The case I: For the selected Hammerstein model, the time varying parameter 0 ( )t  was 

determined as the unknown parameter. The variation of the parameter 0 ( )t  was selected 

as 

         0 0.1 1 1 0.1 2 ,   0.8 1 1 0.1 2t y t x t y t x t                           (3.34) 

After the least squares data fitting, the closed loop characteristic equation is obtained as 

2

1 2'cA q q                              (3.35) 

where the parameters can be expressed as: 

2

2

'(1) 0.6883 0.4336

'(2) 1.7580 1.4700

c

c

A q q

A q q

  

  
                  (3.36) 

The variation range of the parameters are  1 0.6883, 1.7580   and 

 2 0.4436, 1.4700   respectively. The reference input and the plant output of the system 

(      0 0.8 1 1 0.1 2t y t x t      ) are shown in figure 3.2 

The result of the robust stability margin is 1.1239 which indicates that the U-model 

controller can guarantee the system stability within the selected range of 0 ( )t  and even if 

the range is increased to 12.39%.  

The case II: For the same Hammerstein model, the time varying parameter 0 ( )t  was still 
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selected as the unknown parameter. The different variation of the parameter 0 ( )t  was 

         0 0.5 1 1 0.1 2 ,   1.3 1 1 0.1 2t y t x t y t x t                         (3.37) 

The closed loop characteristic equation can be obtained by the least squares data fitting 

method, the characteristic equation expression is 

2

1 2'cA q q                           (3.38) 

The estimation results are respectively 

2

2

'(1) 0.0752 1.9010

'(2) 0.4229 0.8926

c

c

A q q

A q q

  

  
                      (3.39) 

The variation range of the parameters are  1 0.0752, 0.4229   and 

 2 0.8926, 1.9010   respectively. The reference input and the plant output of the system 

are shown in figures 3.3 and 3.4. Figure 3.3 shows the U-pole placement control system is 

in the bound of the robust stability area. And figure 3.4 shows the U-pole placement control 

system is unstable in the range of the internal parameter variation. 

The result of the robust stability margin is 0.4139 which indicates that the U-model 

controller can only guarantee the system stability within 41.39% of the selected parameter 

range and in the other 58.61% the closed loop system is not stable with the designed U-

model controller. 
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Fig. 3.3 Performance of Hammerstein model in case I 

 

Fig. 3.4 Performance of Hammerstein model in case II 
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Fig. 3.5 Performance of Hammerstein model in case II 

The simulation results show that the robustness of the U-model based pole placement 

control system depends on the uncertainty of the non-linear model. The U-model controller 

can keep the system to be stable within a certain range of the parameter uncertainty. 

However, if the parameter of the non-linear model is changing far away from the original 

one, the performance of the controller cannot be guaranteed. 

The case III: For the selected model with uncertainty, that is the internal parameter ( )j t

is changed to 

0( ) 1.1 ( 1) 3 ( 2)t y t x t                                              (3.40) 

The disturbance system output of the U-model based pole placement control system before 

and after robust controller applied are shown in Figure 3.6. The output of the U-model pole 

placement control system without plant uncertainty is also shown in Figure 3.6. 
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Figure 3.6 System output after internal parameter changed – case I 

Deriving from the simulation result, the system performance after internal parameter 

variations have been improved by the designed robust controller. The amplitude of the 

output decreased from 8.8 to 7.6 compared with the case without a robust controller. The 

overshoot is reduced in this simulation which is closer to reference input. 

The case IV: In the other different case, that is the internal parameter ( )j t is changed to 

0( ) 0.2 ( 1) 1 0.1 ( 2)t y t x t                                           (3.41) 

The closed loop system becomes unstable and the output of the system without robust 

control is shown in Figure 3.7. 
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Figure 3.7 System output after internal parameter changed – case II (No robust controller) 

While the LMI based robust controller is applied to the closed loop system, acceptable 

simulation results can be achieved. Figure 3.8 shows the system output response. 
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Figure 3.8 System output after internal parameter changed – case II (With robust 

controller) 

It can be inspected from the figure that the system can be stabilised with the help of the 

robust controller. In another aspect, the variation of the internal parameter exceeds the 

stability margin (Peng et al, 2013) of the U-model pole placement control system itself. 

However, with the help of the LMI based robust controller, the stability margin of the 

system is enlarged and such internal parameter variation can be guaranteed with a stable 

performance. 

3.6 Conclusions 

Firstly, this chapter introduces a so-called U-block model, which is defined as a linear 

input-output model from the closed loop of U-model based pole placement control system. 

Then the robust stability margin of this control system is analysed by determined LMIs 

against uncertainty. The LMI based robust control system is designed for U-model based 

pole placement control system to improve the robust stability margin. Finally, the numerical 

simulation results are given to show the proposed approaches effective. 
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The simulation results for both cases show that the robustness of the robust controller 

design for U-model based pole placement control system is effective. The U-model 

controller can keep the system to be stable within a certain range of the parameter 

uncertainty. However, if the parameter of the nonlinear model is changed far away from 

the original one, the performance of the controller cannot be guaranteed. At this time, the 

LMI based robust controller can help to main its stability in a relatively large range of 

uncertainty. 

In the next chapter, U-state space platform is established to expand the U-model 

methodology from polynomial model into state space model domain. Based on U-state 

space model, the feedback control system is designed on the enhanced development of 

using linear design approach for nonlinear state space model. 
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Chapter 4 

U-State Space Control System Design and 

Analysis 

 

 

 

 

4.1 Introduction 

Linear control system design approaches for state space model have been well studied in 

research and successfully adopted in the wide ranges of industrial applications 

(Maciejowski 1994; Ogata 2009). In the linear case, most methodologies require the 

controlled object to be expressed as the linear state space model realisation. For linear 

polynomial models, there are also many approaches to convert the model into the equivalent 

state-space expression, such as two standard state space realisations which are called 

controllable and observable. The intrinsic properties and stability are clearly defined and 

analysed in linear control system. Whilst nonlinear polynomial models are very practical 

and predominantly used model structure in practice (Billings 2013; Zhu, Wang, Zhao, Li, 
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and Billings 2015), they can be very difficult to convert it into a state space expression, 

nevertheless almost impossible to convert into an equivalent linear state space model (Zhu, 

Zhao and Zhang, 2016). 

There are various classical tools of nonlinear state space control system design, including 

linearisation, integral control, gain scheduling as well as feedback linearisation. The most 

popular method of nonlinear state space design is linearisation (approximation around an 

equilibrium point). For a general nonlinear system, the most practical way to approach the 

stabilisation problem for nonlinear systems is to obtain neat results in the linear case via 

linearisation. The stabilising linear state feedback control law is then designed for the 

linearized system about the desired equilibrium point. 

4.1.1 Nonlinear polynomial control 

There is one approach to treat nonlinear polynomial models as time varying linear models. 

One of the typical approaches is the state-dependent parameter (SDP) transformation 

(Taylor, Chotai, and Young 2009, Çimen 2010), which reduces the closed-loop system to 

a linear transfer function with the specified (design) poles. Hence, assuming pole 

assignability at each sample, global stability of the non-linear system is guaranteed at the 

design stage. 

It is clear from these studies that a common strategy for the control of non-linear systems 

involves attempting to bring the original system into a quasilinear domain, before 

subsequently designing an appropriate linear control algorithm. In model structure, the 

parameters of this quasi-linear State-Dependent Parameter (SDP) are functionally 

dependent on other variables in the system (Young 2000). Although this provides a bridge 

from nonlinear polynomial model to linear time-varying state space expression, the 

transform is not unique and selection of SDP is subjective, personal with no clear rule to 

follow, which has been found to be the main barrier for a wide range of users. 

4.1.2 Feedback linearisation 

The other popular method of nonlinear state space control system design is feedback 

linearisation (input state linearisation and input output linearisation), which has attracted a 
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great deal of research interest in recent years. The central idea of the approach is to 

algebraically transform a nonlinear system dynamics into a (fully or partly) linear one, so 

that linear control techniques can be applied. This differs entirely from conventional 

linearisation (i.e., Jacobian linearisation) in that feedback linearisation is achieved by exact 

state transformations and feedback, rather than by linear approximations of the dynamics. 

This approach is based on the transforming of nonlinear dynamics into a linear form by 

state feedback, so as to cancel the nonlinear dynamics in the designed control input or 

establish a linear input output by coordinate transform (Isidori, 1995); linear state space 

approaches can then be applied to design the corresponding control systems. However, this 

is a case by case approach with certain degree of skills required in manipulating different 

equations and selecting coordinates. Compared with the previous linearisation method, this 

method is exact because of perfect knowledge of the state equation(s); the nonlinearities of 

the systems can then be cancelled by this knowledge. However, in reality, perfect 

knowledge of the state equation and exact mathematical cancellation in terms are 

impossible to implement in practical applications. 

The idea of simplifying the form of a system's dynamics by choosing a different state 

representation is not entirely unfamiliar. In mechanics, for instance, it is well known that 

the form and complexity of a system model depend considerably on the choice of reference 

frames or coordinate systems. Feedback linearisation techniques can be viewed as a way of 

transforming original system models into equivalent models of a simpler form. Thus, they 

can also be used in the development of nonlinear control systems in combination with 

robust or adaptive controllers. 

Feedback linearisation has been successfully applied to address some practical control 

problems. These include the control of helicopters, high performance aircraft, industrial 

robots, and biomedical devices (Slotine and Li, 1991). More applications of this 

methodology are being developed in industrial applications. However, there are also a 

number of important shortcomings and limitations associated with the feedback 

linearisation approach. Such problems are still very much topics of current research. In its 

simplest form, feedback linearisation amounts to cancelling the nonlinearities in a nonlinear 

system so that the closed-loop dynamics is in a linear form. For an example (shown in 
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Figure 4.1), the closed-loop system with the feedback linearisation control law is 

represented in the block diagram. It can be inspected by two loops in this control system, 

with the inner loop achieving the linearisation of the input-state relation, and the outer loop 

achieving the stabilisation of the closed-loop dynamics. 

 

Figure 4.1 Feedback linearisation block diagram (Slotine and Li, 1991) 

A number of remarks can be made about the feedback linearisation design approach: 

a) With feedback linearisation control, it can be valid in a large region of the state 

space systems. However, in some particular cases, the controller does not work 

properly such as when the initial states equal zero. This is due to the state variables 

dependent relationship for obtaining controller output. 

b) In order to implement the control law, the new state components must be available. 

If they are not physically meaningful or cannot be measured directly, the original 

state variable must be measured or estimated. Thus, the new state variables can be 

computed by the original state vectors. 

c) In general, the system model is relied on both for the controller design and for the 

computation of z . If there is uncertainty in the model such as uncertainty on the 

parameter and parameter variation, this inaccuracy of system model will result in 

an error in the computation of both the new state variable z  and of the control input 

u . 

The feedback linearisation method has a number of significant limitations (Slotine and Li, 

1991): 

x 

      

  

- 

Pole placement loop 

Linearisation loop 
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• Feedback linearisation cannot be used for the design of every kind of nonlinear 

system. The full state variables have to know or to be appropriately measured. The 

robustness is difficult to guarantee in the presence of parameter uncertainty or 

unmodelled dynamics. 

• The second problem is due to the difficulty of finding convergent observers for 

nonlinear systems and, when an observer can be found, the lack of a general 

separation principle (analogous to that in linear systems) which guarantees that the 

straightforward combination of a stable state feedback controller and a stable 

observer will guarantee the stability of the closed-loop system. 

• The third problem is due to the fact that the exact model of the nonlinear system is 

not available in performing feedback linearisation. The sensitivity to modelling 

errors may be particularly severe when the linearising transformation is poorly 

conditioned. 

Active research is being performed to overcome the above drawbacks listed. One potential 

method is through the extension of the U-model methodology from polynomial model 

design into state space field. This will establish a generic systematic approach to convert 

the nonlinear state space model into a controller output based time varying model. This has 

been studied by Zhu et. al. (Zhu et al., 2014; Zhu, 2016; Zhu and Guo, 2002) for facilitating 

nonlinear control system designs over the last decade. Consequently, linear polynomial 

model based design approaches (such as pole placement and general predictive control can 

be directly used to design such nonlinear control systems (Du et al., 2012; Zhu and Guo, 

2002). The state space based U-control system research progression aims to progress the 

development of the U-model approach to enable the use of linear state space based design 

approaches to allow for the feedback control of nonlinear state space models described 

plants (Zhu, 2016). The key challenge identified in the on-going study is how to obtain an 

initial state space expression within the reference U-model framework from its original 

nonlinear state space model. 

In this chapter, the new U-state space framework is established in section 4.2. The linear 

state space design approach is then applied to design for nonlinear models within proposed 

U-state space prototype in section 4.3. In the following section, the stability analysis of 



Chapter 4. U-State Space Control System Design and Analysis                                          5 7 

 

development on U-state space control system is discussed. The case studies of the proposed 

approach are demonstrated and validated in section 4.5 and finally, conclusions are 

presented in section 4.6. 

 

4.2 U-State Space Frameworks 

4.2.1 Linear U-State Model 

In chapter 3, U-block model was introduced as a linear input output model from the 

conversion from U-control system for nonlinear polynomial plants. Thus, the linear U-state 

model can now be defined as the equivalent state space realisation of U-block model. 

Let the assigned poles as 
1 k   then the closed loop characteristic equation is: 

1

1 1( ) ( ) 0k k

c k c ckA q q q a q a                               (4.1) 

Correspondingly, the U-block model can be expressed as a transfer function realisation: 

1

1

(1) (1)( )

( )

c c

k k

c c ck

A AY q

W q A q a q a
 

 
           (4.2) 

Consequently, the standard linear state space form is: 

( 1) ( ) ( )

( ) ( )

x t Ax t Bw t

y t Cx t

  


                  (4.3) 

From the controllable realisation (Ogata, 2009), the state equation is: 

 

1 1

2 2

1 1

( 1) ( 2) 1

0 1 0 0( 1) ( ) 0

0 0 1 0( 1) ( ) 0

0 0 1( 1) ( ) 0

( 1) ( ) 1

k k

ck c k c k ck k

x t x t

x t x t

u t

x t x t

x t x t   
 

 

       
             
       
      

       
               

 (4.4) 
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and the output equation: 

 

1

2

1

( )

( )

( ) (1), 0, , 0, 0

( )

( )

c

k

k

x t

x t

y t A

x t

x t



 
 
 
 
 
 
  

  (4.5) 

The linear U-state is a linearised state space description with the transformation from the 

U-block model (U-control system). It can then be used as a plant model for many different 

design algorithms. 

4.2.2 U-State Space Model 

Consider a general discrete time state space model description below, which includes all 

the currently studied combinational models of affine, non-affine, strict feedback, and pure 

feedback descriptions as its subsets (Zhu, et al., 2014): 

( 1) ( ( ), ( ), ( ))

( ( ), ( )) ( ( ), ( ), ( ))

( ) ( ( ))

x u

x t f x t t u t

f x t t f x t t u t

y t h x t

  

   



                 (4.6) 

where ( ) , ( ) , ( )nx t R u t R y t R    are the state variable, system input and output respectively. 

( ( ), ( ))xf x t t   and ( ( ), ( ), ( ))uf x t t u t   represent the summations of the 

products formed with ( ( ), ( ))x t t  and ( ( ), ( ), ( ))x t t u t  respectively. Further

( ) ( ( ), ( 1) ,...,  ( )) mt x t u t u t n R      , which excludes the current model input ( )u t . 

