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High-tech Business Location, Transportation Accessibility, and Implications 1 

for Sustainability: Evaluating the Differences between High-tech 2 

Specializations using Empirical Evidence from U.S. Booming Regions 3 

Abstract: 4 

Studies on the accessibility needs of high-tech firms often draw on 5 

agglomeration economies and creative class assumptions that emphasizes how 6 

transit and walkability encourage clustering, knowledge exchange and innovation. As 7 

a result, some argue that knowledge-led economic development aligns with 8 

sustainability planning, especially as high-tech industries become increasingly tied to 9 

smart city agendas. However, due to the new logistic revolution, global e-economy, 10 

rise of online workers and urban land values, it is likely that some tech industries 11 

prefer strong highway systems, potentially leading to higher GHG emissions. As 12 

such, the relationship between the knowledge economy and sustainability outcomes 13 

remains unclear. This study addresses these gaps by quantifying the geography of 14 

high-tech zones in North Texas and Northern California, measuring their 15 

specializations, and exploring their differences in terms of transportation 16 

infrastructures. Our results only partially support research suggesting high-tech 17 

industries prefer dense, walkable, transit-accessible places. For instance, we found 18 

large numbers of high-tech firms (e.g. IT and aerospace) are still attracted to 19 

peripheral, auto-centric spaces, which is at odds with sustainable transportation 20 

policies. Hence, policymakers may need to revisit their growth strategies to not only 21 

succeed in growing their knowledge economy, but also secure sustainability goals. 22 

Keywords: High-Tech Zone, Transportation, Business Location, Sustainability   23 
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1. Introduction: 24 

The shift from a commodity-based industrial economy to a knowledge-based 25 

economy has been accompanied by new urban forms and land use patterns. These 26 

changes raise important questions regarding the sustainability impacts of economic 27 

development policies. Although economic growth and sustainability outcomes are 28 

often theorized to be in tension (Campbell, 1996), ‘smart city’ policies integrate 29 

knowledge-based economic development, urban innovation, and sustainability 30 

agendas (Angelidou, 2015; Bibri, 2018; Dierwechter, 2014). Such policies leverage 31 

digital technologies to address urban environmental challenges, improve quality of 32 

life, while strengthening economic competitiveness (Adeoluwa et al., 2019; 33 

Ahvenniemi et al., 2017; Haarstad, 2016).  34 

The presumed relationship between sustainable land uses and high-tech 35 

clusters is further strengthened by the literature on the geography of innovation. 36 

Despite early concerns regarding the ‘placelessness’ of economic activity made 37 

possible through information and communication technologies, a large body of 38 

empirical research has focused on how knowledge-based industries benefit from 39 

clustering in urban centers (Delgado et al., 2015; Koo, 2005; Porter, 2004). As some 40 

research suggests, knowledge-based industry clusters prefer dense, walkable, 41 

mixed-use, transit-accessible places to have access to markets and labor as well as 42 

support knowledge exchange. These place-based characteristics align well with 43 

sustainability strategies such as smart growth (Wlodarczak, 2012). However, these 44 

studies often do not address the specific needs of particular types of high-tech firms 45 

(Bakhshi et al., 2008; Granpayehvaghei et al., 2019; Hamidi et al., 2018; Hamidi and 46 

Zandiatashbar, 2018a, 2017b, 2017a; Zandiatashbar and Hamidi, 2018).  47 
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For example, industries impacted by the new logistic revolution are likely 48 

associated with different transportation preferences. Relying on a largely self-49 

employed, part-time, and flexible workforce, IT industries are increasingly less place-50 

based in the digital networking age (Audirac, 2005). The rise of the global economy, 51 

e-commerce and the need for fast processing and agile distribution of time-sensitive, 52 

high-tech production and goods extends the demand for road and air mobility 53 

(Aljohani and Thompson, 2016; Kasarda, 2000), potentially increasing GHG 54 

emissions (Lee and Erickson, 2017; Maggioni, 2002). For instance, the most high-55 

tech booming U.S. region, the San Francisco Bay Area, also happens to have the 56 

fifth worst congestion in the world (Pishue, 2017). Moreover, in other regions, local 57 

experts have also expressed concerns about unmanageable congestion and long 58 

commute times as a result of high-tech economic growth (Dickson, 2018). 59 

Further empirical analyses are needed on the transportation infrastructure 60 

preferences of high-tech firms while accounting for their specialized differences. 61 

Understanding these differences would lead to more evidence-based economic 62 

development and transportation policies that also meet sustainability goals. This 63 

study aims to address these gaps by quantifying the geography of high-tech zones in 64 

Texas and California, measuring their specializations, analyzing their differences in 65 

terms of transportation infrastructure. We selected North Texas’ Dallas-Fort Worth 66 

(DFW) and Northern California’s Bay Area regions since they are among the top five 67 

metro areas in terms of high-tech job growth between 2010 and 2015. In addition, 68 

the Bay Area and DFW hold more than 56% and 32% of their states’ Information and 69 

Communication Technology (ICT) employees respectively (Muro and Liu, 2017).  70 

To determine the location preferences of different high-tech industries with 71 

respect to transportation infrastructures, our methodology includes three analytical 72 
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phases. First, we develop a geography of high-tech zones by employing spatial 73 

statistical techniques to identify the local spatial peaks of high-tech economic activity. 74 

Second, we develop a typology of high-tech zones based on zone-level industrial 75 

location quotients. Lastly, we present the results from four firm-level Analysis of 76 

Variance (ANOVA) models testing whether different types of high-tech firms have 77 

significantly different transportation infrastructure preferences. We use firm-level 78 

Walkscore and Transit Score, high-tech job accessibility within a 20-minute drive 79 

time, and network distance to primary hub international airports as measures of 80 

local, regional and (inter)national accessibility. 81 

Our findings confirm that high-tech firms have significantly different 82 

transportation infrastructural preferences. While professional services 83 

(architecture/engineering) seek walkable and transit accessible zones, the IT sector 84 

prefers proximity to airports and road systems which likely stem from the 85 

specifications of these two industries. For example, the success of high-tech 86 

professional services depends on their ability to attract skilled workers who are 87 

drawn to transit and walking amenities. Moreover, dense and walkable CBDs also 88 

enhance frequent face-to-face encounters, tacit knowledge exchange, and physical 89 

access to the local market area, which are all associated with firm-level cost or 90 

productivity advantages (Hamidi and Zandiatashbar, 2018b; Zandiatashbar et al., 91 

