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External control of oscillation dynamics in the Belousov–

Zhabotinsky (BZ) reaction is important for many applications

including encoding computing schemes. When considering the

BZ reaction, there are limited studies dealing with thermal

cycling, particularly cooling, for external control. Recently,

liquid marbles (LMs) have been demonstrated as a means of

confining the BZ reaction in a system containing a solid–liquid

interface. BZ LMs were prepared by rolling 50 ml droplets in

polyethylene (PE) powder. Oscillations of electrical potential

differences within the marble were recorded by inserting a pair

of electrodes through the LM powder coating into the BZ

solution core. Electrical potential differences of up to 100 mV

were observed with an average period of oscillation ca 44 s. BZ

LMs were subsequently frozen to 218C to observe changes in

the frequency of electrical potential oscillations. The frequency

of oscillations reduced upon freezing to 11 mHz cf. 23 mHz at

ambient temperature. The oscillation frequency of the frozen

BZ LM returned to 23 mHz upon warming to ambient

temperature. Several cycles of frequency fluctuations were able

to be achieved.
1. Introduction
Space–time dynamics of oxidation wavefronts, including target

waves, spiral waves, localized wave-fragments and combinations

of these, in a non-stirred Belousov–Zhabotinsky (BZ) medium

[1,2] have been used to implement information processing since

seminal papers by Kuhnert and co-workers [3,4]. The spectrum of

unconventional computing devices prototyped with BZ reaction

is rich. Examples include image processing and memory [5],

diodes [6], geometrically constrained logical gates [7], controllers
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for robots [8], wave-based counters [9], neuromorphic architectures [10–13] and binary arithmetical

circuits [14–16].

While most of BZ computing devices use the presence of a wavefront in a selected locus of space as a

manifestation of logical TRUE, there is a body of works on information coding with frequencies of

oscillations. Thus, Gorecki et al. [17] proposed to encode TRUE as high frequency and FALSE as low

frequency: OR gates, NOT gates and a diode have been realized in numerical models. Other results in

BZ frequency-based information processing include frequency transformation with a passive barrier

[18], frequency band filter [19] and memory [20]. Using frequencies is in line with current

developments in oscillatory logic [21], fuzzy logic [11], oscillatory associated memory [22] and

computing in arrays of coupled oscillators [23,24]. Therefore, frequencies of oscillations in BZ media

will be the focus of this paper.

Most prototypes of BZ computers involve some kind of geometrical constraining of the reaction: a

computation requires a compartmentalization. An efficient way to compartmentalize BZ medium is to

encapsulate it in a lipid membrane [25,26]. This encapsulation enables the arrangement of elementary

computing units into elaborate computing circuits and massive-parallel information processing arrays

[27–30]. BZ vesicles have a lipid membrane and therefore have to reside in a solution phase, typically

oil, and they are susceptible to disruption of the lipid vesicles through natural ageing and mechanical

damage. Thus, potential application domains of the BZ vesicles are limited. This is why in the present

paper we focus on liquid marbles (LMs), which offer us capability for ‘dry manipulation’ of the

compartmentalized oscillatory medium. LMs also provide the possibility for active transport processes

[31] which is not easily possible with vesicles, e.g. manipulating LMs with magnets [32,33],

mechanically [34], electrostatically [35], pressure gradients [36], change in pH [37].

The LMs, proposed by Aussillous and Quéré in 2001 [38], are liquid droplets coated by hydrophobic

particles at the liquid/air interface. The LMs do not wet surface and therefore can be manipulated by a

variety of means [34], including rolling, mechanical lifting and dropping, sliding and floating [39–41].

The range of applications of LMs is huge and spans most fields of life sciences, chemistry, physics

and engineering [31,42–45]. Recently, we demonstrated that the BZ reaction is compatible with typical

LM chemistry: BZ–LMs support localized excitation waves, and non-trivial patterns of oscillations are

evidenced in ensembles of the BZ LMs [46].

Oscillations in the BZ reaction media can be controlled by varying the concentrations of chemical

species involved in the reaction, and with light [47,48], mechanical strain [49] and temperature

[50–54]. While a number of high-impact results on the thermal sensitivity have been published, the

topic still remains open and of utmost interest. Moreover, in LMs we might have difficulties in

controlling the reaction with illumination because most types of hydrophobic coating are not perfectly

transparent and absorb wavelengths of light important for exerting control over the BZ reaction. This

is why in the present manuscript we focus on thermal control and tuning of the oscillations.