Consequently, the control oriented U state space model is defined as below: 

( 1) ( ( ), ( ), ( ))

( ( ), ( )) ( )

( ) ( ( ))

x

x t f x t t u t

f x t t U t

y t h x t

  

  



             (4.7) 

Rearrange state equation in (4.7) into its regression form as: 
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0

( ) ( ) ( 1)
M

j

ij

j

x t t u t


              (4.8) 

This is expanded from each nonlinear state equation of ( 1)x t   as a polynomial form with 

respect to ( 1)u t  , where M  is the degree of model input, the time varying parameters 

vector 
1M

ij R   is a function of past states and inputs, i  is the series number of state space 

variable and j  is the sequences of time varying parameters. 

The following is an example to illustrate how to transfer the nonlinear state space model 

into U-state space expression. Consider control oriented total nonlinear state space model: 

2

1 1 2 2

3

2 1 2 2

1 2

( 1) 0.6 ( ) ( ) 0.2 ( ) ( ) ( 1) ( )

( 1) 0.3 ( ) ( ) 0.5 ( ) 0.2 ( ) ( ) ( 2)

( ) ( ) ( )

x t x t x t x t u t u t u t

x t x t u t x t x t u t u t

y t x t x t

     

     

 

          (4.9) 

and the U-state space model can be determined in the notation of (4.8), thus it gives: 

2

1 10 11 12

2 20 21

(t 1) (t) (t) (t) (t) (t)

(t 1) (t) (t) (t)

d

d

x u u

x u

  

 

   

  
              (4.10) 

where 
10 1 2 2( ) 0.6 ( ) ( ) 0.2 ( )t x t x t x t    , 

11( ) ( 1)t u t    , 12 ( ) 1t   , 

3

20 2 2( ) 0.5 ( ) 0.2 ( )t x t x t    and 
21 1( ) 0.3 ( ) ( 2)t x t u t    . 

 

4.3 U-state Space Control System Design 

A standard state feedback controller reference (Dorf and Bishop, 2011) is used to develop 

the following formulations for designing a full state variable feedback to achieve the 

desired pole locations of the closed-loop system for nonlinear state space models. The first 

step of design in this section assumes that all states are available for feedback which means 

the state vector ( )x t  for all sampling time point t  is measurable or observable. A general 

feedback control law is shown as: 
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u Kx            (4.11) 

where K is determined by the feedback gain matrix and u  is control input. With the system 

defined by the state space model, the closed loop system can be defined as: 

( 1) ( ) ( ) ( )dx t A BK x t A x t                (4.12) 

The following is a standard nonlinear discrete time system based on state space description 

as: 

( 1) ( ( ), ( ))

( ) ( ( ))

x t f x t u t

y t h x t

 


                          (4.13) 

Where ( ) , ( ) , ( )nx t R u t R y t R    are the state variable, system input and output 

respectively. ( , ) n lf R R     is a nth dimensional smooth vector field. 

In order to  use linear state feedback design approaches, the desired state variable is defined 

as ( )dx t , which is determined by designers according to customer’s requirements. The 

relationship between desired output ( )dx t  and the required controller input ( 1)u t   is 

written as: 

( 1) ( ) ( )d d dx t A x t B w t                         (4.14) 

where 
dA  is the closed loop dynamic matrix and 

dB  is the closed loop input matrix. 

Accordingly, the task of the design is to determine the desired state variable ( )dx t  

according to specified performance index ,d dA B . 

With U-state space model (4.7), in simple mathematical expression, the state equation of 

system (4.13) is rearranged as an equivalent expression: 

0

( ) ( ) ( 1)
M

j

dn j

j

x t t u t


                    (4.15) 

where ( )j t  is time varying parameters which contains the state variable ( )x t . 
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The desired closed loop state space can be written as: 

     

     

1d d d

d d

x t A x t B w t

y t C x t D w t

  

 
                    (4.16) 

where , , ,d d d dA B C D  are the state description matrices of the desired closed loop system. 

dA  is determined by the closed loop characteristic equation. 
dC  is determined by the closed 

loop zeroes. The state equation is expressed as: 

 

1 1

2 2

1 1

( 1) ( 2) 1

0 1 0 0( 1) ( ) 0

0 0 1 0( 1) ( ) 0

0 0 1( 1) ( ) 0

( 1) ( ) 1

k k

dk d k d k dk k

x t x t

x t x t

w t

x t x t

a a a ax t x t

 

 

       
             
       
      

       
               

     (4.17) 

The output equation is expressed as: 

  

1

2

1 2 1

1

( )

( )

( ) , , , , ( )

( )

( )

dk dk d d

n

n

x t

x t

y t dw t

x t

x t

   



 
 
 
  
 
 
  

   (4.18) 

The corresponding transfer function of (4.6) is: 

1 2

1 2

1

1

...
( )

...

n n

d d dn

n n

d dn

z z
g z d

z a z a

   



  
 

  
      (4.19) 

where the closed loop characteristic equation is determined by the denominator of (4.16). 

Assume that the state variable ( )x t  is measurable or obtained by a proper observer, the 

desired state space equation can be updated from (4.14). 

As mentioned in chapter 2, the remaining design task is to resolve one of the roots of (4.15) 

to obtain the controller output. That is: 



Chapter 4. U-State Space Control System Design and Analysis                                          6 2 

 

1

0

( 1) ( ) ( ) ( 1) 0
M

j

d j

j

u t x t t u t



 
      

 
           (4.20) 

where  1 * is a root-solving algorithm, such as the Newton-Raphson algorithm. A 

detailed analysis on the root solving issues has been presented in (Zhu et al., 1999). 

For the U-state space design approach, the desired plant output ( )dx t   is obtained by closed 

loop state equation (4.14), and then controller output ( 1)u t   equation can be converted 

from the state equation ( )x t  (4.15) to resolve the criterion function (4.14) to determine the 

designed/desired state variable ( 1)dx t  . The controller output ( 1)u t   can then be found 

through equation (4.20), that is, by resolving one of the roots of the equation (4.20). With 

this procedure, it only uses the state space equation, in U-state space expression, to obtain 

controller output ( 1)u t   in the first stage, where the system output can be obtained by the 

state equation. For a nonlinear state space model, the calculation is merely to resolve one 

of the roots from the U-state space (4.15). 

Especially, it has the following root solver for a linear desired state space equation (4.10) 

0

1

( ) ( )
( 1)

( )

dnx t t
u t

t






                      (4.21) 

In this study, it is assumed that all the state variables are known or measurable. For the 

future study, an appropriate observer for U-state space control system is need to develop. 

A potential block diagram of U-state space control system with observer is shown in Figure 

4.2. 
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Figure 4.2 Structure of U-state space control system with observer  

4.4 Stability Analysis 

U-state space control systems require the means of generation of a linear differential 

relation between the desired states ( )dx t  and a control input. Specifically, we shall discuss 

the following issues: 

• How to generate a linear input output relationship for a nonlinear system? 

• What are the internal dynamics and zero-dynamics associated with the U-state space 

systems? 

• How to design stable controllers based on U-state space control systems? 

For linear systems, the stability of the internal dynamics is determined by the locations of 

the zeroes which can be easily found from transfer functions; where the poles of the zero 

dynamics are exactly of the zeroes of the system. The stability of the zero dynamics implies 

the global stability of the internal dynamics. However, for nonlinear systems the transfer 

function cannot always be precisely defined. The stability of the internal dynamics will 

depend on the specific control input; thus, the relation of zeroes and zero dynamics is hard 

to describe. 

Zero dynamics is defined to be the internal dynamics of the system when the system output 

is kept at zero by the input (Isidori, 1995). The reason for defining and study of the zero 

dynamics is to find a proper and simple way of determining the stability of the internal 
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Full state 
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dynamics for the design of U-state space control systems. Two remarks can be made about 

the zero dynamics of nonlinear systems (Slotine and Li, 1991). 

a) The zero dynamics is an intrinsic feature of a nonlinear system. 

b) Examining the stability of zero dynamics is much easier than examining the stability of 

internal dynamics. Studying zero dynamics is an effective alternative way to check the 

stability of the internal dynamics. 

Consider a linear state space as: 

x Ax Bu

y Cx

 


         (4.22) 

with state ( ) nx t R , control input ( )u t  and output ( )y t . Define the tracking error as: 

( ) ( ) ( )e t r t y t        (4.23) 

In U-state space control, the relationship of output ( )y t  and control input ( )u t  can be 

expressed as: 

y Cx CAx CBu          (4.24) 

Define an auxiliary input ( )v t  where is: 

dx CBu CAx r        (4.25) 

So that 

1( ) ( )du CB r CAx x        (4.26) 

where 1( )CB   is full rank. 

The full closed-loop system is obtained by substituting the controller (4.26) into state 

equation (4.22): 
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1( ) ( )dx Ax B CB r CAx x         (4.27) 

The zero dynamic is defined as ( ) 0y t   shows that: 

dx e y r r            (4.28) 

Then yields 

1( ) zx I B CB C Ax A x           (4.29) 

The error dynamics can guarantee stability through the choice of ( )dx t . However, there 

remain poles that may or may not be stable. For example, if some of these poles are non-

minimum phase, then the designed closed loop system will be unstable. 

Theorem 4.1 (Slotine and Li, 1991) The nonlinear system (4.13), with ( )f x  and ( )g x  

being smooth vector fields, is input-state linearisable if, and only if, there exists a region 

  such that the following conditions hold the vector fields  1, , , n

f fg ad g ad g  are 

linearly independent in  . 

This condition is proposed to discuss the controllability condition for the nonlinear system. 

For linear systems, the vector fields  1, , , n

f fg ad g ad g become  1, , , nb Ab A b , and 

therefore their independence is equivalent to the invertibility of the familiar linear 

controllability matrix. From U-state space realisation (4.8), it is clearly to find that the 

rearrangement of state equations into time varying parameters with respect to controller 

input ( 1)u t  . The next time state variables are determined by previous state variables and 

controller input so that the U-state space model is valid for further design only if the 

nonlinear system is controllable. 

Lemma (Slotine and Li, 1991) An nth order nonlinear system is converted into U-state 

space if, and only if, there exists a scalar function 1( )z x  such that the system's with 1( )z x  

as output function has relative degree n. 

The relative degree of the system is to differentiate the output of a system r times to generate 
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an explicit relationship between the output y and input u , then r is the relative degree. It 

can also be shown formally that for any controllable system of order n , it will take at most 

thn  differentiation of any output for the control input to appear, it requires r n . It can be 

understood in an easy way. If it took more than thn  differentiation, it represents that the 

original system order higher than n . The control input never appeared or infuled with this 

system so that this is the uncontrollable system (Slotine and Li, 1991). Another particular 

case is the relative degree of a system is the same as its order ( r n ), i.e., when the output 

y has to be differentiated n times (with n being the system order) to obtain a linear input-

output relation. In this case, the variables 1, , , ny y y   may be used as a new set of state 

variables for the system, and there is no internal dynamics associated with this input output 

relationship. The U-state space is still simply converted from original state equations, but 

it is difficult to guarantee the stability of the control systems. 

In the above, the concepts of nonlinear state space system is described, which provides an 

interesting interpretation of the previous tracking control design based on feedback 

linearisation, and also yields insights about the tracking control of non-minimum phase 

systems. 

For a SISO nonlinear state space system described as: 

( 1) ( ( )) ( ( )) ( )

( ( ))

x t f x t g x t u t

y h x t

  


      (4.30) 

From above system, the initial conditions (0)x  and control input ( )u t  should be in order 

for the plant output to track a reference output ( )ry t  perfectly. It can be assumed that the 

system output ( )y t  is identical to the reference output ( )ry t . This implies that the time 

derivatives of all orders should be the same as those of the desired output: 

( ) ( )k k

ry t y t
                (4.31) 

In terms of normal coordinates, the above equation can be written as: 

1( ) ( ) ( ) ( ) ( )
T

r

r r r rt t y t y t y t                  (4.32) 
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Thus, the control input ( )u t  must satisfy: 

 ,
( )

( , )

r r

r

y a
u t

b

 

 


     (4.33) 

where ( )t  is the solution of the differential equation: 

 ( ) ( ), ( )rt w t t         (4.34) 

Given a reference trajectory ( )ry t , it can be used to obtain the required control input for 

output ( )y t  to be identically equal to ( )ry t . Note that this output depends on the internal 

states ( )t  and thus, in particular, on the initial ( )t . 

4.5 Case Studies 

In this section, two nonlinear mathematical models described by state space representation 

are selected to test the proposed design method. An F-16 aircraft dynamic model is also 

applied to the proposed U-state space control system design approach. The simulation 

results is given to show the proposed method effective. These numerical simulations are 

achieved on computational test by using Matlab programming. 

The desired closed loop characteristic equation is specified with 

2 0.2 0.3cA q q                          (4.35) 

Therefore the closed loop poles are a complex conjugate pair of 0.1 0.5385i , which gives 

equivalently in continuous time domain of damping ratio 0.3980 and undamped natural 

frequency 1.5100 rad/s. To achieve zero steady state error, specify 

0 (1) 1 0.2 0.3 1.1ch A              (4.36) 

Case I: Consider a nonlinear discrete time state space system: 



Chapter 4. U-State Space Control System Design and Analysis                                          6 8 

 

2

1 1 2

2 2 1

1

( 1) ( ) ( )

( 1) ( )cos ( ) ( )

( ) ( )

x t x t x t

x t x t x t u t

y t x t

  

  



            (4.37) 

Where , 1,2ix i    are state variables, and ( )u t , ( )y t are control input and system output.  

According to (4.17) and (4.18), the specified closed loop standard controllable realisation 

of (4.1) is: 

 
0 1 0

1.1 0 0
0.3 0.2 1

d d d dA B C D
   

      
   

   (4.38) 

It can be found that: 

2 1 2( 1) ( ( ), ( ), ( ))dx t f x t x t u t                          (4.39) 

From system (4.37), the desired state equation 2 ( )dx t  can be expressed as: 

2 0 1( 1) ( ) ( ) ( 1)dx t t t u t                (4.40) 

where 
0 2 1( ) ( 1)cos ( 1)t x t x t     and 

1( ) 1t  . 

From (4.16), the controller output is determined by 

2 0

1

( 1) ( )
( 1)

( )

dx t t
u t

t





 
                    (4.41) 

where the state 
1 2( ), ( )x t x t  is measurable or obtained by a proper observer. 

Set up the initial state variables 
1 2(0) 0.5, (0) 0.5x x    , and the desired state variables 

1 2(0) 0, (0) 0d dx x  . The simulation results are shown in the following figures. 
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Figure 4.3 Response of state variables 1( )x t  and 2 ( )x t  

 

Figure 4.4 Controller output ( )u t  

It can be inspected from Figures 4.3 and 4.4 that the state variable 1( )x t  reaches the peak 

value at 5s with overshoot 0.12. After 13s, the response of state variable 1( )x t  settles down. 

Compared with 1( )x t , the state variable 2 ( )x t  has a lower overshoot but similar oscillation. 

Within the first 8s, the controller output fluctuates between 0.04 to -0.1, and it settles down 

0 10 20 30 40 50 60 70 80 90 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Time

x
1
(t

)

0 10 20 30 40 50 60 70 80 90 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Time

x
2
(t

)

0 10 20 30 40 50 60 70 80 90 100
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time

C
o
n
tr

o
lle

r 
o
u
tp

u
t 

u
(t

)



Chapter 4. U-State Space Control System Design and Analysis                                          7 0 

 

at about 13s. The results of the controller output show an appropriate amplitude level and 

tuning profile. The simulation results give a strong indication that the proposed U-state 

space approach could be applied to design most practical industrial systems (subject to 

certain level of nonlinearity) initially, even though a lot of bench tests will be conducted in 

the following thorough validation work. 