2019).  92 

On the other hand, IT industries’ need for fast distribution of products, just-in-93 

time delivery and use of online interactions for exchanging codified knowledge could 94 

justify their desire for proximity to air and road infrastructure (Kasarda, 2000). Our 95 

findings also confirm the formation of airport-adjacent industrial clusters in response 96 

to the global and e-commerce economy. Our findings in DFW and the Bay Area 97 
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show the formation of airport adjacent high-tech corridors that include a cluster of 98 

airport-induced high-tech firms in ICT, aerospace and professional services along 99 

low density, fast moving, wide highways. As such, some high-tech zones are likely 100 

associated with negative environmental impacts. The findings therefore highlight the 101 

need for planners and policymakers to consider the potential impacts of certain high-102 

tech specializations to better integrate knowledge-based economic development and 103 

sustainability strategies. 104 

 105 
2. Literature Review 106 

2.1. The Geography of Innovation 107 

Innovation, underpinned by knowledge-based industry clusters, is thought to 108 

fuel economic development. As such, policymakers are keen to understand the 109 

location preferences and industrial dynamics related to high tech firms and workers. 110 

A dominant focus of knowledge economy research has been the importance of co-111 

location. Starting with Marshall (1890), it has long been understood that clustering 112 

benefits firms through “external economies of scale”, as a result of shared labor 113 

pools, specialized suppliers, and common infrastructure. This concept of industry 114 

clustering has been developed further by Porter in (2000). In his view, clusters are 115 

the “geographic concentrations of industries related by knowledge, skills, inputs, 116 

demand and/or other linkages.” These inter-industry linkages result in three 117 

Marshallian sources of agglomeration externalities including input–output linkages, 118 

labor market pooling and knowledge spillovers which are all associated with cost or 119 

productivity advantages to firms (Marshall, 1890).  120 

Further it is theorized that clustering is particularly beneficial for knowledge-121 

based firms who rely on face-to-face contact, social networking, and tacit-knowledge 122 

exchange (Asheim et al., 2011). This research on the stickiness of places has been 123 
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bolstered by creative class research, which suggests particular built environments 124 

such as density, walkability, mixed-uses and urban aesthetics both attract knowledge 125 

workers and increase innovation (Florida, 2002).  126 

 127 

2.2. High-Tech Clusters and Sustainability  128 

The research on clustering and the importance of the built environment suggests 129 

that there are synergies between knowledge-based economic development and 130 

sustainability planning (Wlodarczak, 2012). Further, the presumed relationship 131 

between high-tech industries and sustainability has strengthened in policy circles as 132 

a result of ‘smart city’ frameworks (Angelidou, 2015; Bibri, 2018). Smart city 133 

technologies are thought to spur collaborative, data-driven responses to urban 134 

environmental challenges, nudge people and organizations towards efficient and 135 

sustainable behavior, improve quality of life and increase economic competitiveness 136 

(Portney, 2003; Herrschel 2013). ‘Smartness’ also refers to the role collaboration, 137 

networking and learning play in developing innovation solutions to urban challenges 138 

(Herrschedl 2013).  139 

Subsequently, urban policies integrating the development of tech-based 140 

knowledge clusters, land use policies, and sustainability agendas have gained 141 

prominence. Examples include innovation districts, urban laboratories, and 142 

knowledge hubs, which incorporate mixed-use zoning, transit accessibility and 143 

placemaking amenities (Asheim et al., 2011; Hamidi et al., 2018; Hamidi and 144 

Zandiatashbar, 2018a; Katz and Krueger, 2016; Yigitcanlar et al., 2008; 145 

Zandiatashbar and Hamidi, 2018). These developments may also include explicit 146 

commitments to developing low carbon technologies and reducing GHG emissions 147 

(Evans and Karvonen, 2014; Morisson, 2015).  148 
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However, the relationship between high-tech economic development and 149 

sustainability may be more rhetorical than substantive (March and Ribera-Fumaz, 150 

2016). Although high-tech innovation districts may locate in dense, urban areas 151 

(Grodach et al., 2014), Currid and Connolly (2008) identify three different spatial 152 

patterns including clustering in central business districts, dispersed regional 153 

clustering and specialist places. Madanipour (2013) has similarly identified a range 154 

of innovation clusters such live-work-play centers, technology parks and 155 

geographically distributed ‘science cities’. This research suggests that high-tech 156 

clusters are more spatially diverse, and subsequently, may produce negative 157 

environmental impacts. However, this research is limited in that it does not explore 158 

how the particular types of high-tech clusters shape location preferences. 159 

 160 

2.3. Theorizing High Tech Firms’ Accessibility Needs 161 

Industry specializations, logistical needs, customer and labor markets, as well as 162 

land utilization will influence firms’ location preferences in regards to local, regional 163 

and (inter)national mobility infrastructures (Maggioni, 2002). For instance, high-tech 164 

firms could be categorized into two types in order to assess their regional and 165 

(inter)national accessibility needs. The first type includes service providers (i.e. 166 

engineering/architectural/drafting services, web-developer/software publishers, 167 

private Research and Development (R&D) labs) that produce immaterial 168 

commodities like professional and consultation services. These industries do not 169 

require production and distribution of goods or logistic mobility. The second type 170 

includes high-tech manufacturing industries (i.e. IT/semiconductors manufacturing, 171 

communication equipment, biopharmaceutical/biological products). Relying on e-172 

commerce, just-in-time delivery, and time-sensitive distribution, these firms likely 173 
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seek strong road and air mobility to satisfy their regional and (inter)national 174 

accessibility demands.  175 

Specific labor needs could also lead to different local and regional accessibility 176 

preferences. For example, pharmaceutical research organizations or medical device 177 

firms, require a more homogenous, very specialized workforce (Mellander, 2009). 178 

Other high-tech firms, such as large manufacturing businesses, employ a range of 179 

occupations (i.e. accountants, software engineers, traditional manufacturing jobs, 180 

health-care assistants, and service jobs) as opposed to a highly specialized 181 

workforce (Kimelberg and Nicoll, 2012). While regional accessibility helps large high-182 

tech manufacturing firms to have access to a wider labor market supporting their 183 

diverse occupational demands, the success of other firms often depends on their 184 

ability to attract and retain quality skilled workers.  185 

In this regard, recent literature has emphasized the role of quality-of-life factors 186 

in location decisions by the creative class including walking and transit amenities 187 