Temperature sensitivity of the BZ reaction was initially substantially analysed by Blandamer & Morris

[50] who, in 1975, showed a dependence of the frequency of oscillations of a redox potential in a stirred BZ

reaction with a change in temperature. Periods of oscillations reported were 190 s at 258C, 70 s at 358C, and

40 s at 458C. In 1988, Vajda et al. [51] demonstrated that temporal oscillations of a BZ mixture persist in a

frozen aqueous solution at 2108C to 2158C. By tracing Mn2þ ion signal amplitude, they showed that

the frozen BZ solutions oscillate three times, at 2108C, and 11 times, at 2158C, faster than liquid phase

BZ. The oscillation frequency increase has been explained by the formation of crystals and interfacial

phenomena during freezing. This might be partly supported by experiments with chlorite–thiosulphate

system frozen to 2348C [55]. There, a velocity of wavefronts is increased because en route to total

freezing the reaction occurs only in the thin liquid layer, at the periphery of the solid domain, where

concentrations of chemicals are temporarily higher. In 2001, Masia et al. [52] monitored oscillations in

non-stirred BZ in a batch reactor of 4 cm3 by the solution absorbency at 320 nm. The reactor was kept at

various temperatures through thermostatic control. They reported periodic oscillation at temperatures

08C–38C, quasi-periodic at 48C–68C and chaotic at 78C–88C. Bánsági et al. [54] experimentally

demonstrated that by increasing temperature from 408C to 808C it is possible to obtain oscillations of

frequency over 10 Hz; they also showed that the frequency of oscillations grows proportionally to

temperature (in the range studied). Ito et al. [53] reported linear dependence of an oscillation period—of

polymers impregnated with BZ—from temperature in the range 58C–258C.

We establish an electrical interface with BZ LMs by piercing them with a pair of electrodes. This is

done for two reasons. First, the coating of LMs is usually non-transparent, therefore conventional

optical means of recording oxidation dynamics would not be sufficient. In addition, marbles are three-

dimensional structures and there is evidence that they support complex three-dimensional waves,
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Figure 1. Experimental set-up. (a) A scheme of the set-up: A, BZ LM; B, a pair of electrodes; C, Pico ADC-24 logger; D, Peltier
element; E, fans; F, power supply for fans; G, power supply for the Peltier element; H, thermocouple; I, TC-08 thermocouple data
logger. (b) Dynamics of temperature on the surface of the Petri dish when the Peltier element is powered by 7 V. The moment of
power on is shown by ‘*’ and off by ‘#’.
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therefore, electrodes positioned within the marble potentially allow the three-dimensional oscillation

dynamics to be mapped, whereas imaging is difficult to interpret from a three-dimensional

standpoint. Second, our ultimate goal is to implement an unconventional computing device with BZ

LMs. Such devices rarely stand alone but are usually interfaced with conventional electronics, thus

electrical recording seemed to be most appropriate.
2. Methods
BZ LMs were produced by coating droplets of BZ solution with ultra high-density polyethylene (PE)

powder (Sigma Aldrich, CAS 9002-88-4, Product Code 1002018483, particle size 150mm). The BZ

solution was prepared using the method reported by Field & Winfree [56], omitting the surfactant Triton

X. The 18 M Sulfuric acid H2SO4 (Fischer Scientific), sodium bromate NaBrO3, malonic acid

CH2(COOH)2, sodium bromide NaBr and 0.025 M ferroin indicator (Sigma Aldrich) were used as

received. Sulfuric acid (2 ml) was added to deionized water (67 ml), to produce 0.5 M H2SO4; NaBrO3 (5

g) was added to the acid to yield 70 ml of stock solution (0.48 M).

Stock solutions of 1 M malonic acid and 1 M NaBr were prepared by dissolving 1 g in 10 ml of

deionized water. In a 50 ml beaker, 0.5 ml of 1 M malonic acid was added to 3 ml of the acidic NaBrO3

solution; 0.25 ml of 1 M NaBr was then added to the beaker, which produced bromine. The solution

was set aside until it was clear and colourless (ca 3 min) before adding 0.5 ml of 0.025 M ferroin indicator.

BZ LMs were prepared by pipetting a 75 ml droplet of BZ solution, from a height of ca 2 mm onto a

powder bed of PE, using a method reported previously [46]. The BZ droplet was rolled on the powder

bed for ca. 10 s until it was fully coated with powder.

A scheme of experimental set-up is shown in figure 1a. An LM was placed in a Petri dish (35 mm

diameter) and pierced with two iridium-coated stainless steel electrodes (sub-dermal needle electrodes

with twisted cables (SPES MEDICA SRL Via Buccari 21 16153 Genova, Italy). Electrical potential

difference between electrodes was recorded with a Pico ADC-24 high-resolution data logger (Pico

Technology, St Neots, Cambridgeshire, UK), sampling rate 25 ms.