Case II: Consider the following nonlinear discrete time model as: 

1 1 2 1

2 2 2 1 1

1

( 1) ( ) ( ) sin ( )

( 1) (t) ( )cos ( ) cos 2 x ( ) ( )

( ) ( )

x t x t x t x t

x t x x t x t t u t

y t x t

    

   



  (4.42) 

where ( )x t  is state variable, and ( )u t , ( )y t are control input and system output. 

From (4.8), the desired state equation 2 ( )dx t  can be expressed as: 

2 0 1( 1) ( ) ( ) ( 1)dx t t t u t                 (4.43) 

where 
0 2 2 1( ) ( ) ( )cos ( )t x t x t x t   , 

1 1( ) cos2 ( )t x t   
1 1( ) cos2 ( )t x t  . 

The controller output is determined by solving equation (4.20). The same initial 

specification in previous case is used in the simulation. The simulation results are shown 

in the following figures 4.5 to 4.7. 
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Figure 4.5 Response of state variable 1( )x t  and 2 ( )x t  

 

Figure 4.6 Controller output ( )u t  

It can be inspected from Figures 4.5 and 4.6 that the state variable 1( )x t  reaches the peak 
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Compared with 
1( )x t , the state variable 

2 ( )x t  has a similar oscillation. 

Case III: In this part, a linearised F16 dynamic model in selected to model a trim flight 

condition to demonstrate the U-state space control system design approach. 

Now consider a F16 flight condition in straight and level flight at 502 ft/s with a cg position 

of 0.3c  (Stevens and Lewis, 2003), the determined trimmed equilibrium is presented in 

Table II. 

TABLE 4.1 Trimmed equilibrium for 0.3cgX c  

TV  502 ft/s 

  0.003936 rad 

  0.03544 deg 

e  -0.0559 deg 

Convert this F16 longitudinal model into a discrete time expression (4.16) with a sampling 

time 0.01T s  

( 1) ( ) ( )x k Gx k Hu k                      (4.44) 

where  

0.998 0.7654 3.2137 0.1809

0 0.893 0 0.0799

0 0.0115 1 0.093

0 0.2207 0 0.8606

G

  
 
 
 
 

 

 

0.0422

0.045

0.0155

0.0055

H

 
 


 
 
 
 

 

The four states give rise to one complex conjugate pair of eigenvalues. The eigenvalues are 
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0.8768 0.1318j  . 

By using LQR design, setup the matrices Q  and R . The feedback gain can be determined 

as  1.0745 4.373 16.8521 3.1182K    . The desired closed loop state space 

equation is 

( 1) ( ) ( )d d dx k A x k B w k                      (4.45) 

where 

0.9527 0.5808 2.5027 0.0492

0.0484 0.6962 0.7586 0.2204

0.0166 0.0563 0.7389 0.0447

0.0059 0.1968 0.0922 0.8436

dA

  
 

 
 
 

  

 

It can be found that 

0 1( 1) ( ) ( ) ( ) ( )d dx k A x k k k u k          (4.46) 

Assume that the initial state variables are  ( ) 0 12 0 0
T

x k  . From equation (6.1), the 

U-state space equation of angle of attack is 

2 0 1( 1) ( ) ( ) ( )x k k k u k              (4.47) 

where 
0 2 4( ) 0.893 ( ) 0.0799 ( )k x k x k    and 

1( ) 1k  . 

From (4.34), the controller output is determined by 

2 0

1

( 1) ( )
( )

( )

dx k k
u k

k





 
               (4.48) 

The simulation results are shown in figures 4.7 and 4.8. It can be inspected from following 

figures that the state variable delta velocity 1( )x k  fluctuates between 9.5 and -4 and it 

settles down at 60 time units (0.6s). After 50 time unit (0.5s), the state variable delta alpha 

2( )x k  settles down from initial state 12 to steady state. The state variable delta theta 
3( )x k  
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fluctuates between 1.2 and -0.35 and it settles down at 60 time units (0.6s). The state 

variable delta pitch rate 
4( )x k  reaches the nadir at 5time units (0.05s) and settles down at 

60 time units (0.6s). 

The simulation results show the evidence that the proposed U-state space approach could 

be applied to design most practical linearised aircraft systems initially, the nonlinear control 

system based U-state space will be conducted in the following thorough justification work. 

The related design approach for nonlinear aircraft model is also expected to proposed and 

demonstrated. 

 

Figure 4.7 Response of state variable 1( )x k  velocity and 
2( )x k  angle of attack 

 

Figure 4.8 Response of state variable 
3( )x k  pitch angle and 

4( )x k  pitch rate 
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4.6 Conclusions 

In this chapter, U-state space model is defined as the similar representation in terms of U-

model polynomial framework. Then the linear state feedback controller design method is 

proposed to design on the nonlinear dynamic model directly within U-state space model. 

The zero dynamics of the control system is discussed to guarantee the stability of the design 

control system. 

U-state space model design approach was originally proposed to simplify nonlinear control 

system design on the linear approach available U-platform, it has still advantages over 

classical approaches while dealing with linear control system design. One of the attraction 

points is to split accumulated bulk inversion into separate inversions in the design. U state 

space design is an approach where a feedback linearisation loop is applied to the tracking 

outputs of interest. 

In the simulation section, two mathematical models and one F-16 aircraft model are 

selected to test the proposed U-state space design approach. The simulation results shows 

that the state variables are converged to initial values in a short response time with satisfied 

overshoot. The proposed approach is an effective and efficient tool for control system 

design. 

In the next section, a quadrotor craft model is introduced to conduct the U-state space 

design approach for MIMO system. 
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5.1 Introduction 

5.1.1 Quadrotor configuration and requirements 

Unmanned Aerial Vehicles (UAVs) are gaining increasing interest because of a wide area 

of possible applications. The multi-rotor vehicle is a mechatronic system with four (or more) 

propellers in typically in a symmetrical configuration (shown in Figure 5.1). In this project, 

the quad-rotor vehicle (quadcopter) is used as the platform for the studies and discussion. 

The quadcopter different from a conventional helicopter, has two motors (the front and the 

rear) rotate clockwise, and the rest of two (the left and the right) rotate counter-clockwise. 

The overall thrust is the summation of the thrusts generated by the four single rotors. During 
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trimmed flight thrust forces from motors nearly cancels gyroscopic effects and 

aerodynamic torques. One additional advantage of the quad-rotor is the simplified rotor 

mechanics structure and kinetic analysis (Voos, 2009). By varying the rotating speed of 

each motor, vertical and lateral motion can be controlled by changing the lift force. For 

example on basic rotations, the different rotating speed of a pair motors (usually it says 

front and rear) provide a lift force larger/smaller than gravity for the pitch movement. 

Another pair of motors can produce a roll motion by generating a difference in rotating 

speed. Yaw rotation, slightly different from above two movements, is generated due to the 

difference in the induced counter torque of the paired motors (front/rear and left/right). 

 

Figure 5.2 Quad-Rotor configuration 

Nowadays, the quad-rotor rotorcraft is designed to operate with high agility and rapid 

manoeuvring. It is required to be capable of working in degraded environments such as 

strong and gusting wind conditions and so on (Das et al., 2008). Thus UAVs have been 

successfully deployed for a wide range of applications including: search and rescue 

operations for missing people and natural disasters, surveillance for illegal imports and 

exports, inspection of power lines, aerial photography for mapping, fire detection and 

control, tracking shooting of TV program, traffic monitoring in urban areas, crop 

monitoring and spraying, border patrol and atmospheric analysis for weather forecasts 

(Zulu and John, 2014).  

The focus on the development of powerful control strategies for quadrotors has 

Front 

Rear 

Right Left 
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correspondingly become more and more popular as a research area. For these applications, 

quad-rotor control often requires holding a particular trimmed operation such as hovering 

or tracking targets as well as controlling the motors to provide commanded velocity and 

acceleration in the desired way (Koo and Sastry, 1998). Thus, it is significant to enhance 

the ability for quadrotors to achieve hover precisely and manoeuvre sharply.  

From an attitude control aspect, it can be said that rotorcraft control is very similar to 

aircraft control which involves controlling the pitch, yaw, and roll motion of the rigid body. 

However, the pitch, yaw and roll dynamics of the rotorcraft are strongly coupled because 

of its unique body structure. Therefore, it is challenging to design decoupled control laws 

that stabilise the faster and slower dynamics simultaneously within this commonly under-

actuated design configuration. In addition, the dynamics of the quadrotor are highly 

nonlinear and several uncertainties are encountered during its missions, which makes it a 

challenging venture for the related control design tasks (Lee et al., 2013). 

The 6 Degree of Freedom (DoF) airframe dynamics of a typical rotorcraft involves the 

typical translational and rotational kinetic equations. As briefly mentioned earlier the 

kinetic dynamic of a quad-rotor rotorcraft is essentially a simplified form of helicopter that 

exhibits the same basic problems including under-actuation, strong coupling, multi-

input/multi-output, and unknown nonlinearities (Das et al., 2008). The quad-rotor is 

classified as a rotorcraft where overall thrust is derived from the rotation speed of four 

motors and its movements are characterised by the resultant force and moments of the four 

rotors. Therefore the control algorithms designed for a quadrotor could be applied to a 

helicopter with relatively straightforward modifications. The control techniques applied to 

quadrotor has been extensively explored in academic research and as such, there are many 

different control algorithms successful for rotorcraft control systems design. 

5.1.2 Quadrotor control 

The PID controller, one of the most popular approaches in modern control engineering, has 

been applied to a broad range of industrial applications. The advantages of the classical PID 

controller is that parameters are flexible to adjust within fixed low cost structure and has 

good robustness (Ogata, 2009). However, the performance of PID controllers when applied 
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to quad-rotors is variable due to several challenges including the nonlinearity associated 

with the mathematical model and the imprecise nature of the model due to uncertain or 

inaccurate mathematical modelling of some of the dynamics (Zulu and John, 2014). 

A PID controller is proposed for the attitude control of a quadrotor (Lee et al., 2012). The 

stable hovering conditions of quadrotors is uniformly ultimately bounded for all signals by 

applying Lyapunov stability criteria. From the simulation and experimental work presented 

for this PID control system, it results in a better performance on the task of pitch angle 

tracking, but it can be observed that there are large steady state errors in the roll angle 

tracking performance. In another study, a PID controller was applied to regulate both 

position and orientation of a quad-rotor (Li and Li, 2011). The PID parameter gains were 

determined intuitively which result in a good performance during attitude stabilisation. In 

addition, the system performance has almost zero steady state error with slight overshoot 

and suitable response time. From many kinds of literature, the PID controller has been 

successfully applied to the quadrotor meanwhile with some limitations. For example, it is 

required to conduct PID tuning around the equilibrium point to demonstrate a good 

performance.  

Most literature (Bijnens et al., 2005; Mokhtari, et al., 2006) deal with either input output 

linearisation for decoupling pitch, yaw, roll or backstepping to deal with the under-

actuation problem. The problem of coupling in the yaw, pitch, and roll of a helicopter, as 

well as the problem of coupled dynamics-kinematic under-actuated system, can be solved 

by back-stepping (Slotine and Li, 1991). Generally, backstepping control is a recursive 

algorithm that breaks down the controller into steps and progressively stabilises each 

subsystem. The advantage is that this algorithm quickly converges and results in less 

computational calculations with high performance against external disturbances. However, 

the robustness against internal uncertainties is very poor. It is applied to stabilise a quad-

rotor system consisting of an under-actuated, fully actuated and propeller subsystems 

(Madani and Benallegue, 2006). Combined with Lyapunov stability theory, roll and pitch 

angle stabilisation can be guaranteed with proper tracking performance for position and 

yaw angle. The backstepping approach is also applied for attitude stabilisation of a 

quadrotor (Huo et al., 2014). By using Lyapunov stability analysis, it is found that the 
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closed loop system of attitude is asymptotical stable, where all the state vectors are 

ultimately bounded in the presence of external disturbances. To increase robustness against 

external disturbances, an integrator is added to the general system to develop an algorithm 

named Integrator Backstepping Control as articulated (Fang and Gao, 2011). The integral 

approach is shown to eliminate the steady state errors of the system, reduce response time 

and restrain overshoot of the control parameters (Zulu and John, 2014). 

The most popular method is feedback linearization which is a generic nonlinear control 

system design approach and it is also known as Dynamic Inversion (DI). DI control is a 

methodology for designing closed loop control laws for nonlinear systems by which 

existing undesirable dynamics are cancelled out and replaced by designer specified 

appropriate ones through the inversion of the model dynamics. The central idea of this 

approach was applied to linear control techniques for those nonlinear systems whose 

nonlinear dynamics could be fully or partly transformed into linear one. This technique can 

be regarded as way of deriving simpler equivalent models from the original system model. 

The nonlinear dynamics are cancelled in the closed loop and the mature linear design 

methods can be applied to the equivalent systems. Dynamic inversion is effective in the 

control of both linear and nonlinear systems and involves an inner inversion loop (similar 

to feedback linearization) which results in tracking if the residual or internal dynamics is 

stable. Typical usage requires the selection of the output control variables so that the 

internal dynamics is guaranteed to be stable. This implies that the tracking control cannot 

always be guaranteed for the original outputs of interest (Das et al., 2008).  

The application of dynamic inversion on UAV’s and other flying vehicles such as missiles, 

fighters and aircraft are proposed in several research works. Output feedback linearization 

is implemented as an adaptive control strategy for stabilisation and trajectory tracking on a 

quadrotor with a centre of gravity that could dynamically change (Palunko and Fierro, 

2011). The controller is able to stabilise the quadrotor and reconfigure it in real time when 

the centre of gravity changed. Feedback linearization and input dynamic inversion are 

implemented to design a path-following controller which allowed the designer to specify 

the speed profile and yaw angle as a function of displacement along the path (Roza and 

Maggiore, 2012). Two simulation cases with the quadrotor travelling at different speeds 
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along the path were considered. Both cases showed the convergence of velocity and yaw 

angle. 

In this chapter, the nonlinear quadrotor model is introduced in section 5.2. The U-state 

space control system design for MIMO is proposed in section 5.3. In the next section, the 

case studies for the U-state space control system is demonstrated though computational 

experiments. A conclusion of this chapter is given in the last section. 

5.2 The Nonlinear Quadrotor Model 

5.2.1 Quadrotor model preliminaries 

For a typical quad-rotor (Figure 5.2), it is given that the front and the rear motors rotate 

counter-clockwise while the other two rotate clockwise, gyroscopic effects and 

aerodynamic torques tend to cancel in trimmed flight (Castillo et al., 2005). For the task of 

controlling the quad-rotor rotorcraft, the control targets are the rotation speed of each motor 

instead of any blade pitch control. In this way, the throttle input is obtained from the 

summation of the thrusts providing by motors. Pitch movement is obtained by 

increasing/reducing the speed of the rear motor and reducing/increasing the speed of the 

front motor. The roll movement is obtained similarly using the lateral motors. The yaw 

movement is obtained by increasing/decreasing the speed of the front and rear motors and 

decreasing/increasing the speed of the lateral motors (Das et al., 2008). 
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Figure 5.2 the body frame of quadrotor 

This quadcopter has four identical rotors located at the corners of a square body (Figure 

5.2), and its propellers or blades are connected with each rotor at a fixed angle of attack. 