(Zandiatashbar and Hamidi, 2018). In addition to walkability, commuting by transit is 188 

also the lifestyle of millennials and university graduates who are relatively more car-189 

free (Hamidi and Zandiatashbar, 2018). Millennials own 12% fewer cars than 190 

previous generations, are less likely to be licensed drivers, and live in denser places, 191 

which have on average twice the level of transit access to jobs as compared to older 192 

generations (Klein and Smart, 2017). While the demand for a highly specialized 193 

workforce justify the need for walking and transit amenities, there exist several types 194 

of high-tech firms which do not necessarily benefit from place-based amenities for 195 

their workforce recruitment. As these firms (i.e. IT, communication technologies) 196 

have footloose economic activities and flexible production systems, they prefer a 197 

more part-time and flexible workforce. This workforce often joins organizational 198 



9 
 

teams remotely using online spaces, which makes these new economic activities 199 

increasingly personalized rather than place-based (Audirac, 2005). 200 

High-tech firms’ different customer markets could also lead to different 201 

transportation preferences for local, regional and (inter)national accessibilities. 202 

Financial consultants, legal services or headquarters of IT or aerospace companies 203 

resonate with Sassen’s (1991) concept of global cities in which nations are firmly 204 

connected and draw on a global market of customers. As a result, air mobility and 205 

online interactions are becoming increasingly important modes of transaction and 206 

transportation. Airports on the other hand are also expanding their functionality 207 

beyond air mobility by adding a variety of business and commercial functions into 208 

passenger terminals (i.e. magazine shops, restaurants, boutiques, VIP rooms, co-209 

working spaces) or on the landside (i.e. hotels, offices, conference and exhibition 210 

centers) to serve these needs (Kasarda, 2000). However, local accessibility might 211 

matter more for some high-tech industries (i.e. facilities support services, computer 212 

services, engineering and architectural services, and placement services) as service 213 

to the local customer base is important. Accordingly, per Christaller's central place 214 

theory, these industries are considered a high-order service category, which unlike 215 

low or medium order services, need to concentrate in walkable and transit accessible 216 

Central Business Districts (CBDs) in order to have access to a wider customer 217 

market area (Zandiatashbar and Hamidi, 2018).  218 

Lastly, high-tech firms’ land uses may be different due to land costs as these 219 

have been a critical factor in business location decision and transportation 220 

preferences per classical location theory (Maggioni, 2002). High-tech industries that 221 

involve manufacturing (i.e. IT manufacturing, semiconductor manufacturing, control 222 

instrument manufacturing, aerospace products/manufacturing, and navigational 223 
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equipment production) require larger land areas for their production processes, and 224 

technical or R&D activities. Thus, these businesses are drawn to the peripheries, or 225 

the newly developed employment sub-centers in edge cities in order to minimize 226 

land cost. Accessibility to these locations therefore require roadway systems 227 

(Maggioni, 2002), which have implications about sustainable urban development 228 

strategies and outcomes.  229 

 230 

3. Methods: 231 

3.1. Sample & Study Area: 232 

In this study, we analyzed high-tech firms in four Metropolitan Statistical Areas 233 

(MSAs) in Texas and California. We selected San Francisco-Oakland-Hayward 234 

(SFO), San Jose-Sunnyvale-Santa Clara (SJSC), and Santa Cruz-Watsonville 235 

(SCW) metropolitan areas which compose the economic territory of the Bay Area in 236 

Northern California. We also included Dallas-Fort Worth-Arlington (DFW) 237 

metropolitan area in North Texas. Generally, a metropolitan area is a region that 238 

consists of a densely populated urban core and less-populated territories that are 239 

economically and socially linked. With respect to the high-tech economy, Texas and 240 

California hold almost 25% of U.S. high-tech employment and are the top two states 241 

in the national share of IT and pharmaceutical employment (Feser et al., 2005). In 242 

addition, our selected regions are home to high concentrations of high-tech activity. 243 

According to Brookings, excluding SCW MSA, our sample regions are among the 244 

U.S. top-five metro areas in terms of 2010-2015 high-tech job growth (Muro and Liu, 245 

2017). Furthermore, the Bay area holds more than 56% and DFW holds more than 246 

32% of their states’ ITC employees, respectively. This evidence confirms that our 247 

sample regions stand out in high-tech economic growth both statewide and 248 
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nationally. Despite these regions being largely auto-oriented (Ewing, 2008; Ewing 249 

and Hamidi, 2017), their built environments were developed during the rise of the 250 

knowledge economy. Analysis of these regions would, therefore, shed lights on 251 

which high-tech zones are more prominent in these areas and how they are 252 

associated with proximity to different transportation infrastructures.  253 

In this study, we included 32,279 high-tech firms and 8,363 census block 254 

groups in the study area. The Bureau of Labor Statistics (BLS) classifies high-tech 255 

firms in three levels based on R&D intensity: 256 

Level I: 5 times greater than average employment share in STEM fields  257 

Level II: 3-4.9 times greater than average employment share in STEM fields 258 

Level III: 2-2.9 times greater than average employment share in STEM fields 259 

The BLS also adjusts this classification based on R&D output. About 10 out of 260 

14 sectors in level I produce R&D outputs while only 4 out of 11 sectors in level II. 261 

No sector in level III produces R&D outputs (Heckler, 2005). For this analysis, we 262 

applied the BLS level I definition of high-tech firms. 263 

 264 

3.2. Data and Variables: 265 

Table 1 shows the list of variables and data sources used in our analysis. Firm 266 

level data is drawn from the ESRI Business Dataset (2016), which is based on 267 

Infogroup data covering 100% of firm counts in the U.S. From this data source, we 268 

extracted the BLS high-tech level I firms in our study area. We obtained metropolitan 269 

area and census block group shape files for 2016 using Topologically Integrated 270 

