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Abstract

We establish a local non-existence result for the equation u; — Au = f(u) with Dirichlet boundary conditions
on a smooth bounded domain © C R™ and initial data in L7(2) when the source term f is non-decreasing and
limsup,_, . s~ 7 f(s) = oo for some exponent v > ¢(1 4+ 2/n). This allows us to construct a locally Lipschitz f
satisfying the Osgood condition [ 1/f(s) ds = co, which ensures global existence for initial data in L>(£2), such
that for every g with 1 < ¢ < oo there is a non-negative initial condition ug € L?(2) for which the corresponding
semilinear problem has no local-in-time solution (‘immediate blow-up’). To cite this article: R. Laister, J.C.
Robinson, M. Sierzega, C. R. Acad. Sci. Paris, Ser. I XXX (201%).

Résumé

Non-existence de solutions locales pour les équations de la chaleur semi-linéaires de type Osgood
dans des domaines bornés. Nous établissons un résultat de non-existence locale pour I’ équation us—Au = f(u)
avec des conditions aux limites de Dirichlet sur un domaine borné lisse 2 C R™ et des données initiales dans L(2)
lorsque le terme de source f est non-décroissant et limsup,_, . s~ 7 f(s) = oo pour un exposant v > ¢g(1 + 2/n).
Ceci nous permet de construire un f localement Lipschitz qui satisfait la condition de Osgood floo 1/f(s) ds = o0,
ce qui garantit Dexistence globale pour des données initiales dans L*°(Q2), de telle sorte que pour chaque ¢ tel
que 1 < ¢ < oo il existe une condition initiale non-négative up € L4(Q2) pour laquelle le probléeme semi-linéaire
correspondant n’admet pas de solution locale en temps (‘blow-up immédiat’). Pour citer cet article : R. Laister,
J.C. Robinson, M. Sierzega, C. R. Acad. Sci. Paris, Ser. I XXX (201%).
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1. Introduction

In a previous paper [7] we showed that for locally Lipschitz f with f > 0 on (0,00), the Osgood

condition
* 1
——ds = o0, 1
| o

which ensures global existence of solutions of the scalar ODE & = f(x), is not sufficient to guarantee the
local existence of solutions of the ‘toy PDE’

w = f(u),  u(z,0)=ug € L) (2)

unless ¢ = .
In [5] we considered the Cauchy problem for the semilinear PDE

up = Au+ f(u), u(0) = uyp, (3)

on the whole space R™ and showed that even with the addition of the Laplacian, for each ¢ with 1 < g < oo
one can find a non-negative, locally Lipschitz f satisfying the Osgood condition (1) such that there are
non-negative initial data in LZ(R™) for which there is no local-in-time integrable solution of (3).

In this paper we obtain a similar non-existence result for equation (3) when posed with Dirichlet
boundary conditions on a smooth bounded domain 2 C R™. More explicitly, we focus throughout the
paper on the following problem:

up =Au+ f(u),  uloge =0,  u(z,0)=u€ LIQ). (P)

In all that follows we assume that the source term f : [0,00) — [0,00) is non-decreasing. We show in
Theorem 3.2 that if f satisfies the asymptotic growth condition
limsup s~ f(s) = o0 (4)
S—> 00

for some v > ¢(1 4 2/n) then one can find a non-negative ug € L1(Q2) such that there is no local-in-time
solution of (P). We then (Theorem 4.1) construct a Lipschitz function f that grows quickly enough such
that (4) holds for every v > 0, but nevertheless still satisfies the Osgood condition (1). This example
shows that there are functions f for which (P) has solutions for any ug belonging to L>(2), but that there
are non-negative ug € L4(Q2) for any 1 < ¢ < oo for which the equation has no local integral solution.

One can see this result as in some sense dual to that of Fila et al. [3] (see also Section 19.3 of [8]), who
show that there exists an f such that all positive solutions of © = f(x) blow up in finite time while all
solutions of (P) are global and belong to L ().

2. A lower bound on solutions of the heat equation

Without loss of generality we henceforth assume that € contains the origin. For r > 0, B(r) will denote
the Euclidean ball in R™ of radius r centred at the origin, and w,, the volume of the unit ball in R™.