The location can pair the rotors, and each pair of them rotates in a different direction (see 

the arrow in Figure 5.2). When inspecting from above view, motors 1 and 3 rotate clockwise, 

whereas motors 2 and 4 have a counter clockwise rotation. Especially, all the motors rotate 

at the same angular velocity to generate the torques τ1, τ2, τ3 and τ4. These torques are the 

counter torques as a consequence of the rotation of the motors. The quadcopter will cancel 

each other out and not spin about its vertical direction (
bz  axis 0  ). The hover condition 

is satisfied if the total thrust (generated by the four rotors) is equal to the force of gravity. 

To formalise the description on movement trajectory and attitude of the quad-rotor 

rotorcraft, the inertial frame and the body frame are referred. Firstly, the inertial frame is 

defined by the ground, with gravity pointing in the negative z direction. Secondly, the body 

frame is defined by the orientation of the quadcopter, with the rotor axes pointing in the 

positive 
bz  direction and the arms pointing in the bx  and 

by  directions (Agudelo and 

Moor, 2014). The attitude of the quad-rotor rotorcraft is determined by three angles, 
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normally denoted as roll ( ), pitch ( ) and yaw ( ). The way of varying these angles by 

determining the angular velocities of the rotors is illustrated in Figure 5.3. For example, the 

roll and pitch angles changes are accompanied by translational movement. The reason is a 

quad-rotor rotorcraft is an under-actuated vehicle. There are using only 4 actuators (four 

rotors located in the corners) for controlling 6 degrees of freedom (including three 

translational positions x, y, z and three rotational angles ,   and  ). 

 

Figure 5.3 Motion of the quadrotor (Agudelo and Moor, 2014) 

The angular velocity of the motors are denoted as ,  1,2,3,4i i  , and the angular velocity 

of the quad-rotor rotorcraft in the hover condition is denoted as h . From Figure 5.3, it can 

be inspected that the rolling motion corresponds to a rotation of the quad-rotor rotorcraft 

about the bx  axis. It is obtained when 2 4 h     and 1 3,   are changed. For a positive 

rolling, the angular of velocities of motors is specified as 1 h   and 3 h  . A negative 

rolling action is produced when the angular velocities of 1 3,   are set up in the opposite 

conditions. 

5.2.2 Quadrotor kinematic equations 

There are many existing studies to described the nonlinear dynamic model of the quad-

rotor rotorcraft. Referring to previous studies, the nonlinear dynamic model is reviewed 
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and presented in the following section. 

Consider the motion of quad-rotor as described by Newton laws: 

1 2 3 4totF f f f f mg ma                              (5.1) 

The force and acceleration along the coordinate directions 

sin

sin

cos cos

x tot x

y tot y

z tot z

F F ma

F F ma

F F ma





 

 

 

 

                                 (5.2) 

The translational motion of the quad-rotor in the inertial frame is described by the following 

equation: 

0

0 b

D
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z mg

   
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   
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      (5.3) 

where x , y  and z  are the coordinates of the position of the quad-rotor rotorcraft in the 

inertial frame, m  is the mass of the vehicle, g  is the acceleration due to gravity, DF  is the 

drag force because of air friction, 
3

bT   is the thrust vector in the body frame, and 

3 3R   is the rotation matrix. Within the body frame with the inertial frame, 

transformation matrix R  is defined as: 

cos cos cos sin sin cos sin sin sin coscossin

cos sin cos cos sin sin sin cossin sin cossin
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R
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

  
 

  
 
  

     (5.4) 

The force drag DF  due to air friction is supposed to a force proportional to the linear 

velocity in each direction and is described as 
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    (5.5) 

where dk  is the air friction coefficient. The thrust if  generated by the i th rotor is given 

by the following expression 

2       1, 2,3, 4i if k for i        (5.6) 

where k is the propeller lift coefficient and i  is the angular velocity of the i th motor. The 

set of control inputs (speed of motors) are described as 

0
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               (5.7) 

where the main thrust is modelled as: 

1 2 3 4u f f f f                       (5.5) 

and if  is described as 
2

i i if k  (positive constant and angular speed of the motor) 

The total thrust bT  generated by the four rotors is defined as 

4
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       (5.8) 

It is assumed that the dynamics of the motors is determined as the motion of the quad-rotor, 

and therefore is not taken into account to be different between them.  

Typically, the relationship of the angular velocity and applied voltage of motor is regarded 

as proportional. It is given as 
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2 2      1, 2,3, 4i m ic v for i        (5.9) 

where mc  is a constant and v  is the voltage applied to the motor. 

The rotation of quad-rotor can be expressed about the centre of itself instead of about 

inertial center, because in the inertial frame, it is convenient to obtain linear motion 

equations and the rotational equations of motion are useful in the body frame (Agudelo and 

Moor, 2014). Thus, from Euler’s equation, the equations for rigid body dynamics are 

defined as follows: 

( )I I          (5.10) 

where 3 3I   is the inertia matrix, 
T

x y z        is the angular velocity vector 

and  1 2 3

T
     is the vector of the external torques. 

The quad-rotor can be modelled as two thin uniform rods crossed at the origin with a point 

mass (motor) at each end. The inertia matrix is formed in a diagonal matrix of the following 

form 
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      (5.11) 

where ,    xx yy zzI I and I  are the moments of inertia of the quadcopter about ,    b b bx y and z  

axes respectively. The equation (5.12) reduces to 
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     (5.13) 

The torques of roll   and pitch   are derived from standard mechanics as 
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where L  represents the distance from the rotor to the centre of quad-rotor. The total torque 

about the bz  axis that is the yaw   torque is given below as 

   2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4mb bc v v v v               (5.15) 

where b is the propellers drag coefficient. 

The roll, pitch and yaw rates are related to the components of the angular velocity vector 

by means of the following expression: 
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 (5.16) 

Finally, the nonlinear equations of motion (quad-rotor rotorcraft) can be expressed in state 

space form as follows 
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where the state vector of the system,  the control input and system output vectors are 

denoted respectively as 12,
T

x y z x y zx x y z v v v x          

, 2 2 2 2

1 2 3 4

T

u v v v v   
 and   6,

T
y x y z y    . Notice that the control 

input vector is in terms of the squared voltages of the rotors, and therefore the control 

system should compute 
2 2 2 2

1 2 3 4,  ,    v v v and v  instead of 1 2 3 4,  ,    v v v and v . The maximum 

voltage that can be applied to the motors is dependent on the hardware capacity. 

5.3 U-State Space Control System Design for Quad-rotor 

Dynamic Model 

A UAV control system contains two main control loops. The first loop is the underlying 

control loop (inner loop) called ‘vehicle control loop’. This control loop is responsible for 

the generation and stabilisation of a currently required movement of the UAV (Voos, 2007). 
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The second loop is the mission control loop (outer loop) that comprises the stabilised 

vehicle as a platform for mission related sensors and actuators and the mission control 

system. The mission control loop computes the desired flight path, e.g. given by waypoints, 

and commands current required movements to the vehicle control loop (Voos, 2007). The 

remaining question is how to develop controller based on U-state space approach to achieve 

control targets properly.  

Consider a discrete time state space system 

( 1) ( ( ), ( ))

( ) ( ( ))

x k f x k u k

y k h x k

 


       (5.18) 

Differentiating the output vector until control input u appears. 
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( ( 1)) ( ( ))

y k y k
h x k h x k

Ts

 
       (5.19) 

The continuous time state space system can be discretised by the factor 

( 1) ( )
( )

x k x k
f x

Ts

 
            (5.20) 

The discrete time state space system is 

( 1) ( ) * ( )x k x k Ts f x               (5.21) 

where sT  is sampling time interval. 

Assume a linear dynamical system 

x Ax Bu

y Cx

 


       (5.22) 

where ( )x t  is the state vector and ( )u t  is control input. 

The control law will be state feedback, and a standard form can be expressed as: 

u Kx         (5.23) 

where K is a matrix of constant feedback coefficients to be determined by the design 
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procedure. The objective of state regulation for the quadcopter is to drive any initial 

condition error to zero, thus guaranteeing stability. This may be achieved by selecting the 

control input ( )u t  to minimise a quadratic cost of the type. The linear quadratic regulator 

(LQR) is used to design the feedback gain K  to obtain the closed-loop matrix dA . This 

design method calculates the optimal gain vector K  such that the feedback law u Kx   

minimizes the cost function  

0

1
( ) ( ) ( ) ( )

2

N
T T

k

J x k Qx k u k Ru k


             (5.24) 

where Q and R are symmetric positive semidefinite weighing matrices to be selected by the 

designer. In this way, the optimal control can be calculated by weighting each state and 

control input through the matrices Q and R respectively. Considering by the control goal, 

the choice of these matrices can be done by trial and error. 

U-state space model design approach was originally proposed to simplify nonlinear control 

system design on the linear approach available U-platform, it has still advantages over 

classical approaches while dealing with linear control system design. One of the attractive 

points is the ability to split accumulated bulk inversion into separate inversions in the design. 

U state space design is an approach where a feedback linearization loop is applied to the 

tracking outputs of interest. This approach is designed in discrete time domain directly 

where initially the convenient output vector [ , , , ]Ty x y z  is selected for the position 

control.  

Accordingly the task of the design is to determine the desired state variable ( )dx t  

according to specified performance index dA . 

dA A BK     (5.25) 

With reference to U-state space expression (4.8), in simple mathematical expression, it is 

clear to express U-state space equation as 

0

( ) ( ) ( 1)
M

j

dn j

j

x t t u t


    (5.26) 
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where ( )j t  contains the state variable ( )x t . Assume that the state variables within ( )x t  

are measurable or obtained by a proper observer, the desired state space equation can be 

updated from equation (5.26). As mentioned previously, the remaining design task is to 

resolve one of the roots of the following equation (5.27) to obtain the controller output. 

That is 

1

0

( 1) ( ) ( ) ( 1) 0
M

j

d j

j

u t x t t u t



 
      

 
 (5.27) 

where  1 * is a root-solving algorithm, such as Newton-Raphson algorithm or other root 

solver algorithms (Zhu et al., 1999). 

 

Figure 5.4 block diagram of U-state space design 

The U-model approach is applied to the tracking outputs and requires that the residual 

dynamics (internal dynamics) are stable. Initially, the nonlinear dynamic system is selected 

to achieve tracking control for position outputs  , , ,x y z   or  ,z  . The output vector 

 , , ,y z     is easy to solve the inverse root. This root solver loop yields effectively an 

inner control loop that linearises the system from control input  , , ,u u       to system 

output. 

A step-by-step procedure for the U-state space control system design for MIMO aircraft 

system can be specified as the follows:  

State 

variables 

  

Quadrotor 

model 

LQR state 

feedback 

controller 

Root solver 

 

x(0) 
u(t) 

y(t) 
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Step 1. Select a flight condition to obtain aerodynamic coefficients and 

corresponding continuous state space equations. 

Step 2. Discretise the continuous state space equations into discrete time state space 

equation by Zero Order Hold equations. 

Step 3. Determine the desired closed loop matrix dA  by LQR design 

Step 4. Obtain the controller output by root solver (5.27) 

 

5.4 Case Studies 

The dynamic model of the quadrotor is derived and implemented in MATLAB/Simulink 

software. With the help of that computational simulation, the nonlinear vehicle control 

system is tested and demonstrates the proposed control strategy and its effectiveness and 

efficiency for the quadrotor dynamic model. 

5.4.1 Quadrotor Parameters 

In the case studies, a linearised quadrotor model in trim flight condition is selected to 

demonstrate the proposed U-state space control system design approach. The parameters 

for a typical quadcopter is shown in Table 5.1. 

Table 5.1 Parameters of the quadrotor model (Agudelo and Moor, 2014) 

Parameter Symbol Value unit 

Mass of the quadcopter m 0.5 Kg 

Radius of the quadcopter L 0.25 m 

Propeller lift coefficient k 63 10  N s2 

Propeller drag coefficient b 71 10  N ms2 

Acceleration of gravity g 9.81 m/s2 
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Air friction coefficient dk   0.25 kg/s 

Quadcopter inertia about the 
bx  axis xxI  

35 10  kg m2 

Quadcopter inertia about the 
by  axis yyI  

35 10  kg m2 

Quadcopter inertia about the 
bz  axis zzI  

21 10  kg m2 

Motor constant mc  
41 10  

2 2V s 

 

A reference trajectory is derived that minimises the rate of change of acceleration over the 

time horizon. The trajectory ensures that the velocities and accelerations at the end point 

are zero while meeting the position tracking objective. The advantage of this trajectory 

generation method lies in the fact that more demanding changes in position can be 

accommodated by varying the final time, that is, acceleration/torque ratio can be controlled 

smoothly as per requirement and constraints explicitly enforced on the achievable 

accelerations. 

The linear model of the quad-rotor is expressed as 

x Ax Bu

y Cx

 


     (5.28) 

where the state vector is 12,
T

x y z x y zx x y z v v v x         , 

and control input vector and output are respectively 2 2 2 2

1 2 3 4

T

u v v v v   
 and 

  6,
T

y x y z y    . Substituting the parameters from table 5.1, the system 

matrices are shown as below 

12*12

*

*
A

 
  
 

        (5.29) 
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0 0

0.6 0.6 0.6 0.6

0.0038 0.0038

0.0038 0.0038

0.001 0.001 0.001 0.001

B

 
 
 
 
 

  
 
 

 
   

    (5.30) 

The continuous time quadcopter model (5.28) is converted into a discrete time expression 

with a sampling time 0.05T s , given as: 

( 1) ( ) ( )x k Gx k Hu k        (5.31) 

where  

0 0 0 1 0 0 0 0 0 0 0 0

1 0

1 0

0.5 0.24 0

0.5 0.24 0

0.5 0

1 0

1 0

1

0

0

0 0 0 0 0 0 0 0 0 0 0 0

G

 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
  

    (5.32) 

0 0

0.03 0.03 0.03 0.03

0.0019 0.0019

0.0019 0.0019

0.0005 0.0005 0.0005 0.0005

H

 
 
 
 
 

  
 
 

 
   

    (5.33) 
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5.4.2 Linear model of quadrotor and control 

Using LQR design, matrices Q  and R are setup and the feedback gain matrix can be 

determined as 4 12K  . Thus, the desired closed loop state space model can be expressed 

as: 

( 1) ( ) ( )d d dx k A x k B w k       (5.34) 

where  

1 0 0 0.1 0 0 0 0 0 0 0 0

1 0.1 0

1 0.1 0

0.95 0.024 0

0.95 0.024 0

0.95 0

1 0.1 0

1 0.1 0

1 0.1

1 0

1 0

0 0 0 0 0 0 0 0 0 0 0 1

clA

 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
  

 0dB   

It can be found that: 

0 1( 1) ( ) ( ) ( ) ( )d dx k A x k k k u t         (5.35) 

where the initial state variables are assumed to be:

( ) 0 0 1 0 0 0 45*( ) 45*( ) 45*( ) 0 0 0
180 180 180

T

x k
   

  
 

 

From the controller output is determined by: 

0

1

( 1) ( )
( )

( )

dx t t
u t

t





 
     (5.36) 
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For U-state space method, the first design task is to determine the desired state variables 

which are impacted by the control inputs. Consider a simplified discrete-time quadrotor 

model from (5.35) 

( 1) ( ) ( )cx k G x k H u k                       (5.37) 

where the state vector and control inputs are respectively
T

x y zx z          
 

and  1 2 3 4

T

cu u u u u      . Substitute the related parameters from Table 5.1, thus 

the state space equation can be written as: 

3 3

3 3

( 1) ( 1)0.75 0 0 0

( 1) ( 1)0 0 0 0

( 1) ( 1)0 0 0 0

( 1) ( 1)0 0 0 0

0.03 0.03 0.03 0.03

1.9 10 0 1.9 10 0
                      

0 1.9 10 0 1.9 10

5 1

z

x x

y y

z z

v k k

k k

k k

k

z

k

 

 

 

 

 

      
       
    
       
    
       

  

  









1

2

3

4 4 4 4

4

( )

( )

( )

( )0 5 10 5 10 5 10

u k

u k

u k

u k   

  
   
  
   
  
      

    (5.38) 

By using LQR design, the matrices Q and R are setup and the desired closed loop state 

space equation is determined as 

dA G HK                                (5.39) 

It can be found that the desired closed loop state equations 

0 1( 1) ( ) ( ) ( ) ( )d dx k A x k k k u k               (5.40) 

where 

0

0.75 0 0 0

0 0 0 0
(t)

0 0 0 0

0 0 0 0



 
 
 
 
 
 

 and

3 3

1 3 3

4 4 4 4

0.03 0.03 0.03 0.03

1.9 10 0 1.9 10 0
(t)

0 1.9 10 0 1.9 10

5 10 5 10 5 10 5 10


 

 

   

 
 

  
 
   
 
      

. 
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From (5.4), the control input can be obtained by 

0

1

( 1) ( )
( )

( )

dx k k
u k

k





 
                      (5.41) 

 

Figure 5.5 Control inputs u  

The initial states are given as  1 0.7854 0.7854 0.7854
T

x   . Note that the control 

input vector 2 2 2 2

1 2 3 4

T

u v v v v        is in terms of the square voltages of the rotors, 

where every control input should be positive and constraint in the range of 

2 20 100 V u V  .The simulation results are shown in figure 5.5. 
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Figure 5.6 Resultant in position 

Although U-state space model design approach was originally proposed to simplify single-

input single-output (SISO) nonlinear control system design, by using linear method. Under 

the U-state space platform, it has still advantages over classical approaches while dealing 

with the linear design approaches for SISO and MIMO systems. This study from theory to 

simulation confirms again this superiority. In the next section, the original nonlinear 

dynamic model will be studied to apply the U-state space design approach. 