Geographic Encoding and Referencing (TIGER) in ESRI shape file format. Using 271 

these shape files and Arc GIS, we aggregated our business data to the block group 272 

level as our unit of measurement. We also used 2016 census block group population 273 
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and land area in order to control for the size of a block group. In addition, we used 274 

the CBDs in ESRI shape file format obtained from Hamidi (2015), which identifies the 275 

location of CBDs (MSA’s hotspot block groups in terms of employment density) using 276 

spatial statistic techniques (Local Moran’s I). Finally, we used the Walkscore API 277 

package in R and collected Walkscores and Transit Scores for the firms within the 278 

specialized high-tech zones. 279 

 280 

TABLE 1: Data and Variables Used in the Study 
Name Description Source Mean (s.d.) 
HT_Emp BLS level I high-tech employment EBD (2016) 55.85(523.601) 
HT_Den BLS level I high-tech employment density in 

block group (/sqmile) 
EBD & ACS (2016) 137.37(1000.1

05) 
HT_Pop BLS level I high-tech employment per capita in 

block group 
EBD & ACS (2016) 44.75(437.64) 

HT HT_EMP, HT_Den, HT_POP combined using 
factor analysis 

EBD & ACS (2016) 0.00(1) 

Walkscore Firm’s Walkscore obtained from Walkscore 
Inc.  

Walkscore Inc. 
(2018) 

58.55 (29.1) 

Transit Scores Firm’s Transit Score obtained from Walkscore 
Inc.  

Walkscore Inc. 
(2018) 

56.11 (30.34) 

Airport Scores Reversed and normalized measure of firm’s 
network distance to the nearest primary hub 
international airport  

EBA Street Route & 
FAA (2018) 

64.86 (19.69) 

Auto Score Normalized number of amenities accessible 
via 20-minute driving from a high-tech firm.  

EBA Street Route & 
US Inforgroup 
(2016) 

61.57 (22.13) 

EBD = ESRI Business Dataset 
ACS = American Community Survey  
EBA = ESRI Business Analyst 
LEHD = Longitudinal Employer-Household Dynamics 
FAA= Federal Aviation Administration 
s.d.=Standard Deviation 

 281 

3.3. Analytical Methods: 282 

Our methodology for identifying the location of specialized high-tech zones and 283 

analyzing high-tech firms has three main phases: (1) identifying high-tech zone 284 

candidates; (2) developing a specialization typology; and (3) analyzing the difference 285 

between high-tech specializations in terms of transportation infrastructure measures.  286 
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In phase 1, we use local spatial statistics to identify the location of significant 287 

clustering of high-tech employment. In phase 2, we use the classification from the 288 

U.S. Cluster Mapping Project (Delgado et al., 2015) and location quotients to identify 289 

specialized high-tech zones and develop a typology for them. In phase 3, we use 290 

descriptive statistics and Analysis of Variance (ANOVA) to evaluate the difference 291 

between high-tech firms residing in the specialized zones. 292 

3.3.1. Phase 1: Identifying High-Tech Zone Candidates: 293 

According to BLS, a high-tech firm demonstrates a high level of R&D intensity 294 

in both inputs (employee, supplies, process) and outputs (products) (Heckler, 2005). 295 

As discussed before, in this analysis, we included 14 industries that are considered 296 

BLS high-tech level I. The high level of R&D in these industries is due to their high 297 

share of STEM educated employment and R&D products (i.e. pharmaceutical 298 

products, scientific R&D services, navigational, measuring, electromedical, or control 299 

instruments, etc.). Although BLS level I includes a small fraction of high-tech 300 

industries compared to other lists, it accurately accounts for R&D in both input and 301 

output. Table 2 presents further details for these industries.  302 

To identify high-tech zone candidates, we applied a spatial modeling technique. 303 

Recent studies have applied spatial modeling techniques such as spatial statistics to 304 

identify the level of clustering of economic activities in various geographies across 305 

the country. These techniques have been used more to detect the monocentric or 306 

polycentric spatial structures of the regions, changes in the location of CBDs or to 307 

locate employment sub-centers (Hajrasouliha and Hamidi, 2017; Hamidi, 2015).  308 

While the use of spatial statistics in location analysis of high-tech clusters is limited, 309 

Feser and his colleagues (2005) used Getis-ord Gi* statistics to identify the clusters 310 

of U.S. counties that encompass strong economic activities. In addition to Getis-ord 311 



14 
 

Gi*, Koo (2005) used the local Moran’s I statistics to examine the geographical 312 

patterns of knowledge-based clusters in U.S. counties using employment and 313 

patents. Local Moran’s I identifies cases of positive (HH, LL) and negative (HL, LH) 314 

spatial autocorrelation, while the Getis-Ord Gi* identifies cases with positive 315 

autocorrelation with a more straightforward definition and readily interpretable output 316 

(Getis and Ord, 1992). As we were interested in all clusters of positive values, we 317 

chose local Getis- Ord Gi* statistics.  318 

Our methodology addresses three major shortcomings that exist in previous 319 

studies analyzing the geography of high-tech clusters. First, the criteria used for 320 

identifying high-tech industries failed to control for the R&D intensity of the output, or 321 

they are inconsistent across the studies. For instance, some studies only included 322 

ten sectors (Wu et al., 2016), while others included more than 100 industries (Feser 323 

et al., 2005). Second, previous high-tech cluster analyses that used spatial statistics, 324 

could not remove the sources of heterogeneity, which stem from their 325 

methodological approaches. For instance, in our analysis, since San Francisco and 326 

San Jose have a substantive share of high-tech employees in the nation, the local 327 

spatial peaks in Dallas could be dismissed. To address this shortcoming, we ran our 328 

analysis on a one-by-one basis for all MSAs in the study area. Lastly, the unit of 329 

analysis in such studies is not finer than county level boundaries, which limits 330 

detecting local specialized high-tech clusters. Studying the impacts of firms on their 331 

surrounding urban developments and locational attributes require identifying 332 

specialized clusters at a finer geography. We address this shortcoming by using a 333 

firm-level dataset. 334 

In terms of the variables used for spatial statistics analysis of high-tech (and 335 

other types of) employment clusters or sub-centers, studies have employed different 336 
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approaches. Total employment, residual of regressed high-tech employment on total 337 

employment, patent numbers, high-tech plant counts, employment density, and 338 

employment-to-population ratio measures are among the widely used variables 339 

(Fallah et al., 2013; Feser et al., 2005; Hajrasouliha and Hamidi, 2017). Employment 340 

density or employment-to-population ratio control for the size of a unit (compared to 341 

the number of total jobs); however, they come with shortcomings. There exist cases 342 

that the block group’s land area, while included in the census’ land area, is not 343 

developable. These cases are often around specific ecological reserves. We 344 

encountered such examples in our analysis particularly on the southeast side of the 345 