As an ingredient in the proof of Theorem 3.2, we want to show that the action of the heat semigroup
on the characteristic function of a ball

1 for x € B(R)
(@) = {0 for x ¢ B(R)

does not have too pronounced an effect for short times.
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We denote the solution of the heat equation on Q at time ¢ with initial data ug by Sq(t)ug, i.e. the
solution of
uy — Au =0, ulaq =0, u(z,0) =ug € LI(Q).

This solution can be given in terms of the Dirichlet heat kernel Kq(x,y;t) by the integral expression
[Sa(tyuo)(z) = | Ka(z,y:t)uo(y) dy.
Q

We note for later use that Kq(x,y;t) = Kq(y,z;t) for all z,y € Q.

We use the following Gaussian lower bound on the Dirichlet heat kernel, which is obtained by combining
various estimates proved by van den Berg in [9] (Theorem 2 and Lemmas 8 and 9). A simplified proof is
given in [6].

Theorem 2.1 Let Q be a smooth bounded domain in R™, and denote by Kq(x,y;t) the Dirichlet heat

kernel on Q. Suppose that
e:= inf dist(z,08) > 0, (5)

2€[z,y]

where [x,y] denotes the line segment joining x and y (so in particular [x,y] is contained in the interior
of Q). Then for 0 < t < €*/n?

Ko(z,yit) > 1 Gy(z,y5t), where Gy(z,y;t) = (47rt)*”/2e*‘z*y|2/4t. (6)

We can now bound Sq(t)xr from below.

Lemma 2.2 There exists an absolute constant ¢, > 1, which depends only on n, such that for any R for
which B(2R) C Q,

1
Sa(t)xr > — XR/2: forall 0<t< R*/n? (7)
Proof. Take z € B(R/2); then when y € B(R) certainly € > R, so (6) implies that for 0 < ¢ < R?/n?

/ Kq(z,y;t)dy
B(R)

> i(47rt)_"/2/ e~lz—ul*/4t dy.
B(R)

[Sa(t)xr]()

Since |z| < R/2, it follows that {w =2 —y: y € B(R)} D B(R/2) and so

[S(t)xr)(x) = ¢~ /4 (4mt) "/ / o0l /4t g,
B(R/2)

= %ﬂ_”ﬂ/ e 1# dz
B(R/4V)

> %7(—“/2/ ey = cgl,
B(n/4)

since t < R?/n?. O

3. Non-existence of local solutions

In this section we prove the non-existence of local L?-valued solutions, taking the following definition
from [8] as our (essentially minimal) definition of such a solution. Note that any classical or mild solution
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is a local integral solution in the sense of this definition [8, p. 77-78], and so non-existence of a local
L4-valued integral solution implies the non-existence of classical and mild L?-valued solutions.

Definition 3.1 Given f > 0 and up > 0 we say that u is a local integral solution of (P) on [0,T) if
uw:Qx[0,T) = [0,00] is measurable, finite almost everywhere, and satisfies

t
u(®) = Safthuo + [ Sa(t— s)f(u(s)) ds 5)
0
almost everywhere in  x [0,T). We say that u is a local Li-valued integral solution if in addition
u(t) € LI(Q) for almost every t € (0,T).

We now prove our main result, in which we obtain non-existence of a local L%-valued integral solution
for certain initial data in LI(2), 1 < ¢ < oo, under the asymptotic growth condition (9) when f is
non-decreasing.

Theorem 3.2 Let g € [1,00). Suppose that f : [0,00) — [0,00) is non-decreasing. If
limsup s~ f(s) = o0 (9)

§—00

for some v > q(1+ 2), then there exists a non-negative ug € L9(Q) such that (P) possesses no local
Li-valued integral solution.

Proof. We find a ug € L9(Q) such that u(t) ¢ Li () for all sufficiently small ¢ > 0 and hence

loc

u(t) ¢ LI(Q) for all sufficiently small ¢ > 0. Note that this is a stronger form of ill-posedness than ‘norm
inflation’ (cf. Bourgain & Pavlovié [1]).
Set a = (n+2)/y < n/q, so that

limsup s~ "2/ f(5) = 0.