5.4.3 Nonlinear quadrotor control 

In this section, the same LQR controller (in section 5.4.1) is used to control the nonlinear 

dynamic model (5.16). 

The nonlinear model is rewritten as: 
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   (5.42) 
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           (5.43) 

The discretise operator is used for conversion nonlinear plant from continuous time into 

discrete time. The desired closed loop is the same as (5.34) 

( 1) ( ) ( )d d dx k A x k B w k              (5.44) 

where the initial state variables are:

( ) 0 0 1 0 0 0 45*( ) 45*( ) 45*( ) 0 0 0
180 180 180

T

x k
   
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 

 

The U-state space expression of nonlinear plant (5.43) and (5.44) as: 

1( 1) ( ) ( ) ( )    0,1,2,3...i ix k k k u k i           (5.45) 
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The inner loop controller output u is determined by: 
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             (5.46) 

The block diagram of U-state space nonlinear design is shown on figure 5.8. The outer loop 

is similar design process as the inner loop. 



Chapter 5. U-State Space Control System Design for Quadrotor Dynamic Plant                                    101 

 

 

Figure 5.7 Block diagram of U-state space nonlinear control 

The simulation results are shown on figures 5.8 and 5.9. 

  

Figure 5.8 Control inputs u 
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Figure 5.9 Resultant in position 

From simulation results, it can be inspected that the nonlinear system outputs achieve the 

same performance as those in the linear case. The nonlinear control inputs are different 

from the control inputs in linear case. The reason is that the nonlinear model has been 

linearised around equilibrium point which results state variables and control inputs are 

,  x u  . However, the nonlinear simulation shows the results of original state variables and 

control inputs ,  x u . 

5.5 Conclusions 

In this chapter, a nonlinear dynamic model of four rotors quadrotor is introduced to be 

controlled subject for proposed U-state space control system design. U-state space model 

is extended from SISO system to the square MIMO state space system. The U-state space 

design approach for MIMO system is similar to that for SISO design. The closed loop 

characteristic equation is determined by the linear control approach. Then the control inputs 

can be obtained by solving the related function. In simulation studies, the control 

performance is given as computational experiment results via MATLAB/Simulink. Note 

that the conducted control input should follow the range of the hardware values. 
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In the next section, an inverted pendulum system will be introduced. As a Single Input 

Multi Output (SIMO) system, U-state space control will be applied to control and stabilise 

the unstable system. 
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6.1 Introduction 

6.1.1 Overview of inverted pendulum control systems 

The Inverted Pendulum is recognised as a classical example in the control research domain, 

as it contains a range of dynamic characteristics such as high order dynamic, nonlinearity, 

inherently unstable, multivariate and tight coupling. 

The stabilisation and control of the inverted pendulum is the world recognised challenges 

on control theory research and application development. This is typically due to its low cost, 

simple structure, easy simulation and implementation of control in the two different ways 
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(analogue and digital). Moreover, it is a quite complex controlled object with many 

different characteristics, and it only is well stabilised using an effective control strategy. 

Although an inverted pendulum has a simple structure (a cart and pendulum), the difficulity 

of stabilisation and control such systems is dramatically increasing due to the numbers of 

connected pendulums. Inverted pendulum system is not only an ideal experiment device 

for verifying the performance of control strategy, but also the dynamic of this system 

behaves as similar as many applications. 

The industrial applications based on the research of inverted pendulum control systems 

include: 

• Robot movement (such as standing and walking) like a double inverted pendulum 

system. The first humanoid robot, known as Elektro, was exhibited at the New York 

World's Fair eighty years ago (Schaut, 2006). It is still the objective of many 

researchers to develop key control strategies to achieve smoothing movement for 

humanoid robot. 

• The real-time control for rockets to maintain the desired attitude during flight 

processing. For example, the multi-stage rocket is developed to prevent the crash of 

single-stage rocket during launch. The flight attitude control for such rocket is often 

studied by multi-stage inverted pendulum system. 

 

Figure 6.1 Basic rocket motion (NASA, 2014) 
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• The communications satellite maintains its stable posture while tracking of the pre-

calculated orbit at a fixed location in order to keep the satellite antenna pointing to 

the Earth and its solar panels always pointing towards the sun. For reconnaissance 

satellite, slight jitter will have a great impact on the image quality of the camera. To 

guarantee the quality of the camera, it must eliminate vibration by automatically 

maintaining the stability of the servo attitude. The research of inverted pendulum 

provides useful theoretical references and laboratory results underpinning this 

application. 

 

Figure 6.2 Sun synchronous orbit (Alvenes, 2012) 

• The control of a tower crane is a classic problem that requires the balancing of an 

inverted pendulum by moving a cart along a horizontal track (Mladenov, 2011). 

When moving the shipping containers back and forth, the cranes move the box 

accordingly so that it never swings or sways. It will stays perfectly positioned under 

the operator even when moving or stopping quickly. 

 

Sun 
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Figure 6.3 Tower Crane 

• The Segway Transporter, known as a unicycle, is a popular vehicle nowadays which 

is a vehicle extended from the inverted pendulum system and balancing robot (Kim 

and Park, 2016). This system is an uncertain nonlinear system and has an unknown 

time-varying control coefficient. In a Segway Transporter, the pivot of the 

pendulum is the axle of a wheel or pair of wheels where the wheel is powered by 

an electric motor. The movement of Segway is stabilised by the designed controller 

to dynamically balance the pendulum.  

 

Figure 6.4 Segway model (Kim and Park 2016) 

From the early 1990s, the inverted pendulum has been became a hot topic in the control 

domain and has led to the development of many new control strategies and approaches for 

more complex systems. The reasons for selecting the inverted pendulum as the system are: 
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• It is the one of the most easily available systems for laboratory usage. 

• It is originally a nonlinear system. However, it can be studied and tested as linear 

system without too much error in a wide range of variation. 

• It can provide a significant reference and practice experiment for prospective 

control engineers. 

6.1.2 Inverted pendulum control strategies 

The performance of the designed control systems for inverted pendulum can be either 

directly observed by its stability or can be measured by the performance indexes (also state 

variables) such as angle of pendulum, position of the cart and settling time. The 

experimental results are intuitive and significant to verify the accuracy and practicality of 

applied controller and to compare the performance of various different control methods. 

Moreover, many control problems (such as stabilisation problems, nonlinear problems, 

robustness such as follow-up problems and tracking problems) can be studied and analysed 

with the design of inverted pendulum control systems. The inverted pendulum system is a 

popular demonstration of using feedback control to stabilise an open loop unstable system. 

The first solution to this problem was described by Roberge (1960) in his aptly named 

thesis, “The Mechanical Seal”. Subsequently, it has been used in many books and papers 

as an example of an unstable system (Ogata, 2009). Based on the pole placement methods 

of classical and modern control theory, many researchers have successfully designed the 

effective analogue controllers for the stabilisation of single and double inverted pendulum 

systems (Lan and Fei, 2011; Rajak, 2015). 

Proportional Integral Derivative (PID) control is one of the simplest implementations for 

designed controller and sufficient capacity to solve lots of industrial control problems. 

Many researchers have proposed the PID controller to stabilise the inverted pendulum. 

More than one PID controllers were designed for stabilisation and tracking control for three 

types of inverted pendulum (Wang, 2011). The first PID controller was to control the angle 

of the pendulum and the other one was to track the position of the cart (shown in Figure 

6.5). This control system is not only solving stabilisation and tracking problems for inverted 

pendulum, but also having robustness against large and fast disturbances. 
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Based on this PID control system, another PID controller is designed to deal with the 

combination of horizontal and vertical control forces in x-z axis of the inverted pendulum 

(Wang, 2015). In case studies, simulation results are compared with the classical inverted 

pendulum (one horizontal control force), which are shown to enlarge the stability domain 

and robustness margin by the vertical control force. This proposed PID control system not 

only realises the stabilisation and tracking control of the inverted pendulum in the 

horizontal and vertical space, but also has better performance and flexibility than the 

standard inverted pendulum control system. 

 

Figure 6.5 PID controllers for the inverted pendulum (Krafes et al., 2016) 

The LQR control is one of the optimal control techniques that looks for a feedback gain for 

state feedback control. Based on state feedback control, the angle and position is stabilised 

and minimized by the quadratic criterion of inverted pendulum (Krafes et al., 2016). The 

weighting matrices Q and R is significant to determine the positions and velocities in order 

to stabilise of the system. Figure 6.6 shows the schematic of a standard LQR control system 

for the inverted pendulum. To stabilise the system, LQR controller is designed to compare 

with different weighting matrices Q and R (Wang et al., 2010). It shows that the larger 

feedback gain (determined by weighting coefficients) results a quick response time and 

reduced overshoot. 

Inverted pendulum 

Controller for the angle 

Controller for cart position  
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Figure 6.6 Standard LQR control system for the inverted pendulum 

A combined PID controller with LQR optimal control system has been implemented to 

control the nonlinear inverted pendulum system with disturbance input (Prasad et al., 2011). 

The case studies compared the system performance of three different control system with 

disturbance input including purely PID control for pendulum angle and cart position, LQR 

stabilisation combined with PID controllers (angle and position) and LQR stabilisation with 

PID control cart position. Although the feedback gain (LQR) is obtained by using linearised 

models, the simulation results show that a combination control system response for 

nonlinear inverted pendulum is effective and robust (better than PID control). 

Based on linearisation, nonlinear effects are neglected so that linear controllers are designed 

to stabilise the inverted pendulum. Some linear controllers can also work on nonlinear 

model with satisfied performance. However, the dynamics provided by these nonlinear 

effects is richer than linear systems (Krafes et al., 2016). It should be necessary to have 

better robustness and accuracy of controllers. Thus, numerous nonlinear control approaches 

have been proposed for the inverted pendulum to solve the stabilisation problem. 

The Sliding Mode Control (SMC) is a nonlinear control technique with numerous 

advantages including quick response, insensitivity to parameter variation and disturbance, 

and easy tuning and implementation. A discontinuous state feedback control signal was 

designed to force the system dynamics to move toward an adjacent region (state 

trajectories). A sliding mode controller design was proposed for a rotational inverted 
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pendulum (Grossimon et al., 1996). In this case, the tip of the pendulum arm could be 

placed at any reachable point so that the position of this point will be a function of 

( , ) ( )desf     . This gives a unique surface design by SMC. Figure 6.7 shows a block 

diagram of an SMC system. 

To resolve chattering phenomenon problem of SMC, there is continued research to develop 

algorithms of the second order sliding mode control. Twisting and a super-twisting 

algorithms (continuous sliding mode) were presented to ensure main properties of the first 

order sliding mode control for systems with Lipschitz continuous matched uncertainties or 

disturbances with bounded gradients (Mahjoub et al., 2013; Krafes et al., 2016). Numerical 

simulation results show that higher order SMC performs better compared to the first order 

sliding mode controller. 

 

Figure 6.7 Sliding mode controller for the inverted pendulum (Krafes et al., 2016) 

Backstepping is another popular nonlinear control method applied to the development of 

inverted pendulum control systems. To guarantee overall stability, backstepping is a 

systematic method for nonlinear control design where it decomposes the system into several 

subsystems where each subsystem is stabilised by Lyapunov stability criterions. 

A control system that combines the feedback linearisation and backstepping has been also 

proposed to control the non-minimum phase nonlinear systems (Yakoub et al., 2013) where 

the system is decomposed into two strict feedback subsystems. Then, the control strategy 

is synthesised by the sum of two types of control laws that represented the controller 

obtained by the backstepping and the controller obtained by the input-output feedback 

linearisation respectively. For an inverted system, the backstepping algorithm is 

synthesised to regulate the rod angle without regard to the cart motion; and then synthesised 

to regulate the cart position. Figure 6.8 shows a block diagram of a backstepping and 
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feedback linearisation controller for the inverted pendulum. 

 

Figure 6.8 Block diagram of feedback linearisation (Slotine and Li, 1991) 

In a comparative study of trajectory tracking control, three different controllers respectively 

SMC, backstepping SMC and feedback linearisation SMC were designed to test the system 

performance (Sassi and Abdelkrim, 2015). The simulation results shows that in the case of 

third controller the presence of the chattering phenomenon is noticed. A slower 

convergence to the desired trajectory was noticed with the use of the first controller. Using 

the second controller, the system response was faster and the system reached the desired 

trajectory in a shorter period of time (Krafes et al., 2016). 

An exact linearization is proposed based on differential geometry techniques in order to 

algebraically obtain the equivalent linear equations from the original nonlinear system.so 

that linear control techniques (such as feedback control) can be applied for further 

controller design (Zhang and Wang, 2011). This combination gives a good response and 

good robustness for both the pendulum and the cart position. 

From the above researches, the main idea is to obtain an approximated linear model and 

then to design with linear control approaches. U-model methodology, which is a generic 

systematic approach to convert the nonlinear model into a controller output based time-

varying expression model (Quan et al., 2016), aims to transform the nonlinear model into 

an equivalent expression without any approximation so that those well-known linear 

approaches developed can be directly applied to such nonlinear U-model expression. 

In this chapter, the nonlinear inverted pendulum model is introduced in section 6.2. The U-

state space control system design for SIMO is proposed in section 6.3. In the next section, 

the case studies for the U-state space control system is demonstrated using a computational 
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experiment. Finally, the conclusions of this chapter is presented. 