A Petri dish with LM was mounted to a Peltier element (100 W, 8.5 A, 20 V, 40 � 40 mm, RS

Components Ltd, UK ), which in turn was fixed to an aluminium heat sink, with Silver CPU Thermal

Compound, cooled by two 12 V fans (powered separately from the Peltier element). Temperature at

the Peltier element was controlled via RS PRO Bench Power Supply Digital (RS Components Ltd,

Corby, Northants, UK). Temperature at the bottom of the Petri dish was monitored using TC-08

thermocouple data logger (Pico Technology, St Neots, Cambridgeshire, UK), sampling rate 100 ms. A

typical cooling rate was 218C per 10 s, and warming rate þ18C per 20 s, exact shape of the functions

is shown in figure 1b.
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Figure 2. (a – c) LM bursts at first freezing. (d – g) LM burst at second freezing. (a) Marble at the beginning of experiment. (b) Marble
burst at some point of freezing. (c) Plot of oscillations: A, the marble is stimulated with a silver wire; B, oscillations started, Peltier
element is switched on; C, marbles cools downs, eventually the marbles bursts. (d ) LM at the beginning of experiment. (e)
Cooled-down LM. ( f ) LM bursts and spreads at the second round of freezing. (g) Dynamics of electrical potential: A, marble is
stimulated by a silver wire for 2 – 3 s; B, Peltier element is switched on; C, Peltier is switched off; D, Peltier is switched on again.
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3. Results
Temperatures on the surface of the Petri dish below 228C usually result in a burst LM. Two examples are

illustrated in figure 2. An intact LM (figure 2a) shows oscillations with average period 26 s (between ‘A’

and ‘B’ in figure 2c). When cooling is started (‘B’ in figure 2c) oscillations quickly become low-frequency

low-amplitude irregular, average period 49 s. Eventually, the LM bursts (‘C’ in figure 2c) and its cargo is

relocated away from the electrodes (figure 2b). In the scenario shown in figure 2d–g, LM undergoes two

instances of freezing. First time, marked ‘B’ in figure 2g the LM (figure 2d ) survives being cooled down

with just slight change in shape (figure 2e). Period of oscillations increases from 28 s in intact LM to 162 s

in cooled-down LM (period between ‘B’ and ‘C’ in figure 2g). After Peltier is switched off (moment ‘C’ in

figure 2g), the LM resumes high-frequency oscillations, frequency 42 s, but with lower amplitude. The

LM does not survive second round of freezing (‘D’ in figure 2g) and bursts, while still wetting the

electrodes (figure 2f ). More examples of electrical potential dynamics for temperatures causing LM

bursting are shown in figure 3. The temperature of 228C is critical, in that over 70% of LMs burst

and did not survive second round of freezing. Therefore, in further experiments the LMs were cooled

down to 218C.

Patterns of oscillations of LM cooled down to 218C show a high degree of polymorphism (figure 4)

in amplitudes. Changes in frequencies are in table 1. If we ignore the first example (figure 4a), then we

have average p ¼ 44.4 (s( p) ¼ 12.5), average p* ¼ 92 (s( p*) ¼ 28.6) average p*/p ¼ 2.1 (s( p*/p) ¼ 0.5).

In the experiments shown in figure 4a–e, LMs were kept cooled until the end of the experiments. In

the experiment shown in figure 4f, cooling was started after 1310 s of the experiment, the Peltier was
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Figure 3. Dynamics of electrical potential of LM cooled, temperature at the bottom of the Petri dish, down to (a) 248C, (c) 238C,
(d) 228C. Moment when Peltier element is switched on is shown by ‘*’ and off by ‘#’. (d ) Temperature log corresponding to
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Figure 4. Dynamics of electrical potential of BZ LM subjected to cooling down to 218C and warming up. Moments when the
Peltier element was switched on are shown by ‘*’ and off by ‘#’. Moments when electrodes are inserted in the LM are shown by ‘!’.
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Table 1. Effect of cooling to 218C on a period of electrical potential oscillations of BZ LM: p is a period of electrical potential
oscillation of an LM at ambient temperature, p* is a period of electrical potential oscillations of the cooled LM.

plot p, s p*, s p�

p

figure 4a 61 336 5.5

figure 4b 59 126 2.1

figure 4c 56 138 2.5

figure 4d 22 67 3

figure 4e 39 86 2.2

figure 4f 47 74 1.6

figure 4g 29 67 2.3

figure 4h 39 86 2.2
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switched off after 2254 s, and cooling was repeated at 2690 s. Intact LM oscillated with average period

47 s at first phase of the experiment. Cooled LM oscillated with period 74 s. The period became 29 s

after the warming. Second cooling increased the period to 67 s. Thus, we have an increase of 1.6 times

during first cooling cycle and by 2.3 times during the second cooling cycle. In the experiment

illustrated in figure 4g, oscillations were arrested by cooling yet restarted when the LM was warmed.