Bay area in Northern California. An employment-to-population ratio could be used as 346 

a substitute; however, outliers would still exist as low-populated block groups with 347 

small numbers of high-tech employment would result in high ratios. To overcome 348 

these challenges, we used factor analysis and defined a new value, HT, which is an 349 

index, composed of the number of high-tech employees, high-tech employment 350 

density and high-tech employment-to-population ratio. We used factor analysis to 351 

estimate HT, which includes factor loadings of 0.916 for employment, 0.700 for 352 

employment density, and 0.903 employment-to-population ratio. The factor analysis 353 

also provided three index options. The first option has an eigenvalue of 2.146, which 354 

includes 71.53% of variance. The second option has an eigenvalue of 0.662, which 355 

explains 22.1% of variance, and the third option has an eigenvalue of 0.192, which 356 

explains only 6.4% of variance. Hence, we selected the first option for our HT.  357 

Using the HT factor for every census block group, we estimated the local Getis-358 

Ord Gi* for each MSA in the study area separately. This analysis compares the sum 359 

HT value of a block group’s neighbors (local sum) to the overall sum HT value of an 360 

MSA. When the local sum is higher than the total sum, and that difference is too 361 
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large to be the result of random chance, there would be a statistically high chance 362 

that this group of block groups is a hotspot. Ultimately, we identified a cluster of 363 

neighboring block groups with high HT values (hotspot) as a high-tech zone 364 

candidate.  365 

The Getis-Ord Gi* is defined as: 

!"∗ =
∑&' ("')'
∑' )'

 

 

 

 

(1) 

Where: 366 
The numerator is the sum of all values in the neighborhood of *. 367 

The denominator is the sum of all values in the study area. 368 

!i∗ is the percentage of the total sum found in the neighborhood of * 369 
 370 

We also used the False Discover Rate (FDR) adjustment to control for the 371 

presence of “overlapping subsets” in the analysis. This overlapping is caused 372 

because the data used to produce a local statistic at block group i is also used to 373 

produce the statistics for nearby block groups. The FDR procedure controls for the 374 

expected proportion of incorrectly rejected null hypotheses or “false discoveries.” We 375 

used the ‘spden’ and ‘psych’ packages in R for estimating the Getis-Ord Gi* and 376 

factor analysis estimating the HT.  377 

As the result of hotspot analysis, we found 30 high-tech zones. Figure 1 378 

illustrates the location of high-tech zones in DFW and the Bay Area. All the zones 379 

are labeled with ID numbers, which we will refer to in presenting the results. 380 

In DFW, as shown in figure 2, we found the highest G-values (strongest high-381 

tech cluster) in zone 4, which is the city of Plano’s newly developed The Grand at 382 

Legacy West High-Tech Urban Village. This multiuse district was initially planned to 383 

be North Texas’ IT, data, software, and telecommunication core (Audirac, 2002; 384 
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Taylor and Singleton, 1996). Ongoing developments in this district including Plano’s 385 

financial incentives (i.e. tax abatements, economic development grants, tax 386 

increment finance) have attracted several high-tech corporations and their 387 

workforces (Brass, 2016). In the Bay area, the strongest high-tech cluster is found in 388 

zone 3 in the city of Fremont. This cluster includes a corridor of high-tech firms that 389 

extend along Interstate 880 including the Tesla factory, Western Digital Corp, and 390 

Life Scan Inc. The major difference between these two high-tech clusters is that in 391 

Plano, IT and telecommunication are the major industries, while in Fremont the high-392 

tech corridor includes these two industries as well as pharmaceutical industries.  393 

  394 
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 395 

 

FIGURE 1: Results of hotspot analysis 

  396 

 397 
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FIGURE 2: Areas with highest G-values (Brass, 2016; “Miramar Capital,” n.d.) 

 398 

  399 
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3.3.2. Phase 2: Specialization Typology and Profile of the Zones: 400 

After identifying the high-tech zone candidates, we classify the 14 BLS high-401 

tech level I sectors into six categories. Each category includes the sectors that have 402 

the strongest inter-industry linkages based on co-location patterns, input-output links, 403 

and similarities in labor occupations. We use the same methodology as the U.S. 404 

Cluster Mapping project which used six-digit NAICS codes to classify 778 industries 405 

in manufacturing and services into 51 sector categories (TABLE 2). 406 

 407 

TABLE 2: high-tech specializations and number of zones we found for each category (Delgado et 
al., 2010; Heckler, 2005). 
Specialization 

1) Information Technology and Analytical Instruments 
This cluster consists of information technology and analytical products such as computers, 

software, audio visual equipment, laboratory instruments, and medical apparatus as well as standard 
and precision electronics used by these products (e.g. circuit boards and semiconductor devices). 

Industries included:  NAICS 5112: Software Publishers, NAICS 3341: Computer & Peripheral 
Equipment Manufacturing, NAICS 3344: Semiconductor Manufacturing, NAICS 3345: measuring, 
electromedical, and control instrument manufacturing 

2) Aerospace Devices 
Establishments in this cluster manufacture aircraft, space vehicles, guided missiles, and related 

parts.  This cluster also contains firms that manufacture the necessary search and navigation equipment 
used by these products. 

Industries: NAICS 3364: Aerospace products/manufacturing, NAICS 334511: Navigational 
equipment 

3) Bio-pharmaceutical 
Establishments in this cluster produce complex chemical and biological substances used in 

medications, vaccines, diagnostic tests, and similar medical applications.  
Industries: NAICS 3254: Biopharmaceutical Products, Biological Products, Diagnostic 

Substances 
4) Services 
Firms in this cluster provide services primarily designed to support other businesses such as 

consulting, legal services, facilities support services, computer services, engineering and architectural 
services, and placement services. This includes corporate headquarters.   