L de el

Then in particular there exists a sequence ¢; — co such that
F@)e " 500 as i oo, (10)

Now choose R > 0 such that B(2R) C ) (recall that we assumed that 0 € Q), and take ug =
|z|~*xr(x) € L1(£2). Noting that by comparison u(t) > Sq(t)ug > 0, it follows from (8) that for every
t>0

¢
/ u(t)dr > / / [Sa(t — s)f(Sa(s)uo)](z) dsdx.

B(R) B(R) Jo

Now choose and fix t € (0, R?/n?]. Observe that

Uug Z wxwfl/a

for any ¢ > R™“. In particular, choosing ¢ = ¢, ¢;, it follows from Lemma 2.2 and the monotonicity of
Sq that for all ¢ sufficiently large

Sa(s)uo 2 GiX1(c, g1/ 0< s <t = (cnths) 2/’

Therefore, for any ¢ large enough that t; <t and ¢, ¢; > R™¢,

t;
/ u(t)dz > / / Sa(t = $)f(DiX1(cnp)-—1/e) dsd
B(R) B(R) Jo

123
= f(¢z) / / SQ(t - S)X%(qubi)q/a dzds,
0 B(R)

using Fubini’s Theorem and the fact that f(0) > 0.



Now observe that since Kq(z,y;t) = Kq(y,z;t), for any ¢t > 0 and r, R such that B(R), B(r) C £,

/B 30 de = /B N /B Kol dyde = /B  [Saltxal) ay

t;
/ u(t)dz > f(gzbi)/ / Sa(t — s)xrdxds.
B(R) 0 JB(5(cndi)"/)

Since 3(cn¢;)"1/% < R/2 and t — s < t < R?/n? we can use Lemma 2.2 once more to obtain

ts 1
/ u(t)da > f(qbl)/ / — Xpr/2drds
B(R) 0 JB(3(cndi) /) Cn
=9 f0 s [eav o]
Cn (2 (2 2 nYytv

= [wn2_"c;1_("+2)/a/n2] f(qbi)¢.7("+2)/a —00 as i— 00

(2

Thus

due to (10). O

We note that if f(s) > cs for some ¢ > 0 then arguing as in [5, Theorem 4.1] there can in fact be no
local integral solution of (P) whatsoever.

For the canonical Fujita equation

ug = Au + uP, (11)

our argument shows the non-existence of local solutions when p > ¢(1 + %) The sharp result in this case
is known to be p > 1 + 22 [11,12] with equality allowed if ¢ = 1 [2)].

The existence of a finite limit in (9) implies that f(s) < ¢(1 4 s7), and hence by comparison with (11)
is sufficient for the local existence of solutions provided that v < 1 + 27:1 [10]. We currently, therefore,
have an indeterminate range of +,

2 2
1+ <y <q1+2)
n n

for which we do not know whether (9) characterises the existence or non-existence of local solutions.

4. A very ‘bad’ Osgood f

To finish, using a variant of the construction in [5], we provide an example of an f that satisfies the
Osgood condition (1) but for which

limsup s~ f(s) = oo, for every > 0. (12)

Ede el

Theorem 4.1 There exists a locally Lipschitz function f : [0,00) — [0,00) such that f(0) = 0, f is
non-decreasing, and f satisfies the Osgood condition

/100 g 0=

but nevertheless (12) holds. Consequently, for this f, for any 1 < q < oo there exists a non-negative
ug € LI1(Q) such that (P) has no local LI-valued integral solution.

Proof. Fix ¢g = 1 and define inductively the sequence ¢; via
Piv1 = e

Clearly, ¢; — oo as i — oo. Now define f : [0,00) — [0, 00) by
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(e—=1)s, se€Jy:=][0,1],
f(8) =19 ¢i— i1, s€ L :=[pi_1,0:/2], i > 1, (13)
Zi(s)v s € Jz = (¢1/27¢z)7 { > 17

where ¢; interpolates linearly between the values of f at ¢;/2 and ¢;. By construction f(0) = 0, f is
Lipschitz and non-decreasing, and f is Osgood since

)

However, f(¢;) = e? — ¢;, and so for any v > 0
lim ¢; 7 f(¢i) = o0 as 1 — 0o,
1— 00

which shows that (12) holds. O

This example shows that there exist semilinear heat equations that are globally well-posed in L>(Q),
yet ill-posed in every LI(2) for 1 < ¢ < occ.
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