Period of oscillations before cooling was 47 s, and after oscillations restarted after cooling was 39 s.

Repeated cooling did not arrest oscillations yet increased the oscillation period 2.2 times to 86 s. In the

experiment shown in figure 4h, we cooled an LM for short periods of time (199 and 288 s) and did

not observe any substantial changes in periods of oscillation, after the first freezing cycle. The average

periods were changing as follows 46 s! 92 s! 98 s! 98 s! 98 s.

To summarize, average period of oscillations of a BZ LM doubles from 44 s to 92 s when the LM is

cooled down to 218C. The frequency of oscillations is restored after cooling is stopped. The

amplitude of oscillations may increase or decrease as a result of cooling. Sometimes the oscillations

can be completely arrested yet resume after warming.
4. Discussion
Why are oscillations of electrical potential observed? The oxidation of malonic acid by bromate ions in

acidified solution is catalysed by ferroin ions. Ferroin ions [Fe(ox2 phen)3]2þ are oxidized to their

ferric derivatives [Fe(o2 phen)3]3þ. The ratios of ferroin to ferric ions and bromide ions oscillate in

time. This is reflected in the oscillations of the electrical potential recorded from the LM. If the BZ

solution in an LM was mixed, then global oscillations would occur, resulting in the potential at both

electrodes being the same and therefore no electrical oscillations could be observed. However, the

solution is not mixed, therefore waves of oxidation emerge spontaneously, or are induced when the

LM is pierced by electrodes, or induced by piercing with a silver wire (the silver catalyses a local

reduction in bromate concentration, initiating the reaction). Therefore, the ratio of ferroin to ferric ions

(and bromide ions) are changing only at the wavefront. Thus, when the wavefront passes the

electrodes the electrical potential difference is observed.

Why are patterns of oscillations not always regular? This is because several oxidation waves, and

even several generators/sources of oxidation waves, can coexist in a single LM. These waves can

superimpose with each other, collide and annihilate in the result of the collisions, or produce localized

wave-fragments. This rich dynamic of wavefronts is reflected in, sometimes, irregular patterns of

oscillation. Let us illustrate further discussions with two-variable Oregonator equations [57,58],

@u
@t
¼ 1

e
u� u2 � (fvþ f)

u� q
uþ q

� �
þDur2u

and
@v
@t
¼ u� v:

(4:1)

The variables u and v represent local concentrations of an activator, or an excitatory component of BZ

system, and an inhibitor, or a refractory component. Parameter e sets up a ratio of the time scale of
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variables u and v, q is a scaling parameter depending on rates of activation/propagation and inhibition,

and f is a stoichiometric coefficient. We integrated the system using Euler method with five-node Laplace

operator, time step Dt ¼ 0.001 and grid point spacing Dx ¼ 0.25, e ¼ 0.02, f ¼ 1.4, q ¼ 0.002. We varied

value of f from the interval F ¼ [0.05, 0.08], where constant f is a rate of inhibitor production. f

represents the rate of inhibitor; this rate can be dependent on light, temperature or the presence of

other chemical species. The parameter f characterizes excitability of the simulated medium, i.e. the

larger f the less excitable the medium is. We represent BZ LM as a disc with a radius of 185 nodes.

We represent electrodes as rectangular domains of the discs (see figure 5a and figure 7a) E1 and E2.

We calculate the potential difference at each iteration t as
P

x[E2
ut

x �
P

x[E1
ut

x.