Industries: NAICS 5182 & 5415: Data Processing, system design and computer services, NAICS 
5413: Engineering Services, Architectural and Drafting Services 

5) Communications Equipment and Services 
This cluster involves goods and services used for communications such as cable, wireless, and 

satellite services, as well as telephone, broadcasting, and wireless communications equipment. 
Industries: NAICS 3342: Communications equipment manufacturing, NAICS 5179: Other 

telecommunications 
6) Education and Knowledge Creation 
This cluster includes research and development institutions in biotechnology, physical sciences, 

engineering, life sciences, and social sciences. 
Industries: NAICS 5417: Research Organization 

 408 
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We measure the specialization of high-tech zones by computing the location 409 

quotients (LQ) for each of the six categories. LQs have been widely used to study 410 

the specializations of high-tech MSAs or counties (Cortright and Mayer, 2001; Fallah 411 

et al., 2013).  We define specialized zones as areas with an LQ greater than 1.5 for 412 

at least one category in Table 2. The cut off value of 1.5 indicates that the high-tech 413 

share of a zone’s employment is 1.5 times greater than the state’s share of high-tech 414 

employment. This cut off value is borrowed from similar studies (Cortright and 415 

Mayer, 2001). Accordingly, we dropped one high-tech zone candidate with an LQ of 416 

1.19 for R&D, 0.99 for services and 0 for the other sectors, which led to our final set 417 

of 29 specialized high-tech zones in both regions.  418 

The zones could specialize in multiple categories if they have LQs of greater 419 

than 1.5. Figure 3 is a linear chart of location quotients for these 29 zones. The chart 420 

reflects strong within group differences of six LQs for these 29 zones. In other words, 421 

in each zone, one or a few specializations have significantly higher LQs, which were 422 

then selected as specialization types. Table 3 presents the number of zones we 423 

found specialized in each category. As illustrated in Figure 4, among our 29 424 

specialized zones, eight zones have mixed specializations and 21 are single type. 425 

Four single type zones are CBDs and specialize in the services category. IT was 426 

found to be the most frequent and dominant specialization across our specialized 427 

high-tech zones.  428 

  429 
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FIGURE 3: Linear Chart; Location Quotients in High-Tech Zones 

 

 430 

  431 
  432 

Moreover, we found in general, IT, aerospace, services, and communication 433 

zone types locate either in proximity to major highway systems, in urban cores, or 434 

nearby other transportation infrastructures such as railroads or airports. As shown in 435 

TABLE 3: Frequency of Zone Types 

  Frequency Percent Cumulative Percent 

Aerospace 2 6.9 6.9 

Aerospace, IT 1 3.4 10.3 

Communication 2 6.9 17.2 

Communication, IT 1 3.4 20.7 
Communication, IT, Services 1 3.4 24.1 

IT 6 20.7 44.8 
IT, Aerospace, Services 1 3.4 48.3 

IT, Communication 1 3.4 51.7 

Pharmaceutical 1 3.4 55.2 
Pharmaceutical, R&D 1 3.4 58.6 

R&D 4 13.8 72.4 
R&D, Pharmaceutical 1 3.4 75.9 

Services 6 20.7 96.6 
Services, IT 1 3.4 100.0 

Total 29 100.0   
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Figure 4, most IT zones are located along interstates or major highway networks. For 436 

instance, zone 6 is the Telecom Corridor, a technology business center that has 437 

been a booming area of Dallas's economy since the late 1990s. As shown in Figure 438 

4, this zone is extending along highway U.S. 75 (North Central Expressway) 439 

following zones 9 and 23. Other high-tech zones in DFW (zones 4, 5 and 8) follow 440 

the same pattern along President George Bush Turnpike. 441 

In line with the logistics demands in the global and e-commerce economy, we 442 

found two airport adjacent high-tech zones (zones 1 & 5). Both zones have the same 443 

type which is a mixed specialization of IT, aerospace, communication and services. 444 

In DFW, this zone is a corridor that includes a cluster of airport-induced high-tech 445 

firms extending from DFW international airport to Dallas Love Field airport. In 446 

Northern California, this zone is adjacent to the Mineta San Jose International 447 

Airport. While the Bay area has three major airports, Mineta San Jose and San 448 

Francisco International Airports have been the major destinations for business trips. 449 

The majority of business trips to Silicon Valley fly to Mineta airport since it is located 450 

within the San Jose CBD with less crowded terminals (Witlox et al., 2007). On the 451 

other hand, we found five specialized zones in education, knowledge creation and 452 

bio-pharmaceutical including zone 11 with proximity to U.C. Berkeley, zone 29 in 453 

Palo Alto adjacent to Stanford University, and zone 13, which is home to The Sandia 454 

National Laboratories, one of three national nuclear security administration R&D labs 455 

in the Bay area. We also found Alcon Eye R&D and manufacturing headquarters and 456 

Tarrant County College - South Campus, as possible anchors for a similar zone 457 

(zone 24) in DFW. We found these zones in proximity to educational, medical or 458 

research anchors that were not necessarily a private business or corporation. 459 

  460 
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FIGURE 4: High-tech Zone Typology 

 461 
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3.3.3. Phase 3: Mobility Preferences of High-Tech Firms in the Specialized 462 

Zones: 463 

In phase 3, we focused on the specialization of high-tech firms in the zones to 464 

assess differences in locational preferences with respect to transportation 465 

infrastructure. We employed ANOVA, which is an analytical method used to test 466 

statistical differences between two or more groups, suitable for our hypothesis. Using 467 

SPSS 23, we ran four firm-level ANOVA models with the results presented in Table 468 

4. Our data for the ANOVA models showed an unequal variance between the groups 469 

so we adjusted the P-values using Bonferroni test. In these models, we used six 470 

high-tech specializations as our factor variables. Our dependent variables are the 471 

following four indicators of transportation infrastructure.  472 

First, we used Walkscore and Transit Score indicating local accessibility. 473 

Developed by Walkscore Inc1., these scores measure walkability and transit 474 

accessibility for any address point in several countries. For each address, Walkscore 475 

uses walking routes to measure proximity to amenities which are weighted differently 476 

and discounted as the distance to them increases up to one and a half miles, where 477 

they are assumed to be no longer accessible on foot. Transit Score also measures 478 

public transit quality. This measure uses data released by public transit agencies 479 

through General Transit Feed Specification (GTFS) including stops and routes for 480 

available modes of public transportation (i.e. local, express, and rapid bus routes, 481 

commuter rail, light rail, streetcar, and subway systems). Using this data, Transit 482 

Score calculates the value of all nearby routes for an address. This value equals to 483 

the frequency per week multiplied by the transit type weight (heavy/light rail is 484 