6.2 Inverted Pendulum System 

A standard inverted pendulum system is a motorized cart connected with a pendulum also 

known as stick balancer; a schematic diagram of the inverted pendulum is shown in Figure 

6.9. In this example it will be considered as a two-dimensional problem where the 

pendulum is constrained to move in the vertical direction. For this system, the control input 

is the force F that can move the cart horizontally and the outputs are the angular position of 

the pendulum θ and the horizontal position of the cart x. 

 

Figure 6.9 Schematic diagram of inverted pendulum 

Based on Newton’s law, summing the forces in the free body diagram (shown in Figure 

6.10) of the cart in the horizontal direction, the motion of the cart can be expressed as: 

Mx F bx N            (6.1) 

where abbreviation of inverted pendulum is listed in Table 6.1. 

M 
F 
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Figure 6.10 Force analysis of the cart 

Similarly from the horizontal force analysis (shown in Figure 6.11) of the pendulum 

force ,it can be derived the following equation: 

2

2
( sin )

d
N m x l

dt
             (6.2) 

where   represent the deviation of the pendulum’s position from equilibrium, that is, 

   . That is: 

2cos sinN mx ml ml             (6.3) 

 

Figure 6.11 Force anaylsis of pendulum 

By substituting equation (6.3) into equation (6.1), the reaction force N can be expressed as: 

2( ) cos sinM m x bx ml ml F                  (6.4) 
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Table 6.1 Abbreviation of inverted pendulum 

𝑥 The position of the cart on the horizontal axis 

𝐹 Force applied the cart 

𝑚 Mass of the pendulum 

𝑀 Mass of the cart 

L Length of the pendulum 

𝑙 Length to pendulum centre of mass 

 𝜑 Angle between pole and vertical upward position 

 𝜃 Angle between pole and vertical downward position 

𝑁 Interactive force’s components for cart and pole on horizontal position 

𝑃 Interactive force’s components for cart and pole on vertical position 

𝑏 Coefficient of friction for cart 

𝑔 Gravitational force 

Similarly, from force analysis of the pendulum (shown in Figure 6.11), it gives: 

sin cos sin cosP N mg ml mx                      (6.5) 

Summating of the moments about the centroid of the pendulum achieves following equation: 

sin cosPl Nl I                (6.6) 

Combining equation (6.5) and (6.6), it gives: 

2( ) sin cosI ml mgl mlx                    (6.7) 

The nonlinear model of inverted pendulum can then be expressed as: 

2

2

( ) sin cos

( ) cos sin

I ml mgl mlx

M m x bx ml ml u

  

   

    


    
            (6.8) 

The following small angle approximations can be applied to simplify the non-linear 

functions in our system equations: 
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2 2

cos cos( ) 1

sin sin( )

  0

 

 



   

   

 

        (6.9) 

It can be concluded the following linearised equations of motion as: 

2( )

( )

I ml mgl mlx

M m x bx ml u

   

    
           (6.10) 

The state vector is x x x     , and the linearised equations of motion from (6.10) 

can also be represented in state-space form as: 

2 2 2 2

2 2 2

2 2 2

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

x x

I ml b m gl I ml
x x u

I M m Mml I M m Mml I M m Mml

mlb mgl M m ml
x u

I M m Mml I M m Mml I M m Mml

 





  
   

     



 
   

     

        (6.11) 

It is assumed here that the pendulum rod is mass-less, and the hinge is frictionless. Thus, 

equation (6.4) can be expressed as: 

2( ) cos sinM m x ml ml u              (6.12) 

 

6.3 U-State Space Control System Design for Linear System 

6.3.1 Linear controller design 

In order to use linear state space model-based design approaches, the desired state vector is 

defined as ( )dx t , where the specified feedback gain is defined by designers in advance 

(such as pole placement or LQR). Therefore, the relationship between a specified state 

vector ( )dx t  and the requested corresponding controller output ( 1)u t   can be expressed 

in terms of the U-state space model as: 
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0

( ) ( ) ( 1)
M

j

d j

j

x t t u t


               (6.13) 

Based on U-state space design, the proposed design procedure can be classified into two 

steps. The first task of the U-state space design is to determine the desired state vector as 

( )dx t  according to a specified performance index. 

A linear feedback controller is: 

( 1) ( ) ( )

( ) ( )

x t Ax t Bu t

u t Kx t

  

 
                (6.14) 

where ,A B  are state space matrices and ( )u t  is feedback controller; K is a matrix of 

constant feedback coefficients. The LQR control minimises the cost function as: 

0

1
( ) ( ) ( ) ( )

2

N
T T

k

J x k Qx k u k Ru k


               (6.15) 

The desire state vector can be derived as: 

( ) ( ) ( )d c cx t A x t B r t            (6.16) 

Assume that the state variables in the inverted pendulum system are measurable or obtained 

by a proper observer. Then, the following task is to obtain the desired controller output 

( 1)u t  . By resolving one of the roots of equation (6.13), it can be expressed in terms of: 

1

0

( 1) ( ) ( ) ( 1) 0
M

j

d j

j

u t x t t u t



 
      

 
            (6.17) 

where 1  is root solving algorithm. 

Figure 6.14 shows a general U-state space feedback control system structure with the 

proposed design procedure. 
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Figure 6.12 Block diagram of U-state space feedback control 

The U-state space model (6.13) is regarded as a type of time-varying polynomials, where 

the values of these time-varying parameters are necessary to know in order to derive the 

desired equation. Moreover, the related controller is actually an online algorithm because 

its control input must be updated from the time-varying parameter vector in each sampling 

interval. 

For the classical design procedure, the performance index of the classical control is needed 

to determine the criterion function. Then, the controller output is obtained by resolving the 

criterion function. For a linear system case, it requests for the plant model to obtain the 

solution from inversion of the equations based on such procedure. For the case of the 

nonlinear systems, there are more difficulties on the inversion calculation (Quan et al, 2016). 

For a state feedback, the controller is: 

u Kx            (6.18) 

where u  is control input, K  is feedback gain and x  is state vector. 

The state space equations for the closed-loop feedback system are expressed as: 

( ) ( )x Ax B Kx A BK x                  (6.19) 

From equation (6.19), it can be found that criterion function in this example relies on the 

system matrices A  and B , because the desired poles determine the closed loop matrix 

A BK . 

Compared with U-state space procedure, the first task is to resolve the criterion function to 

obtain the designed/desired state vector. Then, the controller output can be obtained by 

resolving desired state vector through U-state space expression (equation (6.13)). For some 
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linear approaches (such as pole placement), it does not require the plant of model to derive 

the desired criterion function. The plant model is only used for conversion of the original 

model into the U-state space expression. 

 

6.3.2 Case study 

The dynamic model of the inverted pendulum is derived and implemented in 

MATLAB/Simulink software. With the help of that computational simulation, the LQR 

feedback control system is tested and demonstrates the system performance by the proposed 

control strategy for the inverted pendulum. 

In the case studies, a two-dimensional version of the inverted pendulum system consists of 

a cart and pendulum in which the pendulum is constrained to move in the vertical plane. A 

linearised model is determined presuming a small deviation from equilibrium and is 

selected to demonstrate the proposed U-state space control system design approach. The 

control input is the force F that moves the cart horizontally and outputs are the angular 

position θ and the position of the cart x. The parameters for a typical inverted pendulum is 

shown in Table 6.2. 

Table 6.2 Parameters of inverted pendulum 

m Mass of the pendulum 0.2 Kg 

M Mass of the cart 0.5 Kg 

l Length to pendulum centre of mass 0.3 m 

I Inertia of the pendulum 0.006 Kg.m2 

b Coefficient of friction for cart 0.1 N/M/s 

g Gravitational force 9.81 m/s2 

Consider an inverted pendulum system in (6.11) as: 

1 2 1

3 4 2

0 1 0 0 0

0 0
= +

0 0 0 1 0

0 0

x x

A A Bx x
u

A A B

      
      
      
       
      

       

           (6.20) 

where  
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

 
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2

1 2

( )

( )

I ml
B

I M m Mml



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  2 2( )
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B

I M m Mml


 
 

Substituting the parameters into equation (6.20), it gives: 

0 1 0 0 0

0 -0.1818 2.6755 0  1.8182
= +

0 0 0 1 0

0 -0.9091 31.2136 0 4.5455

x x

x x
u

       
       
       
        
       
        

         (6.21) 

The continuous time state space system can be discretised by the factor: 

( 1) ( ) * ( )x k x k Ts f x                  (6.22) 

Let 0.01sTs  , the discrete time model is obtained as: 

1 1

2 2

3 3

4 4

( 1) 1 0.01 0 0 0

( 1) 0 0.9982 0.0268 0  1.8182
( )

( 1) 0 0 1 0.01 0

( 1) 0 -0.0091 0.3121 1 4.5455

x t x

x t x
u t

x t x

x t x

      
      
       
      
      

       

       (6.22) 

where state vector  1 2 3 4(t)
TT

x x x x x x x      . The eigenvalues are 

1.0000, 0.9437, 0.9990 and 1.0555. This system is unstable because of an eigenvalue larger 

than one. 

Using LQR design, matrices Q  and R are setup and the feedback gain matrix can be 

determined as 4 1K  . Thus, the desired closed loop state space model can be expressed 

as: 
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(t 1) ( ) ( )d d dx A x t B r t               (6.23) 

where 

1 0.01 0 0

0.0171 1.0328 0.3156 0.0635

0 0 1 0.01

0.0427 0.0773 0.5438 0.8412

dA

 
 

 
 
 
 

 

 and 

0

0.0182

0

0.0455

dB

 
 
 
 
 
 

. 

For equation (6.13), the U-state space model expression of inverted pendulum is derived 

as: 

0 1( 1) ( ) ( ) ( )dn n nx t t t u t           (6.24) 

where  

1

2

02

3

4

( ) 0.0171 1.0328 0.3156 0.0635

x

x
t

x

x



 
 
   
 
 
 

 and 
12( ) 0.0182t  . 

Then the controller output ( 1)u t   is obtained by resolving the following equation: 

0

1

( 1) ( )
( )

( )

dx t t
u t

t





 
           (6.25) 

The simulation results are presented in Figure from 6.13 to Figure 6.15. 
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Figure 6.13 Response of cart position and speed 

 

Figure 6.14 Response of pendulum angle and angular speed 
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Figure 6.15 Control input u 

6.4 U-State Space Control System Design for Nonlinear 

System 

6.4.1 Nonlinear control design 

Consider a nonlinear inverted pendulum system (6.8) as: 

2

2

( ) sin cos

( ) cos sin

I ml mgl mlx

M m x bx ml ml u

  

   

   

    
          (6.26) 

where u  is control input and the state variables are x x x      , respectively position, 

velocity, phase angle and angular speed. 

The system (6.26) can be rewritten into nonlinear state space expression as: 
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2 2

2

sin
( )( ) sin

cos cos cos

( ) sin
sin

cos

u bx
x I ml gml

ml ml

M m g
bx ml u






 

  


  



     


    

    (6.27) 

where 

2

( ) ( )
cos

cos cos

( )( )
cos

cos

I M m l M m
ml

ml

M m I ml
ml

ml






 




 
   

 
  



            (6.28) 

The discrete time operator is used to converted (6.28) into discrete time system: 

( 1) ( ) sf t f t T f                 (6.29) 

To clarify the state variables in discrete time system, there are redefined as 

 x x x x v       Then the U-state space prototype can be represented as: 

0 1 1

2 3 2

( 1) ( )
( ) ( ) ( )

( 1) ( )
( ) ( ) ( )

s

s

v t v t
t t u t

T

t t
t t u t

T

 

 
 

 
 

 
 

          (6.30) 

where 

2 2

0

2

1

2

2

3

sin ( ) ( )
( ) ( )( ( ) ) sin ( )

cos ( ) cos ( )

( )
( )

cos ( )

( ) sin ( )
( ) ( ) ( ( )) sin ( )

cos ( )

1
( )

t bv t
t I ml t mgl t

t t

I ml
t

ml t

M m g t
t bv t ml t t

t

t










  

 





  





 
     
 






 
    
 




  

For example, the linear design (LQR linear design (6.15)) method is used to control the 

nonlinear system (6.30). The desired closed loop is: 
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( ) ( ) ( )d c cx t A x t B r t              (6.31) 

where c LQRA A BK   and 
cB B  are linearised state space matrices. 

The following task is to obtain the desired controller output ( 1)u t  . By resolving one of 

the roots of equation (6.30), it can be expressed in terms of: 

1 0 1

2 2 3

( 1) ( )
( ) ( ) ( )

( 1) ( )
( ) ( ) ( )

d

s

d

s

v t v t
u t t t

T

t t
u t t t

T

 

 
 

  
   
 

  
   
 

            (6.32) 

The nonlinear control must consider of two control inputs rather than one control input in 

linearized case. 

 

6.4.2 Case study  

Substituting the parameters (Table 6.2) into equation (6.27), it gives: 

2

2

sin 0.1
0.024( ) 0.5886sin

0.06cos cos 0.06cos

6.867sin
0.1 0.06 sin

cos

u x
x

x u






 

  


  



    

    

        (6.33) 

Using the same LQR controller in section 6.3.2, matrices Q  and R are setup and the 

feedback gain matrix can be determined as 4 1K  . Thus, the desired closed loop state 

space model can be expressed as: 

(t 1) ( ) ( )d d dx A x t B r t         (6.34) 

where 

1 0.01 0 0

0.0171 1.0328 0.3156 0.0635

0 0 1 0.01

0.0427 0.0773 0.5438 0.8412

dA

 
 

 
 
 
 

 

 and 

0

0.0182

0

0.0455

dB

 
 
 
 
 
 

. 
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Then the U-state space expression in (6.30) can be written as: 

2 0 1 1

4 2 3 2

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

d

d

x t t t u t

x t t t u t

 

 

  

  
      (6.35) 

where 

2

0

1

2

sin ( ) 0.1 ( ) 0.0042 0.21
( ) 0.024( ( ) ) 0.5886sin ( ) ( 0.06cos ( ))

cos ( ) cos ( ) 0.06cos ( ) cos ( )

0.024
( )

0.0042 0.21
0.06cos ( )( 0.06cos ( ))

0.06cos ( ) cos ( )

6.867sin ( )
( )

cos (

t v t
t t t t

t t t t

t

t t
t t

t
t

t


   

   



 
 






 
      
 



 

 2

3

0.203
0.1 ( ) 0.06( ( )) sin ( ) ( 0.06cos ( ))

) 0.06cos ( )

1
( )

0.203
0.06cos ( )

0.06cos ( )

v t t t t
t

t

t
t

  







 
    

 






 

Then the controller output ( 1)u t   is obtained by resolving the following equation: 

1 0 1

2 2 3

( 1) ( )
( ) ( ) ( )

( 1) ( )
( ) ( ) ( )

s

s

v t v t
u t t t

T

t t
u t t t

T

 

 
 

  
   
 

  
   
 

      (6.36) 

The simulation results are presented in Figures (6.16 to 6.18) below: 
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Figure 6.16 Response of cart position and speed (nonlinear model) 

 

Figure 6.17 Response of pendulum angle and angular speed (nonlinear model) 
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Figure 6.18 Control input cart position and angle (nonlinear model) 

From the simulation results, it can be found that both linear and nonlinear control system 

perform the same system output based on U-state space control. For the nonlinear control 

system, it needs the stabilisation control loop to guarantee the stable internal dynamic.  

6.5 Conclusions 

In this chapter, a nonlinear dynamic model of an inverted pendulum is introduced as the 

controlled subject for the proposed U-state space control system design. U-state space 

model is extended from SISO system to stabilise the SIMO state space system. The U-state 

space design approach for SIMO system is similar to that for SISO design. The closed loop 

characteristic equation is determined by the LQR optimal control approach. Then the 

control input can be obtained by solving the related function. In simulation studies, the 

control performance is given as computational experiment results via MATLAB/Simulink. 