Orientation of the wavefront passing the electrodes determines exact shape of the impulse recorded

(figure 5). Assume a droplet is excitable everywhere. If a wavefront is perpendicular to the electrodes,

e.g. a wave is generated at the southern edge of the droplet (figure 5a), the potential difference between

electrodes at any moment of time will be near zero, a part of some noise (figure 5b). A wave originated

at the eastern edge of a droplet enters electrodes at an obtuse angle (figure 5c). This is reflected in two

spikes—one is positive potential and another is negative potential (figure 5d), there is a substantial

distance between the spikes. If the wavefront propagates nearly parallel to the electrodes, e.g. when a

wave is generated at northeast edge of the droplet (figure 5e), the action-like potential is recorded (figure

5f ), which shape imitates distinctive depolarization, repolarization and hyperpolarization phases of a

biological action potential. In experiments, we always observed oscillation. The shape of the impulses



(a) (b) (c)

(d) (e) ( f )

Figure 6. Time lapse photos of the propagation of an oxidation wavefront in a thin layer of BZ medium on the freezing Peltier
element. Time from the start of recording is (a) 90 s, (b) 126 s, (c) 150 s, (d) 174 s, (e) 198 s and ( f ) 246 s.
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was nearly the same—subject to deviations—in all experiments. This implies that the wavefront travels not

in the volume of BZ LM but along the surface of the LM. Thus, the wavefront passes electrodes being nearly

parallel to them.

Why does the frequency of oscillations decrease on cooling? Temperature changes the rate of the

reaction which consumes the inhibitor of the auto-catalytic Br2 [50] species. When the temperature

decreases, the rate of consumption of Br2 also decreases, which increases the time necessary for the

reaction to enter its auto-catalytic step. The enlargement of the refractory tail reduces the number of

wavefronts that can be fitted in a limited space. Thus less waves pass electrodes in a given period of

time. This is reflected in a reduced frequency of oscillations. The mechanism is illustrated in

experiments with a thin-layer BZ medium shown in figure 6 and simulation with Oregonator model

in figure 7. A 35 mm Petri dish was placed on the freezing set-up (figure 1), and the element was

chilled to 278C. The BZ medium did not freeze but its temperature dropped to near 08C. The cooling

was reflected in the enlarged tail of the excitation wavefront, it doubled in width from 2.5 mm (figure

6a) to 4.7 mm (figure 6e) in just over 3 min. In modelling the BZ medium (figure 7), we position

electrodes in the north of the droplet and assume a self-excitation loci near the edge at the east of the

droplet (figure 7a) and that waves propagate only near the surface (i.e. only part of 370-nodes-wide

disc with r . 150 is excitable). The excitable loci L have values ux ¼ 1, x [ L, at every iteration of the

numerical integration; however, waves are generated only with some intervals. Distance between

wavefronts increases with decrease of excitability, increase of f from 0.01 (figure 7b) to 0.07 (figure

7e). This is reflected in decreasing of oscillation frequency of the potential difference recorded at the

electrodes (figure 7f– i). The shapes of impulses in figure 7i strikingly resemble shapes of
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experimentally recorded impulses in figure 4a. The dependence of oscillation period on excitability f is

linear for f [ [0.01, 0.05] and cubic for f [ [0.05, 0.07] (figure 7j ).
How long can the oscillations last? In our experiments, the oscillations in a 50 ml LM lasted up to an

hour. The amplitude decreases with time due to exhaustion of catalyst in the droplet; however, the most

typical cause of oscillations ceasing was breakage of the LMs. Generally, repeated cycles of freezing

and warming caused disruption of the hydrophobic particle ‘skin’ of an LM, resulting in the cargo

being spilled.

How can the observed phenomena be used in unconventional computing? As Horowitz and Hill

mention in their famous ‘The Art of Electronics’—‘A device without an oscillator either does not do

anything or expects to be driven by something else (which probably contains an oscillator)’ [59]. We

produced a chemical analogue of an electronic temperature-sensitive oscillator: an oscillator circuit for

sensing and indicating temperature by changing oscillator frequency with temperature [60,61]. Future

BZ computing devices will be hybrid chemical-electronic devices, needing components to generate

waveforms. The BZ LMs per se are sources of (relatively) regular space pulses. We experimentally

demonstrated that the frequency of the pulses can be switched from high to low by freezing the BZ
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LMs. This realization could be used in future large-scale ensembles of BZ LMs which approximate fuzzy-

logic many-argument functions, where inputs are represented by temperature gradients, and outputs are

dominating frequencies of the oscillations in the ensembles. To control frequencies in an ensemble of BZ

LMs [46], we can use small Peltier elements, the size of which is enough just to fit a single marble, e.g.

Peltier Module, 1.3 W, 2.2 A, 0.9 V, 6 � 6 mm (each of the modules can be automatically controlled via

Arduino device). Additional future challenges would include a comparison between a surface simulation

and the surface reconstruction, implementation of experiments on freezing microdroplets, as inspired by

Wang et al. [62], freezing of photo-sensitive BZ LMs in combination with intermittent illumination.
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