                                                
1 https://www.walkscore.com/methodology.shtml 
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weighted 2X, ferry/cable and street car/other are 1.5X, and bus is 1X) multiplied by a 485 

distance penalty which uses the distance to the nearest stop on a route (Walkscore 486 

Inc., 2014). Second, we developed a regional auto-accessibility score. This score 487 

measures proximity to a range of businesses and amenities within a 20-minute 488 

driving distance of a given high-tech firm. Literature points to these businesses and 489 

amenities as the most frequent trip destinations of individuals (i.e. food stores, 490 

social/religious services, educational services, public health services, etc.) (Hamidi et 491 

al., 2017). For this variable, we used the Network Analysis and street routes in 492 

ArcGIS.  Lastly, we developed a score indicating (inter)national accessibility based 493 

on the street route distance to the nearest international primary hub airport using Arc 494 

GIS-based network analysis. According to Federal Aviation Administration’s Airports 495 

Category, primary hub airports have more than 10,000 passenger boardings each 496 

year and therefore are used by one or more airlines to concentrate passenger traffic 497 

and flight operations (“Airport Categories – Airports,” 2018). Our network analysis, 498 

based on street routes, considers high-tech firms as the origin of a trip and the 499 

nearest airport as the destination. The distance measure was reversed to match the 500 

measurement of the other three variables. Furthermore, all of our scores were 501 

normalized to a range between 0 (lowest accessibility) to 100 (highest accessibility).  502 
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3.4. Results: 503 

The results of our ANOVA show that our four accessibility scores are 504 

significantly different between the six high-tech specializations2.  505 

Figure 5 presents the means of our four scores indicating firms’ preferences for 506 

transportation, grouped by their high-tech specializations. Professional services high-507 

tech specialization has an average Walkscore higher than all other high-tech firms. 508 

The average Walkscore for these firms is 62.25. Walkscore Inc. interprets places 509 

with a Walkscore below 50 as a “car dependent area” (Brewster et al., 2009). 510 

Therefore and according to this interpretation, only services and communication 511 

industries are located in somewhat walkable areas. All other sectors are located, on 512 

average, in car dependent areas. Transit score follows similar patterns between the 513 

high-tech specializations. Additionally, IT and aerospace firms have on average very 514 

low Walk and Transit Scores. 515 

On the other hand, IT and aerospace specializations have a higher average 516 

airport-access score when compared to all other specializations. The average 517 

airport-access scores for these two industries are also higher than the average score 518 

for all high-tech firms. In the other words, when compared to all other high-tech firms, 519 

these firms are on average closer to major airports in the region. Lastly, the two 520 

sectors that collectively have low averages in all these scores are pharmaceutical 521 

and R&D firms.     522 

 523 

 524 
 525 

                                                
2 Although these results confirm significant differences between specializations for each score, these 
scores could be collectively exclusive. Therefore, these four types of accessibility scores are not 
directly comparable to one another.   
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FIGURE 5: Average Scores of Specializations per Mode 

 

526 
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TABLE 4: ANOVA Results  
 Walkscore Transit Score Auto-access Score Airport Prox. Score 

(I)
  

(J) Mean Diff. (I-J) Mean Diff. (I-J) Mean Diff. (I-J) Mean Diff. (I-J) 

IT
 

Aerospace 4.509 3.115 -0.2482 4.324 
Bio-pharmaceutical -7.227 1.891 24.681* 20.165* 
Services -28.171* -22.843* -6.314* 12.625* 
Communication  -17.063* -14.196* -7.797* 15.388* 
R&D -10.945* 2.988 17.473* 21.620* 

A
er

os
pa

ce
 

IT -4.509 -3.115 0.248 -4.324 
Bio-pharmaceutical -11.736 -1.225 24.929* 15.841* 
Services -32.680* -25.958* -6.066 8.301 
Communication -21.572* -17.311* -7.548* 11.064* 
R&D -15.454* -0.128 17.721* 17.296* 

P
ha

rm
ac

eu
tic

al
 IT 7.227 -1.891 -24.681* -20.165* 

Aerospace 11.736 1.225 -24.929* -15.841* 
Services -20.944* -24.733* -30.994* -7.541 
Communication -9.836 -16.087 -32.478* -4.778 
R&D -3.718 1.097 -7.208 1.454 

S
er

vi
ce

s 

IT 28.171* 22.843* 6.314* -12.625* 
Aerospace 32.680* 25.958* 6.065 -8.301 
Bio-pharmaceutical 20.944* 24.733* 30.994* 7.541 
Communication 11.109* 8.647* -1.483 2.7631 
R&D 17.226* 25.830* 23.787* 8.995* 

C
om

m
un

ic
at

io
n 

IT 17.063* 14.196* 7.797* -15.388* 
Aerospace 21.572* 17.311* 7.548* -11.064* 
Bio-pharmaceutical 9.836 16.087 32.478* 4.778 
Services -11.109* -8.647* 1.483 -2.763 
R&D 6.117 17.184* 25.270* 6.232* 

R
&

D
 

IT 10.945* -2.988 -17.473* -21.620* 
Aerospace 15.454* 0.128 -17.721* -17.296* 
Bio-pharmaceutical 3.718 -1.097 7.208 -1.454 
Services -17.226* -25.830* -23.787* -8.995* 
Communication -6.117 -17.184* -25.270* -6.232* 
*. The mean difference is significant at the 0.05 level. 
Bold: Significantly higher value than other sectors 
ht: High-Tech Specializations  

 527 
The results of our ANOVA models have low P-values (<0.000) and high F-528 

values (69.28 to 171.70). These measures indicate that there are significantly 529 

different locational attributes between high-tech specializations with respect to our 530 

four accessibility scores. Table 4 presents the results of the four ANOVA analyses of 531 

specialized firms. Each column presents results for each ANOVA and the numbers in 532 
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Table 4 are bold whenever they have a significantly higher mean value than their 533 

paired specializations. For instance, business services have significantly higher 534 

means for Walkscore and transit score compared to all other sectors. On the other 535 

hand, the mean values of airport proximity score are significantly higher for IT than 536 

the other five specializations. The mean value of airport proximity score for 537 

aerospace firms is also significantly higher than others, except for IT firms.  538 