There may be some constraints for the control signals depending on the different types of 

hardware. 



Chapter 6. U-State Space Enhanced Control for Inverted Pendulum                                    1 2 8 

 

From simulation results, it can be inspected that the curves of the pendulum's angle and the 

cart's position is not satisfactory. The settling times and rise time are needed to be further 

improvement. The cart's final position is also not near the desired location (0.2). It should 

be mentioned that these errors are leading by LQR design approach (desired target). 
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7.1 Conclusions 

To overall aim of this PhD research was to propose the robust analysis and design of U-

model based control systems. Moreover, to extend the U-model approaches to state space 

form and to establish an enhanced U-model based state space platform to use the mature 

linear controller design approaches directly on nonlinear control system design and give a 

case study on the development of control system design for the standard quad-rotor 

dynamic model. 

In this project, a general control-oriented polynomial model framework called U-model and 

the corresponding pole placement control system design has been introduced to be the 

fundamental methodologies. Based on U-model, this design approach is not only simplified 
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by using the linear controller design method directly for the nonlinear dynamic model but 

also can be used to obtain the closed loop system with linearised input-output relationship 

called U-block model. Considering the uncertainty U-model based pole placement control 

system; the robust stability margin is obtained by the feasibility of LMI conditions. 

Therefore, the LMI based robust control system is designed to improve the robustness of 

the original U-model based control system.  

Many types of research of the U-model based control system design are focused on how to 

demonstrate different linear control methods on nonlinear control systems for nonlinear 

polynomial models. In modern control engineering, the state space realisation is widely 

used for presenting dynamic industrial applications. This study is extended to the U-model 

techniques into the state space control system design for establishing the U-state space 

platform. The new platform provides a generalised representation of a broad range of 

nonlinear state space models and simplifies nonlinear control design procedures. 

The contents of this PhD thesis can be summarised as follows. 

Chapter 2 briefly introduces the description of U-model, which is followed by the literature 

review of U-model based pole placement control system design; introduced to represent the 

fundamental methodologies. Also, other U-model based control system designs are also 

analysed to show the development of the U-model approach during last decade. 

In chapter 3, a framework named U-block model, is defined as an input output closed loop 

transfer function of the U-control systems (such as U-pole placement design). It is easily 

converted into an equivalent linear transfer function or state space realisation. Within the 

U-block model, the procedure for LMI based robust stability analysis of U-model pole 

placement control system is presented to determine the stability range. Then, an enhanced 

U-model LMI based robust control system is designed to enlarge this robust stability range. 

An LMI based enhanced H∞ output feedback controller of U-block model control system 

has been proposed to improve robust stability for the developed U-model based control 

system. The LMI based robust controller design approach is difficult to directly implement 

on nonlinear polynomial models. Finally, the computational simulation results are 

presented to verify the effectiveness of the enlarged robust stability bound.  
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Chapter 4 establishes a U-state space realisation which is converted from the nonlinear state 

space dynamic model. Within the U-state space platform, the controller for the nonlinear 

control system is developed using linear state feedback approach. The stability of the 

designed U-state space control system is analysed by using zero dynamic and relative 

degree. In order to implement the U-model design approach in state space control system, 

U-state space expression is established to apply linear control system design method 

directly for linear/nonlinear state space model. Through the numerical simulations, it can 

be inspected that the system performance of designed U-state space control system achieves 

the desired requirements/targets. 

In chapter 5, the proposed U-state space control system design approach is applied to 

develop the controller for a nonlinear quad-rotor rotorcraft model. Firstly, a brief 

introduction to quad-rotor modelling is studied to test the viability of U-state space design 

approach. A typical nonlinear quad-rotor model (5.17) is selected as the dynamic plant for 

implementation. The optimal control algorithm LQR is applied to find a desired closed loop 

dynamic matrix. Then the simulation results of the navigation and control architecture for 

the quad-rotor are presented to highlight the application and performance of the proposed 

control laws. Finally, an application study of U-state space control system design for the 

standard nonlinear quad-rotor model has been proposed to validate the effectiveness and 

efficiency of the proposed U-state space approach. 

In chapter 6, inverted pendulum control system is developed using U-state space control 

approach. The modelling of the inverted pendulum is presented to be controlled subject for 

U-control method. The desired state vector (closed loop specification) is determined by 

LQR design. The simulation results has been proposed to stabilise the inverted pendulum 

with satisfied performance. 
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7.3 Future work 

Since the first official publication in 2002, U-model based control system design 

procedures have gone through a decade to research and development. Almost all the 

researchers have focused on control system design within U-model polynomial framework. 

The study of U-state space model is in the first stage. There are many potential expansions 

of this study to be summarised in this section. The potential expansion of the present study 

can be summarised as follows. 

• With U-block realisation, nonlinear polynomial models can be easily converted into 

linear state space models (Zhu, 2016). This linear state space form provides a 

solution for the further robust control system analysis and design using linear design 

approaches. Although some of the existing robust control algorithms (ElBsat and 

Yaz, 2013; Zemouche and Boutayeb, 2013) will provide a useful reference for the 

http://eprints.uwe.ac.uk/27530
http://eprints.uwe.ac.uk/27532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7409439&isnumber=7409325
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7804234
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new development of U-block model, more stability analysis methods/theorems 

should be studied to give more powerful evidence for U-control approaches. 

• Instead of linearisation at the operating point, nonlinear modelling approaches could 

be further analysed, developed and applied to quad-rotor rotorcraft system analysis 

and stabilised design, e.g. nonlinear adaptive controller, nonlinear robust controller. 

• The improved tracking controller design algorithm could be applied to backstepping 

approach to determine the better stability and performance for the designed U-

model based control systems. 

• Even though the bottleneck problem has been resolved in U-state space platform 

design, the selected feedback design in this project is just for feasibility test. Further 

comprehensive studies and simulation bench tests should be conducted in the future 

concerning many leading research results (Bartolini and Punta, 2012; Moreno and 

Osorio, 2012). 

• Within such U-state space framework, proper stability analysis and stabilisation 

methods should be considered in conjunction with Lyapunov stability analysis 

theorem (Johansen, 2000; Li and Khalil, 2012; Zhou et al., 2011; Zhu, 2016). 
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Procedures of Linearization for Quadrotor 

Dynamic Model 

 

 

 

 

In order to design an LQR controller, it is necessary to have a linear approximation of the 

nonlinear model around an operating point (equilibrium point). The following procedures 

are used for obtaining the linearized model of quadrotor. 

Determine the linearization point of the vehicle for 0      and 0x y z   . 

The dynamic model of quadrotor can be expressed as 
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Consider the differential equation of 
xv  

𝑣̇𝑥 =
−𝑘𝑑

𝑚
𝑣𝑥 +

𝑘𝑐𝑚

𝑚
(sin𝜓 sin𝜙 + cos𝜓 cos𝜙 sin 𝜃)(𝑣1

2 + 𝑣2
2 + 𝑣3

2 + 𝑣4
2) 

It can be rewritten as 

𝑣𝑥0
+ 𝛥𝑣𝑥̇ =

−𝑘𝑑

𝑚
(𝑣𝑥0

+ 𝛥𝑣𝑥)

+
𝑘𝑐𝑚

𝑚
(Δ𝜓 Δ𝜙 + 𝛥𝜃)(𝑣10

2 + 𝛥𝑣1
2+𝑣20

2 + 𝛥𝑣2
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−𝑘𝑑

𝑚
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2 + 𝑣30
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2 ) 

Set Disturbances to zero 

0 = −0 + 0(𝑣10

2 +𝑣20

2 + 𝑣30

2 +𝑣40

2 ) 

Substitute into Linearized Equation 

𝛥𝑣𝑥̇ =
−𝑘𝑑

𝑚
(𝛥𝑣𝑥) +

𝑘𝑐𝑚
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2 +𝑣40

2 )(𝛥𝜃) 
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Similarly it can be found that 
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Consider the differential equation of 
zv  
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Substitute into Linearised Equation 
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Design and Analysis 

 

 

 

 

The following programmes are used for computational simulation of the proposed U-model 

based control system design approaches. 

 

LMI based robust control system design for developed U-model based pole placement  

% LMI design 

% the script started 28/01/2014 

% updated 18/05/2014 

% build up state space matrices 

a=[0 1;-0.4966 1.3205]; b1= [1;0];b2=[0;1];c1=[1 

0];c2=[0.1761 0];d11=0;d12=0;d21=1;d22=0;I=[1 0;0 1]; 

P=ltisys(a,[b1 b2],[c1 ;c2],[d11 d12;d21 d22]); 

[gopt,K]=dhinflmi(P,[1 1],3); 
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[Ak,Bk,Ck,Dk]=ltiss(K); 

sysc=ss(Ak,Bk,Ck,Dk); 

[num,den]=tfdata(sysc,'v'); 

syscz=tf(num,den,1); 

setlmis([]) 

 

%setup LMI equations 

setlmis([]) 

X=lmivar(1,[2,1]); 

Y=lmivar(1,[2,1]); 

%LMI 1 

lmiterm([1 1 1 X],a,a');%ARA' 

lmiterm([1 1 1 X],-1,1); 

%lmiterm([1 1 2 X],1,b1); 

%lmiterm([1 1 3 0],c1'); 

lmiterm([1 2 1 X],c1,a');%C1RA' 

lmiterm([1 2 2 0],-3); 

lmiterm([1 2 2 X],c1, c1'); 

%lmiterm([1 2 3 0],d11'); 

lmiterm([1 3 1 0],b1'); 

lmiterm([1 3 2 0],d11'); 

lmiterm([1 3 3 0],-3); 

 

%LMI 2 

lmiterm([2 1 1 Y],a',a); 

lmiterm([2 1 1 Y],-1,1); 

lmiterm([2 2 1 Y],b1',a); 

lmiterm([2 2 2 0],-3); 

lmiterm([2 2 2 Y],b1',b1); 

%lmiterm([2 2 1 Y],c1,1); 

%lmiterm([2 2 2 0],-1); 

%lmiterm([2 2 3 0],d11); 

lmiterm([2 3 1 0],c1); 

lmiterm([2 3 2 0],d11'); 

lmiterm([2 3 3 0],-3); 

%LMI 3 

lmiterm([-3 1 1 X],1,1); 

lmiterm([-3 2 1 0],1); 

lmiterm([-3 2 2 Y],1,1); 

%Compute solution to given system of LMIs 

[copt,xopt]=feasp(lmisys); 

X=dec2mat(lmisys,xopt,X); 

Y=dec2mat(lmisys,xopt,Y); 

%display results 

X 

Y 
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U-state space model base control system design for nonlinear mathematical models 

%U state space control system (Case I) 

% the script started 28/01/2015 

% updated 03/02/2015 

% Reference: 

%           1.  Q.M. Zhu and L.Z. Guo, a pole placement 

controller  

%                   for nonlinear dynamic plants, 2002. 

%  Nonlinear state space model 

%   x(t+1)=f(x(t),u(t)) 

%  Desired state function 

%  Bench test model 

%  Nonlinear state space model 

%       x1(t+1)=x1(t)^2+x2(t) 

%       x2(t+1)=x2(t)*cos(x1(t))+u(t) 

%  Specified desired Ad Bd 

%  Desired state space equations  

%       xd(t+1)=Ad*x(t)+Bd*W(t) 

%  obtain controller output u(t)  

%       u(t)=xd2(t+1)-x2(t)*cosx1(t)-v(t) 

% 

  

clc,clear 

ns=100; 

x=zeros(1,3);x1=x;x2=x;xd1=x;xd2=x;u=x;w=0; 

%initialization  

x1(1)=-0.5;x2(1)=-0.5;%inital state variables x1,x2 

xd1(1)=0;xd2(1)=0;%desired state xd 

u(1)=0; 

for t=1:ns 

%step 1 obtain desire state variables xd(t) 

  

xd1(t+1)=x2(t); 

xd2(t+1)=-0.4966*x1(t)+1.3205*x2(t)+w; 

  

%step 2 solve controller output u(t) 

u(t)=xd2(t+1)-x2(t)*cos(x1(t)); 

  

%step 3 update state variables from state equations 

x1(t+1)=0.1*x1(t)^2+x2(t); 

x2(t+1)=x2(t)*cos(x1(t))+u(t); 

%y(t)=0.1761*x1(t); 

end  

  

%step 4 display simulation results 

t=1:ns; 

figure(1) 
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plot(t,x1(1:ns)) 

xlabel('Time') 

ylabel('x1(t)') 

figure(2) 

plot(t,x2(1:ns)) 

xlabel('Time') 

ylabel('x2(t)') 

figure(3) 

plot(t,u(1:ns)) 

xlabel('Time') 

ylabel('Controller output u(t)') 

%figure(4) 

%plot(t,y(1:ns)) 

 

 

%% U state space control system design (case II) 

% the script started 28/01/2015 

% updated 18/03/2015 

% Reference: 

%           1.  Zhu, Q.M.and Guo, L.Z., a pole placement 

controller  

%                   for nonlinear dynamic plants, 2002. 

%           2.  Slotine, J.J.E. and Li, W., Applied 

Nonlinear Control, 

%                   Prentice-Hall, 1991. 