Communication and R&D also have significantly higher Walkscore and Transit 539 

Score means when paired with IT and aerospace. Furthermore, the specialized firms 540 

in the communication category have significantly higher means of auto-access score 541 

when paired with with all other high-tech specializations. 542 

4. Discussion and Conclusions: 543 

To ensure cities remain resilient in the face of climate change and economic 544 

uncertainty, planners and policymakers are increasingly interested in policy initiatives 545 

that strengthen regional economies as well as improve urban sustainability. 546 

Emerging smart-sustainable city initiatives suggest that the knowledge economy, 547 

especially high-tech industries, are key to developing innovative solutions to urban 548 

environmental challenges. Further, agglomeration economies and creative class 549 

literatures suggest that these industries thrive in places that are dense, walkable and 550 

transit-accessible. These features support more sustainable land use patterns and 551 

behaviors. As a result, policymakers and planners often employ location incentives 552 

and placemaking to promote innovation districts, knowledge hubs, and other 553 

examples of place-based high-tech clustering to meet both economic and 554 

sustainability goals (Katz and Krueger, 2016; Pancholi et al., 2015; Yigitcanlar et al., 555 

2008).  556 
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Although these examples suggest there may be synergies between the high 557 

tech industries and sustainability interests, empirical evidence is limited. Indeed, 558 

preferences for walkability and transit access likely only apply to a subset of high-559 

tech industries. A large number of high-tech firms may prefer and therefore continue 560 

to produce more auto-centric developments on the urban fringe (Maggioni, 2002). As 561 

policymakers continue to pursue knowledge-based economic development 562 

strategies, it is important to identify transportation preferences in order to understand 563 

the role these industries play in promoting certain spatial forms and their implications 564 

for sustainability outcomes. 565 

Our empirical results support theoretical work indicating that different types of 566 

high-tech firms have varied preferences for specific transportation infrastructures. 567 

For instance, we found that business services have significantly higher means for 568 

Walkscore and Transit Score compared to all other sectors. Business services 569 

industries include computer/system services and engineering and architecture firms, 570 

which primarily provide services to other businesses, facilities or unrelated 571 

companies (Maggioni, 2002). Consequently, they are highly reliant on a specialized 572 

workforce to deliver high-order services, and therefore concentrate in walkable, 573 

transit accessible CBDs to cover a wider market area (Zandiatashbar and Hamidi, 574 

2018). Furthermore, they provide services or immaterial commodities, which unlike 575 

traditional manufacturers, do not need cheaper, larger or more peripheral land areas 576 

for their manufacturing facilities (Maggioni, 2002). These firms also draw upon the 577 

externalities of frequent face-to-face encounters and tacit knowledge exchange that 578 

stem from their proximity in dense and walkable CBDs.  579 

On the other hand, our results confirm that IT sectors have significantly higher 580 

mean values for airport proximity when compared to all other high-tech 581 
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specializations. Meanwhile these industries have a relatively low average Walkscore 582 

of 34, which suggests they prefer car-dependent areas according to Walkscore Inc’s 583 

interpretation. Unlike business services, IT employees mostly exchange codified 584 

knowledge. Studies indicate that online digital interactions could be a substitute for 585 

face-to-face encounters for exchanging codified knowledge (Audirac, 2002; Relph, 586 

1976). Moreover, these firms manufacture, process and distribute goods which need 587 

production facilities usually in auto-accessible peripheries (Audirac, 2005). In 588 

addition, their involvement in e-commerce deepens their demand for fast road and 589 

air mobility (Kasarda, 2000).  590 

In addition to IT sectors, we found that the mean value of airport proximity 591 

score for aerospace firms is also significantly higher than all other sectors. The 592 

proximity to airport addresses their need for air mobility, airport facilities and services 593 

(i.e. runways, control tower, hangers) (Haug, 1991).  594 

These findings suggest that more critical attention is required for understanding 595 

the relationship between knowledge-based firms and their preferences for 596 

transportation infrastructure. The dominant narrative regarding the spatiality of 597 

knowledge-based clusters suggests that these industries prefer dense, walkable, 598 

mixed use, transit accessible urban environments. Our research supports this theory, 599 

however only partially. Our findings suggest that large numbers of high-tech firms 600 

are still attracted to peripheral, auto-centric spaces, which are at odds with 601 

sustainable transportation policies.  602 

This study has a few limitations. First, both DFW and Northern California 603 

regions are largely auto-oriented. It is possible that the high auto and airport 604 

accessibility scores are the result of land use decision-making, transportation 605 

cultures, and zoning laws favoring car dependency in these regions. More studies 606 
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are needed to investigate these relationships in regions with more diverse land use 607 

and development patterns. Secondly, while this study offers an innovative approach 608 

in identifying the location of high-tech zones, it is not within the scope of this paper to 609 

investigate which factors actually determine high-tech firm location decisions. More 610 

evidence is needed to link the locational preference of high tech firms, inside and 611 

outside the high-tech zones, to other factors widely supported by the literature such 612 

as access to talent, diversity and inclusion (Granpayehvaghei et al., 2019; Hamidi et 613 

al., 2018; Hamidi and Zandiatashbar, 2018b, 2017a, 2017b; Zandiatashbar et al., 614 

2019; Zandiatashbar and Hamidi, 2018). Furthermore, while our sectorial 615 

classifications come from one of the most widely cited studies done by Harvard’s 616 

economist Michael Porter, it is possible that the changes in the classification leads to 617 

the changes in the ANOVA findings.  618 

Finally, while our findings confirm that not all high tech industries follow the 619 

same pattern with regard to proximity to transportation infrastructures, we did not 620 

study the reasons behind these sectorial differences. More empirical research is 621 

needed to tackle the transportation preferences of different high tech industries. This 622 

research calls for deeper analyses of high tech firm location preferences and how 623 

economic development, land use and transportation policies could incentivize more 624 

sustainable outcomes. 625 

Despite the long-standing debates regarding urban form and sustainability as 626 

well as emerging policies suggesting knowledge-led economic development is 627 

compatible with sustainability agendas, these findings demonstrate that many high-628 

tech zones may be problematic in terms of their environmental impacts. As the result 629 

of these findings, policymakers may need to attend to the specializations present in 630 
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their regional economy and balance growth strategies to not only succeed in growing 631 

their knowledge economy, but also ensure they are meeting sustainability goals. 632 

633 
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