%  Nonlinear discrete time state space model 

%   x(t+1)=f(x(t))+g(x)u(t) 

%  Desired state function 

%  xd(t+1)=Ax(t)+Bw(t) 

%  y(t)=h(x)  

%  obtain controller output 

%  u(t)=(xd(t+1)-f(x(t))-w(t))/g(x)  

%  Bench test model 

%  Nonlinear continuous state space model 

%       x1'=-2x1+x2+sinx1 

%       x2'=x2(t)-x2*cos(x1)+u*cos(2x1) 

%  Discretization by Eural method 

%  y_n+1=y_n+h*f_n 

%  Nonlinear discrete time state space model 

%       x1(t+1)=-x1(t)+x2(t)+sin(x1(t)) 

%       x2(t+1)=x2(t)-x2(t)*cos(x1(t))+u(t)*cos(2x1(t)) 

%  Specified desired Ad Bd 

%  Desired state space equations  

%       xd(t+1)=Ad*x(t)+Bd*V(t) 

%  obtain controller output u(t)  

%       u(t)=(xd2(t+1)-x2(t)+x2(t)*cosx1(t))/cos(2*x(x1))-

w(t) 

% 
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clc,clear 

ns=100;%length of sample 

x=zeros(1,3);x1=x;x2=x;xd1=x;xd2=x;u=x; 

w=0;%reference input 

  

%initialisation  

x1(1)=1;x2(1)=0.5;%inital state variables x1,x2 

xd1(1)=0;xd2(1)=0;%desired initial state xd 

u(1)=0;%u(0)=0 

for t=1:ns 

  

%step 1 obtain desired state variables xd(t) 

xd1(t+1)=x2(t); 

xd2(t+1)=-0.4966*x1(t)+1.3205*x2(t)+w; 

  

%step 2 determine controller output u(t) 

u(t)=(xd2(t+1)-x2(t)+x2(t)*cos(x1(t))-w)/cos(2*x1(t)); 

  

%step 3 update state variables from state equations 

x1(t+1)=-x1(t)+x2(t)+sin(x1(t)); 

x2(t+1)=x2(t)-x2(t)*cos(x1(t))+u(t)*cos(2*x1(t)); 

  

end  

  

%step 4 display simulation results 

t=1:ns; 

figure(1) 

plot(t,x1(1:ns)) 

xlabel('Time') 

ylabel('x1(t)') 

figure(2) 

plot(t,x2(1:ns)) 

xlabel('Time') 

ylabel('x2(t)') 

figure(3) 

plot(t,u(1:ns)) 

xlabel('Time') 

ylabel('Controller output u(t)') 

 

% U-state space design for f-16 model 

% desired closed loop Ad 

% the script started 08/05/2015 

% updated 18/09/2015 

% Ad=[0.5 -0.4 -0.3 1; 

%     0.1 0.8 0.9 -0.2; 

%     0.3 -0.6 0.7 1; 

%     0.6  0  0  0.3 ] 
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%% initialization 

x=zeros(1,3);x1=x;x2=x;x3=x;x4=x;xd1=x;xd2=x;xd3=x;xd4=x;u=x

;w=0; 

%state varariables are respectively V_T_trim, alpha_trim, 

q_trim and z_E_trim 

x1(1)=0;x2(1)=1;x3(1)=0;x4(1)=0;u(1)=0; 

ns=100; 

%sysd1=ss(Ad,Bd,Cd,Dd,dt); 

for t=1:ns 

%step 1 obtain desired state variables xd(t) 

%  Ad=[0.5000   -0.4000   -0.3000    1.0000 

%     0.1000    0.8000    0.9000   -0.2000 

%     0.3000   -0.6000    0.7000    1.0000 

%    -0.2208    0.7125    0.1532   -0.8282]   

% xd1(t+1)=x2(t); 

% xd2(t+1)=x3(t); 

% xd3(t+1)=x4(t); 

xd4(t+1)=-0.2208*x1(t)+0.7125*x2(t)+0.1532*x3(t)-

0.8282*x4(t); 

  

%step 2 determine controller output u(t) 

u(t)=xd4(t+1)-0.6*x1(t)-0.3*x4(t); 

  

% update state variables 

x1(t+1)=0.5*x1(t)-0.4*x2(t)-0.3*x3(t)+x4(t) ;      

x2(t+1)=0.1*x1(t)+0.8*x2(t)+0.9*x3(t)-0.2*x4(t)    ; 

x3(t+1)= 0.3*x1(t)-0.6*x2(t)+0.7*x3(t)+x4(t)  ; 

x4(t+1) =0.6*x1(t)+0.3*x4(t)+u(t); 

  

end 

%step 4 display simulation results 

t=1:ns; 

% subplot(321),plot(t,u1,'r'),box off 

% ylabel('u1(t)'),xlabel('t') 

subplot(322),plot(t,u,'r'),box off 

ylabel('u(t)'),xlabel('t')  

subplot(323),plot(t,x1(1:ns)),box off  

ylabel('x1(t)'),xlabel('t')  

subplot(324),plot(t,x2(1:ns)),box off 

ylabel('x2(t)'),xlabel('t') 

subplot(325),plot(t,x3(1:ns)),box off 

ylabel('x3(t)'),xlabel('t') 

subplot(326),plot(t,x4(1:ns)),box off 

ylabel('x4(t)'),xlabel('t') 
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U-state space model based control system design for MIMO quadrotor model 

% U state space control system design for quadrotor 

% the script started 28/01/2015 

% updated 28/05/2016 

% Reference: 

%           1.  Zhu, Q.M.and Guo, L.Z., a pole placement 

controller  

%                   for nonlinear dynamic plants, 2002. 

%           2.  Stevens, B.L. and Lewis, F.L, Aircraft 

control and 

%                   simulation, 2003. 

% 

%  Nonlinear discrete time state space model 

%   x(t+1)=f(x(t))+g(x)u(t) 

%  Desired closed loop state function 

%  xd(t+1)=Ax(t)+Bw(t) 

%  y(t)=h(x)  

%  obtain controller output 

%  u(t)=(xd(t+1)-f(x(t))-w(t))/g(x)  

%  Specified desired Ad Bd by LQR design 

%  Desired state space equations  

%       xd(t+1)=Ad*x(t)+Bd*V(t) 

%  obtain controller output u(t)  

%       u(t)=(xd2(t+1)-lamda_0(t))/lamda_1(t)) 

% 

  

clc,clear 

%% Quadcopter parameters 

% mass of the quadcopter - m (kg) 

m = 0.5; 

  

% radius of the quadcopter - L (m) 

L = 0.25; 

  

% propellor lift coefficient - k (N s^2) 

k = 3e-6; 

  

% propellor drag coefficient - b (N m s^2) 

b = 1e-7; 

  

% Gravity - g (m/s^2) 

g = 9.81; 

  

% Air friction coefficient - kd (Kg/s) 

kd = 0.25; 

  

% Inertia about xb axis - Ixx (Kg m^2) 
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Ixx = 5-3; 

  

% Inertia about yb axis - Iyy (Kg m^2) 

Iyy = 5-3; 

  

% Inertia about zb axis - Izz (Kg m^2) 

Izz = 1-2; 

  

% Motor constant - cm (v^-2 s^-2) 

Cm = 1e4; 

  

v1 = 1; 

v2 = 1; 

v3 = 1; 

v4 = 1; 

VS = v1^2+v2^2+v3^2+v4^2; 

%% initialisation 

xs=zeros(12,3); 

x=zeros(1,3); 

% state variables 

x1=x;x2=x;x3=x;x4=x;x5=x;x6=x;x7=x;x8=x;x9=x;x10=x;x11=x;x12

=x;xd=x; 

xs(1,:)=x1;xs(2,:)=x2;xs(3,:)=x3;xs(4,:)=x4;xs(5,:)=x5;xs(6,

:)=x6;xs(7,:)=x7;xs(8,:)=x8;xs(9,:)=x9;xs(10,:)=x10;xs(11,:)

=x11;xs(12,:)=x12; 

% control inputs v1 v2 v3 v4 

u1=x;u2=x;u3=x;u4=x;w=0; 

%state varariables are respectively V_T_trim, alpha_trim, 

q_trim and z_E_trim 

%x1(1)=0;x2(1)=1;x3(1)=1;x4(1)=0;u1=1;u2(1)=0; 

Ts=0.5;%sampling time 

ns=100; 

%% linear model 

% x = [x, y, z, vx, vy, vz, phi, theta, psi, wx, wy, wz] 

  

A = [0, 0, 0, 1,     0,     0,     0, 0, 0, 0, 0, 0;... 

     0, 0, 0, 0,     1,     0,     0, 0, 0, 0, 0, 0;... 

     0, 0, 0, 0,     0,     1,     0, 0, 0, 0, 0, 0;... 

     0, 0, 0, -kd/m, 0,     0,     0, ((k*Cm)/m)*VS, 0, 0, 

0, 0;... 

     0, 0, 0, 0,     -kd/m, 0,     ((k*Cm)/m)*VS, 0, 0, 0, 

0, 0;... 

     0, 0, 0, 0,     0,     -kd/m, 0, 0, 0, 0, 0, 0;... 

     0, 0, 0, 0,     0,     0,     0, 0, 0, 1, 0, 0;... 

     0, 0, 0, 0,     0,     0,     0, 0, 0, 0, 1, 0;... 

     0, 0, 0, 0,     0,     0,     0, 0, 0, 0, 0, 1;... 

     0, 0, 0, 0,     0,     0,     0, 0, 0, 0, 0, 0;... 

     0, 0, 0, 0,     0,     0,     0, 0, 0, 0, 0, 0;... 
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     0, 0, 0, 0,     0,     0,     0, 0, 0, 0, 0, 0]; 

    

      

B = [0,            0,            0,             0;... 

     0,            0,            0,             0;... 

     0,            0,            0,             0;... 

     0,            0,            0,             0;... 

     0,            0,            0,             0;... 

     (k*Cm/m),     (k*Cm/m),     (k*Cm/m),      (k*Cm/m);...  

     0,            0,            0,             0;... 

     0,            0,            0,             0;... 

     0,            0,            0,             0;... 

     (L*k*Cm)/Ixx, 0,            -(L*k*Cm)/Ixx, 0;... 

     0,            (L*k*Cm)/Iyy, 0,             -

(L*k*Cm)/Iyy;... 

     (b*Cm)/Izz,   -(b*Cm)/Izz,  (b*Cm)/Izz,    -

(b*Cm)/Izz]; 

        

C = eye(12); 

D = zeros(12, 4); 

%% discrete time state space model 

%  sys = ss(A,B,C,D); 

%  sysd = c2d(sys,Ts); 

%  [A_Hov,B_Hov,C_Hov,D_Hov,Ts]= ssdata(sysd); 

A_Hov=eye(12)+Ts*A; 

B_Hov=Ts*B; 

C_Hov=eye(12)+Ts*C; 

D_Hov=D; 

%% LQR Control for Desired closed loop 

v_max = 10; 

r_input = (1/v_max)^2; 

  

xy_max = 0.5; 

xy_max_opt = (1/xy_max)^2; 

z_max = 0.2; 

z_max_opt = (1/z_max)^2; 

v_max = 0.1; 

v_max_opt = (1/v_max)^2; 

angle_max = 5; 

ang_max_opt = (1/angle_max)^2; 

w_max = 5; 

w_max_opt = (1/w_max)^2; 

  

Q = zeros(12); 

Q(1,1) = xy_max_opt; 

Q(2,2) = xy_max_opt; 

Q(3,3) = z_max_opt; 

Q(4,4) = v_max; 
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Q(5,5) = v_max; 

Q(6,6) = v_max; 

Q(7,7) = ang_max_opt; 

Q(8,8) = ang_max_opt; 

Q(9,9) = ang_max_opt; 

Q(10,10) = w_max_opt; 

Q(11,11) = w_max_opt; 

Q(12,12) = w_max_opt; 

  

R = [r_input, 0, 0, 0;... 

     0, r_input, 0, 0;... 

     0, 0, r_input, 0;... 

     0, 0, 0, r_input]; 

  

%[K,S,e] = lqr(A_Hov,B_Hov,Q,R); 

  

%% discrete LQR 

[Kd,Sd,ed] = dlqr(A_Hov,B_Hov,Q,R); 

%% Closed loop matrix 

 Ac=A_Hov-B_Hov*Kd*C_Hov; %%% X_dot=(A-BKC)X+B*V 

 Bc=0; 

 Cc=C_Hov; 

 Dc=D_Hov; 

%% Initial States 

xs(:,1) = [0 0 -1 0 0 0 45*(pi/180) 45*(pi/180) 45*(pi/180) 

0 0 0]'; 

%sysd1=ss(Ad,Bd,Cd,Dd,dt); 

for t=2:ns 

%step 1 obtain desired state variables xd(t) 

xd1(t)=Ac(6,:)*xs(:,t-1); 

xd2(t)=Ac(10,:)*xs(:,t-1); 

xd3(t)=Ac(11,:)*xs(:,t-1); 

xd4(t)=Ac(12,:)*xs(:,t-1); 

%step 2 determine controller output u(t) 

%% U expression yd=lamda_0+lamda_1*u 

 lamda1=[A_Hov(6,:)*xs(:,t-1), k*Cm/m]; 

 lamda2=[A_Hov(10,:)*xs(:,t-1), (L*k*Cm)/Ixx]; 

 lamda3=[A_Hov(11,:)*xs(:,t-1), (L*k*Cm)/Iyy]; 

 lamda4=[A_Hov(12,:)*xs(:,t-1), (b*Cm)/Izz]; 

  

%% root solver to obtain delta_u %  

% here  u1=delta_v1^2  

%       u2=delta_v2^2 

%       u3=delta_v3^2 

%       u4=delta_v4^2 

% yd=Ac(6,:)*y(t); 

% u=(yd-lamda0)/lamda1; 

% v= root(u/4); 
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ud1(t)=(xd1(t)-lamda1(1))/lamda1(2); 

ud2(t)=(xd2(t)-lamda2(1))/lamda2(2); 

ud3(t)=(xd3(t)-lamda3(1))/lamda3(2); 

ud4(t)=(xd4(t)-lamda4(1))/lamda4(2); 

u1(t)=((ud1(t)+ud4(t))/2+ud2(t))/2; 

u2(t)=((ud1(t)-ud4(t))/2+ud3(t))/2; 

u3(t)=u1(t)-ud2(t); 

u4(t)=u2(t)-ud3(t); 

% constraint for u should be in range of 0<<u=v^2<<100 

% if u1(t)<-10  

%     u1(t)=-10; 

% elseif u1(t)^2>100 

%     u1(t)=10; 

% end 

% if u2(t)<-10 

%     u2(t)=-10; 

%  elseif u2(t)^2>100 

%     u2(t)=10; 

% end 

% if u3(t)<-10 

%     u3(t)=-10; 

%  elseif u3(t)^2>100 

%     u3(t)=10; 

% end 

% if u4(t)<-10 

%     u4(t)=-10; 

% elseif u4(t)^2>100 

%     u4(t)=10; 

% end 

u(:,t)=[u1(t),u2(t),u3(t),u4(t)]'; 

%step 3 update state variables from state equations 

xs(:,t)=A_Hov*xs(:,t-1)+B_Hov*u(:,t); 

  

end 

%step 4 display simulation results 

t=1:ns; 

  

%% plot results in the same figure 

 figure (3)    

 subplot(221),plot(t,u1(t),'r','LineWidth',1.5),box off,grid 

on 

 ylabel('Control input \Deltav1^2', 'FontSize', 

12),xlabel('Time/s', 'FontSize', 12) 

 subplot(222),plot(t,u2(t),'r','LineWidth',1.5),box off,grid 

on 

 ylabel('Control input \Deltav2^2', 'FontSize', 

12),xlabel('Time/s', 'FontSize', 12)  
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 subplot(223),plot(t,u3(t),'r','LineWidth',1.5),box off,grid 

on 

 ylabel('Control input \Deltav3^3', 'FontSize', 

12),xlabel('Time/s', 'FontSize', 12)  

 subplot(224),plot(t,u4(t),'r','LineWidth',1.5),box off,grid 

on 

 ylabel('Control input \Deltav4^2', 'FontSize', 

12),xlabel('Time/s', 'FontSize', 12) 

%  subplot(325),plot(t,xs(6,t)),box off 

%  ylabel('vz'),xlabel('t') 

%  subplot(326),plot(t,xs(5,t)),box off 

%  ylabel('vy(t)'),xlabel('t') 

%% polt figures 

figure (1) 

plot(t,xs(1,t),t,xs(3,t),'r:','LineWidth',1.5),grid on 

xlabel('Time/s', 'FontSize', 12); 

ylabel('Positon', 'FontSize', 12); 

legend('Postion \Deltax','Position \Deltaz')   

%axis([0 50 -1 1.5]); 

figure (2) 

plot(t,xs(4,t),t,xs(6,t),'r:','LineWidth',1.5),grid on 

xlabel('Time/s', 'FontSize', 12); 

ylabel('Positon', 'FontSize', 12); 

legend('\Deltavx','\Deltavz')  

 

USER MANUAL 

Introduction 

This program aims to demonstrate and simulate the robust stability study of the designed 

U-Model based pole placement control systems. MATLAB simulation program can test the 

robust stability margin of the internal parameter uncertain system. The simulation program 

procedure includes a U-Model based pole placement control system section, a least squares 

algorithm function and a robust margin test. Under the determined parameters variation, 

the robust stability margin of U-Model based pole placement control system can be tested. 

 

Guide 

Several steps should be done to run this program and to discover the performance of the U-

model based control system design. Here the * simulation is introduced as an example. 

• Run the MATLAB software; 
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• Change the direction point to the related folder path and add to the MATLAB path; 

• Run the *.m and the simulation results will disappear automatically. 
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